Review

• What are the main components of the CMN Model?
 • What are the key numbers from the CMN Model?

• What is Fitts’ Law?

• Why evaluate?

• Lab vs. field studies?

• Participatory Design?

• Techniques to evaluate without users?
 • Literature review
 • Cognitive walkthrough
 • Heuristic evaluation
 • Model-based evaluation

Evaluation Techniques

Evaluating Without Users

E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction
E6 Silent Observation
E7 Think Aloud
E8 Constructive Interaction
E9 Retrospective Testing

Quantitative

E10 Controlled Experiments

A Story

• In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun's home page was a good idea.

 Check out his “Alertbox” online column for good (and often fun) web design advice

• He found that each new, but unused button costs visitors $0.5 million per year.

• 2 of the 3 new buttons were taken back out.

• The method he used for his estimate: GOMS.
GOMS

- Goals, Operators, Methods, Selection rules
- Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built

E4: Model-based Evaluation

- Some models exist that offer a framework for design and evaluation
- Examples:
 - Information efficiency
 - GOMS KLM, GOMS
- Design Rationale (History of design decisions with reasons and alternatives)
- Design Patterns

Measuring Interface Efficiency

- How fast can you expect an interface to be?
- Information as quantification of amount of data conveyed by a communication (Information theory)
 - E.g., speech, messages sent upon click...
- Lower bound on amount of information required for task is independent of interface design
- Information-theoretic efficiency \(E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}} \) \(E \in [0, 1] \) (e.g., \(E = 0 \) for providing unnecessary information)
- Character efficiency = \(\frac{\text{Minimal number of characters required for the task}}{\text{Number of characters entered in the UI}} \)
Information Content (Detailed)

- Information is measured in bits
 - 1 bit represents choice between 2 alternatives

- n equally likely alternatives
 - Total information amount: $\log_2(n)$
 - Information per alternative: $(1/n)\log_2(n)$

- n alternatives with different probabilities $p(i)$
 - Information per alternative: $p(i)\log_2(1/p(i))$
 - Total amount = sum over all alternatives

- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information ≠ meaning)

Example: NRW Area Code

- Four digits
 - First digit: 0
 - Second digit: 2 (70%), 5 (30%)
 - Third, Fourth digits: [0, 9] with equal probability

- E.g., 0241 for Aachen, 0525 for Paderborn

- What is the minimal information content of NRW landline area code?
 - Information per alternative: $p(i)\log_2(1/p(i))$

- Minimal information required: 7 bits

- What is the information content of the shown numeric keyboard for 4 digits?

<table>
<thead>
<tr>
<th>Probability</th>
<th>Values</th>
<th>$p(i)$</th>
<th>$p(i)\log_2(1/p(i))$ (bits/alternative)</th>
<th>Total bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>02XX</td>
<td>0.7</td>
<td>0.7/100 = 0.007</td>
<td>0.007 $\times \log_2(1/0.007)$ = 0.05</td>
<td>100 $\times 0.05 = 5$</td>
</tr>
<tr>
<td>05XX</td>
<td>0.3</td>
<td>0.3/100 = 0.003</td>
<td>0.003 $\times \log_2(1/0.003)$ = 0.02</td>
<td>100 $\times 0.02 = 2$</td>
</tr>
</tbody>
</table>

- What is the information-theoretic efficiency when you use this keyboard for NRW area code?
 - $E =$ Minimal info required for the task
 - $\frac{\text{Info supplied by user}}{\text{Alternatives}} = \frac{7}{13.29} = 52.67\%$

Information content = $4 \log_2(10) = 13.29$ bits
Example: NRW Area Code

- Minimal information required: 7 bits
- What is the information content of the shown numeric keyboard for 3 digits (because the first digit is always zero)?

<table>
<thead>
<tr>
<th>Alternatives:</th>
<th>[0.9]</th>
<th>[0.9]</th>
<th>[0.9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts:</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Information content = \(4 \log_2(10) = 9.97\) bits

- What is the information-theoretic efficiency when you use this keyboard for NRW area code?

\[E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}} = \frac{7}{9.97} = 70.21\% \quad \text{Saved 17.54\%!} \]

Keystroke-Level Model

- Execution time for a task = sum of times required to perform the serial elementary gestures of the task

- Typical gesture timings
 - Keying \(K = 0.2\) sec (tap key on keyboard, includes immediate corrections)
 - Pointing \(P = 1.1\) sec (point to a position on display)
 - Homing \(H = 0.4\) sec (move hand from keyboard to mouse or v.v.)
 - Mentally preparing \(M = 1.35\) sec (prepare for next step, routine thinking)
 - Responding \(R\) (time a user waits for the system to respond to input)

- Responding time \(R\) effects user actions
 - Causality breakdown after 100 ms
 - User will try again after 250 ms \(\Rightarrow R\)
 - Give feedback that input received & recognized

Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter

- Compute mental preparation times \(M_s\)
 - Difficult user stops to perform unconscious mental operations
 - Placing of Ms described by rules

- Add gesture timings
 - E.g., HMPK = \(H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05\) sec

- Rule terminology
 - String: sequence of characters
 - Delimiter: character marking beginning (end) of meaningful unit
 - Operators: \(K, P, H\)
 - Argument: information supplied to a command
Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands

- Rule 1, deletion of anticipated Ms
 - Delete M between two operators if the second operator is fully anticipated in the previous one
 E.g., PMK ⇒ PK

- Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first
 E.g., "lsMKMKMKMK⇒M3KMKMKMK⇒M3KMKK

- Rule 3, deletion of Ms before consecutive terminators
 - If K is redundant delimiter at end of a cognitive unit, delete the M in front of it,
 E.g., "blaMKMKMK⇒M3KMKMKMK⇒M3KMKK

- Rule 4, deletion of Ms that are terminators of commands
 - If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)
 E.g., "lsMKMKMKMK⇒M3KMKMKMK⇒M3KMKK

- Rule 5, deletion of overlapped Ms
 - Do not count any M that overlaps an R
 E.g., user waiting for computer response

Exercise: Temperature Converter

- Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed
- Use keyboard or mouse to enter temperature
- Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

- Task: create and analyze your own interface!

The Dialog Box Solution with Radio Buttons…
...and Its Keystroke-level Model

- Case 1: select conversion direction
 - Move hand to mouse, point to desired button, click on radio button (HPK)
 - Move hands back to keyboard, type four characters, tap enter (HPKHKKKKK)
 - Rule 0 (HMPKMHKMWMKMKMKK)
 - Rule 1, 2, 4 (HMPPKMKKKMWMKMKK)
 - Estimated time = 7.15 sec

- Case 2: correct conversion direction already selected
 - MKKKKM = 3.7 sec

- Average time = \((7.15 + 3.7) / 2 = 5.4\) sec

Example: Temperature Converter

- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - 10% integer, 90% decimal
 - All digits are equally likely
 - Only four characters input

Example: Temperature Converter

- Keystroke efficiency
 - Type C or F, value, enter: MKKKKM KK K K = 3.9 sec (char. eff. 67 %)
 - Type value, then C or F: MKKKKM KK K = 3.7 sec (char. eff. 80 %)
 - Bifurcated: MKKKK K K = 2.15 sec (char. eff. 100 %)

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Prob.</th>
<th>Values</th>
<th>p(i)</th>
<th>Information in bits</th>
<th>Overall (values x information in bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.dd</td>
<td>12.5%</td>
<td>100</td>
<td>0.00125</td>
<td>0.012</td>
<td>1.2</td>
</tr>
<tr>
<td>-.d.</td>
<td>12.5%</td>
<td>100</td>
<td>0.00125</td>
<td>0.012</td>
<td>1.2</td>
</tr>
<tr>
<td>.dd</td>
<td>25%</td>
<td>1000</td>
<td>0.000025</td>
<td>0.003</td>
<td>3</td>
</tr>
<tr>
<td>d.dd</td>
<td>25%</td>
<td>1000</td>
<td>0.000025</td>
<td>0.003</td>
<td>3</td>
</tr>
<tr>
<td>dd.d</td>
<td>25%</td>
<td>1000</td>
<td>0.000025</td>
<td>0.003</td>
<td>3</td>
</tr>
</tbody>
</table>

⇒ Minimal info required for the task = 11.4 bits/message
⇒ Simple approach: \(4 \log_2(12) \approx 14\) bits
Example:
Temperature Converter

- Information efficiency: \(E = \frac{11.4}{\text{Info supplied by user}} \)
 - 128 keys standard keyboard (5 bits/key): \(E = \frac{11.4}{4 \times 5} \approx 55\% \)
 - 16 keys numeric keypad: \(E = \frac{11.4}{4 \times 4} \approx 70\% \)
 - 12 keys dedicated keypad: \(E = \frac{11.4}{4 \times 3.5} \approx 80\% \)

GOMS: Components

- **Goals** describe user's end goals
 - Routine tasks, not too creative/problem-solving
 - E.g., “copyedit manuscript”
 - Leads to hierarchy of subgoals

- **Operators** are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, …
 - Assign context-independent duration (in ms)

- **Methods** are “procedures” to reach a goal
 - Consist of subgoals and/or operators

- **Selection rules**
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)

Sample Method and Operators

GOAL: HIGHLIGHT-ARBITRARY-TEXT
1. MOVE-CURSOR-TO-BEGINNING 1.10s
2. CLICK-MOUSE-BUTTON 0.20s
3. MOVE-CURSOR-TO-END 1.10s
4. SHIFT-CLICK-MOUSE-BUTTON 0.48s
5. VERIFY-HIGHLIGHT 1.35s
GOMS Results

- Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
- Can be linked to other costs (purchase, change, update system), resulting in $$$ answers
- Use to model alternative system offers
 E.g., “new NYNEX computers cost $2M/year more” [Gray93]
- Estimate effects of redesign
 - Training cost vs. long-term work time savings
- Starting point for task-oriented documentation
 - Online help, tutorials, …
- Don’t use for casual users or new UI techniques
 - Operator times not well defined

Variants of GOMS

- **GOMS** (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design
- **Keystroke-level GOMS model** (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs
- **NGOMSL** (natural GOMSL)
 - Considers non-expert behavior (e.g., learning times)
- **CPM-GOMS** (critical path method)
 - Computes more accurate absolute times
 - Considers overlapping time dependencies

CPM-GOMS Example (Excerpt)

![CPM-GOMS Example Diagram](image)
CogTool

- UI prototyping tool with predictive human performance model
- Create different storyboards
- Demonstrate tasks on the storyboards
- Produce cognitive model
- Available for free, Java
- http://cogtool.hcii.cs.cmu.edu/

CogTool: Defining hit zones for the UI

CogTool: Record interactions

CogTool: Visualize interactions in a timeline
Evaluating Techniques

Evaluating Without Users

E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction
E6 Silent Observation
E7 Think Aloud
E8 Constructive Interaction
E9 Retrospective Testing

Quantitative

E10 Controlled Experiments

+ Interviews, questionnaires,...

Evaluating with Users

• E1–E4 evaluate designs without the user

• As soon as implementations (prototypes) exist they should also be tested with users, using the following methods

E5: Model Extraction

• Designer shows user prototype or screen shots

• User tries to explain elements and their function

+ Good to understand naïve user’s conceptual model of the system

— Bad to understand how the system is learned over time

E6: Silent Observation

• Designer watches user in lab or in natural environment while working on one of the tasks

• No communication during observation

+ Helps discover big problems

— No understanding of decision process (that lead to problems) or user’s mental model, opinions, or feelings
E7: Think Aloud

- As E7, but user is asked to say aloud
 - What she thinks is happening (state)
 - What she is trying to achieve (goals)
 - Why she is doing something specific (actions)

- Most common method in industry

+ Good to get some insight into user’s thinking, but:
 - Talking is hard while focusing on a task
 - Feels weird for most users to talk aloud
 - Conscious talking can change behavior

E8: Constructive Interaction

- Two people work on a task together
 - Normal conversation is observed (and recorded)
 - More comfortable than Think Aloud

- Variant of this: Different partners
 - Semi-expert as “trainer”, newbie as “student”
 - Student uses UI and asks, trainer answers
 - Good: Gives insight into mental models of beginner and advanced users at the same time!

Recording Observations

- Paper + pencil
 - Evaluator notes events, interpretations, other observations
 - Cheap but hard with many details (writing is slow). Forms can help.

- Audio recording
 - Good for speech with Think Aloud and Constructive Interaction
 - But hard to connect to interface state

- Video
 - Ideal: two cameras (user + screen) in one picture
 - Best capture, but may be too intrusive initially

Silverback

- Screen capture + live video & audio
- Magic composite
E9: Retrospective Testing

• Additional activity after an observation
• Subject and evaluator look at video recordings together; user comments his actions retrospectively
• Good starting point for subsequent interview, avoids wrong memories
• Often results in concrete suggestions for improvement

E10: Controlled Experiments

• Quantitative, empirical method
• Steps:
 • Formulate hypothesis
 • Design experiment, pick variable and fixed parameters
 • Choose subjects
 • Run experiment
 • Interpret results to accept or reject hypothesis

Other Evaluation Methods

• Before and during the design, with users:
 • Questionnaires
 • Personal interviews
• After completing a project:
 • Email bug report forms
 • Hotlines
 • Retrospective interviews and questionnaires
 • Field observations (observe running system in real use)
Evaluation Techniques

Evaluating Without Users
- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative
- E5 Model Extraction
- E6 Silent Observation
- E7 Think Aloud
- E8 Constructive Interaction
- E9 Retrospective Testing

Quantitative
- E10 Controlled Experiments
+ Interviews, questionnaires,...

Dealing with Testers

- Tests are uncomfortable for the tester
 - Pressure to perform, mistakes, competitive thinking

- So treat testers with respect at all times!
 - Before, during, and after the test

Before the Session

- Do not waste the tester’s time
 - Run pilot tests before
 - Have everything ready when testers arrive

- Make sure testers feel comfortable
 - Stress that the system is being tested, not them
 - Confirm that the system may still have bugs
 - Let testers know they can stop at any time

- Guarantee privacy
 - Individual test results will be handled as private

- Inform tester
 - Explain what is being recorded
 - Answer any other questions (but do not bias)

- Only use volunteers (consent form)

During the Session

- Do not waste the testers’ time
 - Do not let them complete unnecessary tasks

- Make sure testers are comfortable
 - Early success in the task possible
 - Relaxed atmosphere
 - Breaks, coffee, …
 - Hand out test tasks one by one
 - Never show you are unsatisfied with what the tester does
 - Avoid interruptions (cell phones, …)
 - Abort the test if it becomes too uncomfortable

- Guarantee privacy
 - Never let testers’ boss (or others) watch
After the Session

- Make sure testers are comfortable
 - Stress that tester has helped finding ways to improve the system

- Inform
 - Answer any questions that could have changed the experiment if answered before the test

- Guarantee privacy
 - Never publish results that can be associated with specific individuals
 - Show recordings outside your own group only with written consent from testers

Evaluation Techniques

Evaluating With Users

- E1 Literature Review
- E2 Cognitive Walkthrough
- E3 Heuristic Evaluation
- E4 Model-based Evaluation (GOMS,...)

Evaluating Without Users

- E5 Model Extraction
- E6 Silent Observation
- E7 Think Aloud
- E8 Constructive Interaction
- E9 Retrospective Testing

- Interviews, questionnaires,...

Next lecture