
by
Joachim Kurz

Blaze
Navigating Source Code

via Call Stack Contexts

Bachelor’s Thesis at the
Chair for Computer Science 10
(Media Computing and
 Human Computer Interaction)
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bernhard Rumpe

Registration date: June 27th, 2011
Submission date: September 30th, 2011

iii

Parts of the results of this thesis have been used to write a paper submitted to the
ACM SIGCHI Conference on Human Factors in Computing Systems 2012. However
all the work presented in this thesis is the result of my work and my work alone unless
otherwise specified.

I hereby declare that I have created this work completely on my own and used no other
sources or tools than the ones listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2011
Joachim Kurz

v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Chapter Overview . 3

2 Background 5
2.1 Information Foraging Theory . 5

2.1.1 Programmers Look for an Anchor Point to Start Exploration . . . 5
2.1.2 Information Scent . 6

2.2 Other . 7

3 Related work 9
3.1 Graph and Tree Visualizations in General 10

3.1.1 Basic Tree Visualization . 10
3.1.2 Fisheye Views . 11

3.2 Call Graph and Control Flow Graph visualization 11
3.2.1 Current IDEs . 12
3.2.2 Research . 13

4 Design 19
4.1 Basic Idea . 19
4.2 First complete design . 22

4.2.1 Visualization and Navigation . 22
4.2.2 Handling recursion . 25

4.3 User Interviews . 28
4.3.1 Study Design . 29
4.3.2 Results . 30

5 Software Prototypes 35
5.1 Blaze . 35

vi Contents

5.2 Call Hierarchy . 37
5.3 Backend . 38

6 Evaluation 39
6.1 Experimental Setup . 39

6.1.1 Conditions and Tasks . 39
6.1.2 Participants . 41
6.1.3 Methodology . 42
6.1.4 Postsession Questionnaire . 43
6.1.5 Differences Between the Two Studies 43

6.2 Quantitative Results . 45
6.2.1 Results of the New Study . 46
6.2.2 Comparing the Results of the Old and the New Study 51

6.3 Qualitative Results . 59
6.3.1 Postsession Questionnaire . 59
6.3.2 Additional Post-Session Questionnaire Questions 61
6.3.3 Observations and User Comments 63

6.4 Improvements to Blaze . 66

7 Summary and Future Work 67
7.1 Summary and Contributions . 67
7.2 Future Work . 68

7.2.1 Blaze Improvements . 68
7.2.2 Open Research Questions . 70

Bibliography 73

Other Pictures and Diagrams 77
1 Related Work . 77
2 Design . 78

User Study Results 83
3 New Study . 83
4 Comparing the Results from the Old and the New Study 84

User Study Material 87
5 User Interviews . 87
6 Evaluation . 91

6.1 Study Setup . 91

Index 93

vii

List of Figures

1.1 Diagram showing the different parts of the call graph visualized by
Stacksplorer and Blaze. 3

2.1 Model of program understanding by Ko et al. [2006] 6

3.1 Five different tree representation styles 10
3.2 A fisheye view of a control-flow graph. 12
3.3 Eclipse Call Hierarchy . 13
3.4 Visual Studio Call Hierarchy . 14
3.5 A screenshot of Stacksplorer . 15
3.6 Screenshot of CallStax. 16
3.7 Call graph visualization by REACHER. 17

4.1 Early sketch of using the combination lock metaphor to visualize and
modify selected paths. 20

4.2 First version of the OmniGraffle prototype used for user interviews. . . 23
4.3 An example call graph showing different kinds of recursion. 26
4.4 A sequence of states of the combination lock view resulting from using

the left and right arrow buttons. 29
4.5 Second prototype for the user interviews image 1. 32

5.1 A screenshot from one of our user study participants using the software
prototype. 36

6.1 Bar chart of the percentage of correct solutions 47
6.2 Box plot of the average time to hypothesis by task and condition. 48
6.3 Box plot of the average time to correct hypothesis by task and condition. 49
6.4 Planned Contrast Diagram . 52
6.5 Bar chart of the percentage of correct solutions for all 4 conditions. . . . 53
6.6 Box plot of the average time to hypothesis by task and condition for all

4 tools. 55
6.7 Box plot of the average time to correct hypothesis by task and condition

for all 4 tools. 56
6.8 SUS Scores for Blaze, Stacksplorer and the Call Hierarchy. 60
6.9 Answers to our six additional questions for the plugins Blaze, Stacks-

plorer and the Call Hierarchy. 61

1 IntelliJ Call Hierarchy . 77

viii List of Figures

2 NetBeans Call Hierarchy . 78
3 Blaze concept 1. 78
4 Blaze concept 2. 79
5 Blaze concept 3. 80
6 Second prototype for the user interviews image 2. 81
7 A screenshot of one of our user study participants using our implemen-

tation of the Eclipse Call Hierarchy. 81

ix

List of Tables

6.1 Results of one-sided Welch’s t-tests comparing the time to hypothesis of the Call Hier-
archy to that of Blaze for each task and the complete trial. Given are the t-value, the
degree of freedoms (df), the p-value and the effect size as Cohen’s d. The results show
significant differences and large effects for each task. 49

6.2 Results of one-sided Welch’s t-tests comparing the time to correct hypothesis of the
Call Hierarchy to that of Blaze for each task and the complete trial. Given are the
t-value, the degree of freedoms (df), the p-value and the effect size as Cohen’s d. The
results show significant differences for Task 1 and large effects for each task. 50

6.3 The results of one-sided Fisher’s Exact tests for the tasks comparing the success rate
of Xcode participants to those using any of the three call graph exploration tools. The
difference in success rate for Task 2 and the complete trial is significant. 54

6.4 The results of a one-way planned contrast ANOVA comparing the time to (correct)
hypothesis of Xcode and the Call Hierarchy to our research prototypes. The differences
in the time to hypothesis for Task 1 and the complete trial are significant. 57

1 The results of two-sided Fisher’s Exact Tests for the tasks comparing the success rate
of Call Hierarchy participants to Blaze participants. None of the results is significant. . 83

2 The results of Shapiro-Wilk tests for the different samples in the study. 83
3 The results of Shapiro-Wilk tests for the different conditions. 84
4 The results of Bartlett’s tests to check the homogeneity of variances in the conditions

of each task. 85
5 The results of a one-way planned contrast ANOVA comparing the time to (correct)

hypothesis of Xcode to those of the Call Hierarchy. Theses tests did not reveal a signif-
icant difference. 85

6 The results of a one-way planned contrast ANOVA comparing the time to (correct)
hypothesis of our two research prototypes to each other. Theses tests did not reveal a
significant difference. 86

xi

Abstract

Understanding unknown source code and navigating in it is a common problem for
developers. Navigating along the call graph is a particularly important type of such
navigation.

We present Blaze, a call graph exploration tool designed to help developers search
along paths. Blaze implements established programmer navigation models by first
providing additional information scent to developers browsing the source code. This
is done by always displaying a path that contains the currently viewed method — the
focus method — next to the editor that is used to browse the source code. Then, when
the developer found an anchor point to start the exploration from, Blaze can lock this
focus method. This prevents it from auto-updating; thus providing a save starting
point to backtrack to. Blaze can then be used to explore all paths that contain this
anchor point, while always providing a save return node and making it very easy to
navigate along the selected path.

We first compared Blaze to a Call Hierarchy view. This kind of call graph exploration
tool is used in many modern Integrated Development Environments (IDE), for exam-
ple, Eclipse or NetBeans. We found that Blaze significantly decreases task completion
time in all the tasks we tested. We then used results from a similar earlier study com-
paring Stacksplorer, another research prototype for call graph exploration, to an IDE
without such a tool. These results allowed us to compare all four conditions. We found
that call graph exploration tools significantly increase the success rate compared to an
IDE without such a tool. We also found that the two research prototypes significantly
decrease the task completion time compared to an IDE with or without the Call Hierar-
chy tool.

xiii

Überblick

Unbekannten Quellcode zu verstehen und darin zu navigieren ist ein häufiges Prob-
lem für Entwickler. Die Navigation entlang des Call-Graphen ist eine besonders
wichtige Art der Navigation in solchen Fällen.

In dieser Arbeit stellen wir Blaze vor, ein Call-Graph-Explorationswerkzeug, das ent-
wickelt wurde, um Entwicklern die Suche entlang von Methodenaufrufpfaden zu er-
leichtern. Blaze setzt etablierte Modelle der Programmierernavigation um, indem es
Entwickler zuerst mit zusätzlicher “Informationswitterung” versorgt. Dies wird er-
reicht, indem immer direkt neben dem Quellcode-Editor ein Pfad angezeigt wird,
der durch die aktuell betrachtete Methode — die Fokusmethode — verläuft. Dann,
wenn der Entwickler einen günstigen Startpunkt, einen “Ankerpunkt”, gefunden hat,
kann Blaze die Fokusmethod arretieren. Auf diese Weise wird das automatische Ak-
tualisieren der Fokusmethode verhindert und der Entwickler hat einen sicheren Start-
punkt, zu dem er zurückkehren kann. Nun kann Blaze benutzt werden, um alle Pfade
durch diesen Ankerpunkt zu erforschen. Blaze macht es dabei sehr einfach zu diesem
Ankerpunkt oder auch jeder anderen Methode auf dem Pfad zu springen.

Zuerst haben wir Blaze mit einer Call Hierarchy Anzeige verglichen. Diese Art von
Call-Graph-Explorierungswerkzeug wird in vielen modernen Entwicklungsum-
gebungen benutzt, zum Beispiel Eclipse und NetBeans. Wir konnten zeigen, dass
Blaze die Zeit, die für eine Wartungsaufgabe benötigt wird, in allen von uns getesteten
Fällen signifikant verringert. Als nächstes haben wir die Ergebnisse einer älteren
Studie benutzt, die Stacksplorer, einen weiteren Forschungsprototypen zur Call-
Graph-Exploration, mit einer Entwicklungsumgebung ohne ein solches Tool verglichen
hat. Mit diesen Ergebnissen konnten wir alle vier Konditionen vergleichen und zeigen,
dass solche Call-Graph-Explorierungswerkzeuge die Erfolgsrate gegenüber einer En-
twicklungsumgebung ohne solche Werkzeuge signifikant erhöhen. Wir konnten außer-
dem zeigen, dass die beiden Forschungsprototypen die Zeit, die benötigt wird um eine
Aufgabe abzuschließen, im Vergleich zu einer Entwicklungsumgebung mit oder ohne
ein Call Hierarchy-Werkzeug signifikant verringern.

xv

Acknowledgements

First of all I would like to thank my advisors, Jan-Peter Krämer and Thorsten Karrer,
for their support and willingness to answer all kinds of questions. I also want to
thank Chatchavan Wacharamanotham for his statistics support. He answered lots of
questions about statistics I had and spent probably hours doing so.

Special thanks to Matt Gemmela for the MAAttachedWindow code I used to create
overlays. Special thanks also to Thorsten Karrer and Jan-Peter Krämer again for pro-
gramming a view that resembles the iOS page indicatorb after I realized that there is
no standard UI element that does this on Mac OS X. And special thanks to Fabian
Kürten, for helping me tame LATEX’s layout engine.

Also I want to thank all of the participants of my user studies again for taking the time
and providing very valuable input.

Last, but not least, I want to thank Leandra for putting up with me having almost no
time for anything except this bachelor thesis, especially during the last month.

ahttp://mattgemmell.com/ bhttp://hci.rwth-aachen.de/pageindicator

http://mattgemmell.com/
http://hci.rwth-aachen.de/pageindicator

xvii

Conventions

Throughout this thesis we use the following conventions.

To be consistent with the previous Stacksplorer related thesis,
we will use similar conventions:

“[E]stimates about the size of an application will be
given in source lines of code (SLOC). Measurements
are always, except if they are cited, performed us-
ing sloccounta by David A. Wheeler, which counts
each ‘line ending in a newline or end-of-file marker,
and which contains at least one non-whitespace non-
comment character’b.”[Krämer, 2011]

Diagram Conventions In box plot diagrams the whiskers
always extend to the furthest data point within 1.5 times of
the interquartile range. The top of the box represents the 75%
quartile, the bottom the 25% quartile and the median is shown
by a horizontal thicker line inside the box.

Statistic Conventions If nothing else is specified the signifi-
cance level used is 0.05 and confidence intervals are calculated
as 95% confidence intervals.

Text Conventions Source code and implementation symbols
are written in typewriter-style text except in listings or
appendixes.

Definitions of technical terms or short excursus are set off in
colored boxes.

ahttp://www.dwheeler.com/sloccount/
bhttp://www.dwheeler.com/sloccount/sloccount.html

xviii Conventions

EXCURSUS:
Excursus are detailed discussions of a particular point in a
book, usually in an appendix, or digressions in a written
text.

Definition:
Excursus

The whole thesis is written in American English.

Citations We use the citation styles laid out in Hämäläinen
[2006]. Thus, when we take information from a reference and
use it in only one sentence in our thesis, we will add the refer-
ence before the full stop of the sentence, like so [Hämäläinen,
2006]. However, if we use several pieces of information from
the same source in successive sentences we save the reference
at the end of each sentence. Instead we add the reference at the
end of the paragraph. To indicate that it belongs to the com-
plete paragraph we add the reference after the full stop, like
so. [Hämäläinen, 2006]

1

1 Introduction

“We think basically you watch television to turn
your brain off, and you work on your computer when

you want to turn your brain on.”

—Steve Jobs (2004)

1.1 Motivation

Software development does not stop when a product is de-
ployed, instead it is usually necessary to adapt the software
product to changing requirements [Sommerville, 2007, p. 489].
This is called maintenance, and costs to do so often make up Maintenance tasks

are common.the majority of the total costs during the software lifecycle
[Sommerville, 2007, p. 489]. According to Pressman [2010]
maintenance even makes up 70% of the total expenses of a
software project. Thus, it is important to support program-
mers during maintenance tasks.

Since such maintenance tasks usually involve changes in the
program code, it is important to understand the program to
estimate the effects a change will have and to implement the
change in the most effective way. Often, it is not necessary to Understanding the

complete program is
not required for a
maintenance task.

understand the complete program but just a part of it [Erdös
and Sneed, 1998]. According to Erdös and Sneed [1998] one of
the basic questions to answer when supporting program un-
derstanding is "where is a particular subroutine or procedure
invoked?".

Also, programmers spend a lot of time navigating in source Programmers spent
a lot of time
navigating in source
code, often along the
call graph.

code, especially during maintenance tasks [Robillard et al., 2004].
According to Ko et al. navigation makes up 35% of the time
spent on maintenance [Ko et al., 2006, 2005]. A particularly
important type of navigation is navigation along the call graph
[Karrer et al., 2011].

2 1 Introduction

CALL GRAPH:
The call graph for a piece of software is the graph that is
constructed by interpreting each method and function as a
node and adding a directed edge between method a and
method b iff a calls b.

Definition:
Call Graph

Sherwood [2008] found in their study that 18% of all naviga-
tion actions was “forward” navigation, which means that sub-Especially forwards

and backwards
navigation is
important.

jects navigated to the declaration of a discovered object. An
additional 8% was “backwards” navigation looking for places
from which an element is referenced. However, they do not
reveal how many of those navigation actions were along the
call graph.

LaToza and Myers [2010b] found that developers ask reacha-
bility questions. According to their definition, a “reachabilitySearching along

paths is important. question is a search across all feasible paths through a program
for statements matching search criteria” [LaToza and Myers,
2010b]. Making navigation along the call graph easier may
help in answering these kinds of questions.

Stacksplorer [Krämer, 2011] already answers the question iden-
tified by Erdös and Sneed [1998] and supports navigation along
the call graph.Stacksplorer gives

only little support for
searching across
paths.

However, Stacksplorer only displays the direct successors and
predecessors in the call graph, but developers also have ques-
tions that they try to answer by searching across whole paths
(For more information see section 3.2.2—“Stacksplorer”). Also,
programmers do not only search upstream looking for callers
of a method (as implied by Erdös). They also search down-
stream (following method calls), for example, to better under-
stand why a method is called by identifying methods deeper
in the call graph that cause (expected) side effects [LaToza and
Myers, 2010a]. Stacksplorer does support up- and downstream
navigation but only one level at a time.

To support developers in searching across paths we modifiedWe developed Blaze
to better support
navigation and
exploration along
paths.

Stacksplorer and developed Blaze to support the visualization
of possible call stacks. Blaze is an Xcode plugin as well, but
provides a narrow look into the depth of the call graph. This
is an orthogonal approach to Stacksplorer’s direct-neighbor-
focused breadth-first view of the call stack. Figure 1.1 shows

1.2 Chapter Overview 3

F

J

L

N

K

G

I

A

B

C

D

Q

S

U

T

V

W

R

O

P

H

E

Stacksplorer Blaze

Figure 1.1: The different parts of the call graph surrounding a focus method (black) visualized by
Stacksplorer and Blaze. Circles represent methods, arrows represent calls between methods. Stacksplorer
visualizes the complete direct neighborhood of a method, Blaze a path that contains the focus method.
The Blaze visualization can be changed to show any of the displayed paths through the focus method,
thus it can show every method except for K and I without changing the focus method.

which parts of a sample call graph Stacksplorer and Blaze would
show.

FOCUS METHOD:
The focus method is the “method [the user] is currently work-
ing on or trying to understand” [Karrer et al., 2011].

Definition:
Focus Method

1.2 Chapter Overview

Chapter 2 In this chapter, we will first give some background
information about programmer navigation. We will de-
scribe some research results about this kind of naviga-
tion.

Chapter 3 In chapter three, we present related work to Blaze.

4 1 Introduction

We will first describe some basic tree visualizations, then
describe the current state of call graph exploration tools
in IDEs and show some research prototypes that are sim-
ilar to what we want to achieve with Blaze.

Chapter 4 Our design process for Blaze and the different sta-
ges during its design are described in this chapter, in-
cluding a set of small user interviews we did to verify
that our visualization is understood by users.

Chapter 5 Here we describe the final version of the software
prototype for Blaze. We also describe our version of the
Call Hierarchy plugin that we compared to Blaze.

Chapter 6 We compared Blaze to an implementation of the
Eclipse Call Hierarchy. We also used results from an
older study to compare these two plugins to Stacksplorer
and Xcode without a plugin. The results of these com-
parisons are described in this chapter.

Chapter 7 In this last chapter we summarize our work and
contributions and point out some interesting further re-
search opportunities.

5

2 Background

“To me programming is more than an important
practical art. It is also a gigantic undertaking in the

foundations of knowledge.”

—Grace Hopper

There have been several studies looking at how programmers
navigate both several years or even decades ago and in recent
times. Several of those have formulated models for program-
mer navigation. We will now discuss some of the more re-
cent ones. Older studies have the risk of lacking applicabil-
ity because they often investigated quite different program-
ming environments. A comparatively small Assembly project
is quite a different thing than a Java project with several hun-
dred thousand lines of code.

2.1 Information Foraging Theory

Information foraging is a theory that describes how humans
search for information. It uses the concept of information scent The information

foraging theory uses
information scent to
predict navigation.

derived from animal scent arguing that humans searching for
information act similar to predators hunting prey [Lawrance
et al., 2008]. It has previously been used to predict web user
navigation. We will present two similar models that adapt this
theory to programmer navigation.

2.1.1 Programmers Look for an Anchor Point to
Start Exploration

Ko et al. [2006] developed a model for programmer naviga-
tion in source code and program understanding by observ-
ing 31 Java developers. According to this model (see figure

6 2 Background

number of related nodes, the developer uses cues in the
programming environment to determine which relationship
seems most relevant. After choosing and navigating a
relationship, the developer may investigate nodes related to
the new node, and so on, or return to a previous node. If, at
any point in this cycle of relating, the developer believes
there are no more relevant cues, the developer drops out of
the relating cycle and goes back to searching for a new node
to comprehend. As this searching and relating continues,
the developer gathers any nodes that seem necessary for
completing the task, whether for editing, reference, or other
purposes (collecting). If, at any point, the developer believes
that the nodes that have been collected are sufficient to
implement a solution for the task, the developer drops out
of this understanding process altogether and focuses on the
information collected to implement a solution. Problems
during this implementation process then may lead to
further search, relate, and collect activities.

Within this model, two factors are central to a devel-
oper’s success: 1) the environment must provide clear and
representative cues for the developer to judge the relevance
of information, and 2) the environment must also provide a
reliable way to collect the information the developer deems
relevant. If an environment does not provide good cues, it
may lead to fruitless investigations; if an environment does
not provide an effective way to collect information, the
developer will have to retrace his steps to locate informa-
tion that has already been found.

Our model of program understanding is directly
informed by information foraging theory [40], which posits
that people adapt their strategies and environment to
maximize gains of valuable information per unit cost. It
proposes that a central mechanism of this adaptation is
information scent: the imperfect “perception of the value,
cost, or access path of information sources obtained from
proximal cues.” In general, these cues include artifacts such
as hyperlinks on a Web page or graphical icons in a toolbar.
In software development environments, they include the
names of program elements, comments, the source file
names, and so on. Information foraging theory may suggest
more rigorous explanations of how developers might form
their perceptions of relevance, so future work should
further investigate its relationship to our model.

With regard to existing models of program under-
standing, our model is largely consistent with their
predictions; the difference is that our model suggests a
lower-level explanation of developers’ actions than prior

work. For example, many models have argued that
developers begin with questions and form hypotheses [8],
[27], [49]; this corresponds to the searching part of our
model, in which developers ask “What is relevant?” and use
cues to both form and test hypotheses about what is
relevant. Other models have focused on high-level strategic
differences, such as whether developers understand pro-
grams from the top down or bottom up [12], [32], [49], and
whether they use systematic or as-needed strategies [29];
recent work on these issues tend to suggest that developers
do all of these [45]. Under our model, a top-down strategy
involves choosing a high-level node and following more
specific dependencies; a bottom-up strategy is just the
reverse. An as-needed strategy might involve many short
paths through this graph, whereas a systematic strategy
would likely involve longer and more consistent paths.
Our model allows for all of these possibilities and
predicts that the particular strategy chosen depends on
the cues provided in the environment. Models of knowl-
edge formation during program understanding [35], [51],
which have suggested that a developer’s mental model
consists of relationships between code elements and the
purpose and intent of these elements, are consistent with
our description of knowledge as the combination of paths
that a developer has traversed in a program over time and
their existing knowledge. Finally, because our model
describes a pattern of activity that is fundamentally driven
by cues offered by the environment and the developers’
perceptions of their relevance, it is also consistent with
research on the influence of the visual representation of
code on program understanding [3], [23], [33], [48].

7 IMPLICATIONS FOR TOOLS

While no single navigational problem in any of the devel-
opers’ activities incurred dramatic overhead, overall, navi-
gation was a significant component of developers’ time. The
total time developers spent recovering task contexts,
iterating through search results, returning from navigations,
and navigating between indirect dependencies within and
between files was, on average, 19 minutes (35 percent of the
time not spent answering interruptions). While much of this
navigation was a necessary part of the developers’ work,
some of it was simply overhead, and, as we have seen,
many of the navigations were repeated navigations that
might have been avoided had more helpful tools been
available. Although tools are only part of the complex

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 983

Fig. 6. A model of program understanding in which developers search for relevant information and relate it to other relevant information while

collecting information necessary for eventually implementing a solution.

Figure 2.1: A model of programmer navigation and program understanding developed by Ko et al.
[2006]. Diagram reproduced from the same source.

2.1), programmers start out by searching for a point in the
code or other artifacts to start from. When they have foundProgrammers look

for an anchor point. a convincing starting node, they explore other nodes along re-
lationships (call relationships, inheritance, documentation ref-
erences, etc.) from this node. They explore these nodes re-
cursively, again exploring relationships and collecting nodes
they find relevant. If they do not find other interesting nodes,Programmers often

backtrack to
previously visited
nodes.

they backtrack to previously visited nodes until they reach the
starting node again. If there are no other nodes to explore from
the starting node, they go back to the search phase and look
for a new starting point. They stop when they have gathered
enough information to accomplish their goal. [Ko et al., 2006]

Ko et al. also derived some implications for tool design from
their theory. For example, tools should support programmersShowing

relationships for the
programmer’s current
focus should be
helpful.

to search more effectively. One way to do this would be to pro-
vide more ‘layers’ of nodes that can be explored without nav-
igating. This could be accomplished by to not only showing
relations to other nodes but also showing their related nodes.
Another recommendation is to support programmers in relat-
ing information to the currently viewed node more easily, for
example, by automatically showing some related nodes based
on the current selection (i.e., the programmers focus). [Ko
et al., 2006]

2.1.2 Information Scent

Lawrance et al. [2008] use a similar approach to Ko et al. and
adapt the information foraging theory to programmer naviga-
tion in source code, too. However, they do it a bit differently.

They compare programmers to ‘predators’ ‘hunting’ for ‘prey’,

2.2 Other 7

whereby the prey can be any kind of information program-
mers look for, for example, how to fix a bug or where to make
a specific change. To find prey, developers evaluate cues in
the source code, which can be almost anything from simple Programmers ‘hunt’

for information and
judge relationships
by their ‘information
scent’.

words in function names or documentation to runtime behav-
ior of the application. These cues are then judged by how
likely they will lead to the ‘prey’. The likelihood to lead to the
prey is the ‘information scent’: How much the cue smells like
the information the developer is looking for. The ‘topology’
the predator wanders would then be the collection of artifacts
in the software (source code, documentation etc.) and the re-
lationships and paths between them. [Lawrance et al., 2008,
2010]

They tested this theory by calculating the information scent of
a cue by calculating the similarity of it (for example a method
name) to the bug report the developers were working on and Information scent

can predict
programmer
navigation very well.

used this to predict the navigation of programmers. This pre-
diction was quite accurate, closely following the aggregated
navigation of a group of developers that were tested. It even
predicted the navigation of a single developer better than us-
ing the navigation of a single other developer as prediction.
[Lawrance et al., 2008]

2.2 Other

Developers use tabs as breadcrumbs for their navigation
paths. Sherwood [2008] tried to improve programmer navi-
gation by changing the Eclipse “one file per tab” model to a
“one history per tab” model by saving a history of viewed files Instead of using tabs

for a more
breadth-first
navigation
developers used
them as
‘breadcrumbs’.

on a tab by tab basis, similar to what is currently done in web
browsers. They expected developers to take a more breadth-
first approach (which was also encouraged during their study)
by opening one tab for each possible further direction of ex-
ploration to remember to evaluate each possibility. Instead,
what they found is that developers only opened one new tab
in such branching situations to “save” the position where they
took one of several possible exploration paths, thus using the
tabs like breadcrumbs to be able to go back to an earlier state
in the exploration.

8 2 Background

Requirements for Software Exploration Tools. There are a
number of papers proposing different sets of requirements for
software exploration tools, for example, Schäfer et al. [2006]
and Storey et al. [1997]. Often, these are targeted at more in-
clusive software exploration tools that are meant to stand and
be used alone, thus not all of them apply to our approach. But
some of the requirements presented in [Storey et al., 1997] are
useful; therefore we will describe them here.

One strategy to understand source code is to start at the small-
est units and then create bigger, more abstract, units from them
until the whole system is understood. This is called a bottom-Relationships

between low-level
objects should be
shown.

up strategy. For this to work, it is important that the tools used
show the different relationships between the low-level objects
of the software project and thus enable abstraction to higher
level objects by grouping the low-level objects together (E11).
[Storey et al., 1997]

Another important part is to reduce delocalization effects (E2).
Delocalization describes the fact that, in modern software proj-Delocalization effects

should be mitigated. ects, relevant pieces of an implementation of a feature are often
split up in many different parts, which are located at different
places in the source code. Software exploration tools should
try to mitigate the problems that occur from this delocaliza-
tion. [Storey et al., 1997]

Another requirement that we will try to fulfill is the enabling
of sequential navigation, meaning that it should be possible toEnabling sequential

navigation and
providing cues to
help the programmer
orient themselves is
important.

navigate along the data-flow or control-flow of the software
project (E8). But not only should navigation be possible, tools
should also provide hints to the developer to help him stay
oriented (E11). For example, tools should show the current
focus to the developer, show how they got where they are now,
and where they could go now. In addition, they should also try
to prevent confusion and disorientation by using animations
to explain interface changes or providing easy to understand
presentations/layouts (E15).

1We used the same identifiers for the requirements as Storey et al. [1997]
to make the comparison easier.

9

3 Related work

“All problems in computer science can be solved by
another level of indirection.

. . . But that usually will create another problem.”

—David Wheeler

There are many different ways to visualize a program’s struc-
ture in general. Since we do not plan to provide an overview
over the complete code but only over the surroundings of a
specific part—in our case the methods in the call graph—we
will not focus on complete program visualization approaches
but instead look for work which tries to visualize only a part of
the program structure. Edge cases in that way are projects like We will focus our

research on partial
visualization of
program structure,
not complete
visualization.

Code Bubbles [Bragdon et al., 2010], which allows the devel-
oper to choose which parts of the code they want to focus on
and displays the relations between the chosen code segments.
We did not want to create a whole new Integrated Develop-
ment Environment (IDE). Instead we integrated the visualiza-
tion with Xcodea, an existing IDE, more like an accessory view
in the same way Stacksplorer works.

Another edge case are projects that use degree of interest func- We will not talk about
degree of interest
tools and instead
concentrate on
visualization and
more interactive
tools.

tions to select information to display from the context for a cur-
rently viewed code segment. An example would be [Jakobsen
and Hornbæk, 2009]. These tools are not limited to call rela-
tions. We will have a look at those projects to see whether they
have useful visualization techniques but will not use their de-
gree of interest functions and instead focus on visualizing re-
lated methods by using the call graph.

ahttp://developer.apple.com/Xcode/

http://developer.apple.com/Xcode/

10 3 Related work

3.1 Graph and Tree Visualizations in
General

A call graph is usually a proper1 directed graph not just a tree,
not even acyclic because of recursion. But by limiting the vi-
sualization to one method plus its descendants and ancestors,We concentrate on

DAG and tree
visualization.

and replacing recursion (i.e., cycles) by special nodes, the part
of the call graph to visualize can be transformed into a directed
acyclic graph (DAG) or even a tree. Thus, we will concentrate
on DAG and tree visualization.

3.1.1 Basic Tree Visualization
Survey of multiple tree visualisation

a

d

b c

e

Figure 3: Basic types of tree representation – (a) node-link,
(b) nested, (c) adjacency, (d) indented list and (e) matrix
representations.

A fourth representation style is indentation, in which
nodes are listed linearly in order of depth-based traversal
and then indented by an amount proportional to their
depth in the tree. Often, stylised links are drawn to make
parent–child relationships clearer, but this is not always
the case. This is the most common form of tree display
used in contemporary graphical user interfaces (GUIs),
seen in locations such as the folders view of Microsoft
Windows Explorer. In empirical evaluation by Cockburn
and Mackenzie40 this layout has shown to be the objec-
tively preferred choice when compared to other styles of
tree visualisation, though Kobsa41 suggested that much
of this performance advantage is explained by familiarity
because of the ubiquitous presence of Microsoft Windows.

Finally, individual trees can also be displayed via a
matrix representation, but this tends to be less common
than the previous styles for good reason. Firstly, this
is because of the difficulty in following edge paths in
matrices, as recognised by Shen and Ma.42 In Figures 3(a),
(c) and (d), it is clear that D is a ‘grandchild’ of A, and
while slightly trickier in the case of the nested repre-
sentation in Figure 3(b) (Lü and Fogarty43 discuss how
variation in nested representations can greatly affect
this property), in the matrix representation the A–B and
B–D edges need to be discerned independently and then
combined, making the relationship much more diffi-
cult to deduce. A second issue is that essentially a single
tree is not complicated enough in structure to warrant
a matrix representation. One of the main reasons cited
for using matrices to visualise graph types is that they
eliminate edge crossings that occur in other graph repre-
sentations, but a single tree can always be drawn with
no edge-crossings in the other representations and so
this reason no longer applies. Further to this point, a tree
with N nodes has N − 1 edges, and thus when displayed
as a matrix will only fill the square root of the total N2

possible entries, making it highly space-inefficient.
All the layout styles have associated advantages

and disadvantages and the choice of representation is

depending on the tasks that are to be performed with
the structures and the semantics of the data concerned.
Generally node-link representations are more understand-
able to the lay-person and communicate structure readily,
but use up screen space rapidly. Nested representations
allow more nodes to be displayed at once but structure is
more difficult to perceive due to lacking a global child-
parent orientation, plus they emphasise leaf nodes at the
expense of internal nodes. The adjacency and indented
list methods strive for a halfway house between these two
styles, utilising a higher proportion of screen space than a
node-link display, yet making structure relatively simple
to follow. Finally, the matrix reduces the tree essentially
to a look-up table. These basic layout styles are the foun-
dation for all tree visualisations that display internal tree
structure, and the styles themselves can be combined
within a visualisation of a single tree as demonstrated by
Zhao et al,44 in which portions of the tree are drawn as
either nested or node-link representations dependent on
screen space and user interaction. Further, Nguyen and
Huang’s EncCon technique.45 combines the enclosure
and node-link approaches across an entire tree; the tree
nodes being positioned using an optimised nested layout
algorithm and then connected with links.

Multiple tree models × Multiple tree representations

A logical starting point to categorise multiple tree visual-
isations is to distinguish whether ‘multiplicity’ is based
on the number of trees displayed, or the number of trees
modelled in the structure, or both. Table 1 shows a brief
tabular summary of this categorisation and the four basic
cases it produces – with the simplest case of a single tree
model represented as a single tree visualisation being
covered in the previous section.

The second case covers the scenario of one tree model
visualised many times; for instance Wilson and Bergeron’s
dynamic hierarchy visualization46 can display multiple,
differing representations of the same hierarchy, but does
not display multiple structures. A similar caveat applies
to Urbanek’s KLIMT system,47 Schedl et al’s48 stacked
radial tree visualisation and Teoh’s more recent work49

on multiple views for trees. Kules et al50 explore the
situation of simultaneously using two different, linked
representation styles of the same tree – one nested and
one node-link representation.

Of more interest to us are the approaches that deal with
multiple instances of trees in the data we wish to visu-
alise, and these can be divided into visualisations that are
shown as a single tree or show multiple trees. The former
case tends to be visualisations built for hierarchical facet
exploration, such as MoireTrees51 and Facet Folders,52

that try and give a fluid single tree view over a multi-
hierarchical structure for ease of navigation. The latter case
is that of visualisations that display multiple representa-
tions of multiple trees. Here there may not be a universal
coverage of leaves by each hierarchy – some may have

© 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 4, 235–252 239

 at Hochschulbibliothek RWTH Aachen on April 15, 2011ivi.sagepub.comDownloaded from

Figure 3.1: Shown are five different tree representation styles, a) node-
link diagram, b) nested diagram, c) adjacency diagram, d) indented list, e)
matrix representation. Redrawn from [Graham and Kennedy, 2010].

Graham and Kennedy [2010] identify 5 types of basic tree vi-
sualizations (see Figure 3.1):

a) node-link diagram

b) nested diagram

c) adjacency diagram

d) indented list

e) matrix representation
1contains cycles and possibly more than one predecessor per node

3.2 Call Graph and Control Flow Graph visualization 11

The matrix representation is included in their list but not con-
sidered in their evaluation of tree visualizations because they
find it too complicated and space-inefficient for trees. There
are studies showing that the indented list is subjectively pre-
ferred by users and other studies implying that this is only due
to the familiarity of the users caused by the lists usage in Win-
dows [Graham and Kennedy, 2010]. Andrews and Kasanicka There seems to be

no big differences
between different
basic tree
visualizations.

[2007] compare four hierarchy browsers2, one of them an in-
dented list (which they call tree view), two nested diagrams,
and one node-link diagram. They could not find a significant
difference in completion time when letting the users explore
different hierarchies except for one pair of browsers for one
out of eight different tasks. Since there is no clearly favor-
able visualization, we think there is room for improvement
and hope a more focused visualization will perform better for
our use case.

3.1.2 Fisheye Views

One graph visualization method respecting the idea of having
a focus point in a graph and displaying context of different
importance is the concept of fisheye views described by [Fur- Fisheye views

highlight a focus
point and distort
distant features.

nas, 1986]. Often, they are just applied as an optical effect to
existing graph drawings by zooming in on a focus point and
distorting nodes that are far away from the focus point (see
Figure 3.2). But fisheye views are not limited to optical effects,
there are also semantic ones. Jakobsen and Hornbæk [2009]
modified the Eclipse IDE to display relevant lines from the
currently viewed code file below and above the editor view
and could show that their modified editor was adopted and
actually used in real-life work.

3.2 Call Graph and Control Flow Graph
visualization

There are also programs and plugins focused on visualizing
call graphs, not just general graphs. We will review a few of
those that are related to Blaze or even inspired its design.

2A hierarchy is a tree, thus a hierarchy browser is just another kind of tree

12 3 Related work

342 A.A. Evstiougov-Babaev

cartesian fish-eye views [Abs,San91]) in order to improve working with large
graphs.

The panner offers a scaled-down view of the entire graph in a separate win-
dow, whereas fish-eye views imitate the well-known fish-eye lens effect by ma-
gnifying the focus area and displaying other parts of the graph with less detail.
The parts of the graph that are further away from the focus appear slightly
squashed, meaning the further nodes are positioned away from the focus, the
smaller they appear in the graph window. Thus, the user can concentrate on
areas of particular interest yet being able to consider their context and even to
overview the entire graph (see Figure 5).

Fig. 5. Polar fish-eye view

5 Program Documentation

aiCall integrates a complete framework for printing graphs, export of graphs in
colored Postscript format (on multiple pages for large graphs) and other picture
formats. This permits more concise program documentation produced faster and
understood more easily.

Figure 3.2: A fisheye view of a control-flow graph. Redrawn from
[Evstiougov-Babaev, 2002].

3.2.1 Current IDEs

Several of the more popular IDEs already have call graph visu-
alization features, but they all use different kinds of tree views
(i.e., indented lists) to visualize them (see figures 3.3 and 3.4).Most big IDEs use

tree views to show
the Call Hierarchy.
But they are often
not implemented
very well.

Eclipsea, NetBeansb and IntelliJ IDEAc also only allow the user
to view just one side of the call graph (either callees or callers)
at a time (for screenshots of NetBeans and IntelliJ see 1 and 2
in appendix 7.2.2—“Other Pictures and Diagrams”).

Microsoft Visual Studiod displays a node for callees and one
for callers in the same view, but one has to expand this collec-
tion of callees/callers before being able to see them. And oneThe Visual Studio

visualization can be
quite confusing.

has to expand a similar collection on each level down the call
hierarchy. Even worse: One can interleave callee and caller re-
lationships in this tree view; thus, at one point the parent-child
relation in the tree view might mean "callee" and further down
the tree it might mean "caller" (see Figure 3.4 for an example).

visualization and exploration tool.

ahttp://www.eclipse.org/downloads/ bhttp://netbeans.org/
chttp://www.jetbrains.com/idea/
dhttp://www.microsoft.com/visualstudio/

http://www.eclipse.org/downloads/
http://netbeans.org/
http://www.jetbrains.com/idea/
http://www.microsoft.com/visualstudio/

3.2 Call Graph and Control Flow Graph visualization 13

Figure 3.3: Eclipse Call Hierarchy view: Only one direction (callees or
callers) is viewable at a time.

Also none of the mentioned tree views updates automatically
when another method is selected. The user has to invoke it
explicitly for each possibly interesting method. Thus, there
seems to be room for improvement.

3.2.2 Research

Besides the call graph visualizations used in the “real world”,
there are also some research prototypes with similar goals.

Stacksplorer

Our prototype, Blaze, was developed as a follow-up to Stacks-
plorer, which was developed during a diploma thesis at our

ahttp://hci.rwth-aachen.de/stacksplorer

14 3 Related work

Figure 3.4: Visual Studio Call Hierarchy view: Both directions can be
seen at a time, but directions can be interleaved as well (Caller→ Callee→
Caller visualized as children).

chair [Krämer, 2011]. Stacksplorer takes the call graph sur-
rounding the currently selected method in the editor (the fo-
cus method) and displays incoming and outgoing calls for this
method. Incoming calls (i.e., methods that call the focusStacksplorer shows

direct callers and
callees of a method.

method) are displayed to the left of the source code editor, out-
going calls (i.e., methods that are called by the focus method)
are displayed to the right of the editor. This way one can fol-
low the execution trace reading from left to right. [Karrer et al.,
2011]

Stacksplorer also allows users to navigate to a calling or called
method by clicking on it in the left or right view. When a userStacksplorer allows

users to navigate
along the call graph.

clicks on a method on the right it slides to the left and will
be opened in the editor. The previous focus method slides to
the left and will be displayed in the left view as one of the
incoming calls. This works the other way round for clicking
on a method on the left. [Karrer et al., 2011]

3.2 Call Graph and Control Flow Graph visualization 15

Figure 3.5: Stacksplorer displays the callees of the current focus method
on the left of the editor view and the called methods on the right. Overlays
are used to show where the methods on the right are called in the code.
Picture from the Stacksplorer Websitea.

If one interprets Stacksplorer as a window placed on the call
graph (hiding everything but the direct neighborhood of a
method) clicking on a method represents sliding this window Stacksplorer

presents a “logical
frame” around a
method.

to the new focus method. This concept of a window on the
graph and moving the window for exploration was described
by Herman et al. [2000]; Huang et al. [1998] called it a “logical
frame”.

To highlight where methods on the right are called, Stacksplo-
rer optionally displays overlays connecting the method views
on the right with their calls in the source code [Karrer et al.,
2011]. Thus, Stacksplorer is tightly integrated with the editor Stacksplorer is tightly

integrated with the
source code editor.

showing the source code and even uses the editor as part of
the visualization.

CallStax

Young and Munro [1997] also explored the visualizations of
all possible paths through a focus method in a tool called Call-
Stax. It displays all possible stacks in the source code of a piece
of software as stacks of 3D blocks, with the blocks represent-
ing methods (see figure 3.6). Individual methods can be se- CallStax displays all

possible stacks.lected to align all stacks at that method and see all paths that

http://hci.rwth-aachen.de/stacksplorer

16 3 Related work

Figure 7. CallStax visualisation integrated with other views.

Figure 7 shows the CallStax visualisation integrated into a WWW presentation and combined with
more conventional views of the software system, namely the syntax highlighted source code and a

standard 2D call graph.

4. Conclusions
Standard 2D call-graphs are an excellent medium for conveying the relationships between components
(i.e. functions) within software. Unfortunately, graphs such as these suffer from a variety of problems
mostly associated with the complexity and scale of the information they have to present. For this reason,
call-graphs rapidly lose their usefulness as the size and complexity of the software they are presenting
increases. The limitations of the 2D graph are highlighted when viewing the relationships within large
software systems. The graphs will rapidly become very messy and unreadable, with little or no hope of
finding an acceptable layout.

The conclusions of this paper are that graphical representations are important for program
comprehension. Software visualisation is complicated greatly by the size and complexity of typical
software systems, all visualisations have both their own merits and shortcomings, the problem in hand is
to find a suitable and effective compromise. New methods and techniques for visualising software
systems, such as the CallStax described here, show potential. The new representation in a 3D virtual
world has the advantages of :

• No multiplicity of crossing lines;

• Greater flexibility in grouping functions and removing unwanted information;

• Viewpoint distance gives greater or lesser detail;

• Viewpoint position allows focusing of areas of interest while maintaining context.

There is a need to explore other representations, visual abstractions and appropriate metaphors -
particularly the possibilities afforded by 3D graphics and VR technology.

An on-line demonstration of the CallStax visualisation can be found at the following URL. In order to
view the visualisation correctly you will require the Viscape plug-in application, details of which can
also be found at this location.

http://www.dur.ac.uk/~dcs3py/testing-grounds/demo.html

Figure 3.6: CallStax provides a 3D view of all possible stacks of functions in a software system.
Functions are visualized as small cubes stacked onto each other when a method calls another. Users can
select a function which causes all stacks to be aligned at that method. Stacks that do not contain the
function are moved away and leave empty spaces in the mesh that represent the selection. It can also be
integrated with other views such that clicking on a function in CallStax highlights it in the code editor
and vice versa. Image reproduced from [Young and Munro, 1997].

contain this method. Stacks that do not contain this method
are moved away to be visually distinctive, but their previous
positions are shown as holes in the mesh that represents the
selection. [Young and Munro, 1997]

On the one hand, showing all possible stacks removes the prob-
lem of crossing edges in a graph visualization, which often
makes the representation visually complex. On the other hand,
it introduces the problem of the user having to mentally com-
bine all the different representations of one method to under-
stand its role. To help the user identify the different represen-
tations of one and the same method, the methods are colored
similarly. [Young and Munro, 1997]

It is also possible to zoom in and out of the representation to
get a better overview or more details. When the zoom level
reaches a certain threshold the individual method visualiza-

3.2 Call Graph and Control Flow Graph visualization 17

tion becomes more complex by displaying more information
like metrics or inner structure of the function. CallStax can Zooming in reveals

details of the
implementation of a
method.

also be integrated with other visualizations like a simple code
editor and allows clicking on a method in CallStax to show
its implementation in the editor and vice versa. [Young and
Munro, 1997]

Although the concept of showing all paths is similar to our
idea, there are still a lot of differences. CallStax shows all
stacks of a complete software system or at least all stacks for
one method at the same time, while we want to focus on only
one method. It is also a 3D visualization while we think 2D
should be enough and it still uses a lot of space.

REACHER

REACHER, a tool developed by LaToza and Myers [2011], also
shows only a part of a call graph. But it is not limited to the REACHER is a much

mightier and much
more complex call
graph exploration
tool.

direct neighborhood of one method. It displays several paths
of several selected methods. It can also search through the call
graph, evaluates conditions and loops and is overall a much
mightier call graph exploration tool than Stacksplorer. How-
ever, it also has a much more complex visualization (see figure
3.7).

challenging by forcing developers to manually compare nodes
between similar subtrees to identify differences.

However, using a single node for each method increases
visual complexity, creating overlapping and crossing edges that
can be challenging to untangle. To help solve this problem,
REACHER lets developers mouse over an element to see its
connections (see Figure 8). Entering a node highlights incom-
ing and outgoing edges; entering an edge highlights incoming
and outgoing nodes. One study participant commented, “It
kinda reminds me of a magician, that if they want to see if there
are any wires around they move their hand.”

Figure 8. Mousing over a method highlights incoming and outgoing calls.

E. Type membership
Types (e.g., classes) express a developer’s intention that the

methods and fields they contain are related. REACHER visually
encodes type membership with shadows grouping adjacent
methods with a common type (see Figures 1, 6, and 9).

F. Layout
REACHER uses an automatic layout to assign each method a

position. REACHER’S layout technique begins at root methods –
methods with no visible callers. Call graphs produced by
upstream searches may have multiple roots. From each root,
REACHER computes a spanning tree. For methods with multiple
incoming edges, the spanning tree includes the edge which
executes first. REACHER then walks the spanning trees in-order
to compute positions for each method, assigning positions from
top to bottom and left to right. For methods with a single callee,
both are assigned to the same row, with the caller to the left of
its callee. For methods with multiple callees, each callee is
given its own row from top to bottom. This process
hierarchically computes a row and column assignment for each
method. Row height and column width are then assigned using
the maximum vertical and horizontal dimensions, respectively,
of their cells. Finally, REACHER stacks each spanning tree
vertically, with backward edges linking trees.

G. Repetition and choice
Realizing that a call is guarded by a conditional or may

execute repeatedly can be important for answering reachability
questions. REACHER alerts developers to the presence of these
constructs by visualizing repetition and conditionals with call
edge icons. Question marks indicate a conditional guarding a
call’s execution; loop icons indicate callsites in a loop. When a
call could be to one of several overriding methods because of
dynamic dispatch, edges to these callees begin with a single
shared line and branch into separate lines at a diamond icon.
REACHER condenses repeated edges to the same method into a
single edge, indicating the edge count with a number icon. But
when an edge to a different method is interleaved between the

repetition, the repeated edges are shown separately before and
after the interleaved edge, showing ordering. For example, in
Figure 7, the repeated calls to send() are shown before and after
the interleaved call to setBuffer(). Hovering over an icon
displays a descriptive popup (see Figure 9).

Figure 9. Hovering over an icon or edge displays a descriptive popup.

H. Supporting rapid exploration
REACHER provides a variety of additional interactive

features for rapidly expanding details and then hiding them
again if the user decides they are not relevant. “Back” and
“forward” commands traverse a web-browser style navigation
stack of visualization states. Pan and zoom commands lets
users focus on specific areas or get an overview. To help users
track the location of methods as new methods are added and
layout positions change, REACHER smoothly animates
transitions. Showing the callers or callees of a method anchors
the method’s position, moving other nodes relative to it.

IV. EVALUATION
REACHER’S design is premised on the assumptions that

searching along control flow is faster than traversing paths
using conventional navigation techniques, and that visualizing
paths can help developers more effectively understand and
navigate code. We conducted a lab study to test these
assumptions, and evaluate the potential productivity benefits of
REACHER and the usability of REACHER’s features.

A. Method
12 participants were recruited from students and staff at

Carnegie Mellon University. All participants reported being
comfortable programming in Java (median = 4.5 years
experience), had professional software development experience
(median = 1.1 years), and knew an average of 4 programming
languages. None had previously used REACHER.

Participants performed 6 tasks and were given 15 minutes
to complete each task. Each task posed a reachability question
and involved finding and understanding control flow between
events. Table 1 lists each of the tasks’ questions. To test if
participants were able to understand the visualization notation,
each task was designed to require understanding a particular
aspect of the notation. Tasks 1 and 2 dealt with ordering, tasks
3 and 4 dealt with conditions, and tasks 5 and 6 dealt with
repetition. All participants performed all 6 tasks and did half of
the tasks with Eclipse alone and half with Eclipse and
REACHER. Participants were randomly assigned to conditions.
The order of the tasks, whether they received the 3 Eclipse only
tasks or the 3 REACHER tasks first, and which tasks were used
in each condition were all counterbalanced.

Figure 3.7: An excerpt from a visualization of a search through the
call graph using REACHER. Image reproduced from [LaToza and Myers,
2011].

REACHER is used to answer reachability questions. A user
starts using it by selecting a start method. They can then choose
to search upstream, which finds all calls that might have hap-

18 3 Related work

pened before this method3 or downstream, which finds all
methods that are indirectly called by the start method. [La-
Toza and Myers, 2011]

This list of methods can be filtered by entering a string into aREACHER allows
users to search for
methods in the call
graph and build the
visualization
incrementally.

search field. Users can add methods from this list permanently
to the current call graph visualization by double-clicking them.
Calls between method nodes are represented by lines, although
by default any methods that have not been added explicitly
are hidden. Paths from one method to another that contain
hidden methods are represented by a dashed line. Hidden
outgoing paths are represented by a circled plus, which can
be used to reveal those other paths. [LaToza and Myers, 2011]

Icons on the call lines are used to give hints about the context
of the call. A question mark represents a conditional guardingLots of different icons

convey different bits
of information.

the call, a circled arrows represents a loop containing the call, a
number n means the method is called n times from the imple-
mentation of the calling method, a diamond is used to split up
a path that could take different directions due to overridden
methods.

Users can click on any of the call lines between method nodes
to navigate to the location of this call in the code. Thus,REACHER can also

be used for
navigation.

REACHER already implements the idea of searching and nav-
igating along call paths but is a lot more complex than we en-
visioned our tool to be.

Other Program Exploration Tools

There are a lot of other program exploration tools but manyMore inclusive
software exploration
tools are often too
complex to be
comparable.

of those strive for an even wider applicability than REACHER
and incorporate even more features. This limits their appli-
cability to our problem and the comparability to the tool we
developed, since we wanted to design a tool that is focused on
call graph navigation, uses only as little space as possible and
is still concise.

3Either because the found method is (indirectly) calling the start method
or because it is (indirectly) called by a method which (indirectly) calls
the start method later.

19

4 Design

“Good design is also an act of communication
between the designer and the user, except that all the

communication has to come about by the appearance of
the device itself. The device must explain itself.”

—Donald Norman

Starting from the idea of trying the orthogonal approach to
Stacksplorer of visualizing paths, we designed a new call graph
visualization. We will now describe the basic idea behind it,
the changes we made later in the design process, and the final
design.

4.1 Basic Idea

Stacksplorer only shows the direct predecessors and the di-
rect successors of the focus method, but it shows all of those
successors and predecessors at the same time. We wanted We wanted to only

visualize one path
through the focus
method at a time.

to explore the orthogonal approach of visualizing only one
path at a time, thus visualizing several depth levels of the call
graph from the current focus method. As a tradeoff, we would
only show one of the possible paths compared to Stacksplorer,
which shows all possible incoming and outgoing methods. A
graphical description of the different parts of the call graph
that are shown by Stacksplorer and Blaze was shown in figure
1.1.

To visualize only one path at a time but make it possible to
switch between different paths, we decided to use a combina- We wanted to use a

combination lock
metaphor.

tion lock metaphor. The different methods on a path would
be stacked on top of each other and one could exchange each
method for another method by clicking on an arrow button
next to it (see figure 4.1). This would move the clicked method
out and another alternative in.

20 4 Design

drawInterface

drawButton

drawRect

drawLine

makePixelBlackForLine

Figure 4.1: An early sketch of how to keep the visualization simple by vi-
sualizing only one path at a time but still give users the possibility to switch
between different paths. We wanted to use a combination lock metaphor to
enable the user to adjust the path to their liking. The method in the middle
is the focus method and can not be changed through this view, but methods
in the incoming and outgoing path can be exchanged for other alternatives
by using the arrow buttons.

The difference to a combination lock is that we have one fixed
point, the focus method, which can not be changed. Also
all the methods/dials that are further away from the focus
method than the method the user changes, change as well
since they depend on the changed method. From now on we
will refer to this kind of combination-lock-like user interface
element as combination lock view.

Although we wanted to change the part of the call graph that
is shown, we still wanted to keep some of the properties of
Stacksplorer. We wanted Blaze to be a small (in relation to theWe tried to design an

auto-updating, clear
an concise
accessory view.

editor view) accessory view so users can still see and work
with the code, since reading code is still an important part of
program understanding [Schäfer et al., 2006]. And again, simi-
lar to Stacksplorer, it should be auto-updating to provide addi-
tional exploration cues to the developer without requiring in-
teraction; thus increasing the amount of information scent the
developer has access to. The visualization should also be con-
cise and rather leave some information out than overwhelm
the developer.

Different Conceptual Ideas With these basic principles in
mind, we came up with three different coarse concepts for the
visualization. In the beginning, we wanted to integrate Blaze

4.1 Basic Idea 21

We explored three
different concepts.

into Stacksplorer and try to visualize both sets of nodes. Our
sketches for these ideas can be found in the appendix under
2—“Design”, we will only briefly describe them here.

The first of these ideas was quite close to Stacksplorer itself.
We wanted to keep the views on the left and right of the editor The first idea was to

make the
Stacksplorer method
views expand a
combination lock
view.

(see figure 3.5) and modify the Stacksplorer method views to
be able to expand them to show a combination lock view for
the outgoing/incoming path below/above that method (see
figure 3). However, we quickly realized that this would be
quite confusing since method A being below method B could
mean that A and B are siblings (in the Stacksplorer part) or
that B calls A (in the combination lock view).

A second idea was to use Stacksplorer’s approach of using the
editor view as focus method and making it part of the visu-
alization. Since the idea was orthogonal we decided to use A second idea

integrated the editor
view as part of the
combination lock
view.

an orthogonal visualization as well and display an outgoing
path below the editor and an incoming path above the editor
(see figure 4). We would still keep the Stacksplorer visualiza-
tion on the left and right of the editor and one would select
an outgoing/incoming path by clicking on the corresponding
outgoing/incoming method. Thus, the editor would now be
framed by one additional view on each side.

The third concept is a modification of the second one. In addi- The third concept
featured multiple
editor views.

tion to the visualization in the second concept, one could click
on each of the methods in an incoming/outgoing path to ex-
pand it into showing the implementation of this method in an
editor view (see figure 5).

But both the second and the third concept take up a lot of
screen space and are still somewhat complex. In the third idea, All concepts seemed

to complex.each editor view would probably be quite small. Therefore, we
decided to take another route and develop a simpler concept.

Final concept The idea that we decided to build upon was
a lot simpler. It is almost only the combination lock view in-
troduced above, displayed in a view on the right of the edi-
tor window. We would leave out the Stacksplorer view and
try just the new visualization to make it easier to understand.
Also, this has the benefit of needing just half as much screen
real estate as Stacksplorer.

22 4 Design

We decided to stay close to standard UI elements and to try to
create a clear, concise and space-saving visualization. Further,
we wanted to leave out much of the additional functionality of
Stacksplorer, like filtering for framework methods or tagging
paths, to see whether it was really needed or helpful.

4.2 First complete design

We then built upon this basic concept and tried to flesh out
a first complete design. This should already provide answersWe designed a first

complete prototype. to questions like ‘how is recursion visualized?’ or ‘how ex-
actly does navigation work?’. First, we wanted to create a pa-
per prototype to test some basic interaction with it and see
whether users understand this kind of visualization.

But then, we realized that we would not be able to perform all
the changes, which would be required after a user “clicked”
on a method, quickly enough to create an experience close to
reality. But this was necessary to let users try out the system toWe used

OmniGraffle to
create a partially
interactive prototype.

get some early feedback on which parts of the interaction and
visualization are clear and which are unclear. Therefore, we
decided to create a somewhat interactive software prototype
using OmniGrafflea. We will now show and describe the first
complete design we implemented as an OmniGraffle drawing.

4.2.1 Visualization and Navigation

As can be seen from figure 4.2, our first design was still quite
close to the basic idea of a combination lock view. We added
some more features, though, to give users additional hints
about the state of the combination lock. First, there are num-
bers inside the arrow buttons (3) giving the number of alterna-
tive methods that can be reached by using this button. Second,We added several

little details to the
visualization but
stayed close to the
basic concept.

there are bars with arrows between the methods (2), acting
like a connection between the methods. They act similarly
to scrollbars in that they become smaller the more alternative
methods there are, and their position indicates the position
of the currently selected method in the complete list of meth-
ods. However, the arrow bars are only indicators, they are not

ahttp://www.omnigroup.com/products/omnigraffle/

http://www.omnigroup.com/products/omnigraffle/

4.2 First complete design 23

VCReceiver
- tryToReceiveData

enter search term

13 VCParser
- setInfoPacket: 12

5 VCParserDelegate
- parser:didParseInfoPacket:

21 VCReceiver
- stream:handleEvent:

VCViewController
- changeDisplayedImage:

2

3

1

4

4

-(void)tryToReceiveData
{
 while ((NSStreamStatusOpen == [self.viconInputStream streamStatus]) // the stream is open
 && [self.viconInputStream hasBytesAvailable]) // and there are bytes on the input stream
 {
 // read from the input stream
 NSAssert(self.expectingNumberOfBytes > 0, @"at this point the number of bytes to receive
should never be zero");
 NSUInteger maxLength = self.expectingNumberOfBytes; // try to get the next chunk of data
 uint8_t buffer[maxLength];
 NSUInteger newlyReceivedBytes = [self.viconInputStream read:buffer maxLength:maxLength];
 if (newlyReceivedBytes == -1) {
 // an error occured
 [self stopConnectionAndReportError:[self.viconInputStream streamError]];
 return;
 }
 // else

 [self.bytesBeingReceived appendData:[NSData dataWithBytes:buffer
length:newlyReceivedBytes]];
 // reduce the number of bytes to receive
 self.expectingNumberOfBytes = self.expectingNumberOfBytes - newlyReceivedBytes;
 if (newlyReceivedBytes == maxLength)
 { // if we received all the bytes we wanted to receive for now
~marker:receivedAllBytes
 NSAssert(self.expectingNumberOfBytes == 0, @"if the number of newly received bytes is
equal to the maximum number of bytes to receive the expected number of bytes should now be zero,
but it is not.");

 NSData *dataToInterpret = [self.bytesBeingReceived retain]; // we need to retain it,
because it will be released in the next line and thus we could loose it
 self.bytesBeingReceived = [NSMutableData dataWithLength:0]; // fresh piece of data
 switch (self.state) {

 case VCReceiverStateWaitingForTypeField:;
 viconLong typeBytes, type;
 NSAssert([dataToInterpret length] == sizeof(typeBytes), @"the data we are going
to interpret should have exactly the size of the variable it is meant for");
 [dataToInterpret getBytes:&typeBytes length:sizeof(typeBytes)];
 type = CFSwapInt32LittleToHost(typeBytes);
 if (VCViconTransportProtocolTypeReply != type) {
 // something went wrong we should just receive reply packets
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"packet was not a reply packet. Packet type:%d", type]

Figure 4.2: First version of the OmniGraffle prototype used for user interviews. It displays a path
with tryToReceiveData as focus method (1). In addition to the combination lock view, we have scroll-
bar-like arrow bars (2) displaying the position of the currently select method in the list of alternatives
and giving the calling direction (downwards). We also added numbers to the arrow buttons to show
how many alternatives are left on each “side”. The arrow bars have a special appearance for the edge
case of the selected method being the only choice (lower 4) or being at the beginning or end of the list of
alternatives (upper 4).

meant to be dragged; thus, they are partially transparent and
flat. Their appearance is meant to weaken the affordance to
click them.

The arrow bars fulfill several other roles. In addition to their
scroll bar like function, they also give an indication of the call-
ing direction. We included this since we were afraid that users Icons on the arrow

bars indicate the
calling direction.

would not know whether a method A that appears above
method B is called by B or is calling B. The reading direction
is downwards, indicating that A calls B (A before B). But if
users thought of this UI as a call stack, they might use the
mental model of a stack; thus stacking old methods onto new
methods, which would mean that B calls A (A was added
to the stack after B). We decided to use a downward calling-
direction, and therefore the arrows point downwards.

24 4 Design

A third piece of information the arrow bars show is the de-
pendency direction of the methods. The root method, whichArrow bars show the

dependency
direction.

defines all the other methods that occur in the combination
lock view, is the focus method. If this method changes, a com-
plete new path will be displayed and thus all other methods
change. From there on outwards, each method depends on the
method that is closer to the focus method. It has to change if
the previous method changes since the path after the changed
method changes as well.

Therefore, above the focus method the displayed callers will
change if their callee changes, and below the focus method the
displayed callees will change if their caller changes. In figure
4.2 parser:didParseInfoPacket: depends on
setInfoPacket:; thus, if setInfoPacket: changes, all
the methods below it will change. A new outgoing path, start-Each method in the

combination lock
view depends on
another method,
except for the focus
method.

ing from the method that was selected instead of
setInfoPacket:, will be calculated. This could mean that
instead of parser:didParseInfoPacket: another method
is displayed or no other method is displayed since the new
path stops at the previous method. The arrow bars show this
dependency by their branching; the branching part of the ar-
rows is always at the side of the dependent method. This is
consistent with the model of two trees, one for the calls and
one for the called-by relationship, both starting with the focus
method as the root. The dependent method is also the one
which determines the position and size of the arrow by the
number of alternatives and the position of the selected method
in this list of alternatives.

A fourth function of the arrow bars is to act as an expert short-
cut for selecting specific methods from the list of alternatives.
A user can click on an arrow bar to invoke a context-menu that
will show all possible alternatives for the dependent method.
From this menu, they can select one of the alternatives toArrow bars can be

clicked to show a
menu with alternative
methods.

quickly display its corresponding path without having to use
the left and right arrow buttons several times. This way, users
basically click on the connection of two methods to see which
other methods are also called by or call the definitive1 of the
two methods.

1the one that is closer to the focus method and the other method depends
on

4.2 First complete design 25

There are two special states for the arrow bars (see 4 in figure
4.2). The first one indicates that one end of the list of alter- Arrow bars indicate

when the end of the
list is reached.

natives has been reached by displaying only two of the three
branching arrows. The second one is used when there is only
one alternative. In that case only one arrow is displayed, the
button spans the whole width, and no menu can be invoked
by clicking on it.

Another element we added to the combination lock view was
a search field. This was meant to filter the displayed paths The possible paths

can be searched.by the entered search term; thus, only paths that contained a
method that matched the search term would be displayed.

Instead of just showing the methods we decided to follow Method names are
displayed in bold.Stacksplorer’s example and display the method name and the

name of the class the method is declared in. In contrast to
Stacksplorer we decided to make the method name bold, not
the class name, since we thought the method name is more
relevant.

Other minor changes include making the focus method bigger
to make it more prominent This also visually splits the two
parts of the path (incoming and outgoing path) that have dif-
ferent dependency directions (Gestalt Law of Proximity [John-
son, 2010]). As in the basic combination lock view we differen- We used the Gestalt

Laws to guide our
interface decisions.

tiate methods from each other by drawing a box around them.
This also makes sure that users perceive the arrow buttons as
belonging to the displayed method (Gestalt Law of Closure
[Johnson, 2010]). But we also group methods by class by only
alternating the background color of one method view if the
class changes. This way we can make methods that belong to
the same class appear as belonging together (again: Law of
Closure).

4.2.2 Handling recursion

Another problem we explored with this prototype was how
to handle recursion. Recursion means that one method either
calls itself (in this case we will call this method direct recursive)
or calls at least one other method that (indirectly) calls the first Recursion requires

special treatment.method (in this case we will call this method indirect recursive).
A method is recursive if it is direct recursive or indirect recursive.

26 4 Design

Thus, it means the method is part of a circle in the call graph.
If a method is not recursive we call it non-recursive.

If a method is recursive and there exists a path that starts in
this method and ends in a non-recursive method we will call
this method may-recursive. The opposite case is that there ex-We differentiate

several kinds of
recursion.

ists no such path, that is, all paths starting in this method end
in a recursive method. We call such methods only-recursive.
A small sample call graph with different kinds of recursion is
shown in figure 4.3.

888 999

111

333

666

777

222

444

555

000

xxx yyy

Figure 4.3: An example call graph showing different kinds of recursion.
777 calls itself and nothing else; thus 777 is direct only-recursive.
555 calls yyy which calls 555, thus 555 is indirect may-recursive since 555
also calls xxx which is a non-recursive method.
222 only calls 444 which only calls 000 which only calls 222. Thus, 222 is
indirect only-recursive since no other non-recursive method is reachable.

The existence of recursion means that it might be possible that
one method on our path calls another method that already ap-
peared in the path before this method. We see three ways to
visualize recursion in our case.

First, we could simply display an icon marking a recursive call
as recursive and stop the path there. This saves space and vi-
sual clutter. However, it has the disadvantage of not showing
which method is called recursively.

4.2 First complete design 27

Another way to visualize this would be to just display some
connection (for example an arrow) from the method further
down the path back to the method were the recursive call starts
again. For one-step recursion this would just be an arrow Extra arrows could

be used to visualize
recursive calls.

pointing back to the calling method itself (an example for di-
rect recursion can be seen in figure 4.1). This has the advan-
tage of not duplicating recursive methods but introduces vi-
sual clutter through additional arrows connecting methods in
the combination lock view. Another disadvantage is that paths
that include a circle can not be displayed properly. For exam-
ple, in figure 4.3 if we had 555 as focus method we would see
yyy below it and than an arrow back from yyy to 555 to show
the recursive call. However, a possible path would be to start
in 555, then call yyy, then 555, then xxx. This path could not
be displayed using this visualization. The visualization still
indicates the existence of this path, but it does not show it ex-
plicitly.

A third way to visualize the recursion is by not visualizing it in
a special way and simply continue the path through recursive
calls thus potentially making the displayed path a lot longer. One could also just

display recursive
method calls
repeatedly.

Obviously we can not do this strictly and have to stop at some
point, otherwise we would have infinite paths. It also has the
disadvantage of possibly showing the same method several
times, which may confuse users. But this way we can explic-
itly visualize paths with circles.

The Chosen Way We decided to use the third way with some
modifications since it gives users the ability to ‘unwind’ sev-
eral recursive calls into one path thus making understanding
easier. Also, it is closer to what the user would see on the call We combine the

approaches.stack in the debugger. We hope that this way of visualizing
the possible paths can save some trips to the debugger by just
manually and statically analyzing the potential paths.

The modifications we made to the third way are that we al-
ways try to find a non-recursive path. Thus, for the call graph
in figure 4.3 with 111 as focus method we would show the out-
going path 111-555-xxx. If the user then chooses yyy instead We always try to find

a non-recursive path.of xxx Blaze would show 111-555-yyy-555-xxx. Also, the oc-
currences of 555 would be highlighted to notify the user that
this is a recursive call with 555 appearing several times. The
user could then choose yyy instead of xxx again.

28 4 Design

This is only possible in the case of may-recursive methods. If
there is an only-recursive method we differentiate between di-
rect recursive and indirect recursive methods. For direct recur-
sive methods we will just display a simple icon at this method
view indicating that it calls itself. Thus, for the displayed callFor only-recursive

methods we display
the first method in
the cycle twice and
all others only once.

graph with 333 as a focus method, the outgoing path would
be 333-666-777 with an icon indicating the recursion shown
at 7772. For indirect recursive methods, we would show all
nodes in the circle at least once and the first node in the circle
a second time at the end of the path. For this last method, we
would show an icon again, but use another icon than in the di-
rect recursive case to differentiate the two cases. Again, Blaze
would highlight methods that appear multiple times to show
the recursion.

4.3 User Interviews

With this first complete prototype, we wanted to conduct a
small user study to verify that users understand our design.
We added some interactive elements to make it easier for them
to imagine what the final version would look and feel like.

For the prototype itself, we made the focus method itself and
one other method clickable to simulate the ‘clicking on a
method and navigating to the corresponding implementation’-We made some

elements of the
prototype interactive.

behavior. Clicking on any of the two interactive methods
would display their implementation in the editor view on the
left. The other element we made interactive was one of the ar-
row bars. Thus, one could click on it to display the menu with
alternatives (not shown in figure 4.2).

We also created a set of views to test the switching of methods
with the combination lock view and the visualization of recur-
sion. These views were a lot more basic and just had the left-We created an

abstracted but more
interactive version to
test the recursion
cases.

/right arrows with numbers and some downwards-pointing
arrows to indicate the calling direction between the methods
(see figure 4.4). They also had the highlights for methods that
appeared several times due to recursion and two icons for in-
dicating one-step and multiple-step recursion.

2This would only happen if there is no edge between 666 and 111, other-
wise the path 333-666-111-555-xxx would be taken, so the example is not
completely correct.

4.3 User Interviews 29

1 999 1

111

333

666
777 1

1 999 1

111

333

666
1 111
2 333
666
777 1

1 999 1

111

333

666
1 111
1 555 1

xxx 1

1 999 1

111

333

666
1 111
222 2

444
000
222

...

Figure 4.4: A sequence of states of the combination lock view resulting from using the left and right
arrow buttons. 333 is the focus method (the one without left/right arrows), the underlaying call graph
whose methods are displayed is shown in figure 4.3. The transition of the views is as follows: Start left,
click on right arrow near 777 to reach the second state. Click on the left arrow near the second 333 to
reach the third state. Click on the left arrow near the second 111 to reach the fourth state.

This combination lock view implementation could show most
of the switching of methods possible in the call graph in figure
4.3 (we did not include arbitrarily long circles for example). A
sample sequence of states of the combination lock view after
clicking on different arrow buttons is shown in figure 4.4.

4.3.1 Study Design

Due to the limited interactivity we decided to test our proto-
type using an interview-style study. We showed the prototype
to users and explained as little as possible about it. All we We conducted an

interview-style study.explained was that we were working on a software visualiza-
tion and navigation tool and that the view on the right side
of figure 4.2 was our prototype and the left view represented
the code editor of Xcode. Then we started with basic ques-
tions like “what does the view on the right show” and then
slowly increased the specificity of the questions, explaining
more about the prototype when necessary.

We first asked questions about what different parts of the user
interface mean and then asked the users to describe what they We first asked

questions and then
let them try out the
recursion
visualization.

would do to reach certain goals (e.g., to navigate to the im-
plementation of a method). In the end we showed them the
simplified interface for visualizing recursion and asked them
to switch the methods in a way to display certain stacks. This

30 4 Design

was meant to let us observe them using the combination lock
interface to see whether there were any problems.

The questions used during the interviews can be found in the
appendix under 5—“User Interviews”. The prototype used
is shown in figure 4.2. The prototype used for the recursion
questions is shown in figure 4.4 and displayed the call graph
shown in figure 4.3. We performed these interviews with 5
fellow male computer science students. During the interviews
we took notes and recorded the conversation.

4.3.2 Results

From the answers to our questions and from the reactions to
our prototype we learned a few things.

Answers From the First Three Participants For example,
the numbers in the arrow buttons were not well understood.
One participants guessed that it would give the number of the
line im which the method is called. Another participant first
thought that the number in the arrows would be the index of
the method a click on the arrow would lead to. Thus, when aNumbers in the arrow

buttons are not clear. 12 was displayed in the right arrow it would mean that a click
on this arrow would show the method with index 12. Another
participant first thought the number would give the number
of calls to this method, but then thought about it and came to
the correct conclusion.

One participant also had difficulties recognizing that
tryToReceiveData is the focus method and later said thatIt was not easy to

recognize the focus
method.

they would expect a more explicit connection between the code
and the path view. He said, he did not recognize that the
method displayed in the editor was the same as the grayed
out method (which represents the focus method).

None of the first three participants had problems with the be-
havior of our visualization when encountering recursion. But
one of them did not understand our icon for one-step recur-
sion (a circular arrow).

All of the first three participants understood that the arrow
bar position represented the position in the list of alternatives.

4.3 User Interviews 31

One participant thought the width of the arrow bar would rep- The arrow bar
position was
correctly understood.

resent the size of the implementation of the method, the other
two (correctly) assumed that it would represent the length of
the list of alternatives (the smaller the longer the list).

When asked what they would do to invoke a menu to show
all alternatives, two participants said they would click and
hold on the method view. One participant said they would
right click on the method view. None of them even thought None of the

participants guessed
correctly how to
invoke the
alternatives menu.

about clicking on the arrow bar. Even after this question, when
asked what they think might happen when they do click on
the arrow bar, none of them thought of the possibility that it
might invoke the alternatives menu. One participant thought
it would just scroll in the list of alternatives (since the bar
looked similar to a scroll bar).

Changes to the prototype Since the interviews with the first
three participants confirmed a few things that had already been
pointed out to us as potentially problematic by other researchers,
we decided to change the prototype. The changed prototype
is displayed in figure 4.5 and 6.

Visually the biggest change is the more prominent display of
the focus method. It now has a metallic background and is
thus darker than the other methods and splits the complete
view in half. We decided to give the focus method a fixed We made the focus

method a lot more
prominent.

position (the position can be changed but it won’t change au-
tomatically as it would have before) to let users make use of
their spatial memory. This way, they can always know that
the focus method is in the middle and the outgoing path is
below and the incoming one above it.

Since none of our users understood that one could click on
the arrow bar, we made it look more like a button now. To We removed some

functional overload
from the arrow bar.

remove some of the functional overload on this UI element
we no longer used it for displaying the position in the list of
alternatives.

Instead we introduced another UI element for displaying this
information. It was inspired by the dots on the iPhone’s home We use an iOS page

indicator instead of a
scroll bar.

screen, which show what page one is looking at, but in con-
trast to it, always uses the full width available (see figure 4.5).
This UI element is displayed near the arrow bar, which in-
vokes the corresponding alternatives menu (using the Gestalt

32 4 Design

VCReceiver
- tryToReceiveData

enter search term

/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ 3 \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/

VCReceiver
- stream:handleEvent:

SomeOtherClass
- doSomething:

VCViewController
- showViewController: animat...

VCTableViewController
- loadView:

AnotherClass
- doSomething:

-(void)tryToReceiveData
{
 while ((NSStreamStatusOpen == [self.viconInputStream streamStatus]) // the stream is open
 && [self.viconInputStream hasBytesAvailable]) // and there are bytes on the input
stream
 {
 // read from the input stream
 NSAssert(self.expectingNumberOfBytes > 0, @"at this point the number of bytes to receive
should never be zero");
 NSUInteger maxLength = self.expectingNumberOfBytes; // try to get the next chunk of data
 uint8_t buffer[maxLength];
 NSUInteger newlyReceivedBytes = [self.viconInputStream read:buffer maxLength:maxLength];
 if (newlyReceivedBytes == -1) {
 // an error occured
 [self stopConnectionAndReportError:[self.viconInputStream streamError]];
 return;
 }
 // else

 [self.bytesBeingReceived appendData:[NSData dataWithBytes:buffer
length:newlyReceivedBytes]];
 // reduce the number of bytes to receive
 self.expectingNumberOfBytes = self.expectingNumberOfBytes - newlyReceivedBytes;
 if (newlyReceivedBytes == maxLength)
 { // if we received all the bytes we wanted to receive for now
~marker:receivedAllBytes
 NSAssert(self.expectingNumberOfBytes == 0, @"if the number of newly received bytes is
equal to the maximum number of bytes to receive the expected number of bytes should now be zero,
but it is not.");

 NSData *dataToInterpret = [self.bytesBeingReceived retain]; // we need to retain it,
because it will be released in the next line and thus we could loose it
 self.bytesBeingReceived = [NSMutableData dataWithLength:0]; // fresh piece of data
 switch (self.state) {

 case VCReceiverStateWaitingForTypeField:;
 viconLong typeBytes, type;
 NSAssert([dataToInterpret length] == sizeof(typeBytes), @"the data we are
going to interpret should have exactly the size of the variable it is meant for");
 [dataToInterpret getBytes:&typeBytes length:sizeof(typeBytes)];
 type = CFSwapInt32LittleToHost(typeBytes);
 if (VCViconTransportProtocolTypeReply != type) {
 // something went wrong we should just receive reply packets
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"packet was not a reply packet. Packet type:%d", type]

Figure 4.5: This is a new prototype that was designed after the first few user interviews and after
some discussion with fellow researchers. The visually biggest change is the more prominent display
of the focus method. It now has a metallic background and is thus darker than the other methods and
splits the complete view half. The outgoing path is still below the focus method and the incoming one is
still above the focus method but now the position of the focus method can be changed to distribute the
available space between the two halts of the path differently. Also the arrow bars between the methods
are no longer used like scrollbars and instead they are now always in the middle and have a more button-
like (raised) appearance to encourage users to click on them. The zigzag-like drawing with the 3 below
the focus method shows that three of methods on the outgoing path are scrolled below the focus method
and are not shown.

Law of Proximity [Johnson, 2010]). This leads to it being placed
at the bottom for incoming methods and at the top for outgo-
ing methods. This has another helpful effect: It makes incom-
ing method views appear different from outgoing ones and
thus separates them into two distinct groups (Gestalt Law of
Similarity [Johnson, 2010]).

Since the incoming and the outgoing path can now be scrolled
independently, it might happen that some methods are scrolled
“under” the focus method. To make sure no user is confusedWe introduced a view

that indicates when
methods are hidden.

and makes incorrect assumptions about the connection of meth-
ods, we display another view in that case. It is a zigzag-like

4.3 User Interviews 33

view, which is meant to represent the “folding-away” of meth-
ods and gives the number of currently hidden methods.

We also changed the menu that would have been displayed
when one clicks on a button into a popover since we thought
this would fit the purpose of the button better. The popover
can be seen in the appendix in figure 6.

More Interviews We then conducted two more interviews
using our improved prototype. We changed some of the ques- We conducted two

more interviews.tions to also ask for the drag handle and the zigzag-view. We
also decided to leave out the part about the recursion since
we felt we did not learn much from the previous participants.
The changed set of questions can again be found in appendix
5—“Questions for new prototype”.

More Results When asked how they would navigate to a
method’s implementation, all five participants said they would
simply click on the method so this seems to be the correct de-
cision.

When asked about the sorting of the alternative methods, par- Incoming methods
should be sorted
alphabetically,
outgoing ones
according to their call
order.

ticipants expected the outgoing methods to be sorted accord-
ing to their appearance in the calling method (i.e., if A is called
before B, A should be sorted before B). For the incoming meth-
ods most expected alphabetic sorting, since there is no sensible
sorting by the code structure.

Two of the five participants assumed the calling direction was
upwards (stack-like) although there were the arrows pointing Some participants

assumed an upwards
calling direction.

downwards. However, both later discovered the arrows on
the buttons and concluded that the calling direction is down-
wards. But due to the different initial assumptions, we plan to
add a preference in a later version of Blaze. This would allow
users to adjust the calling direction to their liking.

Another part of the UI that was not well understood was the
two-arrow icon of the arrow-bar button. Two of the five par-
ticipants did not understand what it meant although they did
understand why it sometimes had three and sometimes just
one arrow in it.

After the change of the arrow bar design both participants

34 4 Design

said they would think this UI element was clickable but oneThe arrow bar was
still not well
understood.

said he had no idea what would happen if it was clicked. The
other one guessed (correctly) that somehow all the alternatives
would be displayed, but instead of a menu they would have
liked a graph like display. Both participants understood that
the zigzag view meant that some methods were omitted but
neither of them liked its design.

35

5 Software Prototypes

“What a computer is to me is the most remarkable
tool that we have ever come up with. It’s the equivalent

of a bicycle for our minds.”

—Steve Jobs (1991)

We created software prototypes of two different tools to be
able to compare them to each other. The first one is our new
tool, Blaze, the second one is an implementation of the Eclipse
Call Hierarchy.

5.1 Blaze

For the final design, we tried to apply as much as possible
from what we learned during the interviews and then imple-
mented a software prototype to evaluate the concept in a more
realistic scenario. Figure 5.1 shows the prototype in action, be-
ing used by one of our user study participants.

For the implementation, we removed the special case of the
arrow bar with just two arrows since it was not understood.
We also just used an unmodified page indicator view as found We simplified the UI

again for the
software prototype.

on the iPhone since we thought that the differing width of the
indicator dots we used in the design introduced additional vi-
sual clutter. For the arrow bar buttons we decided to make
them a bit smaller to not take away to much attention from
the more important parts of the UI. For the same reason we
used a flat button design.

We were not able to implement the zigzag-view and the ex- We left out some
small features due to
time constraints.

act version of our alternatives popover from the design due
to time constraints. The bar at the top of the editor view is
a relict from Stacksplorer, which was used to tag methods. In
our implementation, it does not have any functionality, but we

36 5 Software Prototypes

Figure 5.1: A screenshot from one of our user study participants using the software pro-
totype. The participant first looked around exploring the source code and then found the
method consolidateAlertDidEnd:returnCode:contextInfo:. There they decided
this would be a good starting point and locked it. Then they explored the outgoing paths
from this method further. In the given screenshot they have looked at the code of the method
movePaper:forField:fromDocument:options: and are now looking at that method’s
callees using the alternatives popover invoked by clicking on the button below the movePapers...-
method. The bar at the top with the “Tag Method” button is a relict from Stacksplorer.

decided to keep it to be more comparable to Stacksplorer and
to have the possibility to later include the tagging feature as
well.

One feature that was not included in the design (but already
planned) was the possibility to lock the focus method. By de-
fault, the focus method changes automatically when the selec-
tion in the editor changes. This provides additional context
and cues to the developer and increases the access to informa-
tion scent while they are searching for a starting point. ButThe focus method

can be locked to
prevent it from
changing
automatically.

when they found such a starting point they usually wanted to
be able to explore all relationships from this node and most im-
portantly be able to backtrack to this starting point. To make
this possible the focus method has to be transformed into a
fixed point that can not be easily changed and is a safe haven
to return to (see the model of programmer navigation intro-
duced in 2.1.1—“Programmers Look for an Anchor Point to
Start Exploration”). We thus introduced a lock-button to the
focus method.

By default, the focus method still automatically updates. But

5.2 Call Hierarchy 37

A locked focus
method provides an
anchor point for the
programmer.

as soon as it is locked, it will no longer update and will always
stay the same while the programmer can safely explore all the
surrounding methods in the call graph. Of course, the overlay
showing which method is selected in the editor still updates
(see figure 5.1).

5.2 Call Hierarchy

In the Stacksplorer study, Stacksplorer was compared to plain
Xcode. However, we felt this might not be a fair comparison
since it seems to be easy to develop a tool that will somehow
improve the experience compared to not using such a tool. The We wanted to

compare Blaze to the
Eclipse Call
Hierarchy.

important question is whether our new tool is better than ex-
isting ones. For this reason, we decided to compare Blaze to
the Eclipse Call Hierarchy (see figure 3.3). But it would be al-
most impossible to find a way to fairly compare Eclipse with
the Call Hierarchy to Xcode with Blaze since both IDEs are
designed completely differently and are also designed for dif-
ferent languages. Therefore, most of the differences we would
find would most likely be due to differences other than the call
graph exploration tools.

Instead we decided to implement our own version of the Call
Hierarchy. It would run as an Xcode plugin and use the same We developed a Call

Hierarchy Xcode
plugin.

parser and other backend code as Stacksplorer and Blaze. This
plugin was developed by one of my advisors, Jan-Peter Krämer,
with my help and according to the requirements laid down by
me. This plugin can be seen in appendix 7.

The Call Hierarchy makes use of the fact that the subgraph of
incoming (indirect) calls can be transformed into a tree. The
same is true for outgoing calls. Following these inherent prop- The Call Hierarchy

uses tree views to
display to display
parts of the call
graph.

erties of the underlying data, the Call Hierarchy has two views,
one for the incoming tree (caller view) and one for the outgo-
ing one (callee view). Consequently, a tree view is used to dis-
play the corresponding tree in each of these views. A tree view
is basically an indented list (see 3.1.1—“Basic Tree Visualiza-
tion”) with a small arrow in front of each element that the user
can click on to expand or collapse the children of this element.

The Call Hierarchy displays either the caller view or the callee

38 5 Software Prototypes

view never both at the same time. The user can switch be-
tween the two views with two buttons in the lower left.

Choosing a method to be displayed as root node in the Call
Hierarchy works by right-clicking on it to invoke a context-The Call Hierarchy

does not update
automatically.

menu and then choosing the “Show Call Hierarchy...” menu
item. In contrast to Stacksplorer and Blaze, just selecting an-
other method in the editor will not change what is displayed
in the Call Hierarchy.

When the Call Hierarchy displays methods, the user can click
on each of these methods to jump to the location in code thatClicking on a method

navigates to the
method
implementation of
the clicked method or
its parent.

represents the connection of the clicked method to its parent
in the tree view. Thus, in the callee view a click on the method
will jump to the parents implementation and show the call to
the clicked method. In the caller view, a click on the method
will jump to the clicked methods implementation and show
the call to the parent1 method. In each case, the call will be
highlighted in the editor.

If a user just wants to go to a method implementation they can
right click on that method in the Call Hierarchy and choose the
“Open” menu item. If they want to make a method displayed
in the Call Hierarchy the new root method (focus node) they
can right click it and choose “Focus on this node”. The com-
plete described behavior is consistent with the Eclipse Call Hi-
erarchy.

5.3 Backend

We did not change the backend that parses the code and cal-
culates the call graph that is displayed. Therefore, Blaze, theBoth plugins use the

same backend as
Stacksplorer.

Call Hierarchy, and Stacksplorer all use the same underlying
parser. Implementation details and information about how to
write Xcode plugins can be found in Krämer [2011].

1The parent according to the tree view.

39

6 Evaluation

“Facts are meaningless. You could use facts to prove
anything that’s even remotely true!”

—Homer Simpson

To test how well Blaze works for programmers compared to
existing tools, we ran a user test in which we compared it to
another plugin, which works similarly to the Eclipse Call Hier- We compare Blaze,

the Call Hierarchy,
Stacksplorer, and
plain Xcode.

archy. We also used the results from a previous study to com-
pare both tools to another similar research prototype and a de-
fault Xcode installation. During this chapter, we will describe
the experiments we did, the results of those experiments, and
whether they confirm our hypotheses.

6.1 Experimental Setup

We designed our study to be similar to the study used to We use the same
study design as in
the study comparing
Stacksplorer to
Xcode.

evaluate the Stacksplorer Xcode plugin developed previously.
In fact, we tried to be as close as possible to the previous study
by Krämer [2011] to be able to compare our results to this pre-
vious study. We will now describe the setup of this study again
and describe the differences to the old study. More detailed
reasons for the study design can be found in Krämer [2011].

6.1.1 Conditions and Tasks

The previous study used a within-groups design with two sets
of tasks. Subjects would solve one set of tasks with Stacksplo-
rer and one without. However, later analysis showed that the
tasks were not as equal as one had hoped [Krämer, 2011]. Also,
working on two tasks increased the time required from each
participant to nearly two hours. For these two reasons, we

40 6 Evaluation

decided to do a between-groups study using just the first set
of tasks, which had shown differences between participants
more reliably [Krämer, 2011]. A between-groups study meansWe do a between

groups study. that each participant will work under only one condition. That
is, our participants would either use the Call Hierarchy or
Blaze. If we just use the data for the first set of tasks from the
previous study, it will also be a between-groups study since
each participant completed the task either with or without us-
ing Stacksplorer.

Tasks All tasks were concerned with solving problems inTasks were to be
done in the source
code of BibDesk.

the BibDeska source code. BibDesk is an open-source reference-
management application that can be used to create .bib files
for LATEX-documents. It contains 88 000 SLOC and roughly
400 files [Krämer, 2011]. We used the same revision as in the
last study, revision 17029. We also included the same small
changes that were meant to make a task in the second set more
interesting.

The first task of the chosen set was designed to test program-
mer navigation and code exploration. We explained a spe-
cific feature to participants, which moves PDF files and sorts
them into folders. We asked them to change the implemen-The first task focuses

on navigation and
exploration.

tation of this feature such that for every file that was moved
by BibDesk the string “TRIAL” would be added in front of
the filename of the moved PDF. We told them that the class
BDSKLinkedFile is the class that is used to represent those
PDFs. To save some time, we spared participants from writ-
ing code and instead told them it would be enough to tell us
which method they would modify.

The second task was designed to make participants look for
side effects. In this task we proposed a solution to task 1. TheThe second task

focuses on finding
side effects.

solution included changing the return value of a method. We
then asked them what side effects this change could have. To
limit the task to a sensible time we told them we are only inter-
ested in side effects that have a visible effect in the graphical
user interface (GUI). If participants presented a side effect, we
asked them if the side effects they named were all side effects
on the GUI or if they wanted to continue searching.

ahttp://bibdesk.sourceforge.net/

http://bibdesk.sourceforge.net/

6.1 Experimental Setup 41

The actual task descriptions that we gave to users can be found
in appendix 6.1—“Study Setup”. The conditions (independent
variable) were Xcode with Blaze and Xcode with the Call Hi-
erarchy. A detailed description of Blaze can be found in 4—
“Design” and in 5.1—“Blaze”. A detailed description of the
Call Hierarchy can be found in 5.2—“Call Hierarchy”.

6.1.2 Participants

We again recruited graduate and undergraduate students who
had at least some basic experience with Xcode and Objective-
C. By hiring only students we hoped to reduce the impact of We recruited student

developers with
experience in
Objective-C and
Xcode.

different levels of programming experience and capabilities.
According to Bragdon et al. [2010] experience levels between
students are less varying then those between professional pro-
grammers. In contrast to the previous study we did not in-
clude professional software developers this time. However,
the professional software developers did not perform notice-
ably faster or better than other participants in the last study so
this should not be a problem either.

In the last study, only programmers that had experience with
programming for Mac OS X were included. However, Xcode
and Objective-C are also used to develop for iOS and thus we
opened the study up for iOS developers as well. Programming We employed Mac

and iOS developers.for the Mac and iOS is similar in many ways, although the
framework differs in some ways. Our tasks did not require
specific Mac knowledge so we were confident that this would
not influence the performance greatly. Since our participants
were programmers who were mainly programming in
Objective-C, most of them did not know Eclipse or other IDEs
enough to know a plugin similar to our Call Hierarchy.

Statistics In the study, we tested 18 participants, 17 male,
1 female. All of the participants were computer science stu-
dents, out of which 3 had already graduated and were now
working on their PhDs. The average experience with Xcode
and Objective-C was 2.9 years (SD = 1.9), and on average
they were spending 11.5 hours per week programming (SD =

42 6 Evaluation

10.8)1. 7 out of our 18 participants said they used BibDesk be-
fore but none of them had seen the source code before the test.

6.1.3 Methodology

As with the complete study design, the methodology was the
same as in the last study. Participants were not allowed to useParticipants were not

allowed to analyze a
running instance of
BibDesk through
trace statements,
etc.

any tools to analyze a running instance of BibDesk (like a de-
bugger or inserting logging statements into the code and then
compiling and running it to log information.). In fact, they
were not even allowed to compile the code. To make up for
this, a compiled version of BibDesk was provided so partici-
pants could investigate the functionality of the program. All
other tools Xcode provides could be used.

We explained the plugin participants used (either Blaze or the
Call Hierarchy) using a small sample project. We then allowed
participants to play around with the sample project and the
tool until they had no more questions. We explained all the
features of the plugin that were described in chapter
5—“Software Prototypes”.

Due to a bug in the parser, when clicking on a method both
plugins would sometimes display the declaration of the
method in the header file instead of the implementation. To
overcome this bug we told participants that they could double-
click a method while holding the command key down to jump
to a method’s implementation. This is a standard feature of
Xcode.

Before participants started working on the task, we asked them
to think aloud so we could better understand what they were
thinking and doing and where they had problems. However,We asked

participants to think
aloud.

we did not remind them to think aloud while working on the
tasks to make sure we did not distract them. Questions about
the BibDesk source code would not be answered, but ques-
tions about Cocoa and Xcode would be answered (to the best
knowledge of the experimenter).

1Participants were quite unsure how much time they spent on program-
ming and said it varied a lot. They often gave a range like 5-10 hours.
In such cases we used the average (7.5 in this case) to calculate the mean
and standard deviation.

6.1 Experimental Setup 43

We measured the time participants took until they found a so-
lution and whether this solution was correct (the dependent
variables). We recorded the screen content, the participants We recorded the

screen, participants’
voice, and upper
body.

voice and their upper body (the latter two using an iSight cam-
era attached to the top of the display) using Silverbacka. Two
participants asked to not have their voice and face recorded,
thus we just recorded the screen.

We used a Mac Pro computer comparable to the one used in
the last study. Again participants used a 23" screen with a
1920× 1680 resolution.

6.1.4 Postsession Questionnaire

After participants had finished the tasks, we wanted to find
out their subjective opinion of the tool they used. To mea- The postession

questionnaire
consisted of the SUS
with 6 additional
questions.

sure their satisfaction with the respective plugin2, we used the
System Usability Scale (SUS) by Brooke [1996] combined with
6 additional questions specifically targeted at the plugin use
cases. Again, we used the identical questionnaire as used in
the Stacksplorer study, even up to the name “Stacksplorer”
for the plugin. We just called whichever plugin the participant
used “Stacksplorer” to make sure they were not influenced by
any differences in the questions. We also did not tell them that
the Call Hierarchy version was not designed by us but a copy
of the Eclipse version and instead told them it was our design
to prevent them from rating the “new” tool or “our” tool any
better. The full questionnaire can be found in appendix 6.1—
“Post-Session Questionnaire”.

6.1.5 Differences Between the Two Studies

Although we tried to make the second study reflect the first
study as closely as possible there were some differences in the
two studies. There was also one difference that was by design.

The difference that was by design of the study was in the rat-
ing and how we let participants work on task 2. We noticed

2remember that each participant only used one of the plugins

ahttp://silverbackapp.com/

http://silverbackapp.com/

44 6 Evaluation

that it took participants on average only 6 minutes in the Stacks-
plorer condition to complete the task. Even without plugins
using just Xcode it took them only 9 minutes on average out
of the 15 minutes allocated for this task. So there was some
time left, which we decided to use.

In Task 2 participants were asked to find side effects of a given
change on the graphical user interface (GUI). During the first
study, the task was considered to be finished when they found
one side effect in the GUI. In our new study we decided to
ask participants to find all side effects on the GUI and asked
them to stop only when they thought they found all side ef-
fects. This way we could observe them using the given pluginWe rated task 2

slightly differently
than in the last study.

more intensively. We also felt this was a more natural situation
and the tools were up for the task since both tools make it easy
to explore several paths from a given starting method.

However, it is important to point out that task descriptions
were exactly the same. The question in Task 2 is “Which effects
would this have in the UI”. So it is asking for the plural, andTask descriptions

were the same,
though.

the same question was used in the last study. The difference is
the reaction of the experimenter to the first solution the users
present. In the last study, when the participant presented a
side effect, the task was stopped. During the new study we
asked them whether they were sure they found all side effects.

To be able to compare the results to the previous study we
recorded two times: The time until they found the first side
effect on the GUI and the time until they were convinced they
found all side effects on the GUI. We used the first time in the
following comparison to be consistent with the previous study
and used the second time for the within-study comparison in
the previous section.

This difference in rating leads to a side effect in the rating of
the correctness of the solution: One participant of the Call Hi-The different task

rating also led to
rating side effects.

erarchy condition first found a correct side effect on the GUI
which made him have a correct solution for the comparison
between the two studies. However, he later found side ef-
fects that did not exist, leaving him with an incorrect solution.
Thus, the Call Hierarchy has a lower success rate in the within-
study comparison than in the between-studies comparison.

Not by design was the fact that the experiments were con-
ducted by a different person (the author of this thesis) and

6.2 Quantitative Results 45

in a different room. However, we made sure the setup was
the same and we presented the questions in the same way and
gave the same kind of support to participants. To do this, we
talked to the previous experimenter and reviewed the notes of
the study design. Of course, there might still be differences in The study was

conducted by a
different
experimenter.

how the experimenter interacted with the participants simply
because they were not the same person. There are also slight
differences in the participants we recruited. This is described
in detail in section 6.1.2—“Participants”.

6.2 Quantitative Results

In this section, we will describe our quantitative results in de-
tail, explain which ones were significant, which ones were not,
and what they tell us. Since we rated Task 2 a bit differently
than in the last study and there are more threats to validity
when combining the results of both studies, we split our eval-
uation of the results in two parts.

First, we will discuss the results of the comparison of the Blaze
plugin and the Call Hierarchy plugin without referring to the
old study. In the second part, we use the results obtained from We first compare just

the results from our
study.

applying the rating criteria of the old study to our new study
and compare these to the results of the old study to compare
the four conditions of Xcode without plugins, Xcode with the
Stacksplorer plugin, Xcode with the Call Hierarchy plugin,
and Xcode with the Blaze plugin.

Wording Since we did not allow participants to implement
their proposed changes and test them, or even change or de-
bug the program in any way, it would not be realistic to say
our plugin helps programmers to solve maintenance tasks
faster. Solving such a task involves a lot more than just read- We use time to

hypothesis instead of
time to solution.

ing source code and thinking about a solution. However, the
plugins help participants to form a hypothesis of how to solve
such a task; thus, instead of calling the time the participants
needed to give an answer “time to solution”, we will call it
“time to hypothesis”. If this hypothesis turns out to be correct
we call it “time to correct hypothesis”.

46 6 Evaluation

Excluding Two Participants The results of two participants
were excluded from the quantitative evaluation. In the first
case, the experimenter made a mistake and accidentally gave
out some information about the tasks during the introductory
code reading. This led the participant to already investigate
the features that should be explored. Thus there was an unfairWe excluded two

participants due to
technical difficulties.

advantage for this participant and we decided to exclude all
the quantitative results of this participant from the evaluation.
In another case, the parser had not parsed the call graph cor-
rectly for task 2. In this case, we only excluded the data from
Task 2 from the evaluation, since there were no problems dur-
ing Task 1. In the first case, Blaze was used, in the second case
the Call Hierarchy was used.

6.2.1 Results of the New Study

In our study we wanted to explore the following three hy-
potheses:

H1 More programmers come to a correct hypothesis of how
to solve a task that requires browsing and understanding
previously unknown source code with a time-
constraint using Blaze than using the Call Hierarchy.

H2 Programmers can solve tasks that require browsing and
understanding previously unknown source code more
quickly using Blaze than using the Call Hierarchy.

H3 Programmers can identify side effects of changes made to
unknown code more quickly using Blaze than using the
Call Hierarchy.

The first hypothesis is concerned with the rate of correct hy-
pothesis for maintenance tasks in general. The second and
third hypothesis are aimed at how quickly programmers can
solve these tasks. The second one concentrates more on the
code exploration and understanding which is required more
in Task 1, the third one is focusing on side effects of changes,
something that was specifically tested in Task 2.

6.2 Quantitative Results 47

Time To Solution
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only

correct)
Task 1-2 (only

correct)
Task 1 Total
(only correct)

mean Call Hierarchy
standard deviation Call
Hierarchymean Stacksplorer2
standard deviation
Stacksplorer2

21,0 10,9 32,1 22,0 10,6 31,3
5,1 2,2 6,2 6,0 1,4 6,0

13,7 8,3 21,9 14,3 9,0 24,0
4,6 3,6 7,4 4,6 3,4 8,4

participant analysis
Count Average Age Male

Percentage
Student

Percentage
Average

Experience
(years)

Average
programming

per week
(hours)

only iOS
Percentage

don‘t know
Mac

programming
percentage

didn‘t use
BibDesk

percentage

didn‘t know
BibDesk

source code
percentage

Call Hierarchy
Stacksplorer
Both

8 23,8 87,5 % 100,0 % 2,3 12,9 12,5 % 12,5 % 62,5 % 100,0 %
9 26,0 100,0 % 66,7 % 3,6 11,4 22,2 % 11,1 % 55,6 % 100,0 %

17 24,9 94,1 % 82,4 % 3,0 12,1 17,6 % 11,8 % 58,8 % 100,0 %

Task 1 Task 2 Complete
Trial

Call Hierarchy
Blaze
plain Xcode
Stacksplorer

55,6 % 87,5 % 50,0 %
62,5 % 87,5 % 62,5 %
50,0 % 50,0 % 12,5 %
75,0 % 87,5 % 62,5 %

0 %

25,0 %

50,0 %

75,0 %

100,0 %

Task 1 Task 2 Complete Trial

Percentage of Correct Hypothesis

plain Xcode Call Hierarchy
Stacksplorer Blaze

SUS
SUS Score Usability Learnability

Call Hierarchy
SD
Stacksplorer 2
SD
Stacksplorer
SD

83,3 80,6 94,4
8,7 9,5 9,1

81,9 79,9 90,3
8,2 7,3 17,4

85,7 83,3 95,6
7,2 7,8 6,2

0

25,0

50,0

75,0

100,0

SUS Score Usability Learnability

95,6

83,385,7 90,3
79,981,9

94,4

80,683,3

SUS Scores

Call Hierarchy Stacksplorer 2 Stacksplorer

0

10,0

20,0

30,0

40,0

Task 1-1 Task 1-2 Task 1 Total

21,9

8,3

13,7

32,1

10,9

21,0

Time to hypothesis

mean Call Hierarchy mean Stacksplorer2

0

10,0

20,0

30,0

40,0

Task 1-1 (only correct) Task 1 Total (only correct)

24,0

9,0

14,3

31,3

10,6

22,0

Time to correct hypothesis

mean Call Hierarchy mean Stacksplorer2

Time To Solution (modified times)
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only

correct)
Task 1-2 (only

correct)
Task 1 Total
(only correct)

mean Call Hierarchy
standard deviation Call
Hierarchymean Stacksplorer2
standard deviation
Stacksplorer2
mean plain Xcode
standard deviation plain Xcode
mean Stacksplorer
standard deviation Stacksplorer

21,0 6,9 28,1 22,0 6,3 28,4
5,1 4,5 6,5 6,0 1,4 6,0

15,1 6,1 21,2 16,7 6,6 23,9
4,3 3,5 7,3 4,6 3,4 8,4

19,7 9,1 28,7 14,3 3,8 14,3
6,3 5,8 7,1 0,0 0,0 0,0

14,7 6,0 20,7 15,3 4,7 20,0
5,9 4,1 6,8 0,0 0,0 0,0

0

10,0

20,0

30,0

40,0

Task 1-1 Task 1-2 Task 1 Total

20,7

6,0

14,7

28,7

9,1

19,7 21,2

6,1

15,1

28,1

6,9

21,0

Modified Time to hypothesis

mean Call Hierarchy mean Stacksplorer2
mean plain Xcode mean Stacksplorer

0

10,0

20,0

30,0

40,0

Task 1-1 (only correct) Task 1-2 (only correct) Task 1 Total (only correct)

20,0

4,7

15,3 14,3

3,8

14,3

23,9

6,6

16,7

28,4

6,3

22,0

Modified Time to correct hypothesis

mean Call Hierarchy mean Stacksplorer2
mean plain Xcode mean Stacksplorer

Task 1 Task 2 Complete
Trial

Call Hierarchy
Blaze

55,6 % 75,0 % 50,0 %
62,5 % 87,5 % 62,5 %

0 %

25,0 %

50,0 %

75,0 %

100,0 %

Task 1 Task 2 Complete Trial

Percentage of Correct Hypotheses

Call Hierarchy Blaze

Task 1 Task 2
Call Hierarchy
Stacksplorer2

5,5 % 37,5 %
8,8 % 31,7 %

0 %
10,0 %
20,0 %
30,0 %
40,0 %
50,0 %
60,0 %
70,0 %
80,0 %
90,0 %

100,0 %

Task 1 Task 2

Percentage of Tool Usage

Call Hierarchy Stacksplorer2
Figure 6.1: The percentage of correct solutions grouped by the tasks and
the plugin used.

Task Success Rates

Figure 6.1 shows the percentage of participants who found a
correct solution during the given time frame for each of the
subtasks and the complete task. The complete task was con- There were no

significant
differences in
success rate.

sidered to be solved correctly if both subtasks were solved cor-
rectly. Although the success rate was higher with our Blaze
plugin, the difference for each of the tasks is small and a Fisher’s
Exact Test did not show any significant differences (see table
1).

Task Completion Times

We subdivided the task completion times in two (non-disjoint)
groups. First, we compared all task completion times (“time to
hypothesis”). Then, we compared only the times of the partici-
pants which solved the task correctly (“time to correct hypoth-
esis”).

We assume that the underlying population for the “times to
hypothesis’’ and “times to correct hypothesis” is normally dis- We assume a normal

distribution and test
this assumption with
a Shapiro-Wilk test.

tributed and will use t-tests to compare the results. To con-
firm this assumption, we did Shapiro-Wilk tests for each of
the samples. The results of those are shown in table 2. Only

48 6 Evaluation

the times to hypothesis for Task 1 in the Call Hierarchy condi-
tion are significantly different from a normal distribution. Al-
though a Kolmogorov-Smirnov test shows no significant dif-
ference (D = 0.232, p = 0.719) to a normal distribution with
the same mean and standard deviation, we will do a Mann-
Whitney’s U test for this case, in addition to the t-test, since
this test does not assume normality.

●

Task 1
0

3

6

9

12

15

20

25

30

35

40

tim
e

(m
in

ut
es

)

Call Hierarchy Blaze

Task 2
0

3

6

9

12

15

20

25

30

35

40

Complete Trial
0

3

6

9

12

15

20

25

30

35

40

Time to Hypothesis

Figure 6.2: The average time to hypotheses by task and condition in
minutes. Participants using our plugin are several minutes faster in each
task.

Time to Hypothesis Figure 6.2 shows that participants had
a hypothesis several minutes earlier with Blaze than with the
Call Hierarchy. The median time for task 1 for Blaze is evenBlaze significantly

decreases the time
to hypothesis.

roughly half the median time of the Call Hierarchy. Using a
one-sided Welch’s t-test we found a significant difference in
the time to hypothesis in each of the subtasks and the task as
a whole. The exact results of the t-tests can be found in table
6.1.

Since a Shapiro-Wilk test showed a significant difference be-We also performed a
Mann-Whitney’s U
test.

tween the times of the Call Hierarchy condition in Task 1 and
a normal distribution we did an additional Mann-Whitney’s U
test which does not assume the normality. The results of this

6.2 Quantitative Results 49

Task t df p Cohen’s d
Task 1 3.12 15.0 0.003 1.51
Task 2 1.82 11.5 0.048 0.91

Complete Trial 2.98 13.5 0.005 1.49

Table 6.1: Results of one-sided Welch’s t-tests comparing the time to hy-
pothesis of the Call Hierarchy to that of Blaze for each task and the complete
trial. Given are the t-value, the degree of freedoms (df), the p-value and the
effect size as Cohen’s d. The results show significant differences and large
effects for each task.

test confirmed the significance of the difference (U = 61.5, Z =
2.46, p = 0.006).

We also calculated the effect size (Cohen’s d, see table 6.1). A
value of 0.8 or higher of Cohen’s d is usually considered to be
a large effect size, so our results show a large effect for each of
the cases.

●

Task 1
0

3

6

9

12

15

20

25

30

35

40

tim
e

(m
in

ut
es

)

Call Hierarchy Blaze

Task 2
0

3

6

9

12

15

20

25

30

35

40

Complete Trial
0

3

6

9

12

15

20

25

30

35

40

Time to Correct Hypothesis

Figure 6.3: The average time to a correct hypothesis by task and condition
in minutes. Participants using our plugin are several minutes faster in
each task.

Time to Correct Hypothesis Figure 6.3 shows that not only
the time to hypothesis is smaller with our plugin but also the

50 6 Evaluation

time to a correct hypothesis is smaller. However, using one-The time to correct
hypothesis is only
significantly faster for
Task 1.

sided Welch’s t-tests again, we could only confirm a significant
effect for Task 1 with Blaze outperforming the Call Hierarchy.
The exact results of the t-tests can be found in table 6.2.

Task t df p Cohen’s d
Task 1 2.77 6.5 0.015 1.75
Task 2 1.17 9.1 0.14 0.62

Complete Trial 1.76 6.3 0.063 1.10

Table 6.2: Results of one-sided Welch’s t-tests comparing the time to cor-
rect hypothesis of the Call Hierarchy to that of Blaze for each task and the
complete trial. Given are the t-value, the degree of freedoms (df), the p-value
and the effect size as Cohen’s d. The results show significant differences for
Task 1 and large effects for each task.

Although non-significant, the p-value of the t-test for the com-
plete trial is close to 0.05 and thus indicates that developers
had a correct hypothesis earlier using Blaze. The results for
Task 2 are inconclusive. Again, the effect size is large for the
complete trial and Task 1 but only medium for Task 2.

Discussion

Both tools seem equally well suited to find a correct hypothe-
sis, so we have to reject H1. Comparing the time to hypothesis
for both tools confirmed H2 and H3, but the results for the
time to correct hypothesis only supported H2. We think theWe think the

non-significant
results for time to
correct hypothesis
are due to the small
sample size.

non-significant results are probably due to two to causes. First,
the differences between the conditions are actually smaller than
in the time to hypothesis comparison, but not a lot. The bigger
problem for the significance is probably the reduced sample
size (only the correct answers) since the significance is depen-
dent on the sample size. But we cannot be sure until we have
conducted further tests to confirm the results.

However, even forming an incorrect theory more quickly will
probably improve the overall time to solve a maintenance task
since the programmer can then test this hypothesis earlier.We can confirm H2

and H3. Therefore, we think we can confirm H2 and H3 overall. But
the support for H3 is weaker. This is understandable since the
differences between the Call Hierarchy and Blaze were smaller

6.2 Quantitative Results 51

in task 2. We think this indicates that the Call Hierarchy is also
helpful for finding side effects but less helpful for exploring
and navigating in unknown source code.

6.2.2 Comparing the Results of the Old and the New
Study

From the results in the previous section we already know, that
programmers could find a hypothesis significantly faster with
Blaze than with the Call Hierarchy. From the previous study
we know that programmers could solve tasks with a higher
success rate using Stacksplorer compared to plain Xcode. They We use planned

contrast ANOVA to
compare all four
conditions.

were also able to find a hypothesis significantly faster for sev-
eral tasks using Stacksplorer compared to using plain Xcode.

But of these two studies looked at the results independently.
We will now try to combine the results of both studies to com-
pare the 4 conditions. To do this, we will use a planned con-
trast analysis of variance (planned contrast ANOVA, see [Field,
2009, pp. 360–369]) to show the differences between the plug-
ins and a default Xcode installation.

Since Xcode was the control condition in the previous study
and the Call Hierarchy was the control condition in the new
study of this thesis, we will put them together in the first con- We group Xcode and

the Call Hierarchy
together, as well as
Blaze and
Stacksplorer.

trast (C1) and compare them to both of our research proto-
types, Stacksplorer and Blaze, combined. We do this because
we believe the differences between our research prototypes
are small, but the differences between our research prototypes
compared to Xcode and to the Call Hierarchy are big. We also
think that the differences between Xcode and the Call Hierar-
chy are not as big as the differences between the Call Hierar-
chy and our research prototypes.

One could say that it is unfair to put Xcode and the Call Hier-
archy in one group and compare them to our research pro-
totype because “clearly” Xcode will be worse than the Call
Hierarchy. Thus, a potentially significant difference between We also test the

differences in each of
the groups.

Xcode and the Call Hierarchy compared to our research proto-
types would simply be due to Xcode not being up to the task,
although the Call Hierarchy alone would be as good as our
research prototypes. To check this possibility we do a second
contrast (C2), comparing Xcode without plugins and the Call

52 6 Evaluation

Hierarchy to each other. After that, we will do a third contrast
(C3), comparing Stacksplorer and Blaze to see whether there
are differences between the two research prototypes.

plain Xcode + Call Hierarchy

Call
Hierarchyplain Xcode C2

C1 Stacksplorer + Blaze

Stacksplorer BlazeC3

Figure 6.4: A diagram showing the groups we plan to compare using
planned contrast ANOVA to find difference between the plugins.

Figure 6.4 gives an overview of the contrasts we plan to do.
The selected contrasts are orthogonal. Using these contrasts
we will explore similar hypotheses as in the individual stud-
ies:

H2 Programmers can solve tasks that require browsing and
understanding previously unknown source code more
quickly using an auto-updating call graph exploration
tool that is visually interlinked with the source code than
using a non-auto-updating non-interlinked call graph ex-
ploration tool or even no such tool.

H3 Programmers can identify side effects of changes made to
unknown code more quickly using an auto-updating call
graph exploration tool that is visually interlinked with
the source code than using a non-auto-updating non-
interlinked call graph exploration tool or even no such
tool.

We do the first contrast (C1) to find the differences and the
other two contrast (C2 and C3) to check whether our hypothe-
ses are too broad and we have to narrow them down.

However, we can only do a planned contrast comparison with
ANOVA, but the data for the success rate is binary data (either
a participant got it right or wrong). Therefore, we cannot use

6.2 Quantitative Results 53

an ANOVA test to compare the conditions. Also, we expect We still use a
Fisher’s Exact test
for the success rate.

the differences in success rate to be higher between Xcode and
the Call Hierarchy plugin. For this reason we will do a Fisher’s
Exact test to test the following hypothesis:

H1 More programmers come to a correct hypothesis of how to
solve a task that requires browsing and understanding
previously unknown source code with a time-constraint
using a call graph exploration tool than using plain Xcode.

Task Success Rates

Time To Solution
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only

correct)
Task 1-2 (only

correct)
Task 1 Total
(only correct)

mean Call Hierarchy
standard deviation Call
Hierarchymean Stacksplorer2
standard deviation
Stacksplorer2

21,0 10,9 32,1 22,0 10,6 31,3
5,1 2,2 6,2 6,0 1,4 6,0

13,7 8,3 21,9 14,3 9,0 24,0
4,6 3,6 7,4 4,6 3,4 8,4

participant analysis
Count Average Age Male

Percentage
Student

Percentage
Average

Experience
(years)

Average
programming

per week
(hours)

only iOS
Percentage

don‘t know
Mac

programming
percentage

didn‘t use
BibDesk

percentage

didn‘t know
BibDesk

source code
percentage

Call Hierarchy
Stacksplorer
Both

8 23,8 87,5 % 100,0 % 2,3 12,9 12,5 % 12,5 % 62,5 % 100,0 %
9 26,0 100,0 % 66,7 % 3,6 11,4 22,2 % 11,1 % 55,6 % 100,0 %

17 24,9 94,1 % 82,4 % 3,0 12,1 17,6 % 11,8 % 58,8 % 100,0 %

Task 1 Task 2 Complete
Trial

Call Hierarchy
Blaze
plain Xcode
Stacksplorer

55,6 % 87,5 % 50,0 %
62,5 % 87,5 % 62,5 %
50,0 % 50,0 % 12,5 %
75,0 % 87,5 % 62,5 %

0 %

25,0 %

50,0 %

75,0 %

100,0 %

Task 1 Task 2 Complete Trial

Percentage of correct solutions

plain Xcode Call Hierarchy
Stacksplorer Blaze

SUS
SUS Score Usability Learnability

Call Hierarchy
SD
Stacksplorer 2
SD
Stacksplorer
SD

83,3 80,6 94,4
8,7 9,5 9,1

81,9 79,9 90,3
8,2 7,3 17,4

85,7 83,3 95,6
7,2 7,8 6,2

0

25,0

50,0

75,0

100,0

SUS Score Usability Learnability

95,6

83,385,7 90,3
79,981,9

94,4

80,683,3

SUS Scores

Call Hierarchy Stacksplorer 2 Stacksplorer

0

10,0

20,0

30,0

40,0

Task 1-1 Task 1-2 Task 1 Total

21,9

8,3

13,7

32,1

10,9

21,0

Time to hypothesis

mean Call Hierarchy mean Stacksplorer2

0

10,0

20,0

30,0

40,0

Task 1-1 (only correct) Task 1 Total (only correct)

24,0

9,0

14,3

31,3

10,6

22,0

Time to correct hypothesis

mean Call Hierarchy mean Stacksplorer2

Time To Solution (modified times)
Task 1-1 Task 1-2 Task 1 Total Task 1-1 (only

correct)
Task 1-2 (only

correct)
Task 1 Total
(only correct)

mean Call Hierarchy
standard deviation Call
Hierarchymean Stacksplorer2
standard deviation
Stacksplorer2
mean plain Xcode
standard deviation plain Xcode
mean Stacksplorer
standard deviation Stacksplorer

21,0 6,9 28,1 22,0 6,3 28,4
5,1 4,5 6,5 6,0 1,4 6,0

15,1 6,1 21,2 16,7 6,6 23,9
4,3 3,5 7,3 4,6 3,4 8,4

19,7 9,1 28,7 14,3 3,8 14,3
6,3 5,8 7,1 0,0 0,0 0,0

14,7 6,0 20,7 15,3 4,7 20,0
5,9 4,1 6,8 0,0 0,0 0,0

0

10,0

20,0

30,0

40,0

Task 1-1 Task 1-2 Task 1 Total

20,7

6,0

14,7

28,7

9,1

19,7 21,2

6,1

15,1

28,1

6,9

21,0

Modified Time to hypothesis

mean Call Hierarchy mean Stacksplorer2
mean plain Xcode mean Stacksplorer

0

10,0

20,0

30,0

40,0

Task 1-1 (only correct) Task 1-2 (only correct) Task 1 Total (only correct)

20,0

4,7

15,3 14,3

3,8

14,3

23,9

6,6

16,7

28,4

6,3

22,0

Modified Time to correct hypothesis

mean Call Hierarchy mean Stacksplorer2
mean plain Xcode mean Stacksplorer

Task 1 Task 2 Complete
Trial

Call Hierarchy
Blaze

55,6 % 75,0 % 50,0 %
62,5 % 87,5 % 62,5 %

0 %

25,0 %

50,0 %

75,0 %

100,0 %

Task 1 Task 2 Complete Trial

Percentage of correct solutions

Call Hierarchy Blaze

Task 1 Task 2
Call Hierarchy
Stacksplorer2

5,5 % 37,5 %
8,8 % 31,7 %

0 %
10,0 %
20,0 %
30,0 %
40,0 %
50,0 %
60,0 %
70,0 %
80,0 %
90,0 %

100,0 %

Task 1 Task 2

Percentage of Tool Usage

Call Hierarchy Stacksplorer2

Figure 6.5: The percentage of correct solutions grouped by the tasks and
the plugin used. Note that for Task 1 of the Call Hierarchy we have 9
participants in total but 8 in all other cases.

Figure 6.5 shows the percentage of participants who found a
correct solution during the given time frame for each of the
tasks and the complete trial. The complete trial was consid-
ered to be solved correctly if both tasks were solved correctly.
All tasks were solved relatively more often with a call graph Differences between

the call graph
exploration tools are
small.

exploration tool than with a default Xcode installation. If there

54 6 Evaluation

were differences in the success rate between the different tools,
our research prototypes had a higher success rate than the Call
Hierarchy with Stacksplorer having a higher success rate than
Blaze in Task 1.

Task p odds ratio confidence interval
Task 1 0.381 0.573 [0, 2.968]
Task 2 0.047 0.155 [0, 0.973]

Complete Trial 0.030 0.109 [0, 0.827]

Table 6.3: The results of one-sided Fisher’s Exact tests for the tasks com-
paring the success rate of Xcode participants to those using any of the three
call graph exploration tools. The difference in success rate for Task 2 and
the complete trial is significant.

We performed one-sided Fisher’s Exact tests comparing the
success rate of Xcode to the success rate of the participants
using any of the three plugins. The results of those tests canCall graph

exploration tools
increase the success
rate compared to
plain Xcode.

be seen in table 6.3. We found significant differences for Task
2 and the complete trial. However, we did not find signifi-
cant differences for Task 1. To check whether there are signif-
icant differences between the individual conditions, we also
performed two-sided Fisher’s Exact tests with all four condi-
tions (not grouped). But the results were not significant (Task
1: p = 0.865, Task 2: p = 0.743, Complete Trial: p = 0.171).

Task Completion Times

The division in “time to ’hypothesis” and “time to correct hy-
pothesis” is the same as before, but this time we do this for all
three contrasts. Before that, we discuss the data in general.

Figure 6.6 shows that the time to hypothesis for Blaze and
Stacksplorer was almost equal or at least similar, with the dif-
ference between the two tools being less than a minute. But the
difference to plain Xcode is a lot bigger and both tools shorten
the time to hypothesis by several minutes on average. They
also lead to a shorter average time to hypothesis compared to
the Call Hierarchy with several minutes difference in Task 1
and the complete trial but only a slight difference in Task 2.
This supports our decision to compare our research prototypes
to Xcode and the Call Hierarchy combined.

6.2 Quantitative Results 55

●

Task 1
0

3

6

9

12

15

20

25

30

35

40

tim
e

(m
in

ut
es

)

plain Xcode Call Hierarchy Stacksplorer Blaze

●

Task 2
0

3

6

9

12

15

20

25

30

35

40 ●

●

●

Complete Trial
0

3

6

9

12

15

20

25

30

35

40

Time to Hypothesis

Figure 6.6: The average time to hypotheses by task and condition in
minutes. Participants using our research prototypes were several minutes
faster in each task compared to plain Xcode. They were also faster using our
research prototypes than using the Call Hierarchy. The difference between
the two research prototypes is small.

The case for the time to correct hypothesis is different, as shown
in figure 6.6. In this case, Xcode. which had a long time to hy-
pothesis, suddenly had a very short time to correct hypothesis
in all three tasks. The differences between the other tools are
similar although the difference between Blaze and Stacksplo-
rer is bigger in this case and for Task 2 the Call Hierarchy is on
average actually quicker than Blaze.

ANOVA assumptions Similar to a t-test one of the assump-
tions of ANOVA is that the underlying population is normally
distributed. As before we assume that but also test it using
Shapiro-Wilk tests. The results of those tests can be found
in table 3. There are three cases in which a Shapiro-Wilk test Again we assume

the normality and
test it with
Shapiro-Wilk tests.

found a significant difference to a normal distribution (Task 1
Xcode and Call Hierarchy and Task 2 Xcode). But a Kolmogorov-
Smirnov test for these cases did not find a significant differ-
ence to the normal distribution and ANOVA is robust against
non-normality[Field, 2009, pp. 359f], so we were convinced
that we could use it nevertheless. Note that in the time to cor-

56 6 Evaluation

●

Task 1
0

3

6

9

12

15

20

25

30

35

40

tim
e

(m
in

ut
es

)

plain Xcode Call Hierarchy Stacksplorer Blaze

Task 2
0

3

6

9

12

15

20

25

30

35

40

Complete Trial
0

3

6

9

12

15

20

25

30

35

40

Time to correct Hypothesis

Figure 6.7: The average time to a correct hypotheses by task and condi-
tion in minutes. Interestingly Xcode is faster than any of the plugins in all
of the tasks. But it is also the one with the fewest participants who actu-
ally had a correct hypothesis so it might be that only the good programmers
found a correct hypothesis.

rect hypothesis for the complete trial the Xcode condition was
not checked since it only includes one participant and it does
not make sense to check a sample of size 1 for normality.

Another assumption is the homogeneity of variances of the
samples. We tested this with a Bartlett’s test (see table 4) and
did not find a violation of this assumption in any of the tasks.We also check the

other ANOVA
assumptions. A third assumption is that the sample sizes of the different

conditions are equal. This is the case for the time to hypoth-
esis, but it is not always the case for the time to correct hy-
pothesis. Especially the sample sizes of the correct answers
for the complete trial differ a lot; thus, we will not conduct an
ANOVA test in this case.

Comparing Our Research Prototypes to Xcode and the
Call Hierarchy As explained before, our first contrast com-
pares our control conditions (Xcode and Xcode with the Call

6.2 Quantitative Results 57

Hierarchy plugin) to our research prototypes. The results for
this contrast can be found in table 6.4

Task degree of
freedom

(contrast/total)

F p

Time to hypothesis
Task 1 1/29 7.12 0.012
Task 2 1/28 1.45 0.238

Complete Trial 1/28 8.29 0.008

Time to correct hypothesis
Task 1 1/16 1.08 0.314
Task 2 1/21 0.25 0.619

Complete Trial not compared due to sample
size differences

Table 6.4: The results of a one-way planned contrast ANOVA comparing
the time to (correct) hypothesis of Xcode and the Call Hierarchy to our
research prototypes. The differences in the time to hypothesis for Task 1
and the complete trial are significant.

We found significant differences in the time to hypothesis for
task 1 and the complete trial with our research prototypes out-
performing Xcode and the Call Hierarchy, but we did not find
differences for Task 2. We did not find any significant differ-
ence in the time to correct hypothesis and thus can not support
H2 nor H3.

Comparing the Control Conditions We wanted to compare
the two control conditions to each other to make sure that the
significant differences are not due to only one of the control
groups. As table 5 shows there were no significant differences We do not find

differences between
the control
conditions.

for any of the tasks, which indicates that the differences are
not due to just one of the conditions. The only case close to
being significant is the time to correct hypothesis for Task 1
with Xcode outperforming the Call Hierarchy.

Comparing Our Research Prototypes Last, we wanted to We do not find
differences between
the research
prototypes.

compare our two research prototypes to see whether any per-
formed significantly better than the other. Again, we did not
find any significant differences (see table 6) for any of the tasks.

58 6 Evaluation

Post-Hoc Tests To see whether there were further differ-
ences between the tools, we also performed Welch’s t-tests
with Holm correction for each pair of conditions. To find as
many differences as possible, we first ordered the conditions
for each task by mean and then performed one-sided t-tests.
This ordering might increase the experiment-wide Type I er-
ror rate; thus, we might find more significant differences than
there actually are. But we did not find any significant differ-
ence for any pair of conditions for any task. The lowest p-
value we got as a result was p ≈ 0.10.

Discussion

We could confirm H1 for the complete trial and Task 2, but
were not able to find a difference for Task 1. We think thisWe could confirm H1.
indicates that the tools do not increase the success rate for
browsing focused tasks much. We could not find any differ-
ences between the tools so we conclude that any call graph
exploration tool increases the success rate compared to an IDE
without such a tool and that it does not matter what kind of
tool is used.

Regarding the time to (correct) hypothesis we assume that the
good performance of the Xcode participants is due to a fil-
tering process. Slower/less-skilled participants probably didGood performance of

Xcode participants in
the time to correct
hypothesis is
probably due to a
filtering effect.

not have a chance to find a correct solution with a default
Xcode installation and thus only the skilled-programmers are
included in the average time to correct hypothesis. The other
tools might have allowed less-skilled participants to come to
a correct hypothesis although they needed more time, thus in-
creasing the average time.

We could show significant differences in the time to hypothe-
sis for the complete trial and Task 1. We were not able to showWe found significant

differences for the
time to hypothesis in
Task 1 and the
complete trial.

differences for Task 2 or the time to correct hypothesis. Thus,
we have to reject H3, but we think we can confirm H2 since
a shorter time to hypothesis will likely shorten the time to a
solution, no matter whether this solution is correct. It would
only be bad if our tools increased the probability for finding
an incorrect hypothesis, which is not the case.

Our additional contrasts (C2 and C3) did not show any dif-
ferences between our research prototypes or the control con-

6.3 Qualitative Results 59

ditions respectively. This means that our hypotheses were not
too broad and did not combine unequal conditions. It also in-
dicates that each of our research prototypes decreases the time
to hypothesis compared to each of Xcode with and without
the Call Hierarchy. However, we were not able to show these
pairwise differences using post-hoc test, therefore more data
is required to confirm or reject our hypotheses.

We think the better performance of our research prototypes is
due to their auto-updating nature and their tight integration
with the source code editor since this is one of the few com-
monalities between Blaze and Stacksplorer and a difference to
the Call Hierarchy. However, the three tools are too different
to be sure of the cause of these differences. Further research in
this direction should certainly be interesting.

6.3 Qualitative Results

In this section we will look at the qualitative results of our
study. We will first discuss the System Usability Scale rating
we gathered during the study, then we will show the results to
some further Likert-scale questions we asked the participants
to answer, and in the end talk about some more general obser-
vations we made.

6.3.1 Postsession Questionnaire

A description of the postsession questionnaire was given in
6.1.4—“Postsession Questionnaire”. Therefore, we will only
discuss the results now.

System Usability Scale

The average SUS scores as well as the Usability and Learnabil-
ity scores identified by Lewis and Sauro [2009] are shown in
figure 6.8. All scores are quite close, with Stacksplorer having All tools received

excellent SUS
scores.

the best SUS score (median 87.5) followed by Blaze (median
85) and the Call Hierarchy (median 82.5). All scores would

60 6 Evaluation

●

●

SUS.Score
0

10

20

30

40

50

60

70

80

90

100

S
co

re

Call Hierarchy Stacksplorer Blaze

●

Usability
0

10

20

30

40

50

60

70

80

90

100

●

Learnability
0

10

20

30

40

50

60

70

80

90

100

SUS Scores

Figure 6.8: The SUS Scores and the respective score for Learnability and
Usability for Blaze, Stacksplorer and the Call Hierarchy. Higher is better.

be translated as “excellent” by an interpretation of the SUS by
Bangor et al. [2008].

Stacksplorer also has higher Usability (median 84.375) and
Learnability (median 100) ratings, again followed by Blaze (Us-
ability median: 81.25; Learnability median: 100) and the Call
Hierarchy (Usability median: 78.125; Learnability median: 100).

However, Kruskal-Wallis tests for the three scores did not re-The differences in
SUS scores are not
significant.

veal a significant difference in any of the scores (SUS: χ2(2) =
2.40, p = 0.301; Usability: χ2(2) = 2.10, p = 0.349; Learnabil-
ity: χ2(2) = 0.09, p = 0.955).

Discussion Interestingly the significantly slower perfor-
mance of participants using the Call Hierarchy plugin is notSlower Call

Hierarchy
performance was not
reflected in the SUS
score.

reflected in their subjective SUS rating. This is likely due to
most participants not being used to any call graph exploration
tool so their general excitement (resulting in the excellent
scores) about having such a tool at hand hides the individual
differences between the tools.

The achieved scores are quite good considering that they were
rate research prototypes that still had a few bugs. However,

6.3 Qualitative Results 61

Q11

S
tr

on
gl

y
D

is
ag

re
e

N
eu

tr
al

S
tr

on
gl

y
A

gr
ee

Call Hierarchy
Stacksplorer
Blaze

●●●●

●

Q12

●

●

Q13

● ●

Q14

●

●

Q15

● ●

Q16

Q
Q
Q
Q
Q
Q

11: I found understanding the source code easy using Stacksplorer
12: I do not think Stacksplorer has benefits for code understanding compared to Xcode
13: I think navigation in source code is faster when using Stacksplorer (compared to vanilla Xcode)
14: I found navigation using Stacksplorer awkward
15: When using Stacksplorer I had a better idea of where I am in the source code compared to using plain Xcode
16: I often felt lost in the source code when using Stacksplorer

Post−session Questionnaire

Figure 6.9: The answers to our six additional questions for the plugins Blaze, Stacksplorer and the Call
Hierarchy. The larger width of the Stacksplorer plot indicates the larger sample size. The Stacksplorer
study had 17 participants filling out the questionnaire, our new study had 18, but those were split up
between Blaze and the Call Hierarchy. The questions can be grouped into pairs, each concerned with one
aspect of the respective plugin: Q11+Q12 (code understanding), Q13+Q14 (navigation) and Q15+Q16
(orientation in source code).

we did not manage to design systems that were liked signif-
icantly more than the existing plugins. This did not happen
so we can only say our “users generally liked the system[s
equally well]”. The Learnability rating was higher than the
overall SUS score for each of the plugins, indicating that all of
the plugins are easy to learn and understand.

6.3.2 Additional Post-Session Questionnaire
Questions

The agreement to our six additional statements has to be eval-
uated independently from the SUS. Figure 6.9 shows box plots
with the results. The 6 questions were designed to be grouped
into 3 pairs each concerned with evaluating one aspect of the
analyzed plugin. Participants found

source code
understanding still
difficult.

The first two questions were about source code understanding
with the used plugin. Almost all participants agreed that the
plugin they used had benefits for code understanding (Q12),

62 6 Evaluation

however, many still found code understanding difficult (Q11).
Several participants actually said they thought understanding
source code was easier but not easy.

The next two statements where concerned with the ease and
speed of navigation using the plugin. More than half of par-Participants agree

that the plugins
improve the
navigation.

ticipants strongly agreed that Stacksplorer as well as the Call
Hierarchy made the navigation faster. For Blaze, agreement is
less strong; still, most participants agree but not strongly. Most
of the participants found the navigation not awkward (Q14).

The last two statements were concerned with the sense of loca-
tion and orientation in the source code when using the plugin.
This is where we got the least positive results. For Stacksplo-
rer, the majority of participants agreed that they had a better
idea of where they are in the source code when using the plu-
gin (Q15). But quite a few were neutral or even disagreed. For
Blaze the majority agreed or was neutral but again some dis-
agreed. For the Call Hierarchy, more people disagreed than
agreed to the statement with a third of them being neutral.

In our new study several users explained their reasons to dis-
agree even without being asked to do so. Two of them inde-Participants do not

know where they are,
but do not feel lost
either.

pendently came up with the same example: a satnav. They
said, one reaches the destination safely and most of the time
without problems but has no idea of where one has been dur-
ing the journey or where that destination even is. Some other
users gave similar reasons for their disagreement.

Although many users did not agree to Q15, the majority said
they did not feel lost in the source code using the plugin (Q16),
which fits the satnav example of not knowing where one is but
not feeling lost either. Again, Stacksplorer gets the best results
followed by Blaze and the Call Hierarchy.

Discussion We think less enthusiastic agreement to the ques-
tion whether Blaze makes navigation faster, is due to a flaw
in the Blaze implementation, which we only noticed after theA big flaw in the

Blaze
implementation was
that it did not
highlight where the
succeeding method
is called in the
implementation.

user tests began: It does show which method calls another
method and it allows users to jump to the implementation of
a displayed method, but there is no way to find out where the
succeeding method is called in the currently displayed imple-
mentation. Both the Call Hierarchy and Stacksplorer have this
functionality and we noticed that participants were using it

6.3 Qualitative Results 63

during the study and missed it in Blaze (see 6.3.3—“Observations
and User Comments”).

Regarding the orientation of the programmer in the source
code, there seems to be room for improvement for all the plu-
gins. We think the differences between the plugins are due to
two reasons. First, Stacksplorer lets users only do one step in
the call graph at a time, the Call Hierarchy and Blaze show
several steps into the call graph and let users jump directly
between methods that are several calls apart from each other.
Thus, it is easier using one of the latter plugins to loose ones
starting point or forget which way one took to get where one
is now.

We think the reason that Blaze gets a slightly better rating
than the Call Hierarchy is that Blaze highlights the relation-
ship of the currently displayed code to the displayed part of
the call graph better. The Call Hierarchy only shows which Blaze is better

integrated with the
editor then the Call
Hierarchy.

method was clicked on last, but does not change the highlight
if the user navigates to another method without using the plu-
gin. Blaze highlights the connection of the currently displayed
method to the stack with a big overlay, which updates auto-
matically when the user navigates to another method, no mat-
ter how he or she got there. This way, Blaze shows at least
the current position in the selected subset of the call graph as
accurate as possible.

6.3.3 Observations and User Comments

In general users, liked the plugin (no matter which one of
them) as we have already seen from the SUS results and won-
dered why Xcode does not provide such a functionality by de-
fault. But they also had some problems with each of them and
some critique.

Call Hierarchy One of the biggest complaints about the
Call Hierarchy was that it was too difficult to invoke. Three
users wanted it to update automatically when they switched
to another method in the editor. We also observed that the Users want the Call

Hierarchy to update
automatically.

non-updating Call Hierarchy was a problem in some cases.
For example one of our participants looked at the Call Hier-
archy after they found the correct starting method. But they

64 6 Evaluation

did not remember to invoke the Call Hierarchy again for this
method, so the call tree they were looking at belonged to a
completely different method. Since they did not realize that
the information was out of date, they interpreted the call tree
that was displayed as being the call tree for the method in the
editor, which was not the case. Another participant said they
would like to have a highlight in the Call Hierarchy to show
which of the methods in the Call Hierarchy is currently shown
in the editor.

Three users also complained that invoking the Call HierarchyUsing the
context-menu to
invoke the Call
Hierarchy is less than
ideal.

using the context menu was “awkward” and “annoying” and
they thought the functionality was “hidden” in the context
menu. We also observed another user choosing a neighboring
option accidentally and several users seemed to have to search
a bit for the right option after invoking the context menu.

Several participants also did not like the tree view in itself,
especially the version of the caller view. Two participants saidThe tree view was

often confusing. that it was confusing that if method A calls method B, A would
appear as a child of B in the caller view, which is exactly the
opposite of their mental model (B follows A). Two others found
it difficult to discern which node is on which level.

Another point of criticism was that it was difficult to distin-Caller and callee
view were difficult to
distinguish.

guish the callee and caller view. Since there is no difference
in how they are displayed, the only way to know which one
is displayed is the little icon at the bottom. But about these
icons, three of our participants said they found them confus-
ing, “non-intuitive”, “meaningless” and “too small”.

Blaze We think the biggest problem of Blaze was the missingUsers search for the
location of a call in
the code, not just a
method
implementation.

highlight of a succeeding method in the currently displayed
implementation. We noticed that many users clicked on a
method to navigate to its implementation and then looked for
the place in code where the method that is displayed as the
next method (and which is called from the current method)
was called.

This happened when navigating downstream, but more often
when navigating upstream to find out under which conditions
the method they came from is called. Also three users said
in the post-session discussion or during the study that they
would like to have such a highlight functionality.

6.3 Qualitative Results 65

Three users also complained about the overlay showing which
method in the path is currently displayed in the editor. They
generally liked the idea, but often they found it too strong and
intrusive. Stacksplorer has the option to activate and deacti-
vate overlays, but in Stacksplorer’s case there are a lot more
overlays which are probably more disturbing. We thought The overlay is too

intrusive.that only one overlay that does not obscure any of the current
method’s implementation would not disturb the user very
much. However, we seem to have misjudged this and un-
derestimated how often users want to read methods that are
implemented in the code directly before or after the currently
displayed method.

Another request, that came from three different users indepen-
dently, was functionality to filter the displayed path. All of Filtering the path is

another popular
request.

them wanted to be able to hide the calls to framework methods
to reduce the number of alternatives displayed. Some would
like to filter the possible methods by method and class names
or even their belonging to a specific framework.

Other requests include keyboard navigation and using Blaze
to find a path between two methods. Another one was to dis-
play previously visited methods in the outgoing or incoming
path with a higher priority. This way, if a user first visits a
method A and then navigates to B without using Blaze and
thus B is the focus method having A in one of its incoming
paths the path containing A should be displayed instead of
the default incoming path for B. This way it would be easier
for users to find relationships between methods they have vis-
ited.

Comparing Blaze to the Call Hierarchy user’s comments we
notice that several of the complaints there were things we tried
to fix with Blaze. For example, Blaze is auto-updating its dis- Blaze is

auto-updating, which
Call Hierarchy users
wished for.

play to correspond to the users selection in the editor by de-
fault. But if an important starting point was found, which
should not be lost, it can can locked; thus hopefully invalidat-
ing the fears of those, who were afraid auto-updating could
make them loose interesting call trees.

Another thing we fixed is the confusing tree view for the Caller
View in which calling methods were displayed as children of
the called methods. In our case, a method that is calling an-
other method will always be displayed above this method.
And we hope we also eliminated the confusion whether one is

66 6 Evaluation

Blaze is less
confusing than the
Call Hierarchy.

currently looking at the Caller or the Callee view. We made the
focus method clearly identifiable; callers are always displayed
above the focus method and callees below the focus method.
Also, this position will not change without user interaction, so
if users did not move the focus method, they can always look
at the lower right of the screen to find the outgoing path and
at the upper right screen to find the incoming path; thus using
their spatial memory.

6.4 Improvements to Blaze

Following the results from our evaluation we plan to make a
few changes to Blaze. First, we want to add the highlightingAdd a highlight and

make the overlay
less intrusive.

of the call to the next method in the implementation of the cur-
rently viewed method (as described above). Second, we want
to make the overlay less intrusive, possibly user-hideable.

We also want to implement the zigzag-view mentioned in the
design to notify users that some methods are hidden behind
the focus method. We saw some users not recognizing thatHelp users recognize

the scroll position
and enable filtering
of the possible paths.

methods are hidden, despite the existence of the scroll bar
on the side. Something else that was already planned in the
design is the search field. We realized during the evaluation
that users would like to have it to filter the possible paths.
Some bigger possible changes are discussed in 7.2.1—“Blaze
Improvements”.

67

7 Summary and Future Work

“The future cannot be predicted, but futures can be
invented.”

—Dennis Gabor

The work in this thesis complements other previous work in
creating software—and specifically call graph—exploration
tools (see chapter 3—“Related work”). We will summarize our
work and point out interesting future work on our prototype
and in the context of call graph exploration in general.

7.1 Summary and Contributions

We presented Blaze, a novel way to visualize and explore the
call graph context of a method and the call graph of a soft-
ware project in general using a one-path-at-at-time visualiza-
tion. Blaze displays a combination lock interface on the right Blaze allows

navigating through
the call graph by
displaying possible
paths.

hand side of the code editor showing an incoming and an out-
going path to the method currently selected in the editor, the
focus method. It thus takes an orthogonal approach compared
to Stacksplorer and displays only a subset of the information
usually displayed by call graph exploration tools in today’s
IDEs.

Blaze supports normal programmer navigation behavior by
first providing context to the currently selected method while
the programmer browses the source code searching for an an-
chor point. When an anchor point is found, Blaze is able to Blaze supports

established
programmer
navigation models.

lock the focus method; thus making the anchoring explicit. It
then allows for the exploration of the surrounding call graph
from this method and provides easy backtracking when a cho-
sen path does not lead to the desired information.

68 7 Summary and Future Work

Blaze was implemented as an Xcode plugin and can index ar-
bitrary Objective-C Xcode projects in theory1. It can then be
used as a navigation and exploration help. Blaze’s user inter-
face has been developed over several iterations and achieved
excellent SUS Scores (mean: 81.9).

We compared Blaze to another research prototype, Stacksplo-
rer, to the Eclipse Call Hierarchy as an example of a commonly
used call graph exploration tool, and an IDE without a call
graph exploration tool, represented by Xcode. We found thatCall graph

exploration tools
increase the success
rate, but only our
research prototypes
decrease the task
completion time.

a call graph exploration tool increases the success rate. Fur-
ther, we found that using one of the research prototypes sig-
nificantly decreases the time to a hypothesis when working
on maintenance tasks compared to Xcode with or without the
support of the Call Hierarchy. We think this is due to the tight
coupling to the source editor of both research prototypes and
their auto-updating nature.

Parts of the results of this thesis, especially the ones presented
in chapter 6—“Evaluation”, were used in a paper submitted to
the ACM SIGCHI Conference on Human Factors in Comput-
ing Systems 2012.

7.2 Future Work

Besides the smaller and bigger flaws of Blaze we recognized
during the user study (see 6.4—“Improvements to Blaze”), we
found some more general improvement possibilities to Blaze
which also lead to some interesting further research.

7.2.1 Blaze Improvements

First, we will describe some more general possible improve-
ments to Blaze.

1Due to the research prototype nature of Blaze we did not test it with a
lot of different projects so there may still be bugs that prevent it from
working in some constellations.

7.2 Future Work 69

More Relationships

Although navigation along the call graph is an important part
of programmer navigation, caller/callee-relationships are cer-
tainly not the only kind of relationship programmers navigate
along and use for finding the required information or loca-
tions. Thus, it would be great if Blaze could be extended to Integrating more

relationships might
be useful but is
difficult.

support a wider range of relationships. Schäfer et al. [2006]
even argue that software exploration tools should be end-user
extendable with regard to what kind of relationships they sup-
port. We are doubtful as to how well Blaze’s simple way of vi-
sualizing paths scales to more or even arbitrary relationships,
but it would certainly be interesting to explore these possibili-
ties.

More Accurate Call Graph Parsing

Currently, the parser of Blaze, which creates the call graph,
is not particularly smart. For example, it will not recognize The Blaze parser is

not particularly
smart.

that a call to a method x of class A could also be a call to the
method x’ of class B which is a subclass of A and overrides x
with x’. Also, we often have paths that end in some framework
method or start at some method that is called by the frame-
work since the parser is just using static analysis to create the
call graph.

This hides potentially interesting relationships, for example, if
a controller object tells a table view to update its information
(with the table view being implemented by the framework) Several interesting

paths will not be
found.

and the table view then calls a method on a model object to
get the updated information. Blaze would currently display
two independent paths in this case and would not find a con-
nection although there clearly is one.

For this reason, we would like to use information from trac-
ing application runs to integrate paths into the call graph that
can not be found statically. However, we want to combine Integrating

information from
runtime traces could
be a solution.

the static and the runtime analysis since the runtime analy-
sis alone is not complete either, since certain executable paths
might not occur in a specific run of the application [LaToza
and Myers, 2011].

70 7 Summary and Future Work

Better Initial Path Selection

We think Blaze could be improved a lot by having a heuristic
to select paths for the user if they did not select one yet. AtOften, the initial path

selected by Blaze is
not very helpful.

the moment, their is no such heuristic and if the user looks at
a new2 method it just displays the first path in the list. This
often leads to the outgoing paths ending quickly in a frame-
work method although there may be more interesting paths
to the developer. This, in turn limits the usefulness of the in-
formation displayed by Blaze when browsing source code and
looking for interesting methods.

There has already been a lot of research in different kinds of
recommender systems [Singer et al., 2005, DeLine et al., 2005,Algorithms of

recommender tools
might be integrated.

Čubranić and Murphy, 2003]. However, these are usually not
specialized on recommending paths. Nevertheless some of
this research might be used to find a good recommendation
of paths for Blaze.

7.2.2 Open Research Questions

We also identified two areas in which further research might
be interesting and helpful to call graph exploration tools.

Degree of Interest of Paths Based on the Call Graph
Structure

As mentioned above, Blaze could be improved with a better
initial path selection. We already mentioned recommenderRecommender

systems use
navigation history as
metric.

systems as a way to recommend a path. But the recommender
systems usually calculate the degree of interest of an artifact
based on previous programmer navigation or similar wear-
based algorithms.

We think it might be interesting to see whether there are prop-
erties of a call graph that allow predictions about the degreeMaybe there are

inherent properties of
a subgraph that
make it more
interesting.

of interest of a specific node to a programmer. For example:
Are nodes with a larger number of outgoing edges more inter-
esting to a programmer than those with a low number? What

2if the user looks at a previously visited method Blaze will display the last

7.2 Future Work 71

about incoming edges? Are nodes that are part of a cycle in
the call graph more or less interesting to the programmer? Is
the depth of the subtree starting in a node a good prediction
of the importance of this node to the programmer?

We could not find much research that looks into this relation-
ship of the structure of the call graph to the relevance for un-
derstanding the program. Some researchers used Strahler num- There are some

graph metrics, but
they have not been
evaluated, yet.

bers3 as a relevance rating for nodes in directed acyclic graphs.
Auber [2002] used it to prioritize graph drawing in huge graphs
and thus provided a preview of the final graph to the user
while the complete graph was being drawn. Herman et al.
[1998] used it to highlight branches with a high Strahler num-
ber in a tree visualization to give users hints which parts of the
tree are worth exploring. However, neither of them evaluated
their approach to see whether the preview or highlighting ac-
tually showed the parts of the graph users were interested in.

Are Auto-Updating Tightly Integrated Exploration Tools
Really Better?

In our study we found that the two tools which were tightly
integrated with the source code editor and auto-updated to Our results indicate

an advantage of
auto-updating,
tighly-integrated
software exploration
tools.

show information relevant to the currently selected method
performed better than Xcode with or without the Call Hierar-
chy, which is not that tightly integrated and does not update
automatically. We think this difference is due to the tight inte-
gration and the auto-updating but obviously there are a lot of
other differences between the two research prototypes and the
Call Hierarchy, thus we can not be sure.

On the one hand one could think that tools with these fea-
tures are obviously better than tools which are less-integrated
and require the user to actively interact with it to display rel-
evant information. On the other hand none of the call graph But many other tools

are not
auto-updating. Why?

exploration tools we found in current IDEs (See section 3.2.1—
“Current IDEs”) has these features. Also, none of the research
prototypes presented in section 3.2.2—“Research” has these

path the user saw which contained this method
3see [Auber, 2002] for an explanation

72 7 Summary and Future Work

features4. Therefore, we think further research into this ques-
tion should be interesting to either confirm our hypothesis and
include these features in future exploration tools or explain
why the existing tools are better without these features.

4We are not sure whether CallStax (see 3.2.2—“CallStax”) updates when
the user clicks somewhere in the code or only when he specifically tells
CallStax to update. We could not find this information in the description
of the referenced paper.

73

Bibliography

Keith Andrews and Janka Kasanicka. A Comparative Study of Four Hierarchy
Browsers using the Hierarchical Visualisation Testing Environment (HVTE). In 2007
11th International Conference Information Visualization (IV ’07), pages 81–86. IEEE,
2007.

David Auber. Using Strahler numbers for real time visual exploration of huge graphs.
In International Conference on Computer Vision and Graphics, pages 56–69, September
2002.

Aaron Bangor, Philip T Kortum, and James T Miller. An Empirical Evaluation of the
System Usability Scale. International Journal of Human-Computer Interaction, 24(6):
574–594, July 2008.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Che-
ung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaViola Jr.
Code bubbles: a working set-based interface for code understanding and mainte-
nance. In Proceedings of the 28th international conference on Human factors in computing
systems, pages 2503–2512, New York, NY, USA, 2010. ACM.

J. Brooke. SUS: A quick and dirty usability scale. In P. W. Jordan, B. Weerdmeester,
A. Thomas, and I. L. Mclelland, editors, Usability evaluation in industry. Taylor and
Francis, London, 1996.

Davor Čubranić and Gail C. Murphy. Hipikat: recommending pertinent software de-
velopment artifacts. In Software Engineering, 2003. Proceedings. 25th International Con-
ference on, pages 408–418, 2003.

Robert DeLine, Mary Czerwinski, and George Robertson. Easing program compre-
hension by sharing navigation data. Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, pages 241–248, 2005.

Katalin Erdös and Harry M. Sneed. Partial comprehension of complex programs
(enough to perform maintenance). In 6th International Workshop on Program Compre-
hension. IWPC’98, pages 98–105. SES Software Eng. Service, Budapest, IEEE Com-
put. Soc, June 1998.

Alexander A. Evstiougov-Babaev. Call graph and control flow graph visualization

74 Bibliography

for developers of embedded applications. In Graph Drawing, pages 337–346. AbsInt
Angew Informat GmbH, Saarbrucken, Germany, 2002.

Andy Field. Discovering Statistics Using SPSS. ISM Introducing Statistical Methods.
Sage Publications Ltd, London, 3rd edition, 2009.

G. W. Furnas. Generalized fisheye views. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 16–23, New York, NY, USA, 1986. ACM.

Martin Graham and Jessie Kennedy. A Survey of Multiple Tree Visualisation. Informa-
tion Visualization, 9(4):235–252, December 2010.

Wilhelmiina Hämäläinen. Writing Scientific English, September 2006. URL http:
//www.cs.joensuu.fi/pages/whamalai/sciwri/sciwri.pdf.

I Herman, G Melancon, and M S Marshall. Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

Ivan Herman, Maylis Delest, and Guy Melancon. Tree visualisation and navigation
clues for information visualisation. Computer Graphics Forum, 17(2):153–165, June
1998.

Mao Lin Huang, Peter Eades, and Junhu Wang. Online Animated Graph Drawing
using a Modified Spring Algorithm. Journal of Visual Languages and Computing, 9:
17–28, 1998.

Mikkel Rønne Jakobsen and Kasper Hornbæk. Fisheyes in the field: using method tri-
angulation to study the adoption and use of a source code visualization. In Proceed-
ings of the 27th international conference on Human factors in computing systems, pages
1579–1588. ACM, April 2009.

Jeff Johnson. Our Vision is Optimized to See Structure. In Designing with the Mind in
Mind: Simple Guide to Understanding User Interface Design Rules, pages 11–24. Morgan
Kaufmann, Burlington (USA), 2010.

Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan Borchers.
Stacksplorer: Call Graph Navigation Helps Increasing Code Maintenance Efficiency.
In Proceedings of the ACM UIST 2011 Symposium on User Interface Software and Tech-
nology, 2011.

Andrew J Ko, Htet Htet Aung, and Brad A Myers. Eliciting design requirements for
maintenance-oriented IDEs: a detailed study of corrective and perfective mainte-
nance tasks. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on, pages 126–135, 2005.

Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An Exploratory

http://www.cs.joensuu.fi/pages/whamalai/sciwri/sciwri.pdf
http://www.cs.joensuu.fi/pages/whamalai/sciwri/sciwri.pdf

Bibliography 75

Study of How Developers Seek, Relate, and Collect Relevant Information during
Software Maintenance Tasks. IEEE Transactions on Software Engineering, 32(12):971–
987, December 2006.

Jan-Peter Krämer. Stacksplorer Understanding Dynamic Program Behavior. Master’s
thesis, RWTH Aachen University, January 2011.

Thomas D. LaToza and Brad A Myers. Searching across paths. ACM, May 2010a.

Thomas D. LaToza and Brad A Myers. Developers ask reachability questions. ACM, May
2010b.

Thomas D. LaToza and Brad A Myers. Visualizing Call Graphs. Visual Languages and
Human-Centric Computing (VL/HCC), 2011.

Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector. Using informa-
tion scent to model the dynamic foraging behavior of programmers in maintenance
tasks. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems. ACM Request Permissions, April 2008.

Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle Rec-
tor, and Scott D. Fleming. How Programmers Debug, Revisited: An Information
Foraging Theory Perspective. Software Engineering, IEEE Transactions on, PP(99):1,
2010.

James Lewis and Jeff Sauro. The Factor Structure of the System Usability Scale. In
Masaaki Kurosu, editor, Lecture Notes in Computer Science, pages 94–103. Springer
Berlin / Heidelberg, 2009.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 7.
edition, 2010.

M.P Robillard, W Coelho, and G.C Murphy. How effective developers investigate
source code: an exploratory study. IEEE Transactions on Software Engineering, 30(12):
889–903, December 2004.

Thorsten Schäfer, Michael Eichberg, Michael Haupt, and Mira Mezini. The SEXTANT
Software Exploration Tool. IEEE Transactions on Software Engineering, 32(9):753–768,
September 2006.

Kaitlin Duck Sherwood. Path exploration during code navigation. Master’s thesis,
The University of British Columbia (Vancouver), August 2008.

J Singer, R Elves, and M.-A Storey. NavTracks: supporting navigation in software
maintenance. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pages 325–334, 2005.

76 Bibliography

Ian Sommerville. Software Engineering. Pearson Education Limited, Essex, England, 8
edition, 2007.

Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design el-
ements to support the construction of a mental model during software visualization.
In Program Comprehension, 1997. IWPC ’97. Proceedings., Fifth Iternational Workshop on,
pages 17–28. IEEE, 1997.

Peter Young and Malcolm Munro. A New View of Call Graphs for Visualising Code
Structures. Technical report, January 1997.

77

Other Pictures and Diagrams

In here we present additional pictures, diagrams and figures that might be interesting
or helpful to the engaged reader.

1 Related Work

Figure 1: Call Hierarchy view of IntelliJ: Only one direction (callees or callers) is viewable at a time.

78 Other Pictures and Diagrams

Figure 2: Call Hierarchy view of NetBeans: Only one direction (callees or callers) is viewable at a
time.

2 Design

Figure 3: A first concept of how to integrate the information that Blaze provides into the existing
Stacksplorer implementation. We modified the Stacksplorer view to add little arrows to the method view
cells. Those could be used to expand an outgoing/incoming path for this method that could then be
adjusted with a combination lock view.

2 Design 79

Figure 4: A second concept of how to integrate the information that Blaze provides into the existing
Stacksplorer implementation. We added a view below and above the editor to show an outgoing and an
incoming path, again using combination lock views for modifying those. Clicking on the method views
on the side would chose the corresponding path for this method. The method whose path is currently
selected is shown by an overlay connecting the method on the side with the path above/below the editor.

80 Other Pictures and Diagrams

Figure 5: A third concept of how to integrate the information that Blaze provides into the existing
Stacksplorer implementation. The difference to the second one is that the user can click on methods in
the combination lock view to expand them into an editor view that shows the implementation of the
method.

2 Design 81

VCReceiver
- tryToReceiveData

enter search term

VCReceiver
- stream:handleEvent:

VCParser
- setInfoPacket:

VCParserDelegate
- parser: didParseInfoPacket:

VCViewController
- changeDisplayedImage

SomeOtherClass
- doSomething:

-(void)setInfoPacket:(NSArray *)entries
{
 NSError *error;
 NSError **parsingError = &error; // TODO: report errors via delegate method
 NSMutableArray *parsedInfoPacketEntries = [NSMutableArray arrayWithCapacity:[entries count]];
 for (NSData *bytesForEntry in entries) {

 NSUInteger stringLength = [bytesForEntry length];
 char *stringValue = malloc((stringLength+1)*sizeof(char));
 [bytesForEntry getBytes:stringValue length:stringLength];
 stringValue[stringLength] = '\0'; // null terminate the string

 // now parse the string to get the data for the info packet
 NSString *cocoaValueString = [NSString stringWithCString:stringValue
encoding:NSUTF8StringEncoding];
 VCInfoPacketEntry *infoPacket = [[[VCInfoPacketEntry alloc] init] autorelease];

 // split the value string into different components to extract the values
 NSArray *valueComponents = [cocoaValueString componentsSeparatedByCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@"<>"]];
 // it should look like this:
 // [associatedObjectName:]markerName <typeIdentifier[-valueIdentifier]>
 // with the part in square bracket being optional
 // and we are interested in the associatedObjectName, the marker name and the string
before and after the -
 // (the type code and the detail code, which specify the data that can be found in this
field)
 // since componentsSeparatedByCharactersInSet: produces empty string for separator
characters at the end of a string
 // we should now have an array with three entries:
 // 0 1 2
 // {[associatedObjectName:]markerName , typeIdentifier[-valueIdentifier], }
 if (([valueComponents count] != 3)
 || (![@"" isEqualToString:[valueComponents objectAtIndex:2]])
)
 {
 // the value is not in the format we expect so we got a parsing error
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"channel string '%@' not in the expected format", cocoaValueString]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorIncorrectInfoPacketChannelStringFormat
 userInfo:userInfo];
 return;
 }

 NSString *nameString = [valueComponents objectAtIndex:0];
 NSString *channelCode = [valueComponents objectAtIndex:1];

 NSArray *objectNames = [nameString componentsSeparatedByString:@":"];
 if (([objectNames count] == 0) || ([objectNames count] > 2))
 {
 // there should at most be one subject prefix, otherwise something is wrong
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"object name part '%@' not in the expected format", nameString]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorIncorrectInfoPacketChannelStringFormat
 userInfo:userInfo];
 return;
 }
 else if ([objectNames count] == 2)
 {
 // we have a subject prefix
 infoPacket.objectName = [objectNames objectAtIndex:1]; // markerName / segmentName /
objectName
 // remove spaces from the end of the name
 infoPacket.objectName = [infoPacket.objectName stringByTrimmingCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@" "]];

 // handle the subject prefix / associated object name
 NSString *associatedObjectName = [objectNames objectAtIndex:0];
 if ([infoPacket.objectName isEqualToString:associatedObjectName])
 {
 // if the associatedObjectName is the same as the objects name it does not have
an associated object
 infoPacket.associatedObjectName = nil;
 }
 else
 {
 infoPacket.associatedObjectName = associatedObjectName;
 }
 }
 else
 {
 // now there should only be one entry in the array (the object name without a subject
name)
 NSAssert([objectNames count] == 1, @"something went wrong while parsing the object
name");
 infoPacket.objectName = [objectNames objectAtIndex:0];
 // remove spaces from the end of the name
 infoPacket.objectName = [infoPacket.objectName stringByTrimmingCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:@" "]];
 }

 // now let's look at the channel code, which tells us what kind of information will be
transmitted
 // in this channel
 // it has the form "typeIdentifier[-valueIdentifier]" with the part in square brackets
being optional
 // for example: A-X for the angle axis rotation around the x axis for a global body
 // or T-Y for the translation in Y for a global body
 // or P-Z for the position of a marker on the Z axis
 // or P-O for the occlusion state of a marker
 NSArray *codeComponents = [channelCode componentsSeparatedByString:@"-"];
 // quickly check whether we got what we expect
 // there can be only one or two components (either just the typeIdentifier or also an
aditional valueIdentifier
 if (([codeComponents count] == 0) || ([codeComponents count] > 2)) {
 // the channel code does not have the expected format
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"channel code '%@' not in the expected format 'typeIdentifier[-
valueIdentifier]')", channelCode]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorIncorrectInfoPacketChannelCodeFormat
 userInfo:userInfo];
 return;
 }
 NSString *channelCodeType = [codeComponents objectAtIndex:0];
 NSString *channelCodeValue = nil;
 if ([codeComponents count] == 2) {
 channelCodeValue = [codeComponents objectAtIndex:1];
 }
 if ([TIMECODE_IDENTIFIER isEqualToString:channelCodeType])
 {
 // just some part of the time code
 infoPacket.dataType = VCViconDataTypeTimecode;
 if ([VARIABLE_TIMECODE_VALIDITY_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeValidity;
 }
 else if ([VARIABLE_TIMECODE_RATE_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeRate;
 }
 else if ([VARIABLE_TIMECODE_HOURS_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeHours;
 }
 else if ([VARIABLE_TIMECODE_MINUTES_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeMinutes;
 }
 else if ([VARIABLE_TIMECODE_SECONDS_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeSeconds;
 }
 else if ([VARIABLE_TIMECODE_MILLISECONDS_IDENTIFIER
isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeMilliseconds;
 }
 else if ([VARIABLE_TIMECODE_FRAMES_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeFrames;
 }
 else if ([VARIABLE_TIMECODE_OFFSET_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableTimecodeOffset;
 }
 else
 {
 // if it's something else something went wrong, the only valid data variables for
rotation and translation are X,Y and Z
 // the channel code does not have the expected format
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"data type is 'TC' for Timecode so the only valid data variables are V, R, H,
M, S, MS, F, OFF. But it was %@)", channelCodeValue]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorInvalidInfoPacketChannelCode
 userInfo:userInfo];
 return;
 }

 infoPacket.objectClass = [NSNumber class];
 }
 else if ([FRAMERATE_IDENTIFIER isEqualToString:channelCodeType])
 {
 // just the frame rate
 infoPacket.dataType = VCViconDataTypeFrameRate;
 infoPacket.dataVariable = VCViconDataVariableNone;
 infoPacket.objectClass = [NSNumber class];

 // but in this case the frame rate is acutally part of the info packet and we have to
extract it from the object name
 // the name should have the format "Time X fps" where X is the frame rate
 NSArray *frameRateComponents = [infoPacket.objectName componentsSeparatedByString:@"
"];
 if ([frameRateComponents count] != 3)
 {
 // the frame rate name value does not have the expected format
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"frame rate detected but could not extract frame rate from name value '%@'",
infoPacket.objectName]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorIncorrectInfoPacketFrameRateFormat
 userInfo:userInfo];
 return;
 }

 self.frameRate = [[frameRateComponents objectAtIndex:1] integerValue];

 }
 else if ([BODY_IDENTIFIER_ROTATION isEqualToString:channelCodeType] ||
[BODY_IDENTIFIER_TRANSLATION isEqualToString:channelCodeType])
 {
 // we've got a body
 infoPacket.objectClass = [VCViconBody class];
 if ([BODY_IDENTIFIER_ROTATION isEqualToString:channelCodeType])
 {
 infoPacket.dataType = VCViconDataTypeRotation;
 }
 else // translation
 {
 infoPacket.dataType = VCViconDataTypePosition;
 }

 // now the data variable (x, y or z)
 if ([VARIABLE_X_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableX;
 }
 else if ([VARIABLE_Y_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableY;
 }
 else if ([VARIABLE_Z_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableZ;
 }
 else
 {
 // if it's something else something went wrong, the only valid data variables for
rotation and translation are X,Y and Z
 // the channel code does not have the expected format
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"data type is '%@' so the only valid data variables are X,Y and Z. But it was
%@)", channelCodeType, channelCodeValue]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorInvalidInfoPacketChannelCode
 userInfo:userInfo];
 return;
 }
 }
 else if ([MARKER_IDENTIFIER isEqualToString:channelCodeType])
 {
 // we've got a marker
 infoPacket.objectClass = [VCViconMarker class];
 if ([VARIABLE_OCCLUSION_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataType = VCViconDataTypeOcclusion; // we see occlusion as data type,
not as a variable
 infoPacket.dataVariable = VCViconDataVariableNone;
 }
 else
 {
 infoPacket.dataType = VCViconDataTypePosition;
 if ([VARIABLE_X_IDENTIFIER isEqualToString:channelCodeValue]) {
 infoPacket.dataVariable = VCViconDataVariableX;
 }
 else if ([VARIABLE_Y_IDENTIFIER isEqualToString:channelCodeValue])
 {
 infoPacket.dataVariable = VCViconDataVariableY;
 }
 else if ([VARIABLE_Z_IDENTIFIER isEqualToString:channelCodeValue]) {
 infoPacket.dataVariable = VCViconDataVariableZ;
 }
 else
 {
 // if it's something else something went wrong, the only valid data variables
for position are O, X, Y and Z
 // thus the channel code does not have the expected format
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:[NSString
stringWithFormat:@"data type is '%@' for Marker so the only valid data variables are O, X, Y and
Z. But it was %@)", channelCodeType, channelCodeValue]

forKey:NSLocalizedDescriptionKey];
 *parsingError = [NSError errorWithDomain:VCParserErrorDomain

code:VCParsingErrorInvalidInfoPacketChannelCode
 userInfo:userInfo];
 return;
 }
 }
 }
 else
 {
 infoPacket.objectClass = [NSObject class];
 infoPacket.dataType = VCViconDataTypeUnknown;
 infoPacket.dataVariable = VCViconDataVariableNone;
 NSLog(@"Warning: unkown info packet entry: %@", cocoaValueString);
 }

 [parsedInfoPacketEntries addObject:infoPacket];
 }

 self.parsedInfoPacket = parsedInfoPacketEntries;
}

VCReceiver

- viconInputStream

- expectingNumberOfBytes

- stopConnectionAndReportErrors

- setExpectingNumberOfBytes:

- state
- setState
- setReceivingPacketType

- sendStreamingOnRequest
- receivingPacketType

- setExpectingNumberOfValues

- valuesBeingReceived

- expectingNumberOfValues

NSStream
- hasBytesAvailable

- streamStatus
- read:maxLength

NSData
+ dataWithBytes
- getBytes: length:

NSMutableData
- appendData:
- getBytes: length

NSDictionary
+ dictionaryWithObject: forKey:

NSError
+ errorWithDomain: code: userI…

VCParser
- parseData:
- setInfoPacket:

CFByteOrder.h
CFSwapInt32LittleToHost()
CFSwapInt64LittleToHost()

NSMutableArray
- addObject:

Figure 6: Another picture of the new prototype that was designed after the first few user interviews
and after some discussion with fellow researchers. In addition to the changes explained for figure 4.5,
one can see the new popover used to show all the alternative methods. Also, the currently shown method
in the editor is not the focus method in this case, which is shown by the changed overlay.

Figure 7: A screenshot of one of our user study participants using our implementa-
tion of the Eclipse Call Hierarchy. They have invoked the Call Hierarchy on the method
parseFormat:forField:linkedFile:ofItem:suggestion and are now exploring the
caller view to look for callers. In the screenshot they just clicked on updateFormatPresetUI which
calls the parent node updateFormatPreviewUI. Thus, the call to updateFormatPreviewUI
is highlighted in the editor.

83

User Study Results

3 New Study

Task p odds ratio confidence interval
Task 1 1 1.311 [0.132, 14.3]
Task 2 1 2.214 [0.093, 156.8]

Complete Trial 1 1.614 [0.156, 18.7]

Table 1: The results of two-sided Fisher’s Exact Tests for the tasks comparing the success rate of Call
Hierarchy participants to Blaze participants. None of the results is significant.

Task Condition W p
Time to Hypothesis

Task 1 Call Hierarchy 0.802 0.021
Task 1 Blaze 0.896 0.268
Task 2 Call Hierarchy 0.885 0.211
Task 2 Blaze 0.943 0.638

Complete Trial Call Hierarchy 0.919 0.425
Complete Trial Blaze 0.954 0.748

Time to Correct Hypothesis
Task 1 Call Hierarchy 0.808 0.094
Task 1 Blaze 0.945 0.699
Task 2 Call Hierarchy 0.893 0.336
Task 2 Blaze 0.889 0.271

Complete Trial Call Hierarchy 0.923 0.556
Complete Trial Blaze 0.948 0.724

Table 2: The results of Shapiro-Wilk tests for the different samples in the study.

84 User Study Results

4 Comparing the Results from the Old and the New Study

Task Condition W p
Time to hypothesis

Task 1 plain Xcode 0.820 0.047
Task 1 Call Hierarchy 0.802 0.022
Task 1 Stacksplorer 0.935 0.566
Task 1 Blaze 0.882 0.196
Task 2 plain Xcode 0.789 0.022
Task 2 Call Hierarchy 0.896 0.268
Task 2 Stacksplorer 0.827 0.055
Task 2 Blaze 0.872 0.158

Complete Trial plain Xcode 0.853 0.101
Complete Trial Call Hierarchy 0.949 0.690
Complete Trial Stacksplorer 0.930 0.512
Complete Trial Blaze 0.899 0.284

Time to correct hypothesis
Task 1 plain Xcode 0.797 0.098
Task 1 Call Hierarchy 0.808 0.094
Task 1 Stacksplorer 0.932 0.596
Task 1 Blaze 0.924 0.556
Task 2 plain Xcode 0.908 0.474
Task 2 Call Hierarchy 0.850 0.122
Task 2 Stacksplorer 0.985 0.981
Task 2 Blaze 0.902 0.344

Complete Trial Call Hierarchy 0.957 0.762
Complete Trial Stacksplorer 0.923 0.552
Complete Trial Blaze 0.877 0.297

Table 3: The results of Shapiro-Wilk tests for the different conditions.

4 Comparing the Results from the Old and the New Study 85

Task df χ2 p
Time to hypothesis

Task 1 3 0.31 0.956
Task 2 3 1.24 0.743

Complete Trial 3 0.72 0.868
Time to correct hypothesis

Task 1 3 2.93 0.402
Task 2 3 4.96 0.175

Complete Trial 2 2.03 0.363

Table 4: The results of Bartlett’s tests to check the homogeneity of variances in the conditions of each
task.

Task degree of
freedom

(contrast/total)

F p

Time to hypothesis
Task 1 1/29 0.22 0.642
Task 2 1/28 0.89 0.354

Complete Trial 1/28 0.04 0.852
Time to correct hypothesis

Task 1 1/16 4.15 0.059
Task 2 1/21 1.09 0.309

Complete Trial not compared due to sample
size differences

Table 5: The results of a one-way planned contrast ANOVA comparing the time to (correct) hypothesis
of Xcode to those of the Call Hierarchy. Theses tests did not reveal a significant difference.

86 User Study Results

Task degree of
freedom

(contrast/total)

F p

Time to hypothesis
Task 1 1/29 0.02 0.895
Task 2 1/28 < 0.01 0.968

Complete Trial 1/28 0.02 0.896
Time to correct hypothesis

Task 1 1/16 0.17 0.688
Task 2 1/21 1.42 0.246

Complete Trial not compared due to sample
size differences

Table 6: The results of a one-way planned contrast ANOVA comparing the time to (correct) hypothesis
of our two research prototypes to each other. Theses tests did not reveal a significant difference.

87

User Study Material

5 User Interviews

These are the questions used during the first set of user interviews:

1. Was stellt die Ansicht an der Seite dar?

2. In welcher Beziehung stehen "-stream:handleEvent:" und "tryToReceiveData"?

3. In welcher Beziehung stehen "tryToReceiveData:" und "parser:didParseInfoPacket:"?

4. Wozu sind die Pfeile an der Seite der Methoden da?

5. Welche Methode wird angezeigt, wenn man auf den linken Pfeil bei "setInfoPacket:"
klickt? In welcher Beziehung steht diese zu "setInfoPacket" und wovon hängt ab
,welche Methode angezeigt wird, wenn man auf den Pfeil klickt?

6. Warum ist der rechte Pfeil bei "parser:didParserInfoPacket:" ausgegraut?

7. Warum ist "tryToReceiveData" grau und hat keine Pfeile?

8. Was bedeuten die kleinen Zahlen in den Pfeilen?

9. Du möchtest nun gerne zu der Stelle im Code springen, an der eine bestimmte
Methode implementiert wird. Was würdest du tun?

10. Du würdest nun gerne eine Übersicht über alle Alternativen zu einer Meth-
ode bekommen. Was würdest du tun? Was würdest du erwarten, dass dann
passiert?

11. Was nimmst du an, dass passiert, wenn du auf eine der Methoden in der Seite-
nansicht klickst?

12. Was nimmst du an, dass passiert, wenn du auf den Bereich zwischen den Meth-
oden (den Balken selbst oder daneben) klickst?

13. Wenn du auf den Balken zwischen den Methoden klickst, erscheint ein Menü mit
der Übersicht der alternativen Methoden. Wonach sollte das Menü zur Anzeige

88 User Study Material

der alternativen Methoden sortiert sein? Aufrufreihenfolge? Alphabet? Klassen
und dann Alphabet? Etwas anderes?

And for the recursion visualization:

1. Was bedeutet das Symbol unten an der 777?

2. Was bedeutet das Symbol unten an der 222?

3. Probiere nun selbst etwas damit herum. Nun stelle bitte den Stack 999, 111, 333F,
666, 111, 555, yyy, 555, yyy, 555, xxx ein.

4. Nun stelle bitte den Stack 999, 111, 333F, 666, 111, 222, 444, 000, 222, 444, 000, 222
ein.

5. Nun stelle bitte den Stack 999, 111, 333, 666, 111, 333F, 666, 777 ein.

6. Nun sieh dir bitte den unterliegenden Call-Graphen an und probiere noch ein-
mal ein wenig mit dem Stack herum. Erscheint dir die Darstellung und das
Verhalten des Stacks sinnvoll und konsistent?

5 User Interviews 89

Questions for new prototype These questions were used for the changed proto-
type:

1. Was stellt die Ansicht an der Seite dar?

2. In welcher Beziehung stehen "-stream:handleEvent:" und "tryToReceiveData"?

3. In welcher Beziehung stehen "tryToReceiveData:" und "parser:didParseInfoPacket:"?

4. Wozu sind die Pfeile an der Seite der Methoden da?

5. Welche Methode wird angezeigt wenn man auf den linken Pfeil bei "setInfoPacket:"
klickt? In welcher Beziehung steht diese zu "setInfoPacket" und wovon hängt ab
welche Methode angezeigt wird, wenn man auf den Pfeil klickt?

6. Warum ist der rechte Pfeil bei "parser:didParserInfoPacket:" ausgegraut?

7. Warum ist "tryToReceiveData" grau und hat keine Pfeile?

8. Was bedeuten die Gruppen von Ovalen am unteren bzw. oberen Rand der Zelle

9. Wozu sind die Balken zwischen den einzelnen Zellen da? Was bedeuten sie?

10. Warum sieht tryToReceiveData anders aus als die anderen Methoden und hat
keine Pfeile?

11. Was bedeuten die drei Striche an der Seite von tryToReceiveData?

12. Du möchtest nun gerne zu der Stelle im Code springen an der eine bestimmte
Methode implementiert wird. Was würdest du tun?

13. Du würdest nun gerne eine Übersicht über alle Alternativen zu einer Meth-
ode bekommen. Was würdest du tun? Was würdest du erwarten, dass dann
passiert?

14. Was nimmst du an, dass passiert, wenn du auf eine der Methoden in der Seite-
nansicht klickst? (Ändert sich die Fokusmethode?)

15. Was nimmst du an, dass passiert, wenn du auf die Balken zwischen den Metho-
den klickst?

16. Wenn du auf den Balken zwischen den Methoden klickst, erscheint ein Menü
mit der Übersicht der alternativen Methoden. Erscheint dir das sinnvoll?

17. Wonach sollte das Menü zur Anzeige der alternativen Methoden sortiert sein?
Aufrufreihenfolge? Alphabet? Klassen und dann Alphabet? Etwas anderes?

90 User Study Material

18. *klick auf setInfoPacket:* Welche Bedeutung haben in dieser Ansicht nun try-
ToReceiveData und setInfoPacket:? Welche Rolle spielen sie?

19. Ich scrolle jetzt ein wenig im Stack. *klick auf tryToReceiveData und unteren
Teil der Scrollbar um einen Stack mit Auslassungen zu bekommen* Schau dir
die Zelle unter tryToReceiveData an. Was bedeutet sie? Welche Information
kannst du entnehmen?

20. Weitere Kommentare?

6 Evaluation 91

6 Evaluation

6.1 Study Setup

Task 1 For a (hypothetical) trial version of Bibdesk, you want to add a limitation.
This should add “TRIAL” in front of every paper’s file name when using the “Aut-
ofile” feature. Where would you implement this change?

Hint: The BDSKLinkedFile class is used to represent linked files.

Task 2 One of your colleagues suggests implementing the change from 1 by adapt-
ing the parseFormat:forField:linkedFile:ofItem:suggestion: method in the BDSKFor-
matParser class. Which effects would this have in the UI?

Hint: The Autofile feature operates mainly in the background. The only part of the UI
that is dedicated to the Autofile feature is the associated preference screen.

Post-Session Questionnaire

Strongly
Disagree

Strongly
Agree

1. I think that I would like to use this
system frequently

2. I found the system unnecessarily
complex

3. I thought the system was easy to use

4. I think that I would need the support
of a technical person to be able to
use this system

5. I found the various functions in this
system were well integrated

6. I thought there was too much
inconsistency in this system

7. I would imagine that most people
would learn to use this system very
quickly

8. I found the system very awkward to
use

9. I felt very confident using the system

10. I needed to learn a lot of things
before I could get going with this
system

11. I found understanding the source
code easy using Stacksplorer

12. I do not think Stacksplorer has
benefits for code understanding
compared to Xcode

13. I think navigation in source code is
faster when using Stacksplorer
(compared to vanilla Xcode)

14. I found navigation using Stacksplorer
awkward

15. When using Stacksplorer I had a
better idea of where I am in the
source code compared to using plain
Xcode

16. I often felt lost in the source code
when using Stacksplorer

Participant ID:

93

Index

LATEX . 40

adjacency diagram . 10
affordance . 23
anchor point . 5–6, 36, 67
ANOVA . 51–53, 55–57, 85
ANOVA assumptions . 55–56

Bartlett’s test . 56, 85
BibDesk . 40, 42
Blaze xi, xiii, 2–4, 11, 13, 19, 20, 33, 35–42, 45–52, 54, 55, 59–70, 78–80, 83, 84

call graph . 1–2, 10, 12–15, 17, 19, 20, 26, 37, 38, 53, 54, 63, 67–70
Call Hierarchy xi, xiii, 4, 13, 35, 37–46, 48–51, 53–57, 59–66, 68, 71, 81, 83–85
callee view . 37, 38, 64
caller view . 37, 38, 64
CallStax . 15–17, 72
Cocoa . 42
Code Bubbles . 9
Cohen’s d . see effect size
combination lock metaphor . see combination lock view
combination lock view. .19–25, 27, 29, 67

DAG . see Directed Acyclic Graph
degree of interest . 70
delocalization . 8
dependency direction . 24
direct recursion . 27
direct recursive . 25, 26, 28
Directed Acyclic Graph . 10
Discussion . 50–51, 58–59, 62–63
downstream . 2, 18, 64

Eclipse. .7, 12, 37–39, 41, 43, 68
effect size . 49, 50
evaluation . 39–66

Fisher’s Exact Test . 47, 83
Fisher’s Exact test .53, 54
fisheye view . 11–12

94 Index

focus method . 3, 14, 15, 19–21, 23, 24, 27–32, 36, 67
focus point . 11
future work. .68–72

Gestalt Law of Closure . 25
Gestalt Law of Proximity . 25, 32
Gestalt Law of Similarity . 32
Gestalt Laws. .25, 32
Graphical User Interface . 35, 40, 44
GUI . see Graphical User Interface

hierarchy browser . see tree visualization
homogeneity of variances . 56

IDE . see Integrated Development Environment
indented list . 10–13, 37, 64
indirect recursive . 25, 26, 28
information foraging theory . 5–7
information scent . 5–7, 20, 36
Integrated Development Environment . 9, 12–13, 37, 41, 67
IntelliJ . 12
iOS . 41

Kolmogorov-Smirnov test . 48, 55

Learnability . 59–61
logical frame . 15

Mac . see Mac OS X
Mac OS X . 41
maintenance . 1, 45, 46, 68
Mann-Whitney’s U test . 48
matrix representation . 10, 11
may-recursive . 26, 28
Microsoft Visual Studio . 12

nested diagram . 10, 11
NetBeans . 12
node-link diagram . 10, 11
non-recursive . 26

Objective-C . 41, 68
only-recursive . 26, 28

planned contrast ANOVA . 51, 52, 57, 85
Postsession Questionnaire . 43
prey. .7

reachability question . 2, 17
REACHER . 17–18
recommender system . 70

Index 95

recursion . 10, 22, 25–28
recursive . 25, 26

Shapiro-Wilk test . 47, 48, 55, 83, 84
Silverback. .43
Stacksplorer xi, xiii, 2–4, 13–15, 17, 19–22, 25, 35–40, 43–45, 51, 52, 54, 55, 59–63, 65, 67, 68,
78–80, 84
starting point .see anchor point
SUS . see System Usability Scale
System Usability Scale . 43, 59–61, 63, 68

t-test .47–50
task success rate . 47, 53–54
time to correct hypothesis . 45, 47, 49–50, 55–58, 83, 85
time to hypothesis . 45, 47–50, 54, 55, 57, 58, 83, 85
tree view . see indented list
tree visualization . 10–11

upstream . 2, 17, 64
Usability . 59–61

Xcode . 9, 37–39, 41, 42, 44, 45, 51, 53–57, 63, 68, 85

Typeset September 29, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Motivation
	Chapter Overview

	Background
	Information Foraging Theory
	Programmers Look for an Anchor Point to Start Exploration
	Information Scent

	Other

	Related work
	Graph and Tree Visualizations in General
	Basic Tree Visualization
	Fisheye Views

	Call Graph and Control Flow Graph visualization
	Current IDEs
	Research

	Design
	Basic Idea
	First complete design
	Visualization and Navigation
	Handling recursion

	User Interviews
	Study Design
	Results

	Software Prototypes
	Blaze
	Call Hierarchy
	Backend

	Evaluation
	Experimental Setup
	Conditions and Tasks
	Participants
	Methodology
	Postsession Questionnaire
	Differences Between the Two Studies

	Quantitative Results
	Results of the New Study
	Comparing the Results of the Old and the New Study

	Qualitative Results
	Postsession Questionnaire
	Additional Post-Session Questionnaire Questions
	Observations and User Comments

	Improvements to Blaze

	Summary and Future Work
	Summary and Contributions
	Future Work
	Blaze Improvements
	Open Research Questions

	Bibliography
	Other Pictures and Diagrams
	Related Work
	Design

	User Study Results
	New Study
	Comparing the Results from the Old and the New Study

	User Study Material
	User Interviews
	Evaluation
	Study Setup

	Index

