Presented by Max Stottrop

IN-APP PURCHASE

What I will cover today

* Introduction

* Proccess of implementing In-App Purchase
* StoreKit Framework

* Business & Tips

With In-App Purchase you can...

* ... embed a store directly to your application
* It uses the Storekit Framework.

>~ 21:49 -l b O 87% -

Cancel Subscribe

Search the full content of all articles in
your Instapaper account, including all

folders and vour complete online

¥ | <3 Analog

Get 9 magical new effects for one

incredible price, With the | ¢ Analog
. .- . s
$~)-99 f()l .‘; nl(nlthh FX Pack, you can take your photos
Applies to all devices using this back to the d when film, emulsions,

Archive, with a Search Subscription:

Instapaper account and darkrooms were King

After vou subscribe, there will be a brief
delay before all of vour articles are

scarchable as Instapaper indexes them

This is usually done within a few hours

In-App Purchase Types

Non-Consumable

Consumable

* Auto-renewable subscription

* Free subscription

* Non-renewable subscription

Walkthrough

Create
Products

Fetch
Products

Purchase
Products

Restore
Products

Implementing In-App Purchase

Determine
Product
Offerings

Setup
Products in
iTunes
Connect

Sell
Products
with
StoreKit

Verify
Product
Receipts

Restore
previous
Purchases

Products

* Supported types:
« Content
Functionality
Services
Subscriptions
* Each product has a unique productldentifier.

* No real-world goods!

ITunes Connect Setup

* Setup your Products
* Create a Test User
One per country

* Sign out of your Store Settings

Don‘t enter your Test User‘s Ids in the Settings

Store Kit Framework

Validate In-App Purchase Access

Retrieving product information

Show the Store Interface

Make the purchase

Process Transaction

Make the feature avaible

Finish Transaction

Verify the receipts

Restore previous Purchases

Validate In-App Purchase Acces

 Validate In-App Purchase Acces
Payment Queue class method canMakePurchase

Determine sellable products

Load Product IDs
Use SKProductsRequest to determine the sellable subset of the IDs

NSSet* products = [NSSet setWithObject: @ productiD1”, @“productiD2°, nil];

SKProductsRequest *request= [[SKProductsRequest alloc]
initWithProductldentifiers: products];

[productRequest start];

(void)productsRequest:(SKProductsRequest *)request didReceiveResponse:
(SKProductsResponse *)response {

response.invalidProductsldentifiers == nonsellable;
response.products == sellable;

Show Store

UlTableView Power?

(void)productsRequest:(SKProductsRequest *)request didReceiveResponse:
(SKProductsResponse *)response {

for(SKProducts™ aProduct in response.products)
cell.textLabel.text = aProduct.localizedTitle;
cell.textLabel.description = aProduct.localizedDescription;
cell.textLabel.extra = aProduct.price;

Request payment

* SKPayment Class
* Create payment object
* Add it to the queue
* Observe the payment queue

SKPayment *payRequest = [SKPayment paymentWithObject:selected];
[[SKPaymentQueue defaultQueue] addPayment:payRequest];

- (void)addTransactionObserver:(id <SKPaymentTransactionObserver>) observer

Complete Transaction

* updatedTransaction method
SKPaymentTransactionStatePurchased = Succes
SKPaymentTransactionStateRestored = Succes

* finishTransaction method

-(void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray *)
transactions {

if (atransaction.transactionState == SKPaymentTransactionStatePurchased) {
//Unlock content
[queue finishTransaction:aTransaction]; }

Collecting Payments

Store Kit

€©) 2ddPayment:

SKPaymentQueue

(3
SKPaymentQueue

o paymentQueue:updatedTransactions: SKPaymentTransaction

'SKPaymentTransactionObserver | . SKPayment
[——— Product Identifier ! 'SNOVG—

Examine all completed purchases Quantity |

and deliver purchased items
SKPaymentTransaction

SKPayment
O finishTransaction: }onducl Iden:me': “Shield” |
Ouarm- 1)

SKPaymentTransaction

' SKPayment \
Product Identifier | “Spear” |
el —————————

(Quantity

Feature Delivery

Self contained

Downloadable

Downloadable Content

Fetch
Products
from Apple

User sends
payment
request to

Apple

Apple
returns
receipts

iPhone

sends
receipt to

server

Server
verifies
receipt.

Apple
sends
product

In-App Content

e

Embed content
In your
application.

~\

User purchases)
content and
Apple verifies

payment.

\ J

_

Application
unlocks
functionality.

Remember Product Purchase

* Use NSUserDefaults class and preference file
° unsecure, easy to ,hack”.
* saves to Application Support directory

* Use Keychain API

Secure
Saved to app Keychain Slice

[[NSUserDefaults standartUserDefaults] setObject:bought forKey:@“boughtltems®];

SecltemAdd ((CFDictionaryRef) boughtltems, NULL);

Verify Product Purchase

Verify Product Purchase

Check
Transaction
receipt

Post Base64
encoded
transaction
to the server

Server
EHES
transaction

App unlocks
content

Verify Product Purchase

 Send JSON object with encoded transaction receipt
{“receipt - data“ : “7b4187e54587ert27e2‘)

* Post to iTunes verification service

* Geta JSON object
{*status”: 0, “receipt*: {... }}
0 == Succes,
everything else == BAD PIRATES AT WORK

http://buy.itunes.apple.com/verifyReceipt
http://buy.itunes.apple.com/verifyReceipt
http://sandbox.itunes.apple.com/verifyReceipt
http://sandbox.itunes.apple.com/verifyReceipt

Restore Previous Purchases

Free Subscription, Auto-
Renewing Subscription, Non-
Consumable items

[[SKPaymentQueue
defaultQueue]
restoreCompletedTransactions]

Subscription & Consumable need

own mechanism

Customer
signs in .

Proccess
Succesfull
Payment

Menu
N Loum -
£ Grid -
® Geotagging [—

[§] AutoSave

@D Quality

@ Sharing

@) Info

7 Restore purchases
4)

,7Already
purchased”
Dialog

Business Model

* Which Model to choose?
* What to content sell?

« Game

* Everything else

Extra Levels
Social content
In-game Currency

Optional Content
Money for time/Time

Tips

Product Ids are unique across apps!

Built Store with sellable products only!

Use MBBase64 category from the CocoaDev website
Auto-renewing Subscription only for apps with dynamic content.
Only show the button when Internet Connection is avaible.

To test In-App Purchase you must add the Binary - Reject it!
After you added your Products, wait a bit!

MKStoreKit: Open Source helper.

ONE LAST THING

Storefront

2009.07-30 21:50:41
Urban Airship No... -
S0. Urban Airship Consumable
Holy cow this is the coole...

Test S 2009-07-30 21:5024
Description of test Sl , .‘gc ' Something Else v

Free Content

@ Urban Airship Co...
$0.99 >
Consume this! Yummy.

g Something Else

o | There are many variation...

$1.9¢

StorefFront

Works via JSON to display Content, Downloads, Updates.
Allows to sell free content.

No additional server costs/bandwidth.

Restoring Auto-renewable Subscriptions - YAY

THANKS!

Links

Receipt validation: http://bit.ly/zZMuTKk, http://bit.ly/we2Pt0 & http://bit.ly/ABO9Sv

Apple: http://bit.ly/xy7aGV, http://bit.ly/wyLec6 & http://bit.ly/weMm3p
MKStoreKit: https://github.com/MugunthKumar/MKStoreKit

StoreFront; http://urbanairship.com/docs/inapp client.html
Dr. Touch's Purchase Button: htip://bit.ly/zxGicY

http://bit.ly/zMuTKk
http://bit.ly/zMuTKk
http://bit.ly/zMuTKk
http://bit.ly/zMuTKk
http://bit.ly/we2Pt0
http://bit.ly/we2Pt0
http://bit.ly/we2Pt0
http://bit.ly/we2Pt0
http://bit.ly/AB09Sv
http://bit.ly/AB09Sv
http://bit.ly/AB09Sv
http://bit.ly/AB09Sv
http://bit.ly/xy7aGV
http://bit.ly/xy7aGV
http://bit.ly/xy7aGV
http://bit.ly/xy7aGV
http://bit.ly/wyLec6
http://bit.ly/wyLec6
http://bit.ly/wyLec6
http://bit.ly/wyLec6
http://bit.ly/wyLec6
http://bit.ly/wyLec6
http://bit.ly/weMm3p
http://bit.ly/weMm3p
http://bit.ly/weMm3p
http://bit.ly/weMm3p
https://github.com/MugunthKumar/MKStoreKit
https://github.com/MugunthKumar/MKStoreKit
https://github.com/MugunthKumar/MKStoreKit
https://github.com/MugunthKumar/MKStoreKit
http://urbanairship.com/docs/inapp_client.html
http://urbanairship.com/docs/inapp_client.html
http://urbanairship.com/docs/inapp_client.html
http://urbanairship.com/docs/inapp_client.html
http://bit.ly/zxGjcY
http://bit.ly/zxGjcY
http://bit.ly/zxGjcY
http://bit.ly/zxGjcY

