Lab Overview

- Expand concepts from the lecture
- Assignment discussion
- Project presentation and feedback
- Preparation for the next assignment
- Administrivia

Registration

- Step-by-step guide: http://hci.rwth-aachen.de/dis
 - BSc taking for MSc: email to chat@cs.rwth-aachen.de
- Deadline: today 18:00
- Check your ID in the registration list
 - 94 students registered via ZPA
 - 11 students registered via email (BSc or etc.)
- If you have not registered, talk with us at the end of the lab

Passing Criteria

- To pass the course, you must:
 - earn more than 50% of the Exam Part 2, and
 - earn more than 50% of the overall points
Exams

- Exam part 1: TBD, c.a. last week of November
 - Either Tuesday (14:00 – 16:30) or Wednesday (9:30 – 12:00)
- Exam part 2: Tuesday 7 February 2012 14:00 – 16:30

Assignments Lifecycle

- Briefing: Monday, in the lab
- Handout: Thursday 18:00
- Deadline: next Thursday 18:00
- Discussion: Monday after submission, in the lab
- Grading: around two weeks after the submission

Email

- If your issue will benefit others, use discussion board instead
- Always include:
 - Subject: include “DISI”
 - Body
 - Student ID
 - Name
 - Degree major
- Use RWTH Email Address

L²P

- Subscribe to email alert
- Slides
Affordances

- "...the term affordance refers to the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used..."
Goal Crossing for People with Motor Impairments

Fig. 3. MI4 used a trackball with the backs of his fingers.

Table I. Information about 8 Participants with Motor Impairments

<table>
<thead>
<tr>
<th>Subject</th>
<th>Sex</th>
<th>Age</th>
<th>Wheelchair</th>
<th>Device</th>
<th>Health Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI1</td>
<td>m</td>
<td>50</td>
<td>no</td>
<td>mouse</td>
<td>Peripheral Neuropathy</td>
</tr>
<tr>
<td>MI2</td>
<td>f</td>
<td>55</td>
<td>no</td>
<td>mouse</td>
<td>Parkinson’s</td>
</tr>
<tr>
<td>MI3</td>
<td>f</td>
<td>21</td>
<td>yes</td>
<td>both</td>
<td>Cerebral Palsy</td>
</tr>
<tr>
<td>MI4</td>
<td>m</td>
<td>19</td>
<td>yes</td>
<td>trackball</td>
<td>Spinal Cord Injury</td>
</tr>
<tr>
<td>MI5</td>
<td>f</td>
<td>41</td>
<td>no</td>
<td>mouse</td>
<td>Spine Degeneration</td>
</tr>
<tr>
<td>MI6</td>
<td>m</td>
<td>23</td>
<td>yes</td>
<td>both</td>
<td>Cerebral Palsy</td>
</tr>
<tr>
<td>MI7</td>
<td>m</td>
<td>84</td>
<td>no</td>
<td>mouse</td>
<td>Peripheral Neuropathy</td>
</tr>
<tr>
<td>MI8</td>
<td>m</td>
<td>49</td>
<td>yes</td>
<td>trackball</td>
<td>Spinal Cord Injury</td>
</tr>
</tbody>
</table>

A user with spinal cord injury using trackball
Wobbrock & Gajos, 2008

How can a gestural user interface exhibit affordance and visibility?

Assignment 1: Design Critique

- Pairs of objects, same function
 - Two pairs in physical world
 - Two pairs in virtual world
- One is well designed, another is a bad design
- Point out how it is good, and how it is bad
 - Use the principles learned from the class
- Group of three

Evolution of mouse
Compare their affordance and visibility.
Why these new mouses are still usable?
How the change of users’ background affect the device design?