Review

• What are two measures of interface efficiency?
 • How do you calculate them?
• Given \(n \) alternatives with different probabilities \(p(i) \), what’s the formula to compute the information per alternative?
• What are gestures in KLM?
• What are the limitations of GOMS?
• Techniques for qualitative evaluation with users?
• What document should users sign before your study?

Back to BASICs

Print "Please enter a number"
INPUT n
Print "The square of",n,"is",n*n

• What are the problems with using such a notation to specify a dialog?

Why UI Specification Languages

• In normal programming languages, UI and algorithms are mixed up
• System and user decisions are hard to distinguish
• Error checking on inputs dominates and complicates code
• First step: bundling I/O in classes/procedures
• Second step: Use a more efficient, readable language to specify the dialog
 • A priori to design the dialog
 • As part of the implementation (executable spec.)
Specifying User Interfaces

• Problem: Describe the proposed design of a user interface
• Approach: natural/semi-formal/formal languages
• Many standard computer science techniques apply
• The more modern the UI, the harder to describe textually, depending on modality and UI style

Grammars

• Mostly BNF-like
 expr ::= empty
 | atom expr
 | '(' expr ')' expr

• E.g., Shneiderman's multiparty grammar
 <Session> ::= <U: Opening> <C: Responding>
 <U: Opening> ::= LOGIN <U: Name>
 <U: Name> ::= <U: string>
 <C: Responding> ::= HELLO [\<U: Name>]

• Great for command-line UIs, e.g., banking ATMs, Unix commands
• Less suitable for GUIs

Production Rules

• Unordered list of rules: if condition then action
 • Condition based on state or pending events
 • Every rule always potentially active
 • Good for concurrency
 • Bad for sequence

Grammars

• Regular expressions
 select-line click click* double-click

• E.g., Unix “copy” command synopsis:
 cp [-R [-H | -L | -P]] [-f | -i | -n] [-pv] source_file target_file
 cp [-R [-H | -L | -P]] [-f | -i | -n] [-pv] source_file ... target_dir

 recursion policies overwrite policies

• Short and precise, but hard to read, requires additional information about semantics
Event Based Production Rules

select-line → first
click first → rest
click rest → rest
double-click rest → < draw line >

• Note:
 • Events added to list of pending events
 • 'first' and 'rest' are internally generated events

• Bad at state!

Graph Notations: STNs

• State Transition Networks (STNs)
 • Most common tool to specify dialogs
 • Established format (since 1960s)

• Consisting of:
 • States (usually the system waiting for some user action)
 • Transitions (which have a user action and a system response associated with them)

• Describes sequences of user actions and system responses

Example: STN for Personal Orchestra Dialog
• Unconventional notation (agreed upon in the team)

Storyboard Meets STN

Game Storyboard

- Waiting people will be asked to move up to the front and take their positions on the indicated spots.
- Playing people will be presented with a welcome screen.

- Iconic illustrations will remind the player how to create buildings by their shadows.
- People will see their shadows while posing in front of the screens.

A countdown will indicate that shadows will be "frozen".
People will see the representation of their shadows as buildings.
Iconic illustrations will remind the player how to pose in order to have their shadows overlap and thus create a power line. People will see their shadows while posing in front of the screens.

A countdown will indicate that shadows will be "frozen". People will see their city block with the block number and the URL of the DuC Website.

People will see the animation of what will happen with their skyline.

People will see the trees that they created with different green colours while with leaves.

A countdown will indicate that shadows will be "frozen". People will see the representation of their shadows as trees.

People will see the representation of their shadows as trees.
Hierarchical STNs

- **Start** and **Finish** states serve to glue an STN for a subdialog (e.g., a certain menu selection) into a larger dialog (e.g., operating the application in general)
- Same expressive power as STNs, just more convenient
- The dialog structure of an entire system can be specified this way

Using STNs In Prototyping

- Create a simple STN for the dialogs envisioned
- Create one UI snapshot (sketch if paper prototype) per **state** (label it with the state name)
- Include offscreen area for annotations and to include extra buttons simulating user actions that do not correspond to simple clicks on the current screen
- When walking the user through your paper prototype, consult the STN to find out how to respond to each user action
- Alternative: Let the computer “execute” the STN to run the prototype
- Use tools such as HyperCard, PowerPoint, Keynote
- Demo: Drawing tool prototype in HyperCard
Theory
- Models of interaction
- Affordances, mappings, constraints, types of knowledge, errors
- Design principles
- Human cognition and performance
 ⇒ Interaction design notation
- History and vision of HCI

Practice
- Sketching
- User observation
- Iterative design
- Prototyping
- Ideation
 ⇒ User studies and evaluation

Evaluation Techniques

Evaluating Without Users
- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation (GOMS,...)

Evaluating With Users
- Qualitative
 - E5 Model Extraction
 - E6 Silent Observation
 - E7 Think Aloud
 - E8 Constructive Interaction
 - E9 Retrospective Testing
- Quantitative
 ⇒ Interviews, questionnaires,...
E10: Controlled Experiments

- Quantitative, empirical method
- Used to identify the cause of a situation or set of events
 “X is responsible for Y”
- Directly manipulate and control variables
- Correlation does not imply causality
 Example: relationship between typing speed and time spent playing games
- Use a controlled experiment to verify an observation, a correlation, or a “hunch”

Controlled Experiments: Steps

1. Formulate hypothesis
 Pie menu decreases seek time for menu items
2. Design experiment, pick variable and fixed parameters
 Type of menu ⇒ target seek time
3. Run a pilot study to debug your experimental procedures
 Improving distribution of menu targets

The examples are simplified from [Schneiderman et al., CHI’88]

Controlled Experiments

4. Recruit subjects
 Undergraduate students with little or no mouse experience
5. Run experiment
 Each participant perform menu selection 10 times for each type of menu
6. Interpret results to accept or reject hypothesis
 Mean seek time: 2.26 (Pie), 2.64 (Linear)
 The difference is statistically significant ($p = 0.003$)

The examples are simplified from [Schneiderman et al., CHI’88]
In-Class Exercise: Identifying Variables

- Identify independent variables and dependent variables from each of the following scenarios. Indicate levels of each independent variable:

1. A study investigating whether people who have attended a security training program generate and use more secure passwords than people who haven't received any security training.
2. A research team examining the effectiveness of joysticks and trackballs for selecting static and moving targets.
3. A research team examining whether virtual teams who use video instant messaging (IM) are more productive than teams who use text-only IM.

Examples from: Research Methods in HCI, Lazar et al. (2010)

In-Class Exercise: Identifying Hypotheses

- Identify a research hypothesis (H_1) and null hypothesis (H_0) for each of our scenarios:

1. A study investigating whether people who have attended a security training program generate and use more secure passwords than people who haven't received any security training.
2. A research team examining the effectiveness of joysticks and trackballs for selecting static and moving targets.
3. A research team examining whether virtual teams who use video instant messaging (IM) are more productive than teams who use text-only IM.

Examples from: Research Methods in HCI, Lazar et al. (2010)

Hypothesis

- Predicts outcome of experiment
- Usually: claims that changing independent variables influences dependent variables
- Experiment goal: confirm research hypothesis (H_1)
- “No amount of experimentation can ever prove me right; a single experiment can prove me wrong.”—Albert Einstein
- Approach: Reject inverse null hypothesis (H_0), i.e., “no influence”
- If we can determine that H_0 is wrong, we can accept that H_1 is true (naive view)
- H_0 is usually a precise statement ⇒ we'll know the probability that H_0 is incorrect

 E.g., “Average WPM between gaming and non-gaming groups are equal”
- The data should indicate that there is a very low probability that H_0 is correct
- Being unable to reject H_0 does not imply that you can accept H_0

 E.g., your number of participants may just have been too small

Basic Experimental Designs

- Between-groups design

 - Each subject only does one variant of the experiment

 - There are at least 2 groups to isolate effect of manipulation:
 - Treatment group and control group
 + No learning effects across variants
 1. Good for tasks that are simple and involve limited cognitive processes, e.g., tapping, dragging, or visual search
 2. But: requires more users

- Within-groups design

 - Each subject does all variants of the experiment

 + Fewer users required, individual differences canceled out
 1. Good for complex tasks, e.g., typing, reading, composition, problem solving
 2. But: learning effects may occur
In-Class Exercise: Experimental Designs

• Which type of experimental design is appropriate for each scenario?
 1. A study investigating whether people who have attended a security training program generate and use more secure passwords than people who haven’t received any security training.
 2. A research team examining the effectiveness of joysticks and trackballs for selecting static and moving targets.
 3. A research team examining whether virtual teams who use video instant messaging (IM) are more productive than teams who use text-only IM.

Examples from: Research Methods in HCI, Lazar et al. (2010)

Within-Group Design: Order Effect

• The order of presenting the treatments (IV levels) might affect the dependent variable
 • Learning effect
 • Fatigue effect
 • Contrast effect: the effect of the first treatment carries over to influence the response to the second treatment

• Solutions
 • Rest period between treatments
 • Counterbalancing: all possible orders of treatments are included — but: O(n!)
 • Latin Square: A limited set of orders, O(n)

Latin Square

• Each condition appears at each ordinal position
• Each condition precedes and follows each condition one time
• Example: six treatments: A, B, C, D, E, F

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>E</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>F</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>

Randomization

• Randomly assign treatment to participants
• Prevents systematic bias
• But: randomization ≠ counterbalancing
 • With small numbers, randomization might not cover all combinations
Analyzing Results

More detail: next lecture

- Do statistical analysis using well-defined test methods
 - E.g., Student's t-test, ANOVA (analysis of variance), regression analysis, Wilcoxon- or Mann/Whitney test, χ^2 test

- Choice depends on number, continuity, and assumed distribution of variables, and the desired form of the result
 - Results can be simple "yes/no", size of difference, or confidence of estimate

Making Your Evaluation
Valid and Reliable

- Validity: How accurate is your result?
- Reliability: How consistent or stable is your result?

- These apply to all evaluations — not just controlled experiments

Validity

- Construct validity: Were variables defined concretely enough to be manipulated or measured?
 - \(\times \) Speed
 - \(\checkmark \) Time since the cursor leaves the start until it reaches the target

- Internal validity: Is the causal inference logical? How strong is it?
 - Usually higher in experimental methods than descriptive or correlational methods

- External validity: Can the result be generalized to other populations and settings?
 - Evaluations in the lab usually have lower external validity than those in the field

- Conclusion validity: Were the conclusions from the data reasonable?
 - Is the result significant enough to say that there is a relationship between variables (without concerning causality)?

Reliability

- Can the experiment be replicated by other research teams in other locations and yield results that are consistent, dependable, and stable?

- Does the experimental procedure clearly described in the paper or the report?

- Other causes of fluctuation
 - Random errors: cannot be eliminated — testing with more samples can help
 - Systematic errors: push the measured value into the same direction, caused by:
 - Measurement instruments
 - Experimental procedures: not randomized, not counterbalanced, instructions are biased
 - Participants: the recruitment process may filter participants unevenly
 - Experimenter behavior: bias in spoken language during experiment
 - Environmental factors: physical environment might favor one treatment over others
Evaluation Techniques

Evaluating Without Users
- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation (GOMS,...)

Evaluating With Users
- E5 Model Extraction
- E6 Silent Observation
- E7 Think Aloud
- E8 Constructive Interaction
- E9 Retrospective Testing

Qualitative
- E5 Model Extraction
- E6 Silent Observation
- E7 Think Aloud
- E8 Constructive Interaction
- E9 Retrospective Testing

Quantitative
- E10 Controlled Experiments

Recommended reading for more details about evaluation methods — especially if you are going to do your thesis at our chair!