Last Tuesday in Current Topics...

- Contrast between empirical science and ethnography approach
- Triangulation
- Three key attributes of good research using engineering & design approach
- How to treat "other variables"
- Internal validity vs. external validity

"Current" Topics

HCI Research Literacy III

Results and Dissemination with Examples from Midair Input

Applications of Midair Input

4

A Handlebar Metaphor Available at: http://dl.acm.org/citation.cfm?id=2208585

Song et al., CHI '12

Going beyond the surface Available at: http://dl.acm.org/citation.cfm?id=2208583

Expanding interactive surfaces

Spindler et al., CHI '12

Understanding Naturalness and Intuitiveness in Gesture Production

Available at: http://dl.acm.org/citation.cfm?id=1979061

Communication with gestures

Grandhi et al., CHI 'II

Benefits and Drawbacks of Midair Input

- + High degree-of-freedom
- + Move beyond desk/mobile
- + Natural way for gestural communication
- Noisy input and accidental activation
- Exertion: The Gorilla Arm problem
- Privacy and social acceptance

Midair Pointing

(Vogel & Balakrishnan, UIST '05)

Characterizing Design Space of Midair Pointing

Interaction Dimensions

User Study: Effect of DoF and Visual Feedback

- Degrees of freedom
 - Ray casting: pitch and yaw
 - 2D plane: high, left
 - 3D volume: high, left, back

User Study: Effect of DoF and Visual Feedback

- Gradually reducing feedback
 - Full visual feedback: target location, origin, cursor
 - Hide the cursor
 - Hide the origin location, target, and cursor
 - No visual feedback

User Study: Effect of DoF and Visual Feedback

- Degrees of freedom
 - Ray casting: pitch and yaw
 - 2D plane: high, left
 - 3D volume: high, left, back

- Gradually reducing feedback
 - Full visual feedback: target location, origin, cursor
 - Without cursor
 - Without origin location and cursor
 - No visual feedback

Speed, accuracy, ...

In-class exercise: Sketch two graphs showing the result

DATA: BY THE NUMBERS

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

Reading the Results

Statistics in Experimental Research

ANOVA: Analysis of Variance

Maximal model

- Goal: partition the variance from different sources
- Method: fit different models and determine how good the models explain the data
 - Maximal model: one parameter per data point
 - Null model: all data points are represented by
 - Determine just adequate candidate model that fits the data

ANOVA: Analysis of Variance

- Assess goodness of fit
 - Candidate model fits better than null model \Rightarrow The effect is statistically significant
 - Candidate model fits as well as null model \Rightarrow The effect is not statistically significant
- Both mean and variance matter: Examples here are simplified

Main Effect

- Effect that each independent variable has to the dependent variable
 - Shown by mean of each level of a variable
- Main effect of interface and feedback type to selection time

In-class Exercise: Main Effect

 Draw graphs comparing the main effects of interface and feedback to the accuracy and discuss your analysis with your neighbor

Interaction Effect

- Effect of one independent variable depends on the particular level of another independent variable
 - Visualized by non-parallel lines connecting the same level of a variable
- Distance increases in 3D more rapidly than in 2D and Raycasting

In-class Exercise

• Draw graphs comparing the interaction effects interface × feedback to the selection time and discuss your analysis with your neighbor

Putting Them All Together

- Regardless of feedback, Raycasting and 2D plane are comparable in speed
- Raycasting is slightly less accurate
- 3D volume is much slower and less accurate across the board

"To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of." — Ronald Fisher

Dissemination

Peer Reviewing Process

_27

media computing group

Criteria for a Good Paper

- Contribution: What new insight does it bring to the field?
- Benefits: What can one learn from this / do with this?
- Novelty: Prior publications?
- Validity: Are the claims properly backed up?
- Applicability: How good does the paper match the likely audience?
- Format: Readability and clarity

Structure of a Review

- Overall rating: I: definite reject 5: definite accept
- Short summary of the contributions and benefits
 - "This paper presents... (who) will benefit from (what)
- Concerns
 - Originality
 - Validity
 - Clarity
- Suggestions for improvement
- Reviewer's expertise: I: no knowledge 4 expert

Reviewing Checklist

Recommending accept

- Convince yourself that it has no serious defects
- Convince the editor that it is of an acceptable standard, by explaining why it is original, valid, and clear
- List the changes that should be made before it appears in print Where possible: indicating not just *what to change* but *what to change it to*
- Take reasonable care in checking details, e..g, mathematics, formulas, and bibliography
- Recommending reject
 - Clearly explain the faults and, where possible, discuss how they could be rectified
 - Indicate which parts of the work are of value and which should be discarded
 - Check the paper to a reasonable level of detail

From Writing for Computer Science (Zobel, 2004)

Reviewing Checklist

- Always do the following in either case
 - Provide good references with which the authors should be familiar
 - Ask yourself whether your comments are fair, specific, and polite
 - Be honest about your limitations as a referee of that paper
 - Check your review carefully as you would check one of your own paper prior to submission

Assignment I:Write a Review

Reading assignments

- Pointing at 3D Target Projections with One-Eyed and Stereo Cursors (Teather and Stuerzlinger, CHI '13)
- A Comparison of Ray Pointing Techniques for Very Large Displays (Jota et al., GI '10)
- Towards a Standard for Pointing Device Evaluation: Perspectives on 27 Years of Fitts' Law research in HCI. (Soukoreff and MacKenzie, Int. J. Human–Computer Study, 2004)

REQUIRED Write a review

REQUIRED

Skim & Reference

Assignment I:Write a Review

- In groups of six, write a review for
 - Pointing at 3D Target Projections with One-Eyed and Stereo Cursors (Teather and Stuerzlinger, CHI '13)

- Submission: One page A4 (Helvetica or Arial 12pt)
- Timeline
 - First submission deadline: Friday, May 3rd, 2013 before 12:00 noon
 - Group feedback: Wednesday, May 8th, 2013 in the lab
 - Revise-and-resubmit deadline: Wednesday, May 14th, 2013 before 12:00 noon
- Graded assignment: 5% total score of the course

Coming Up Next...

- Enjoy your CHI 2013 with video previews: http://chischedule.org/2013/
- May 7th: No lecture: Student Representative Council Meetings
- May 8th: Lab Feedback of Assignment I
- May 14th: Lecture Human Computation by Leonhard Lichtschlag