
Borchers: Current Topics SS06 1

Review



Borchers: Current Topics SS06 2

Part II:
The Power Of

Mathematical Notations



Borchers: Current Topics SS06 3

The Power Of
Mathematical Notations

 Text book for this part:
Harold Thimbleby (UCL Interaction Centre, London):
 “Press On”
 To be published, pre-print PDF version at

http://www.uclic.ucl.ac.uk/harold/book/index.html



Borchers: Current Topics SS06 4

Culture

 Computers are like the Winchester Mistery House
 Staircases leading nowhere
 Cupboards with nothing behind their door



Borchers: Current Topics SS06 5

Culture

 The Magic Machine
 Externalizing costs
 Software warranties
 Bad interaction design –> formalize!

 Book key point: Describe UI behavior mathematically
to improve usability in a predictable way



Borchers: Current Topics SS06 6

State machines (FSMs)
 Describe UIs (discrete systems) by states and actions

 user generates actions (pressing buttons…) which cause effects
 Mode

 in a given mode, an action has a unique effect
 a mode tells what a button will do (e.g., on/off button)

 State
 in the same state, the same actions have exactly the same effects
 a state tells what the system will do
 e.g., television state:

<on/off, channel, sound level, color, brightness…>
 Timeouts and synchronization problems in many systems!

 system resets after certain time, user cannot find a certain state



Borchers: Current Topics SS06 7

Drawing state machines
 Circles represent states
 Arrows represent actions
 Indicate default state with special arrow

 Example: torch
 2 states: on, off
 2 actions: switch on, switch off
 more detailed analysis reveals additional states / actions (e.g.,

dead bulb, no batteries, broken, replace bulb…)



Borchers: Current Topics SS06 8

 Number of states and actions depend on what we try
to achieve as UI analysts!

 Some states are unimportant to our needs

 Computer has too many states—clump them together

 Example: alarm clock has 4 million states
 How could users check?



Borchers: Current Topics SS06 9

Rules for drawing simple state
diagrams

 Every arrow starts and finishes at a state circle
 A state has as many arrows pointing from it as possible actions are

available
 Only one initial state exists
 Arrows can start and finish at the same state
 Terminal states have no outgoing arrows (error!)
 States without incoming arrows are never reached (error!)
 Strong connectivity: all states must be reached from all other states

following arrows



Borchers: Current Topics SS06 10

Statecharts
 Goal: Simplify drawings for complex state machines

 Example: Saving arrow to Off state from every state
 Here: Basic statecharts only

 More general statecharts in UML

 States can be collected into state clusters
 A state cluster represents

a mode for an action iff
we can draw an arrow for
that action from the cluster
 See also Raskin

On and Off state clusters of our torch

cluster



Borchers: Current Topics SS06 11

Multilevel Statecharts
 What is the default

state inside the On
cluster?
 Make On arrow

point to a state
inside On cluster

 Or mark default
state as usual

 State clusters can
contain state clusters
 Example: More

detailed On state
for our torch

Replace

Breaks



Borchers: Current Topics SS06 12

AND States

 Torch: Off state should be symmetrical to On state
 Bulb can be OK or broken
 Breaking and replacing it also does the same
 On and Off switches work independently of bulb health

 AND states can represent this "repetition"
 So far, state machines were always in exactly one state at a

time (coin analogy)
 State cluster divided by dotted line: actions on both sides of

the line can happen independently (two coins); saves arrows



Borchers: Current Topics SS06 13

Joint Connectors

 Entering several AND states
upon an action:

 Only allowing an action if
several AND states are active
(e.g., only allow bulb change
if broken and off):



Borchers: Current Topics SS06 14

History Entrances

 Example: TV set that remembers
channel while off

 When cluster is entered, go to the state
that cluster was in last (remember
cluster state)

 Variant of Default arrow,
marked with an "H"

 Imagine leaving coins in clusters
(maybe flipped over for "inactive")

 More general: Petri Nets



Borchers: Current Topics SS06 15

Deep History

 For nested clusters, need to specify
nested history

 Shortcut: H* marks Deep History
arrow that reaches all the way into
a nested cluster.

H*



Borchers: Current Topics SS06 16

Delays and Conditions

 Delays (almost always evil!):
 Trigger if nothing happened for

a while
 Or delay action for a while after

trigger
 Conditions:

 Action can only occur when
certain conditions hold true

 Can always be replaced with
explicit states, but sometimes
saves drawing lots of states

 Alarm clock example

wait 10s



 Incomplete
 Missing details for

volume /
brightness / color /
contrast selection

Example:
Sony TV

 8 channels
 Buttons:

 Standby
 Channel: +/–
 Volume: Δ+, Δ–
 Contrast/Color/

Brightness: ρ
 Pict. Adjust: ≡+, ≡–



Sony Remote

 What do you notice?
 Different from its TV

 More complex
 Why?

 Strange channel split
 Missing details

 Channels
 Clock



Borchers: Current Topics SS06 19

Undo
 What does Undo look like in a state chart?
 Back arrows with inverse action â
 Toggle switches are easier than single toggle buttons
 What do several switches on a device look like?
 Divided by dotted AND line
 Number of states drawn: m+n
 Number of states posible: m*n
 What does an UNDO button look like?
 Lots of new states and arrows
 Therefore, mark statechart as "undoable", then every arrow

implicitly has an undoable action (cross through exceptions)



Borchers: Current Topics SS06 20

Books on Statecharts

 Harel, Politi: Modeling Reactive Systems with
Statecharts (the definitive book)

 Horrocks: Constructing the User Interface with
Statecharts (more practical, programming-oriented)

 Fowler, Scott: UML Distilled (UML introduction)



Borchers: Current Topics SS06 21

Programming With States

 State may be represented by a variable
 Actions may be represented by functions

 function off() { state = 0 };
 The FSM can be represented as a matrix
 Example: Light bulb (off, dim, on) with 3 buttons:

0 1 2
0 1 2
0 1 2
When in state x and button y is pressed, go to

state (x,y)



Borchers: Current Topics SS06 22

Strong Connectivity

 What does the Farmer's
Problem (farmer, wolf,
cabbage) look like as an FSM?

 Hard because need to find route through FSM
 A strongly connected system is a system where the user

can get from any state to any other state
 The Farmer's Problem is not strongly connected

 Cannot go back when you made a mistake
 A strongly connected component is a subset of states in

a statechart that is strongly connected



Borchers: Current Topics SS06 23

Strong Connectivity

 Algorithms for finding them well known
 Important for usability
 Hard to find by users or empirical testing

 Designers' responsibility!
 Farmer's Problem has 12 strongly connected

components of various sizes (can you find them?)



The twelve strongly connected components arranged around a clock

e.g.,
only
farmer
and
wolf
left



 Same diagram, arranged in rows by distance from start state at
the top

 Useful: An optimal solution to the problem is one that only
goes down, never up or sideways in this graph
 Otherwise a shorter route would have been possible

 Graph shape also gives a feel for complexity of using device



Borchers: Current Topics SS06 26

Connectivity

 Problem hard because some states are one-way (not
the end state btw.)

 So: Remove these states to get an easier to solve
problem diagram

 Can be done automatically!
 For actual devices, this would remove states in which

the user could get stuck (good idea)


