
by
Thomas Oster

VisiCut:
An Application

Genre for
Lasercutting in

Personal Fabrication

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Univ.-Prof. Dipl.-Ing. M. Arch Peter Russell

Registration date: Sep 2nd, 2011
Submission date: Sep 30th, 2011

Bachelor’s Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2011
Thomas Oster

v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

1.1 What is a Laser-Cutter and What is it Good
for? . 2

1.1.1 Modes of Operation 3

Vector Mode 3

Raster Mode 4

3D-raster Mode 4

1.1.2 The Positioning Problem 5

1.2 Motivation . 6

1.2.1 VisiCut: A Tool to Simplify Laser-
Cutting 7

vi Contents

1.2.2 An Open Source Laser-Cutter Library 7

1.3 Overview . 8

2 Related work 9

2.1 Interactive Systems with Real-World Input . 9

2.1.1 CopyCAD 9

2.1.2 Pictionaire 10

2.1.3 Summary 12

2.2 Existing Software for the Epilog ZING 12

2.2.1 Epilogs Dashboard 13

Positioning 14

Preview 14

2.2.2 CUPS-Epilog 15

How the Driver works 16

2.2.3 Ctrl-Cut 17

2.2.4 Limitations of the Printer Driver Ap-
proach 18

2.2.5 Summary of the different drivers . . . 19

2.3 Summary of Related Work 20

3 Own work 21

3.1 Survey . 21

3.2 Requirements 22

3.3 Architecture 23

Contents vii

3.3.1 Front-End Architecture 24

3.3.2 Back-End Architecture 24

3.4 VisiCut . 25

3.4.1 Terms and Definitions 25

3.4.2 The Modeling Problem and the Map-
ping Concept 25

3.4.3 Design of VisiCut 26

Prototype 1: Mapping by Selecting
Objects 27

Prototype 2: Mapping by Filter Rules 27

Prototype 3: Mapping by Only One
Attribute 28

The WYSIWYG Part 30

The Right Camera Resolution 31

3.4.4 Implementation of VisiCut 32

The Camera Implementation 32

General Structure of VisiCut 33

The GraphicObject Interface 33

The Portable Laser Format 34

3.5 LibLaserCut 36

3.5.1 Design of LibLaserCut 36

The LaserCutter Interface 36

Vector Part 37

Raster Part 37

viii Contents

3D Raster Part 38

3.5.2 Implementation: The Epilog Driver . 38

Vector Part Implementation 38

Raster Part Implementation 40

3D Raster Part Implementation 41

Sending the Job via LPD 41

3.6 Summary of Own Work 41

4 Evaluation 43

4.1 Requirements 43

4.1.1 R1: Platform independance 43

4.1.2 R2: Provide preview 44

4.1.3 R3: Reusable API 44

4.1.4 R4: Easy sharing and publishing of
work 45

4.1.5 R5: Store material specific settings . . 45

4.2 System Usability Scale 45

5 Summary and future work 47

5.1 Summary and Contributions 47

5.2 Future Work 48

5.2.1 Improving the Preview Quality by
3D-Rendering 48

5.2.2 Exctract Vector Data from Raster Files
with User Support 49

Contents ix

5.2.3 Creating a Platform for Sharing Visi-
Cut Files and Material-Profiles 49

5.2.4 Engraving Non-Planar Objects by
Providing a 3D-Model 49

5.2.5 Optimizing the Execution Speed . . . 50

5.2.6 Improving the Camera Setup 50

5.2.7 Multiple Input Files 50

5.2.8 Back to the Printer Driver 50

5.3 Conclusion . 51

A User Survey to Determine Habits in Laser-Job Cre-
ation 53

B System Usability Scale 61

C Speed Measurement Results 65

C.1 Epilog Cutter Speed Tests 65

C.1.1 VectorPart @ 100% Speed, 500 DPI . . 65

C.1.2 VectorPart @ 10% Speed, 500 DPI . . . 65

C.1.3 RasterPart @ 100% Speed, 500 DPI . . 66

C.1.4 RasterPart @ 10% Speed, 500 DPI . . . 66

Bibliography 67

Index 69

xi

List of Figures

1.1 A laser-cutter, which directs its beam
through mirrors 2

1.2 A laser-cutter cutting out bells in vector mode 3

1.3 A letter engraved in wood with raster mode 4

1.4 3D effects using 3D raster mode 5

1.5 Wrong engraving position 6

2.1 The CopyCAD system 10

2.2 The Pictionaire system 11

2.5 Settings dialog of the Epilog DashboardTM . 13

2.6 Positioning in Epilog 14

2.7 Data flow in the cups-epilog driver 16

2.8 Configuring Ctrl-Cut 18

3.1 Software Architecture 23

3.2 Modeling an object in a graphic file 26

3.3 Prototype 1 . 27

xii List of Figures

3.4 Prototype 2 . 28

3.5 Prototype 3 . 29

3.6 VisiCut’s camera preview 31

3.7 The basic structure of a PLF file 35

4.1 Comparism of preview and result 44

5.1 Workflow . 48

xiii

List of Tables

2.1 Summary of Different existing Drivers 19

3.1 Low- and high-level data structures for the
three modes of operation 24

3.2 The available attributes for the supported file
formats . 30

3.3 An overview of the different VectorCommands 37

3.4 PCL commands specific to the Epilog ZING . 40

xv

Abstract

Laser-cutters are central devices in personal fabrication and widely used in fab labs.
Since those are open for everyone, an easy to use software solution is important.
There are many vendor supplied solutions and some open source approaches, but
none of them can provide full platform independence and good usability.
We created a tool named VisiCut, which allows using laser-cutters from nearly any
operating system and even prepare the laser-jobs at home to minimize the time
needed in the lab. This tool has some advantages over the existing solutions, which
include positioning directly on a live camera picture of the material, detailed pre-
view rendering and saving of complete jobs for easy distribution and portability.
As base for VisiCut, we created a new library dedicated for laser-cutting, which
is called LibLaserCut. This library provides easy interfaces for implementing laser-
cutter drivers. The first driver, we implemented for the library, controls an Epilog
ZING laser-cutter.
Both are written in pure Java, which make them platform independent. They are
licensed as free software in order to be available for everyone and to allow contin-
uous development and community support.
For VisiCut, we analyzed existing interactive systems used in fabrication environ-
ments and conducted a survey to to determine the habits of people using the laser-
cutter in our fab lab. We also created a few UI prototypes and did user tests to
improve them.
For the LibLaserCut, we analyzed the possibilities of the Epilog ZING laser-cutter
among with available software solutions. We designed an interface for laser-cutter
drivers and implemented the driver for the Epilog ZING, which is based on the
open source driver CUPS-epilog.
Further, we evaluated VisiCut through a user test and tested the whole system on
different platforms. We also created a list of improvements and enhancements,
which should be addressed in future developement.

xvi Abstract

xvii

Überblick

Lasercutter sind zentrale Geräte in der Personal Fabrication und sehr verbreitet in
FabLabs. Da diese offen für jedermann sind, ist einfach zu bedinende Software
sehr wichtig. Es gibt viele vom Hersteller bereitgestellte Lösungen und einige
Open Source Ansätze, jedoch bietet keine davon volle Plattform Unabhängigkeit
und eine gute Bedienbarkeit.
Wir haben ein Tool namens VisiCut erstellt, welches ermöglicht, Lasercutter von
fast jedem Betriebssystem zu benutzen und sogar Projekte zu Hause vorzubere-
iten um die benötigte Zeit im Lab zu minimieren. Dieses Tool hat einige Vorzüge
gegenüber den existierenden Lösungen, wie zum Beispiel das Positionieren direkt
auf einer Kamera Vorschau des Materials, detailiertes Vorschau Rendering und das
Speichern von kompletten Projekten für einfache Verteilung und Mobilität.
Als Grundlage für VisiCut haben wir eine neue Bibliothek namens LibLaserCut
erstellt, welche auf Lasercutting spezialisiert ist. Diese Bibliothek stellt einfache
Schnittstellen bereit um Treiber für Lasercutter zu implementieren. Der erste
Treiber, den wir implementiert haben, steuert einen Epilog ZING Lasercutter.
Sowohl VisiCut, als auch LibLaserCut sind in reinem Java geschrieben, was sie plat-
tform unabhängig macht. Sie sind als freie Software lizensiert um für jedermann
verfügbar zu sein und kontinuierliche Entwicklung und Unterstützung durch eine
Gemeinschaft zu ermöglichen.
Für VisiCut haben wir bestehende interaktive Systeme, die in Fabrication Umge-
bungen genutzt werden analysiert und eine Umfrage durchgeführt um die
Gewohnheiten von Menschen, die den Lasercutter in unserem FabLab benutzen
festzustellen. Des weiteren haben wir einige UI Prototypen erstellt und Tests
durchgeführt um diese zu verbessern.
Für die LibLaserCut haben wir die Möglichkeiten unseres Epilog ZING Lasercut-
ters zusammen mit verfügbaren Software Lösungen analysiert. Wir haben eine
Schnittstelle für Lasercutter entworfen und einen Treiber für den Epilog ZING im-
plementiert, der auf dem Open Source Treiber CUPS-epilog basiert.
Außerdem haben wir VisiCut mit Hilfe eines Benutzertests evaluiert und das
gesamte System auf verschiedenen Plattformen getestet. Des Weiteren haben wir
eine Liste mit Erweiterungs- und Verbesserungsmöglichkeiten erstellt, welche in
zukünftigen Entwicklungen berücksichtigt werden sollte.

xix

Acknowledgements

First of all, I want to thank Prof. Jan Borchers, Univ.-Prof. Dipl.-Ing. M. Arch Peter
Russell, René Bohne and the whole chair i10 for giving me the opportunity to write
this thesis and experiment with all the expensive equipment.
Special thanks to Clio Kakoulli, Birgit Stolte, Mariana Bocoi and all the others who
constantly helped me by testing my prototypes, mocking me for bad UI Design and
seeing things from a completely different point of view.
Also, I want to thank all members of the “Thesis Research Camp” for all the sug-
gestions and one more night of work instead of sleep.
Finally I want to thank my girlfriend Manuela for being patient with me in the last
weeks and for giving me the hint to the idea with the camera.

xxi

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in coloured boxes.

File: myFilea

afile number.file

file:file_number.file

1

Chapter 1

Introduction

“The real technical problems came because
people working on the project didn’t really follow
my proposal at all, but set out to do other things

instead of making a laser.”

—Gordon Gould

Fab labs are places, where everyone can use expensive
digital fabrication machines like 3D-printers, CNC-milling
machines and laser-cutters in order to create “almost any-
thing” they can imagine. In his book, Neil Gershenfeld de-
fines the term fab lab, as a “lab for fabrication”, which is
basically “a collection of commercially available machines
and parts linked by software and processes we developed
for making things” [Gershenfeld, 2007].

In this chapter, we will explain, what a laser-cutter is and
what it is capable of. We will describe our motivation to
develop new software for it and finally, we will give a short
overview, what structure the rest of this thesis is.

2 1 Introduction

1.1 What is a Laser-Cutter and What is it
Good for?

A laser-cutter allows fast and high quality cutting and en-
graving of a wide range of materials. Basically, it is a ma-
chine, which directs a high-power laser beam on material to
be cut or engraved. “The material then either melts, burns,
vaporizes away, or is blown away by a jet of gas” [Oberg
et al., 2004, p. 1447], leaving an edge with a high-quality
surface finish.

In the fab lab Aachen1 , we have an Epilog ZING laser-
cutter, which directs the output of its CO2-laser tube
though a construction of mirrors (see figure 1.1). There are

Figure 1.1: A laser-cutter, which directs its beam through
mirrors
source: http://en.wikipedia.org/wiki/Laser engraving

other types of laser-cutters (e.g. Y b : Fiber, Nd : Y V O4 or
Nd : Y AG lasers), which can used for different materials,
but in this thesis we will restrict our research to the CO2

laser-cutter, more precisely the Epilog ZING.

1http://fablab-aachen.de

http://fablab-aachen.de

1.1 What is a Laser-Cutter and What is it Good for? 3

1.1.1 Modes of Operation

Our laser-cutter has three different modes of operation2,
which we will explain in this section.

Vector Mode

In vector mode, the laser moves along a path with constant
speed, allowing to cut material or engrave lines, depending
on the power and the movement speed of the laser beam
(see figure 1.2).

Figure 1.2: A laser-cutter cutting out bells in vector mode
source: http://www.instructables.com/image/FXXQZ80FABDYR2R/Laser-
cutting.jpg

2There is also the Stamp Mode, but since this is not really different
from raster modes and not widely used, we will not regard it in this
thesis

4 1 Introduction

Raster Mode

In raster mode, the laser moves line-wise along a raster
and engraves a representation of an image by switching the
laser on and of according to the raster pattern (see figure
1.3).

Figure 1.3: A letter engraved in wood with raster mode
source: http://www.imajeenyus.com

3D-raster Mode

3D-raster mode is different from raster mode in the way,
that the laser is not only switched on and of, but set to dif-
ferent power levels, resulting in different engraving depths.
This allows three dimensional effects as shown in figure 1.4.

1.1 What is a Laser-Cutter and What is it Good for? 5

Figure 1.4: 3D effects using 3D raster mode
(with friendly permission from
http://www.thunderlaser.com)

1.1.2 The Positioning Problem

A common problem when working with the laser-cutter is,
that due to the corner- or center-based positioning avail-
able in the current drivers, it is sometimes hard, to engrave
on real-world objects (which already have certain shapes or
engravings), because the target position of the engraving is
not always corner or center based and the resulting size is
not easy to imagine. This can be very annoying or even
expensive (see figure 1.5).

6 1 Introduction

Figure 1.5: An expensive mistake: The engraving is not
where it should be

1.2 Motivation

Gershenfeld writes, that in order to get closer to a real ”Per-
sonal Fabricator”, ”the intention over time is, to replace
parts of the fab lab with parts made in the fab lab ” [Ger-
shenfeld, 2007, p. 215].

There are several approaches to do this for common fab lab
tools like 3D-Printers (e.g. the MakerBot3), Milling ma-
chines (e.g. the Mantis CNC Mill4) and even laser-cutters
(e.g. the boot strappable open laser cutter5).

Since the hardware is ”linked by software” and the avail-
able software is often limited or expensive (see 2—“Related
work”), the aim of this thesis is to replace software in the fab
lab by software made in the fab lab.

3http://www.makerbot.com/
4http://makeyourbot.org/mantis9-1
5http://builders.reprap.org/2011/05/boot-strappable-open-laser-

cutter.html

http://www.makerbot.com/
http://makeyourbot.org/mantis9-1
http://builders.reprap.org/2011/05/boot-strappable-open-laser-cutter.html

1.2 Motivation 7

1.2.1 VisiCut: A Tool to Simplify Laser-Cutting

Different users prefer different software to create their
models for laser-cutting (see A.5), which often makes it nec-
essary to import files created in another graphic software.
This step can be time consuming, because most graphic
software is not completely compatible to each other and
suitable export and import settings have to be determined.
Sometimes even corrections have to be made. Performing Importing into other

graphic software
takes valuable time
in the lab

this task on the target computer takes valuable lab time.

Thus we created the tool VisiCut, which allows the user
to import and prepare a laser-job at home, taking without
time limitations, and then saving it in the VisiCut Portable
Laser Format (see 3.4.4—“The Portable Laser Format”).
The saved file can be opened the VisiCut application on an-
other computer, e.g. one in the lab, and be sent to a laser-
cutter.

Additionally, VisiCut provides a good visual preview
and solves 1.1.2—“The Positioning Problem” by provid-
ing camera supported visual positioning. Also the Portable
Laser Format allows easy publishing of prepared laser-jobs
e.g. via thingiverse6 .

1.2.2 An Open Source Laser-Cutter Library

For enabling VisiCut to control a laser-cutter, it needs some
kind of driver. Since most vendors supply only drivers for
a specific operating system (OS), which are sometimes op-
timized to work with certain graphic software, there are of-
ten licensing issues and compatibility problems. There are
some open source projects, but as we will outline in section
2.2—“Existing Software for the Epilog ZING”, they all have
some drawbacks. Since there is no special API for laser- Major OS lack a

laser-cutter specific
API

cutting in any of the major OS, most drivers are written
as printer drivers. This has certain limitations (see section
2.2.4—“Limitations of the Printer Driver Approach”) be-
cause a laser-cutter is in many ways different from a printer.

6http://www.thingiverse.com

http://www.thingiverse.com

8 1 Introduction

There is, therefore, a need for a library, which provides an
API dedicated for laser-cutting and allows easy implemen-
tation of new drivers, which can be used with any appli-
cation using that library. In order to be able to supportThere is a need for

an open source
library, dedicated to
laser-cutting

a wide range of different devices and to become a widely
used library, it should be open source, because “by making
the users of a product into codevelopers, you speed debug-
ging, improve quality and gain specialized features, that
may eventually turn out to be important to a wider audi-
ence” [O’Reilly, 1999].

1.3 Overview

In the following, we give an overview of the chapters in this
thesis and their contents.

• The chapter 2—“Related work” introduces some in-
teractive systems, with similar concepts to the ones in
VisiCut. After that, the different existing drivers for
the Epilog ZING laser-cutter are listed compared to
each other.

• The chapter 3—“Own work” starts with an initial sur-
vey (see A—“User Survey to Determine Habits in
Laser-Job Creation”) to determine the habits of users,
who use the laser-cutter. A declaration of require-
ments for our system follows, which we derived from
the previous chapter and the user survey. The next
section contains the overall 3.3—“Architecture” of the
system. The rest of the chapter is split into two sec-
tions:

– First, the section 3.4—“VisiCut” presents the de-
velopement process of the VisiCut tool by show-
ing the ceveral prototypes and some implemen-
tation details

– The following section 3.5—“LibLaserCut” we
will describe the design and implementation
of the LibLaserCut library and the implemen-
tation of the Epilog driver (see section ??—
“??”epilogdriver.

1.3 Overview 9

• In 4—“Evaluation” we will discuss if the require-
ments from 3.2—“Requirements” are met and we will
measure the overall usability with the 4.2—“System
Usability Scale”.

• 5—“Summary and future work” contains a summary
of our work and some ideas how to improve it.

11

Chapter 2

Related work

“Your work is to discover your world and then
with all your heart give yourself to it.”

—Hindu Prince Gautama Siddharta, the founder of
Buddhism, 563-483 B.C.

The related work can be grouped in two categories. First,
we will introduce some interactive systems, which contain
concepts important to the development of VisiCut. In the
second part, we will give an overview of the existing soft-
ware for controlling an Epilog ZING laser-cutter.

2.1 Interactive Systems with Real-World
Input

2.1.1 CopyCAD

The CopyCAD System, introduced by [Follmer et al., 2010]
allows to extract shapes of physical objects by scanning a
picture, interactive editing of the shapes directly on the ob-
ject and reproducing an object with the manipulated shapes
on a milling machine (see figure 2.1).

This approach enables users to use real world objects as a

12 2 Related work

base for their own ideas. Since the manipulating is done
directly on the milling machine, no computer (except for
controlling the CopyCad System) is necessary. On the other
hand, drawing with a pen is not very accurate and on a
computer one could additionally use shapes from digital
files.

Figure 2.1: CopyCAD system interaction for modifying a
lightswitch cover. Clockwise starting in top left: 1. Place
object, 2. copy shape, 3. shape is projected, 4. delete interior
shape, 5. draw new geometry, 6. copy new geometry.
source:[Follmer et al., 2010]

In our work, we use a camera to get a preview of the ma-
terial (3.4.3—“The WYSIWYG Part”), but instead of edit-
ing directly on the material, we use a computer for editing,
which also removes the need of an expensive projector.

2.1.2 Pictionaire

Pictionaire is an interactive tabletop collaboration system
(see figure 2.2) introduced by [Hartmann et al., 2010]. It
“offers capture, retrieval, annotation, and collection of vi-
sual material”. For the setup, it uses a tabletop system with
touch and device input, a projector to project an image onto
the tabletop and a high-resolution camera to capture the
whole device-surface (see figure 2.3). This enables the users
to annotate directly on captured images of real-world ob-
jects (see 2.4).

2.1 Interactive Systems with Real-World Input 13

Figure 2.2: Pictionaire supports design collaboration across
physical and digital artifacts.
source: [Hartmann et al., 2010]

Figure 2.3: The Pictionaire table offers touch and device in-
put, top projection, and high-resolution image capture
source: [Hartmann et al., 2010]

In VisiCut, we will use a similar approach of capturing
photos of existing materials and overlay them with virtual
graphic content, but in contrast to Pictionaire, we use a
computer for editing, instead of a tabletop system.

14 2 Related work

Figure 2.4: Annotations on a photo of a game controller.
source: [Hartmann et al., 2010]

2.1.3 Summary

The two presented systems show, that a camera can be
used to create an environment which mixes objects from
the physical world and the virtual world. However in our
environment, most users create their models on a computer
before working with the software, it is not necessary to be
able to modify the model on the material using multi touch
or similar input devices. Instead, we import the captured
image into our software an let the user virtually edit it.
This has the advantage, that no projector is needed, which
makes the design cheaper and the setup less complex.

2.2 Existing Software for the Epilog ZING

In this section, we will compare the different existing soft-
ware capable of controlling an Epilog ZING laser-cutter to
each other. After that, we will outline some drawbacks
of the printer driver approach. At the end of this section,
we will summarize the differences in order derive require-
ments for our system in section 3.2—“Requirements”.

2.2 Existing Software for the Epilog ZING 15

2.2.1 Epilogs Dashboard

Epilog provides the Laser DashboardTMPrint Driver1 , a
printer driver for Microsoft Windows, which allows laser- The Epilog

Dashboard works as
printer driver for
Windows

cutting from generally every windows application, that can
use a printer. It can use the laser-cutter either as a local
USB printer or as a network printer through the Ethernet
interface. The settings specific to the laser-cutter are en-
tered in the dashboard window (figure 2.5), which opens
as a printer configuration dialog.

Figure 2.5: Settings dialog of the Epilog DashboardTM

The driver can set parameters like power, speed and fre-
quency per color or for the whole job, but only lines thin-
ner than a dpi-dependent threshold are recognized to be
cut. Everything else will be dithered by the selected algo- Parameters for

certain materials can
be saved to a file

rithm (Standard, Brighten, LowRes, Floyd Steinberg, Jarvis
and Stucki) and added to the engraving part. The settings
can also be saved to a file, which allows the creation of a
database for often used materials.

The driver also supports a 3D-engraving mode, where the
grey value of every pixel is translated into laser power, al-
lowing different engraving depths and 3D effects.

1http://www.epiloglaser.com/downloads zing.htm

http://www.epiloglaser.com/downloads_zing.htm

16 2 Related work

Positioning

The user can select between absolute positioning, meaning
the upper left corner of the graphic is mapped to the upper
left corner of the laser-bed, or select from predefined cen-
tered starting points (see figure2.6). It is possible to man-
ually move the laser-head and with it the reference point,
before starting a job, which allows accurate positioning on
existing objects. However, this has some limitations which
are outlined in 1.1.2—“The Positioning Problem”.

Figure 2.6: Positioning options in the Epilog Dashboard

Preview

The dashboard window does not provide any preview. TheNo laser-cutter
specific preview is
provided

only preview provided is just the default printer preview
of the operating system’s printer dialog, containing the
printed part as rastered image. Neither a difference be-
tween cutting and engraving is visible, nor any preview
how the graphics look after dithering.

2.2 Existing Software for the Epilog ZING 17

2.2.2 CUPS-Epilog

The CUPS-Epilog2 driver is a back-end for the open source
printing system CUPS.

CUPS:
The Common Unix Printing System3 is developed by Ap-
ple Inc.4 for Mac OS X and other UNIX-like OS. For more
information, see [Miller et al., 2009]

Definition:
CUPS

The CUPS-epilog driver is an open source driver, main-
tained by the AS220 Labs since 2008. It allows using the
Epilog Legend laser-cutter as printer in CUPS compatible
environments, like many Linux and Mac OS versions. It CUPS-epilog is a

Linux and Mac OS
compatible driver
which can use
Ethernet

consists of a single C file, which can be compiled to a bi-
nary which can be registered as CUPS back-end. The driver
is capable of controlling the laser-cutter via Ethernet.

Since the driver comes without a PPD file, the laser specific
settings cannot be set in a configuration dialog, but they
have to be specified on the printer queue.

POSTSCRIPT PRINTER DESCRIPTION:
A PostScript Printer Description file contains a descrip-
tion of the capabilities of a printer. This information al-
lows the operating system to provide a configuration di-
alog, which contains settings specific to the printer de-
scribed by a PPD file.

Definition:
postscript printer
description

This means, for every configuration, the user has to create
a new printer queue or alter the existing one. This results
in most users defining one printer queue per material.

2http://www.as220.org/git/cgit.cgi/attic/cups-epilog.git/
3http://www.cups.org/
4http://www.apple.com/

http://www.as220.org/git/cgit.cgi/attic/cups-epilog.git/
http://www.cups.org/
http://www.apple.com/
http://www.apple.com/

18 2 Related work

How the Driver works

Since we used this driver as a base for implementing
our own driver (see 3.5.2—“Implementation: The Epilog
Driver”), we analyzed the way its different routines work
together.

When printing to a queue using this back-end, the exe-
cutable is called by CUPS and provided with the print job
in PDF or PostScript, depending on the CUPS version and
preferences. Once started, the driver checks whether the

Graphic Software

CUPS

pdf2ps

Ghostscript

Epilog

Driver

PS or PDF

PS or PDF

PDF

ps2eps (Postscript Injection)

PS

PS

EPS

generatePJL

generateRasterPCL

generateVectorPCL

BMP

Vector

PJL

Figure 2.7: Data flow in the cups-epilog driver

2.2 Existing Software for the Epilog ZING 19

given file is PDF or PostScript. If it is a PDF-file, the exter-
nal tool ”pdf2ps” is called to convert the file to PostScript.
The important part is the routine ”ps2eps” which copies all cups-epilog injects a

PostScript function,
which makes the
Interpreter
”Ghostscript” yield
the VectorData for
every red line, while
rasterizing the print
job

the Postscript code and adds a codeblock, which overloads
Postscript’s line-function. So every time the postscript-
interpreter shall draw a line, the overloaded-line function is
called which checks if the linecolor is red. If this is the case,
it writes the line parameters to stdout, which get captured
later into the .vector-file. Otherwise it calls Postscript’s na-
tive line-function (see figure 2.7).

This modified PostScript code is handed over to
ghostscript, the postscript-interpreter. Ghostscript in-
terprets the code and creates a rasterized bitmap file. The
overloaded line function dumps all red lines to stdout,
which is saved in a .vector file. After ghostscript is finished,
cups-epilog generates two PCL Blocks, one for the raster
part from the bitmap file, the other one for the vector part,
from the vector file.

PCL,PJL:
The Printer Control Language (PCL) was originally de-
veloped by HP to control laser-printers. It is often encap-
sulated in the Printer Job Language (PJL) which allows
job management and multiple control languages in print
jobs. For more information see History of Printer Com-
mand Language PCL5 or [Smith, 1998]

Definition:
PCL,PJL

The two PCL Blocks get embedded in a PJL block, which is
sent via LPD-Protocol as specified by [McLaughlin, 1990] to
the Epilog laser-cutter over Ethernet. The driver does not
support the USB interface at this time.

2.2.3 Ctrl-Cut
Ctrl-Cut is similar to
CUPS-epilog, but
provides a printer
control panel

Ctrl-Cut6 , like the cups-epilog, is another CUPS back-end.
The code, however, is written in C++ and has a modular
architecture instead of a monolithic code block. It also pro-
vides a printer control panel 2.8 which makes the config-

5http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568
6https://github.com/Metalab/ctrl-cut

http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568
https://github.com/Metalab/ctrl-cut

20 2 Related work

uration of parameters easy and allows different settings to
be specified per print job.

Figure 2.8: The printer configuration dialog of Ctrl-Cut

Currently, it only supports the Epilog Legend 36EXT, but
future support for other laser-cutters is planned (see
README.md7). Like the CUPS-epilog driver, it only sup-
ports Ethernet connections to the laser-cutter. Also special
packaging for Mac OS X and Ubuntu Linux is provided.

2.2.4 Limitations of the Printer Driver Approach

Implementing a laser-cutter driver as a printer driver has
the advantage of the existing infrastructure for printers.
Nearly any graphic related software is capable of using a
printer through the operating system’s interfaces.

On the other hand, installing such a driver requires admin-
istrative privileges on most operating systems and is a big-
ger security threat than a user space program. Also most
printing systems (e.g. CUPS, which is used in Mac OS X
and many Linux versions) only provide the printer driver
with file formats like PostScript or PDF, which lack some

7https://github.com/Metalab/ctrl-cut/blob/master/README.md

https://github.com/Metalab/ctrl-cut/blob/master/README.md

2.2 Existing Software for the Epilog ZING 21

advanced features of other graphic file formats, like layers
and groups. Since all files sent to a printer driver get con- Printer drivers need

administrative
privileges, can not
take advantage of
high-level concepts
like layers and are
often platform
dependant

verted into such format, laser-cutter drivers implemented
as printer drivers have no access to this information any-
more, meaning it would be very hard or even impossible,
to create a printer driver for a laser-cutter, which automat-
ically cuts everything in layers named ”cut” and engraves
everything else.

A third disadvantage of printer drivers is the platform de-
pendence. Although the CUPS system is used on Mac OS
X and Linux and can also be installed in Windows, it is not
available by default everywhere. There are some operating
systems (e.g. Android), which do not even provide support
for printers.

2.2.5 Summary of the different drivers

Name Laser DashboardTM CUPS-epilog Ctrl-Cut
OS Windows UNIX, Mac OS UNIX, Mac OS
Supported
Modes

vector, raster, 3D
raster

vector, 3D raster vector, raster

Differentiation line width line color+width line color+width
Settings printer configura-

tion, predefined
settings

print queue printer configuration

Connection USB,Ethernet Ethernet Ethernet

Table 2.1: Summary of Different existing Drivers

Table 2.1—“Summary of Different existing Drivers” shows,
that none of the drivers works on all three major OS. Also
only the vendor provided version supports all three modes
of operation (see 1.1.1—“Modes of Operation”). Since None of the drivers

works on all OS and
support all three
modes of operation

the drivers differ in the way they decide which part of a
graphic belongs to vector mode and which does not, graph-
ics created for one of the drivers have to be altered in order
to use them with another. The two ways of configuring the
laser settings in the open source drivers both have some
drawbacks: if there is a certain set of frequently used ma-
terials, configuring the settings each time before send a job
is not optimal. Also if one has to specify the settings in the

22 2 Related work

printer queue, it is possible to have one queue per material,
but changing a value just a little always requires configur-
ing a printer queue.

2.3 Summary of Related Work

From the introduced interactive systems, we got some con-
cepts for the visual part of VisiCut. We will use these results
together with the results of the driver comparism to derive
the requirements for our software in the next chapter.

23

Chapter 3

Own work

“All things are difficult before they are easy.”

—Thomas Fuller

In this chapter, we first present the results of our user sur-
vey (A—“User Survey to Determine Habits in Laser-Job
Creation”). From this results and the results of the previous
chapter, we will derive the requirements for our software.
This is followed by a description of the architecture, which
defines the boundaries between VisiCut and the LibLaser-
Cut.

Finally, we will present the design and implementation of
VisiCut and LibLaserCut separately.

3.1 Survey

To get an overview of the habits of users when creating jobs
for laser-cutting, we made a user survey (see A—“User Sur-
vey to Determine Habits in Laser-Job Creation”), which re-
vealed the following results:

• Windows, Linux and Mac OS X are often used, as well
as a wide range of different graphic software, so our

24 3 Own work

software should not be restricted to one of them (see
figure A.11 and figure A.5).

• Importing, positioning and configuring the laser-
cutter and material values takes approximately 66%
of the overall time (see figure A.4). Since time in fab
labs is valuable, we aim to minimize the time needed
for these steps.

• Most of the files contain parts for cutting and engrav-
ing (figure A.8) and the users way to separate them
varies (see figure A.7). In order to minimize the learn-
ing curve and the influence on the creation process,
the software should be able to deal with several ways
of separation.

3.2 Requirements

From the results of chapter 2—“Related work” and the
above results, we derive the following requirements R1-R6:

• R1 Platform independence: the software should be
portable to all major OS without big effort. This re-
moves the need for fab labs to use specific OS and also
enables the users to use the software on their home
computer, no matter what OS they use.

• R2 Provide preview: In order to move the design pro-
cess from the labs to the home environment, the pro-
gram should provide a preview of the graphic and
how it approximately looks like, when laser-cut on
certain materials.

• R3 Reusable API: Since there is no laser-cutter API
available yet, the library should provide a general and
reusable API so it can be a base for a wide range of
laser-cutter specific software.

• R4 Easy sharing and publishing of work: Since the
user shall be able to prepare jobs at home, there has to
be an option to save the work for transporting it into
the lab where the job is executed.

3.3 Architecture 25

• R5 Store material specific settings: Since there are
some materials, which are frequently used, the soft-
ware should be able to store the settings in a material
database, so the user just has to select the material in-
stead of dealing with technical terms like power and
speed.

• R6 Support different ways of separation: The user
should be able to model his idea in a way he is fa-
miliar with. Thus, we want to minimize the require-
ments a graphic file has to fulfill to be used with our
software. Supporting different ways of encoding the
laser-profile also allows using graphic files created for
different drivers without modification.

3.3 Architecture

We want to separate the front-end (VisiCut) from the back-
end (LibLaserCut) to provide a reusable API, which is inde-
pendent from the UI tool we create (figure 3.1). This allows Separate the driver

part from the UI partthe creation of other applications like VisiCut and other
laser-cutter related software, without rewriting the driver.

Figure 3.1: The Software Architecture to provide reusable
API and laser-cutter drivers

26 3 Own work

3.3.1 Front-End Architecture

The UI tool VisiCut never uses a driver directly, but uses al-
ways the interfaces provided by the library. This enables
adding drivers without changing the VisiCut tool, even
without recompiling, since we can add classes to the Java
classpath after compilation.

3.3.2 Back-End Architecture

We support all three modes of operation (see 1.1.1—
“Modes of Operation”), each with a low- and a high-
level API. The high-level API provides support for ad-
vanced data structures as they are used by common graphic
applications and file formats, whereas the low-level APIDivide API into low-

and high-level uses data structures which are similar to the ones used in
drivers, giving full control over the laser process.

A driver for this library just has to understand the low-level
structures, because the library will automatically convertDrivers only use

low-level all calls to the high-level API to calls to the low-level API
(see table 3.1—“Low- and high-level data structures for the
three modes of operation”).

We do not provide a mechanism to connect to a laser-cutter,
which allows each driver to implement the communication
completely independent. So the driver can decide, if it sup-The driver is

responsible for the
connection

ports USB or Ethernet or whatever it is capable of.

mode high-level low-level
vector shape, path polygon
raster grey scale image black/white image
3D raster color image grey scale image

Table 3.1: Low- and high-level data structures for the three
modes of operation

3.4 VisiCut 27

3.4 VisiCut

In this section we will give an overview of the development
of VisiCut. First, we will define some terms we use for de-
scribing certain elements and operations in VisiCut. Then
we will sketch the design process by presenting our differ-
ent prototypes and the integration of the concepts of the
interactive systems introduced in section 2.1—“Interactive
Systems with Real-World Input”. Finally we will go into
some implementation details.

3.4.1 Terms and Definitions

In order to understand the following concepts of VisiCut,
we define some terms:

GRAPHIC FILE:
A graphic file is a file created by the user with a tool like
Adobe Illustrator, which contains a model of the user’s
laser-project

Definition:
graphic file

GRAPHIC OBJECT:
A graphic object is a visible part of a graphic file, mean-
ing one of the following categories: path (rectangle, cir-
cle, bezier curves), text or image (embedded raster im-
age).

Definition:
graphic object

LASER-PROFILE:
A laser-profile corresponds to a way to handle graphic
objects on a laser-cutter. An example of a laser-profile
could be ”cut” which moves the laser-head along each
shape of path objects in order to cut the material.

Definition:
laser-profile

28 3 Own work

Figure 3.2: Modeling the same object in three different
ways

3.4.2 The Modeling Problem and the Mapping
Concept

User tests have shown (figure A.7), that there are different
approaches of modeling a laser-job into a graphic file (see
figure 3.2 for examples).

In order to deal with the modeling problem, we define the
term mapping:

MAPPING:
A mapping is a function, which maps each object in a
graphic file to a laser-profile

Definition:
mapping

3.4.3 Design of VisiCut

VisiCut is was created using an iterative and incremen-
tal software developement technique, according to the
definitions in [Cockburn, 2008]. We created several UI-
prototypes and made user tests, which revealed weak-

3.4 VisiCut 29

nesses of UI design and missing features. We also took
some steps to refactor ([Fowler and Beck, 1999]) parts of
the project, because the new features did not always fit into
the existing code structure.

We will now sketch the iterative design of VisiCut by pre-
senting three prototypes. After that, we will explain the ad-
vantages of the camera preview and finally show some im-
plementation details, including a description of VisiCut’s
Portable Laser Format

Prototype 1: Mapping by Selecting Objects

In the first prototype, each visible element in the graphic
could be selected via a click and then could be mapped to
a laser-profile by a context-menu. User tests revealed, that The objects are

selectable via mouse
clicks

this is very intuitive, but many users have files containing
a big number of graphic elements, so this method is only
feasible for small graphic files.

Figure 3.3: In the first prototype, everything is selectable by
clicking

30 3 Own work

Prototype 2: Mapping by Filter Rules

Since many users (e.g. architecture students whit models of
complete buildings) have big input files, we concluded thatObjects are

categorized by
defining powerful
filter rules

there is a need for rule-based mapping. The second proto-
type allows creating a mapping, based on a set of filters,
which specify a set of graphic elements by their attributes,
each mapped to a laser-profile. Additionally it was possi-
ble to make a filter calculate the outline of a set of shapes
instead of using the shapes itself.

Figure 3.4: Prototype 2 allows nearly any mapping through
complex filter rules

User tests revealed, that the dialog is very hard to under-
stand and most users have problems understanding theMost users are

confused and do not
need so much power

mapping concept at all. Furthermore, a survey (see A—
“User Survey to Determine Habits in Laser-Job Creation”)
showed, that all participants use at most one attribute, like
line color, line thickness or layers to differentiate between
laser-profiles.

Prototype 3: Mapping by Only One Attribute
Provide default
mappings and single
attribute mappings The results of the survey see A—“User Survey to Deter-

mine Habits in Laser-Job Creation” lead us to the final pro-
totype, which contains a set of default mappings and a sim-

3.4 VisiCut 31

Figure 3.5: Prototype 3 allows mapping by only one at-
tribute

plified version of the mapping dialog in prototype 2. The
simplified dialog just allows selection of one attribute and
differentiation between all the existing values of this at-
tribute (see figure 3.5).

The available attributes depend on the file format and
the file itself. The GraphicObject interface (see sec- Only attributes

appearing in the file
are displayed

tion 3.4.4—“The GraphicObject Interface”) allows any
Importer class, which loads a file of a specific file for-

32 3 Own work

mat into the program, to specify an arbitrary number of at-
tributes and assign values to the elements in the file. This
means it is possible, that if you load a DXF file, there is an
attribute layer, which does not exist in SVG files.

VisiCut also analyzes the different values of all attributes in
the input file, so if e.g. everything is in the same layer, it
makes no sense to separate by layer, so it will not be shown
in the dialog.

The current attributes supported by the different file for-
mats are shown in table 3.2—“The available attributes for
the supported file formats”.

format attributes examples
All type rectangle, image, text

stroke-width 0.2pt 1mm
stroke-color red
fill-color green, rgb=22,123,123

SVG group ”group 123”, ”surface”
DXF layer1 ”layer 3”

Table 3.2: The available attributes for the supported file for-
mats

The WYSIWYG Part

To solve the positioning problem, VisiCut takes an ap-
proach similar to the CopyCAD project [Follmer et al.,
2010], but instead of mounting a projector and moving the
complete editing onto the real world object, we just add
a camera on top of the laser-cutter to capture a picture of
the material. Once calibrated, the position of the camera isa camera provides

preview on a photo of
the object and allows
interactive visual
positioning

known, so there is a defined transformation, to map image
coordinates to laser-cutter coordinates. This allows VisiCut
to render the preview directly on the camera image and en-
ables the user to position and resize his graphic directly on
the preview (see figure 3.6). Since this “allows the user to

1In the current implementation of the DXF importer, layers are
mapped to groups, but this may change in the future

3.4 VisiCut 33

see the real world, with virtual objects superimposed upon
or composited with the real world” [Azuma et al., 1997],
VisiCut can be seen as Augmented Reality system.

Figure 3.6: In VisiCut you can see how and where your
graphic will appear

By using absolute coordinates, it is no longer necessary, to
move the laser-head by hand. This is a dangerous oper-
ation anyway, because if the graphic size is too large, the
laser-head can crash on the wall. VisiCut also saves infor- The camera together

with material profiles
removes any manual
positioning and
focusing of the
laser-head

mation like the material thickness in the material-profile, so
there is no need to focus manually, because as long as the
laser-head is in position (0,0,0) at the beginning of each job,
VisiCut can set the focus according to the material thickness
automatically.

The Right Camera Resolution

In our setting, the laser-bed is 60cm x 30cm and we use a
resolution of 500 DPI.

The absolute resolution can be calculated as: 500DPI =
500 dots

2.54cm = 169.85dots
cm

34 3 Own work

60cm · 169.85dots
cm = 11811dots

30cm · 169.85dots
cm = 5906dots

which is about 69,8 mega pixels. This means, in order toThe laser-cutter has
a resolution of 69
mega pixels

provide a preview which is as accurate as the laser, we
would need a 69,8 mega pixels camera (or even more, be-
cause the offset of the image and the difference between
horizontal and vertical resolution is not even considered in
this calculation). This result shows that, in order to provide
an at least sufficient preview, we need a really high resolu-
tion camera.

3.4.4 Implementation of VisiCut

The Camera Implementation

To keep the VisiCut platform independent, we do not want
to include any camera driver into the program itself. In-
stead we require the camera to store the picture in the JPEG
format at a local or remote URL.

Many IP cameras support this feature, but the supplied pic-
tures are only snapshots of a video. That means they have
a resolution of usually 640x480 pixels or if it is an HD cam-
era 1920x1080. The above result shows, that this resolution
is not good enough. What we need is an IP camera, which
takes real pictures, either in a constant time interval or ev-
ery time a client sends an HTTP request.

Since we were not able to find such a camera on the market,
we had to design our own. For our prototype we used an
Android phone with a camera resolution of 5 Megapixels.
For the webserver we used nanohttpd2 , a webserver im-
plemented in a singe Java file. The app starts a webserver
at port 8080 and every time a client sends a request, it takes
a picture and sends it as JPEG. The implementation is pro-
vided with this thesis, but it is just a prototype.

2http://elonen.iki.fi/code/nanohttpd/

http://elonen.iki.fi/code/nanohttpd/

3.4 VisiCut 35

There is an application3 for controlling Canon PowerShot cam-
eras from a Windows PC. An advanced setup could con-
nect such camera to a computer running an HTTP daemon
which requests the camera to take a picture, or even just
a script, which takes a picture every 5 seconds and save it
on a location reachable from the computer running VisiCut.
This would improve the preview quality significantly.

The Pictionaire system (see section 2.1.2—“Pictionaire”)
uses a “digital still camera centered above the table cap-
tures photos of the entire table on demand”, which pro-
vides a resolution of “4272x2848 pixels” [Hartmann et al.,
2010]. This is about 12 mega pixels and would be about
36 % of the horizontal and 48% of the vertical resolution
needed, to have one pixel per laser coordinate. This cam-
era could be used to improve the current solution, which
provides only a resolution of 2592x1944 pixels, which cor-
responds to 22% of the horizontal and 33% of the vertical
laser-cutter resolution.

General Structure of VisiCut

VisiCut itself is created using NetBeans and it’s graphical
UI editor Mantisse.

Most parts of the business-logic are separated
in the VisiCutModel class and the classes
in the com.t oster.visicut.model and
com.t oster.visicut.mapping packages, how-
ever some logic is still contained in the UI classes. It is
recommended to use NetBeans for further programming
and compiling, but the supplied build.xml file should
enable users to compile with apache-ant without having
NetBeans installed.

The GraphicObject Interface

In order to be independent of a specific file format,
the file format specific classes are wrapped by the

3http://www.breezesys.com/PSRemote/

http://www.breezesys.com/PSRemote/

36 3 Own work

GraphicElement classes and other classes found in
the com.t oster.visicut.graphicelements pack-
age. The GraphicObject interface represents an object
like rectangle, path, text or image. Any GraphicObject
has a bounding box and it can be rendered on a
Graphics2D object. With the rendering it is possible to
use a GraphicObject for engraving.

The ShapeElement class is a subclass of
GraphicElement, which additionally provides
the getShape method. This method provides a
java.awt.Shape object representing the shape of
the GraphicObject. With this shape, the library is able
to use the object for vector-profiles, e.g. cutting.

Adding a New Input File Format In order to add support
for a new file format, basically three things have to be done:

1. A subclass of the Importer interface, which reads a
file and converts it into a set of GraphicObjects,
has to be created.

2. An implementation of the GraphicObject inter-
face, which is able to render the objects on a
java.awt.Graphic2D object for raster profiles and
to return a java.awt.Shape object representing the
object for vector profiles needs to be provided.

3. The new Importer has to be added to the default
Importers in the settings.xml or directly in the
PreferencesManager class.

The Portable Laser Format

The Portable Laser Format (PLF) is designed to be simple,
but powerful. It consists of three files (see 3.7), which are
aggregated in a ZIP container.

The first file is the original graphic file (in later versions
maybe more than one) in the original format. This al-
lows the user to extract his untouched graphic at any later

3.4 VisiCut 37

point and re-edit it. The second component is a file named
mapping.xml, which is a serialized MappingSet object that
specifies how the elements of the input file are mapped to
laser-profiles of the material. The third component is a se-
rialized java.awt.AffineTransform object, which de-
fines the position, size and transformations from graphic
coordinates to laser-cutter coordinates. This object is stored
in a file named transform.xml.

Figure 3.7: The basic structure of a PLF file

We did not include the material-profile, because a project
should be material independent if possible, and since the
laser-properties for a material varies from laser-cutter to
laser-cutter, the profile has to be created explicitly for one
laser-cutter model.

The three mentioned files are packed in a ZIP container, be-
cause it shrinks the needed file size and having just one file
containing all information is easier to handle.

38 3 Own work

3.5 LibLaserCut

In this section we will present the design of the LibLaser-
Cut. After that, we will introduce the important interfaces
for implementing a new driver and using the library. Fi-
nally we will show some implementation details about the
driver for the Epilog ZING, we implemented.

3.5.1 Design of LibLaserCut

The library is working on a job basis, meaning a LaserJob
object is created and filled with all information needed
to execute it on a laser-cutter. Then this job object is
passed to a driver, meaning an object implementing the
LaserCutter interface, which handles the translation of
the LaserJob object to whatever language the laser-cutter
needs.

The LaserCutter Interface

The LaserCutter interface is the only interface, a new
laser-cutter driver has to implement. It contains a
range of getters for attributes the application needs to
know about the laser-cutter, like laser-bed dimensions
and supported resolutions. It also contains the meth-
ods getSettingAttributes, getSettingValue and
setSettingValue, which enables each driver to specify
a set of settings, an application can manipulate.

The heart of the interface is the sendJob method, which
is where the real driver code will resist. The driver gets a
LaserJob object, which contains general job information
and one or more of the following three parts.

3.5 LibLaserCut 39

Vector Part

The VectorPart represents a vector mode job, meaning
the laser-head follows a 2-dimensional path while switch-
ing the laser on or of. This mode is similar to a usual pen
plotter device receiving Pen Up and Pen Down commands.
The VectorPart contains a List of VectorCommands
which are listed in 3.3—“An overview of the different
VectorCommands”. MOVETO and LINETO are the com-
mands, which actually move the laser-head, whereas SET-
POWER,SETSPEED and SETFREQUENCY change the cur-
rent settings. While MOVETO switches the laser off before
moving and always moves with maximum speed, LINETO
sets the power and frequency according to the most recent
SETPOWER and SETFREQUENCY command, and moves
with the speed specified by the most recent SETSPEED
command. SETFOCUS can be seen as moving the z-axis,
but there are laser-cutters imaginable, which alter the laser-
beam (e.g. through a lens) to focus it.

command parameters description
MOVETO x, y move the head to (x,y) (in dots) with laser

switched off
LINETO x, y move the head to (x,y) (in dots) with laser

switched on
SETPOWER power sets the intensity of the laser beam (in %)
SETSPEED speed sets the speed of the head movement (in %)
SETFREQUENCY frequency sets the pulse frequency of the laser beam (in

Hz)
SETFOCUS focus moves the Z-Axis to the given distance (in

mm)

Table 3.3: An overview of the different VectorCommands

Raster Part

In raster-mode the laser-cutter operates line-wise on a con-
stant speed, while switching the laser on or off on a per-
dot-base according to a given bit-raster. A RasterPart
object can contain multiple rasters, each with a start point,
defining the top left corner of the raster on the laser-bed

40 3 Own work

(in dots), and a LaserProperty object representing the
power,speed and focus settings.

3D Raster Part

3D-raster-mode is like raster-mode, but instead of switch-
ing the laser on or off at each dot, its power is scaled to the
raster value. Between two raster cells, the power is scaled
linearly from the current power value to the next power
value. This allows engraving at different depths, creat-
ing 3 dimensional effects. Like the RasterPart object, a
Raster3DPart object can contain multiple rasters, each
with start point and LaserProperty. The power value
in the LaserProperty is the value which corresponds to
a byte with value 255 in the raster. Other values are to
be scaled linearly, meaning a raster value of 128 represents
50% of the power specified in the LaserProperty.

3.5.2 Implementation: The Epilog Driver

The Epilog ZING cutter supports a subset of the PCL
(Printer Command Language) for the Raster modes and a
subset of the HP-GL (Hewlett Packard Graphic Language,
see [Hewlett-Packard, 1997]), a language developed to con-
trol pen plotters, for the Vector Mode. Multiple parts can
be embedded in one print job, which is sent as PJL (Printer
Job Language) block.

For more information about the different printer languages,
see History of Printer Command Language PCL4 .

Vector Part Implementation

A vector part is introduced with a PCL header, specify-
ing direction and size of the coordinate system, followed
by a HPGL block with commands, very similar to the
VectorCommands. The HPGL commands are:

4http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568

http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568

3.5 LibLaserCut 41

PU[x0,y0[,x1,y1...]; PU stands for Pen Up and is inter-
preted as switch the laser off and move along the given Poly-
gon. The moving speed is independent of the current speed
setting. In the driver we can aggregate a whole block of
MOVETO commands to a single PU command, because PU
supports an arbitrary number of point coordinates.

PD[x0,y0[,x1,y1...]; PD stands for Pen Down and is inter-
preted as switch the laser to the current Power and Frequency
setting and move along the given Polygon with the current speed.
Similar to PU, we can aggregate complete blocks of LINETO
commands.

The following commands are not part of the HP-GL speci-
fication HP-GL Graphics Language5 :

WFfocus; Sets the Z-Axis relative to the Z-Axis position
on the start of the current job. The focus value has to be
between -500 and 500, otherwise this command is ignored.
One unit of the focus value is a distance of 0.0252mm,
which means a total range of 1000*0.0252mm = 2.52cm can
be achieved by the automatic movement. At the end of a
job, the Z-Axis, in contrast to the X and Y axis, will remain
on its position, however, when the next job starts, it will re-
turn to the position 0. Thus the only way of changing the 0
position is manually using the buttons on the laser-cutter.

XRfrequency; Sets the laser pulse frequency to the given
value. Valid values range from 500 to 5000, but every num-
ber has to be provided as four-digit value, meaning 0500
for 500 etc.

YPpower; Sets the power of the laser beam in %. The
value has to be given as three-digit value, so the range is
from 000 to 100.

5http://cstep.luberth.com/HPGL.pdf

http://cstep.luberth.com/HPGL.pdf

42 3 Own work

ZSspeed; Sets the speed of the laser head (when laser
switched on) in %. Like the power setting, this has to be
given as three-digit value. In order to estimate job time, we
empirically calculated the speed. See C—“Speed Measure-
ment Results” for details.

Raster Part Implementation

After the PCL header, which contains the
power,speed,focus and some general page informa-
tion, a PCL Raster is sent line-wise. Each line starts by
a pair of *p〈value〉X and *p〈value〉Y commands, which
define the most left dot of the raster line. The data for
every line are encoded in TIFF packbits encoding6 , which
reduces the data size significantly, if the line contains many
equal pixels next to each other.

PCL command description
y〈power〉P; sets the laser power
z〈speed〉S; sets the laser speed
y〈focus〉A;7 sets the focus value

Table 3.4: PCL commands specific to the Epilog ZING

The encoded line data is announced by a *b〈value〉A com-
mand, containing the number of dots in the line. If the
number is negative, it means that the data encoded from
right to left. This command is followed by *b〈value〉W,
which contains the number of bytes, that will be sent.

An overview of the Epilog specific PCL commands is listed
in table 3.4—“PCL commands specific to the Epilog ZING”.
For a detailed description of the different PCL versions, see
[Smith, 1998].

6http://www.fileformat.info/format/tiff/corion-packbits.htm
7This command also seems to disable the auto-focus feature. Since

our laser-cutter does not support auto-focus, we were not able to test it
properly

http://www.fileformat.info/format/tiff/corion-packbits.htm

3.6 Summary of Own Work 43

3D Raster Part Implementation

The 3D raster PCL is very similar to the raster PCL and uses
the same run length encoding. The difference is mainly the
encoding specification in the header, which is 2M for raster,
and 7MLT for 3D-raster mode. Note that it is not possible
to have raster and 3D raster parts in one job, because the
laser-cutter does not differentiate between the power set-
tings. Thus, our implementation automatically splits a job
in two jobs, if it contains 3D-raster and one other part.

Sending the Job via LPD

For receiving the PJL job, the Epilog cutter runs a Line
Printer Daemon (LPD), which listens for incoming connec-
tions on Port 515. A specification of the LPD protocol can
be found in RFC11798

3.6 Summary of Own Work

In this chapter, we presented our software system, consist-
ing of the front-end VisiCut and the back-end LibLaserCut.
For more detailed information, please look into the source
code, which can be found at our GitHub project page9

8http://www.rfc-editor.org/rfc/rfc1179.txt
9https://github.com/t-oster/VisiCut/

http://www.rfc-editor.org/rfc/rfc1179.txt
https://github.com/t-oster/VisiCut/

45

Chapter 4

Evaluation

“Everything that can be counted does not
necessarily count; everything that counts cannot

necessarily be counted.”

—Albert Einstein

4.1 Requirements

In this section, we will discuss wether and to what degree
the requirements from 3.2—“Requirements” are met.

4.1.1 R1: Platform independance

We successfully tested VisiCut and LibLaserCut on Win-
dows, (Arch- and Ubuntu-) Linux and Mac OS X. Since the
application and library are all written in pure Java, there is
no need to recompile the program for each architecture, in-
stead the same java bytecode can be run on all mentioned
platforms.

On the VisiCut website1 , we provide a platform indepen-
dent ZIP file, but also some prepackaged versions for Mac
OS and Linux, of the afore mentioned software.

1http://hci.rwth-aachen.de/visicut

http://hci.rwth-aachen.de/visicut

46 4 Evaluation

Thus we can say, that we achieved the goal of platform in-
dependance.

4.1.2 R2: Provide preview

Although the current preview uses only a few colors and
does not respect engraving depth and burning effects, its
results are suprisingly similar to the real result. A big plus
is, that the user can now be sure, which lines are cut and
which are engraved, which was a problem with the other
software. Thus, we can say the preview functionality is a
good raw estimation for the user how the result will look
like.

Figure 4.1: The preview generated by VisiCut on the left
and the result on the right

4.1.3 R3: Reusable API

Since we only implemented one driver, we cannot say
much about the generality of the API yet. However, the ar-
bitrary attribute list in the LaserCutter interface should
suffice any device’s need of configurable parameters. In
addition to that, we created an experimental driver for the

4.2 System Usability Scale 47

Mantis milling machine2 , which can generate G-Code for
milling along paths.

4.1.4 R4: Easy sharing and publishing of work

The PLF format (see section 3.4.4—“The Portable Laser For-
mat”) enables users to save a completely prepared laser-
job, so anyone with a VisiCut compatible laser-cutter can re
open it and execute it. The only thing needed is a VisiCut
instance with some material profile. Additionally, a func-
tion could be added to publish the current work directly
from VisiCut, rather than saving and manually uploading
(see 5.2.3—“Creating a Platform for Sharing VisiCut Files
and Material-Profiles”).

4.1.5 R5: Store material specific settings

In VisiCut, the user does not have to deal with laser pa-
rameters, such as power, speed or focus, at all, because he
just selects a material profile. However it would be nice to
have some platform to share the created material profiles
(see section 5.2.3—“Creating a Platform for Sharing VisiCut
Files and Material-Profiles”).

4.2 System Usability Scale

The System Usability Scale introduced by Brooke [1996]
2006 is a robust measure for the usability of an interactive
system. In the final user test we asked each participant to
fill in the a SUS questionnaire (see figure B.1). The over-
all result yields a usability score of 79.375. Although this
is no guarantee for a good usability, it is still a good sign.
According to section 5.1 What is an acceptable SUS score in
Bangor et al. [2008], this can be interpreted as our software
not being a “superior product”, but still in the category of
“better products”.

2http://makeyourbot.org/mantis9-1

http://makeyourbot.org/mantis9-1

49

Chapter 5

Summary and future
work

“The best way to predict the future is to invent
it.”

—Alan Kay

In this chapter we will summarize our work and list some
ideas for future improvement.

5.1 Summary and Contributions

VisiCut moves a big part of the usual workflow to the users
home (see figure 5.1), which makes laser-cutting a bit more
personal fabrication. It also removes the need for expensive
software and allows re-using laser projects even on differ-
ent laser-cutters. If, at some point, laser-cutters get cheap
enough for home use, people can still use the same PLF
files and the same VisiCut software, they can use now.

The LibLaserCut provides reusable low- and high-level
API for laser-cutters. Since it is implemented in pure Java
it runs on nearly any operating system, even on Android,
which does have any printer support at all. With all ben-
efits of open source, it can become a widely used library

50 5 Summary and future work

Figure 5.1: The VisiCut workflow

with increasing number of supported devices. With the im-
plementation of VisiCut, we have shown, that the library
serves all needed routines to build fully functional laser-
cutter applications on top of it.

The source code can serve as a base for future projects, in-
cluding open source drivers or new laser-cutter firmwares.

5.2 Future Work

5.2.1 Improving the Preview Quality by 3D-
Rendering

Currently, VisiCut uses only one color for the material and
another for the laser-profile to create the preview. Also
the performance of the dithering and rendering routines is
quite slow. An interesting addition could be support for 3D
rendering (e.g. Open GL), which speeds up the rendering
process and also could add nice features, e.g. a real 3D pre-
view, respecting engraving depth and burned edge color.

5.2 Future Work 51

5.2.2 Exctract Vector Data from Raster Files with
User Support

Often people want to cut images, which exist only in a
raster formats such as PNG, e.g. because they were found
on a website or they are pictures from real world objects.
Currently it is only possible to engrave, but not to cut raster
images. The CopyCAD tool contains an algorithm to detect
shapes on a camera picture (see Follmer et al. [2010]). It
would be nice to integrate this algorithm into VisiCut for
allowing both: vectorizing existing raster-images and rec-
ognizing shapes directly from the camera preview.

5.2.3 Creating a Platform for Sharing VisiCut Files
and Material-Profiles

The PLF format allows easy sharing of the created laser-jobs
and our survey has shown, that many users would publish
their work if there was an easy to use function for that (see
figure A.6). So one could investigate options to add support
to one-button upload to Thingiverse1 or other platforms.

Another interesting field are the material profiles. Since it
requires much time and experience to find the right laser
values for a certain material, there is a need of a platform to
share the material profiles.

5.2.4 Engraving Non-Planar Objects by Providing
a 3D-Model

Since it is possible to move the z-axis with the focus prop-
erty, it is possible to engrave on non planar surfaces, if a
3D-model (height-map) is given. In vector-mode one can
alter the focus during a path, but in the raster modes, it
would be necessary, to split the raster into multiple rasters
where each raster contains data for a certain height.

1http://www.thingiverse.com/

http://www.thingiverse.com/

52 5 Summary and future work

5.2.5 Optimizing the Execution Speed

Currently, VisiCut generates the laser-job in an order,
mainly influenced by the structure of the original graphic
file and the mapping. There is no optimization in terms of
speed done. The concept to optimize the execution speed
by minimizing the overall path the laser-head has to move,
introduced by [Vaupotic et al., 2006], seems to be a good
starting point.

5.2.6 Improving the Camera Setup

Currently we use an Android phone as IP camera. Since the
laser-cutter is capable of creating jobs with 69 mega pixels,
a camera with higher resolution would improve the pre-
view significantly. We listed some alternatives to the cur-
rent setup. (see 3.4.4—“The Camera Implementation”).

Furthermore the current calibration procedure need user
intervention, which could be simplified or fully automa-
tized.

5.2.7 Multiple Input Files

Currently, VisiCut only supports using one graphic file at
a time. However, this could be changed in order to allow
users to integrate different models into one laser-job. The
first question, which has to be answered before implement-
ing such a feature, is whether each input file should use a
separate mapping or not. Also, the PLF Format should be
adapted in a way that is is upwards compatible.

5.2.8 Back to the Printer Driver

As outlined in the section 2.2.4—“Limitations of the Printer
Driver Approach” there are reasons, not to implement Visi-
Cut as printer driver. However, a printer driver has the
advantage of being accessible with one click from nearly

5.3 Conclusion 53

any graphic application. Since VisiCut supports the EPS
format, it is possible, to create a CUPS back-end, which just
converts the print job to EPS and starts VisiCut.

This would allow both, using VisiCut with a single click as
printer driver’s dialog and still being able to run it stan-
dalone with the full power of formats different from EPS.

5.3 Conclusion

We outlined, that there is a need for user-friendly and
platform independent laser-cutter software and provided
a prototype, consisting of a UI tool VisiCut and a library
LibLaserCut, as a basis for further development.

“Well, so long, mister. Thanks for the ride, the
three cigarettes and for not laughing at my theories

on life.”

—from “The Postman Always Rings Twice”

55

Appendix A

User Survey to
Determine Habits in
Laser-Job Creation

The full data and evaluation can be found on the CD-ROM
or as download from:

Complete resultsa

ahttp://hci.rwth-aachen.de/tiki-download wiki attachment.php?attId=1386&download=y

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=1386&download=y

56 A User Survey to Determine Habits in Laser-Job Creation

Umfrage ­ VisiCut

Teilnehmer Nummer:

1. Was ist Ihr Beruf / Studiengang

2. Wie häufig arbeiten Sie mit
Grafikprogrammen?

 nie selten gelegentlich oft sehr○ ○ ○ ○ ○
oft

3. Haben Sie bereits mit einem Lasercutter
gearbeitet?

 Ja Nein○ ○

4. Wie schätzen Sie den Zeitaufwand (in %) für
die einzelnen Arbeitsschritte im Fablab ein?

Importieren der Datei nach CorelDraw ____%
Positionieren und Nachbearbeiten ____%
Ermitteln der Materialparameter ____%
Konfigurieren des Lasercutters ____%
Ausführen des Laserjobs ____%

5. Mit welcher Software haben Sie Ihre Datei
erstellt?

6. Unter welchem Betriebssystem haben Sie Ihre
Datei erstellt?

7. Unter welchem Betriebssystem arbeiten Sie
normalerweise?

8. Mit welcher Grafiksoftware arbeiten Sie am
liebsten?

9. Welche Laserprofile enthält Ihr Projekt? Schneiden Gravieren 3D­○ ○ ○
Gravieren

10. Wie haben Sie in Ihrer Grafik die
Unterscheidung zwischen den Laserprofilen
kodiert?

 Farbe Layer Füllung○ ○ ○
 einzelne Dateien Sonstiges: _________○ ○

11. Welche Art ist für Sie am intuitivsten?

12. Haben Sie die Anleitungen/Tipps auf der
FabLab Seite gelesen?

13. In wie fern haben diese Anleitungen ihren
Erstellungsprozess beeinflusst?

14. Wie wichtig sind für Sie folgende
Funktionen eines Lasercutter Tools:

Funktion Unwichtig Sehr wichtig

Gute Vorschau ○ ○ ○ ○
○

Projekt speichern ○ ○ ○ ○
○

Viele Dateiformate ○ ○ ○ ○
○

Performance ○ ○ ○ ○
○

15. Würden Sie ein Tool von der FabLab Seite Ja Nein○ ○

Figure A.1

57

benutzen um ihren Job vorzubereiten?

16. Würden Sie Ihr Projekt frei zur Verfügung
stellen, wenn es einen einfachen Mechanismus
im Programm dafür gäbe?

 Ja Nein○ ○

Figure A.2

58 A User Survey to Determine Habits in Laser-Job Creation

36%

9%
18%

9%

9%

9%

9%

Was ist ihr Beruf / Studiengang ?

Informatik
Architektur
Maschinenbau
SSE
Techn. Informatik
E-Technik
Medientechnik

Figure A.3

9%

27%

19%

12%

33%

Wie schätzen Sie den Zeitaufwand der einzelnen Schritte im FabLab ein

- Importieren der Datei nach
Corel Draw
- Postitionieren und
Nachbearbeiten
- Ermitteln der Materialpa-
rameter
- Konfigurieren des La-
sercutters
- Ausführen des Jobs

Figure A.4

59

Mit welcher Software haben Sie ihre Datei erstellt?
Mit welcher Grafiksoftware arbeiten Sie am liebsten?

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5 31%

0%

15%

30%

8% 10%

23% 30%

15% 20%

8% 10%

Grafiksoftware

benutzt und präferiert

Illustrator AutoCAD ArchiCAD Corel Draw Inkscape Fireworks

Figure A.5

73%

27%

Würden Sie ihr Projekt frei zur Verfügung stellen?

ja
nein

Figure A.6

60 A User Survey to Determine Habits in Laser-Job Creation

Wie haben Sie die Unterscheidung zwischen den Laserprofilen kodiert?
Welche Art ist für Sie am intuitivsten?

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

10
%

0%

20
%

40
%

30
%

40
%

20
%

0%

10
%

10
%

10
%

10
%

Kodierung der Laser Profile

benutzt und präferiert

Dateien
Layer
Farbe
Linienstärke
Typ
Füllung

Figure A.7

36%

64%

Welche Aufgaben enthält der Laser Job

schneiden gravieren beides

Figure A.8

61

- Gute Vorschau
- Projekt speichern

- Viele Dateiformate
- Performance

0

1

2

3

4

5

6

7

0%

9% 9%

0%

9%

18
%

0%

27
%

0%

18
%

9%

18
%

55
%

27
%

27
%

9%

36
%

27
%

55
%

45
%

Wie wichtig sind die Funktionen

unwichtig
weniger wichtig
neutral
wichtig
sehr wichtig

Figure A.9

82%

18%

Würden Sie ein Tool von der FabLab Seite benutzen?

ja
nein

Figure A.10

62 A User Survey to Determine Habits in Laser-Job Creation

Unter welchem Betriebssystem haben Sie ihre Datei erstellt?
Unter welchem Betriebssystem arbeiten Sie normalerweise?

0

1

2

3

4

5

6
45% 36%

18%

29%36%

36%

Betriebssystem

benutzt und präferiert

Windows Linux Mac OS

Figure A.11

63

Appendix B

System Usability Scale

After the participants of our user tests had to perform some
tasks with our software, they were asked to answer the
questions of the System Usability Scale (see figure B.1). The
results, calculated according Brooke [1996] are presented in
figure B.2.

The overall average score is 79.375.

This value indicates, that our software may be in the range
of better products (see 5.1 What is an acceptable SUS score in
Bangor et al. [2008])

64 B System Usability Scale

System Usability Scale ­ VisiCut

Teilnehmer Nummer:

Frage Ich lehne es
stark ab

Ich lehne es
ab

Ich weiss
nicht,

neutral

Ich stimme
zu

Ich stimme
stark zu

1. Ich denke, dass ich
dieses System gerne häufig
nutzen würde.

2. Ich fand das System
unnötig komplex.

3. Ich denke, das System
war einfach zu benutzen.

4. Ich denke, ich würde die
Hilfe eines Technikers
benötigen, um das System
benutzen zu können.

5. Ich halte die
verschiedenen Funktionen
des Systems für gut
integriert.

6. Ich halte das System für
zu inkonsistent.
7

7. Ich kann mir vorstellen,
dass die meisten Leute
sehr schnell lernen würden,
mit
dem System umzugehen.

8. Ich fand das System sehr
mühsam zu benutzen.

9. Ich fühlte mich bei der
Nutzung des Systems sehr
sicher.

10. Ich musste viele Dinge
lernen, bevor ich das
System nutzen konnte.

Figure B.1: The Questions of the System Usability Scale

65

S
U

S
 S

co
re

s

S
e

ite
 1

U
se

r
ID

1
2

3
4

5
6

7
8

4
4

4
5

5
4

5
5

1
3

2
2

1
2

2
2

4
3

4
2

4
4

4
4

1
3

1
2

2
1

2
2

5
4

5
5

5
4

4
5

2
2

1
1

1
3

2
1

4
4

4
4

5
4

5
4

1
2

2
2

1
1

2
1

4
3

5
3

4
3

4
3

1
2

2
4

2
2

3
1

8
7

,5
6

5
8

5
7

0
9

0
7

5
7

7
,5

8
5

7
9

,3
7

5

Q
u

e
st

io
n

 1
Q

u
e

st
io

n
 2

Q
u

e
st

io
n

 3
Q

u
e

st
io

n
 4

Q
u

e
st

io
n

 5
Q

u
e

st
io

n
 6

Q
u

e
st

io
n

 7
Q

u
e

st
io

n
 8

Q
u

e
st

io
n

 9
Q

u
e

st
io

n
 1

0
S

co
re

:

A
ve

ra
g

e

Fi
gu

re
B

.2
:T

he
re

su
lt

s
ca

lc
ul

at
ed

as
SU

S
sc

or
es

67

Appendix C

Speed Measurement
Results

C.1 Epilog Cutter Speed Tests

In order to provide a raw estimation of the duration of a
laser-job, we made a few tests and measurered the time.

C.1.1 VectorPart @ 100% Speed, 500 DPI

20000px in x direction : 36.8s with laser on, 4.5s with laser
off

⇒ 543.4782608695652px
s with laser on, 4444.44444px

s with
laser off.

10000px in y direction : 18s with laser on, 2.5s with laser off

⇒ 555.555555px
s with laser on, 4000px

s with laser off.

C.1.2 VectorPart @ 10% Speed, 500 DPI

20000px in x direction : 368s with laser on

68 C Speed Measurement Results

⇒ 54.34782608695652px
/ s

This is about 10 % of the 100% speed value, so we conclude,
that the speed value scales linearly.

C.1.3 RasterPart @ 100% Speed, 500 DPI

50x10000px in x direction : 32.5s

50x5000px in x direction : 19.5s

C.1.4 RasterPart @ 10% Speed, 500 DPI

50x10000px in x direction : 268s

50x5000px in x direction : 136s

If we assume a constant offset at each line for the head to
change direction and accelerate, we can calculate it from
the above values as: 0.08 s

line .

69

Bibliography

R.T. Azuma et al. A survey of augmented reality. Presence-
Teleoperators and Virtual Environments, 6(4):355–385, 1997.

A. Bangor, P. Kortum, and J. Miller. An empirical evalua-
tion of the system usability scale. International Journal of
Human-Computer Interaction, 24(6):574–594, 2008.

J. Brooke. SUS: A quick and dirty usability scale. In P. W.
Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland,
editors, Usability evaluation in industry. Taylor and Fran-
cis, London, 1996.

Alistair Cockburn. Using both incremental and iterative
development. CROSSTALK The Journal of Defense Software
Engineering, pages 27–30, May 2008.

Sean Follmer, David Carr, Emily Lovell, and Hiroshi Ishii.
Copycad: remixing physical objects with copy and paste
from the real world. In Adjunct proceedings of the 23nd an-
nual ACM symposium on User interface software and tech-
nology, UIST ’10, pages 381–382, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0462-7. doi: http://doi.
acm.org/10.1145/1866218.1866230. URL http://doi.
acm.org/10.1145/1866218.1866230.

M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

N. Gershenfeld. Fab: the coming revolution on your desktop–
from personal computers to personal fabrication. Basic Books,
2007.

Björn Hartmann, Meredith Ringel Morris, Hrvoje Benko,
and Andrew D. Wilson. Pictionaire: supporting col-
laborative design work by integrating physical and dig-

http://doi.acm.org/10.1145/1866218.1866230
http://doi.acm.org/10.1145/1866218.1866230

70 Bibliography

ital artifacts. In Proceedings of the 2010 ACM confer-
ence on Computer supported cooperative work, CSCW ’10,
pages 421–424, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-795-0. doi: http://doi.acm.org/10.1145/
1718918.1718989. URL http://doi.acm.org/10.
1145/1718918.1718989.

Hewlett-Packard. The HP-GL/2 and HP RTL Reference Guide:
A Handbook for Program Developers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd
edition, 1997. ISBN 0201310147.

L. McLaughlin. Line printer daemon protocol, 1990.

Frederic P. Miller, Agnes F. Vandome, and John McBrew-
ster. CUPS: Printer (computing), Unix- like, Operating sys-
tem, Server (computing), Client (computing), Spooling, Inter-
net Printing Protocol, Command- line interface, Line Printer
Daemon protocol. Alpha Press, 2009. ISBN 6130225768,
9786130225766.

Oberg, Horton, and Jones Sr. Machinerys Handbook. Indus-
trial Press, 2004.

Tim O’Reilly. Lessons from open-source software de-
velopment. Commun. ACM, 42:32–37, April 1999.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
299157.299164. URL http://doi.acm.org/10.
1145/299157.299164.

Norman E. Smith. Developers Guide to HP Printers: With
Disk. Wordware Publishing Inc., Plano, TX, USA, 1998.
ISBN 1556226039.

B. Vaupotic, M. Kovacic, M. Ficko, and J. Balic. Concept
of automatic programming of nc machine for metal plate
cutting by genetic algorithm method. Journal of Achieve-
ments in Materials and Manufacturing Engineering, 14(1-2):
131–139, 2006.

http://doi.acm.org/10.1145/1718918.1718989
http://doi.acm.org/10.1145/1718918.1718989
http://doi.acm.org/10.1145/299157.299164
http://doi.acm.org/10.1145/299157.299164

71

Index

3D-raster mode . see modes of operation
3D-raster part . 38, 40–41

attributes . 30

common unix printing system. .15
CUPS . see common unix printing system

evaluation . 43–45

future work . 48–51

graphic file .25
graphic object . 25
GraphicObject interface . 33–34

laser-profile . 25
LaserCutter interface . 36
LibLaserCut . 36–41
line printer daemon . 41

mapping . 26
modes of operation . 3–4

PCL . see printer command language
PJL . see printer job language
portable laser format . 34–35
postscript printer description . 15
PPD. see postscript printer description, 15
printer control language . 17
printer job language. .17

raster mode . see modes of operation
raster part . 37–38, 40

vector mode . see modes of operation
vector part .36–40
VisiCut . 25–35

Typeset September 29, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	What is a Laser-Cutter and What is it Good for?
	Modes of Operation
	Vector Mode
	Raster Mode
	3D-raster Mode

	The Positioning Problem

	Motivation
	VisiCut: A Tool to Simplify Laser-Cutting
	An Open Source Laser-Cutter Library

	Overview

	Related work
	Interactive Systems with Real-World Input
	CopyCAD
	Pictionaire
	Summary

	Existing Software for the Epilog ZING
	Epilogs Dashboard
	Positioning
	Preview

	CUPS-Epilog
	How the Driver works

	Ctrl-Cut
	Limitations of the Printer Driver Approach
	Summary of the different drivers

	Summary of Related Work

	Own work
	Survey
	Requirements
	Architecture
	Front-End Architecture
	Back-End Architecture

	VisiCut
	Terms and Definitions
	The Modeling Problem and the Mapping Concept
	Design of VisiCut
	Prototype 1: Mapping by Selecting Objects
	Prototype 2: Mapping by Filter Rules
	Prototype 3: Mapping by Only One Attribute
	The WYSIWYG Part
	The Right Camera Resolution

	Implementation of VisiCut
	The Camera Implementation
	General Structure of VisiCut
	The GraphicObject Interface
	The Portable Laser Format

	LibLaserCut
	Design of LibLaserCut
	The LaserCutter Interface
	Vector Part
	Raster Part
	3D Raster Part

	Implementation: The Epilog Driver
	Vector Part Implementation
	Raster Part Implementation
	3D Raster Part Implementation
	Sending the Job via LPD

	Summary of Own Work

	Evaluation
	Requirements
	R1: Platform independance
	R2: Provide preview
	R3: Reusable API
	R4: Easy sharing and publishing of work
	R5: Store material specific settings

	System Usability Scale

	Summary and future work
	Summary and Contributions
	Future Work
	Improving the Preview Quality by 3D-Rendering
	Exctract Vector Data from Raster Files with User Support
	Creating a Platform for Sharing VisiCut Files and Material-Profiles
	Engraving Non-Planar Objects by Providing a 3D-Model
	Optimizing the Execution Speed
	Improving the Camera Setup
	Multiple Input Files
	Back to the Printer Driver

	Conclusion

	User Survey to Determine Habits in Laser-Job Creation
	System Usability Scale
	Speed Measurement Results
	Epilog Cutter Speed Tests
	VectorPart @ 100% Speed, 500 DPI
	VectorPart @ 10% Speed, 500 DPI
	RasterPart @ 100% Speed, 500 DPI
	RasterPart @ 10% Speed, 500 DPI

	Bibliography
	Index

