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IN-APP PURCHASE



What I will cover today

* Introduction

* Proccess of implementing In-App Purchase
* StoreKit Framework

* Business & Tips



With In-App Purchase you can...

* ... embed a store directly to your application
* It uses the Storekit Framework.
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In-App Purchase Types

Non-Consumable

Consumable

*  Auto-renewable subscription

*  Free subscription

*  Non-renewable subscription
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Implementing In-App Purchase
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Products

* Supported types:
«  Content
Functionality
Services
Subscriptions
* Each product has a unique productldentifier.

* No real-world goods!



ITunes Connect Setup

*  Setup your Products
* Create a Test User
One per country

*  Sign out of your Store Settings

Don‘t enter your Test User‘s Ids in the Settings



Store Kit Framework

Validate In-App Purchase Access

Retrieving product information

Show the Store Interface

Make the purchase

Process Transaction

Make the feature avaible

Finish Transaction

Verify the receipts

Restore previous Purchases




Validate In-App Purchase Acces

 Validate In-App Purchase Acces
Payment Queue class method canMakePurchase



Determine sellable products

Load Product IDs
Use SKProductsRequest to determine the sellable subset of the IDs

NSSet* products = [NSSet setWithObject: @ productiD1”, @“productiD2°, nil];

SKProductsRequest *request= [[SKProductsRequest alloc]
initWithProductldentifiers: products];

[productRequest start];

(void)productsRequest:(SKProductsRequest *)request didReceiveResponse:
(SKProductsResponse *)response {

response.invalidProductsldentifiers == nonsellable;
response.products == sellable;



Show Store

UlTableView Power?

(void)productsRequest:(SKProductsRequest *)request didReceiveResponse:
(SKProductsResponse *)response {

for(SKProducts™ aProduct in response.products)
cell.textLabel.text = aProduct.localizedTitle;
cell.textLabel.description = aProduct.localizedDescription;
cell.textLabel.extra = aProduct.price;



Request payment

*  SKPayment Class
*  Create payment object
* Add it to the queue
*  Observe the payment queue

SKPayment *payRequest = [SKPayment paymentWithObject:selected];
[[SKPaymentQueue defaultQueue] addPayment:payRequest];

- (void)addTransactionObserver:(id <SKPaymentTransactionObserver>) observer



Complete Transaction

* updatedTransaction method
SKPaymentTransactionStatePurchased = Succes
SKPaymentTransactionStateRestored = Succes

* finishTransaction method

-(void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray *)
transactions {

if (atransaction.transactionState == SKPaymentTransactionStatePurchased ) {
//Unlock content
[queue finishTransaction:aTransaction]; }



Collecting Payments

Store Kit
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Feature Delivery

Self contained

Downloadable



Downloadable Content
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In-App Content
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Remember Product Purchase

* Use NSUserDefaults class and preference file
° unsecure, easy to ,hack”.
*  saves to Application Support directory

* Use Keychain API

Secure
Saved to app Keychain Slice

[[NSUserDefaults standartUserDefaults] setObject:bought forKey:@“boughtltems®];

SecltemAdd ((CFDictionaryRef) boughtltems, NULL);



Verify Product Purchase




Verify Product Purchase
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Verify Product Purchase

 Send JSON object with encoded transaction receipt
{“receipt - data“ : “7b4187e54587ert27e2‘)

* Post to iTunes verification service

* Geta JSON object
{*status”: 0, “receipt*: {... }}
0 == Succes,
everything else == BAD PIRATES AT WORK


http://buy.itunes.apple.com/verifyReceipt
http://buy.itunes.apple.com/verifyReceipt
http://sandbox.itunes.apple.com/verifyReceipt
http://sandbox.itunes.apple.com/verifyReceipt

Restore Previous Purchases
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Business Model

*  Which Model to choose?
*  What to content sell?

« Game

* Everything else

Extra Levels
Social content
In-game Currency

Optional Content
Money for time/Time




Tips

Product Ids are unique across apps!

Built Store with sellable products only!

Use MBBase64 category from the CocoaDev website
Auto-renewing Subscription only for apps with dynamic content.
Only show the button when Internet Connection is avaible.

To test In-App Purchase you must add the Binary - Reject it!
After you added your Products, wait a bit!

MKStoreKit: Open Source helper.



ONE LAST THING



Storefront

2009.07-30 21:50:41
Urban Airship No... -
S0. Urban Airship Consumable
Holy cow this is the coole...

Test S 2009-07-30 21:5024
Description of test Sl , .‘gc ' Something Else v

Free Content

@ Urban Airship Co...
$0.99 >
Consume this! Yummy.

g Something Else

o | There are many variation...

$1.9¢




StorefFront

Works via JSON to display Content, Downloads, Updates.
Allows to sell free content.

No additional server costs/bandwidth.

Restoring Auto-renewable Subscriptions - YAY






THANKS!



Links

Receipt validation: http://bit.ly/zZMuTKk, http://bit.ly/we2Pt0 & http://bit.ly/ABO9Sv

Apple: http://bit.ly/xy7aGV, http://bit.ly/wyLec6 & http://bit.ly/weMm3p
MKStoreKit: https://github.com/MugunthKumar/MKStoreKit

StoreFront; http://urbanairship.com/docs/inapp client.html
Dr. Touch's Purchase Button: htip://bit.ly/zxGicY
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