Static Stack Visualization:
Supporting Programmer Navigation
and Understanding by Providing
Method Context via Possible Stacks
Visualization

Proposal

Joachim Kurz
Media Computing Group
RWTH Aachen University
joachim.kurz@rwth-aachen.de

June 7, 2011

Maintenance tasks
are common.

Understanding the
complete program is
not required for a
maintenance task.

Stacksplorer gives
only little support for
searching across
paths.

0.1 Introduction

Software development does not stop when a product is de-
ployed, instead it is usually necessary to adapt the software
product to changing requirements [Sommerville, 2007, p.
489]. This is called maintenance and costs to do so often
make up the majority of the total costs during the software
lifecycle [Sommerville, 2007, p. 489]. Thus it is important
to support programmers during maintenance tasks.

Since such maintenance tasks usually involve changes in
the program code it is important to understand the pro-
gram to estimate the effects a change will have and imple-
ment the change in the most effective way. Often it is not
necessary to understand the complete program but just a
part of it [Erdos and Sneed, 1998]. One of the basic ques-
tions to answer to understand enough of a program accord-
ing to Erdds and Sneed| [1998] is “where is a particular sub-
routine or procedure invoked?”. Also, programmers spent
a lot of time navigating in source code [Sherwood, 2008]|
and tools making navigation in code easier should thus be
welcome.

Stacksplorer [Kramer, 2011] already answers the question
identified by Erdos and Sneed| [1998] and supports naviga-
tion along the call graph. The call graph is the graph that is
constructed from program source code by interpreting each
method/function as a node and adding a directed edge be-
tween method a and method b iff a calls b. But Stacksplorer
only displays the direct successors and predecessors in the
call graph but developers also have questions that they try
to answer by searching across paths. Also, they do not
only search upstream looking for callers of a method (as
implied by Erdos). They also search downstream (follow-
ing method calls), for example, to better understand why a
method is called [LaToza and Myers, 2010] by identifying
methods deeper in the call graph that cause (expected) side
effects. Stacksplorer does support up- and downstream
navigation but only one level at a time.

To support developers in searching across paths we would
like to extend Stacksplorer during this thesis to support the
visualization of possible call stacks thus providing a nar-

0.2 Related Work

row look into the depth of the call graph in contrast to
Stacksplorer’s direct-neighbor-focused breadth-first view
of the call stack. In the following we will first describe the
related work we were inspired by and based our work on
to then describe what we are planning to work on during
this bachelor’s thesis.

0.2 Related Work

There are many different ways to visualize a program’s
structure in general (not just by displaying different kinds
of program structure graphs like call graphs or control flow
graphﬂ). Since we do not plan to provide an overview over
the complete code but only over the surroundings of a spe-
cific part (in our case the method in the call graph) we will
not focus on complete program visualization approaches
but instead look for work which tries to visualize only a
part of the program structure. Edge cases in that way are
projects like Code Bubbles [Bragdon et al., 2010] which al-
lows the developer to choose which parts of the code they
want to focus on and displays the relations between the
chosen code segments. However, we do not want to create
a whole new Integrated Development Environment (IDE)
but integrate the visualization with Xcodeﬁ , an existing
IDE, more like an accessory view in the same way Stack-
splorer works.

Another edge case are projects that use degree of interest
functions to select which context to display for a currently
viewed code segment like [Jakobsen and Hornbeek, 2009
but are not limited to call relations. We will have a look at
those projects to see whether they have useful visualization
techniques but will not use their degree of interest functions

!The control flow graph is similar to the call graph, but its nodes
are single statements in the code (for example assembler instructions or
single source code lines) and there is an edge between node a and node b
iff b can be executed in some scenario directly after a has been executed.
For example, a line before an if-else-statement would be connected by
one edge to the first line of the if-clause and by another edge to the first
line of the else-clause.

bh’c’cp:/ / developer.apple.com/Xcode/

We will focus our
research on partial
visualization of
program structure,
not complete
visualization.

http://developer.apple.com/Xcode/

and instead focus on visualizing related methods by using
the call graph.

0.2.1 Graph and Tree Visualizations in General

A call graph is usually a propelﬂ directed graph not just
a tree — not even acyclic (because of recursion). But by
constraining the visualization to one focus method plus its
descendants and ancestors and replacing recursion (=cy-
cles) by special nodes the part of the call graph to visualize
can be transformed into a directed acyclic graph (DAG) or
maybe even a tree. Thus we will mainly look at DAG and
tree visualization.

MmN |w >

Figure 1: Five different tree representation styles. Redrawn
from [Graham and Kennedy, 2010].

Graham and Kennedy| [2010] identify 5 types of basic tree
visualizations (see Figure|I):

a) node-link diagram
b) nested diagram
c) adjacency diagram

d) indented list, as used in the Microsoft Windows Ex-
plorer and several IDEs (see

%as in non-acyclic and possibly more than one predecessor per node

0.2 Related Work

e) matrix representation

But they do not consider the matrix representation in their
evaluation of tree-visualizations because they disregard it
as too complicated and space-inefficient for trees. There are
studies showing that the indented list is subjectively pre-
ferred by users and other studies implying that this is only
due to the familiarity of the users caused by the lists us-
age in Windows [Graham and Kennedy, 2010]. /Andrews
and Kasanicka| [2007] compare four hierarchy browsers,
one of them an indented list (which they call tree view),
two nested diagrams and one node-link diagram. They
could not find a significant difference in completion time
when letting the users explorer different hierarchies except
for one pair of browsers for one out of 8 different tasks.
Since there is no clearly favorable visualization we think
there is room for improvement and hope a more focused
visualization will perform better for our use case.

0.2.2 Fisheye Views

]
‘Fisﬂ-e‘;e 0 154.0 %

Right-click for normal mods.

(-A58573 -130000)

Figure 2: A fisheye view of a control-flow graph. Redrawn
from [Evstiougov-Babaev, [2002].

There seem to be no
big differences
between different
basic tree
visualizations.

Fisheye views

highlight a focus
point and distort
distant features.

One graph visualization method respecting the idea of hav-
ing a focus point in a graph and displaying context of dif-
ferent importance is the concept of fisheye views described
by 1986]]. Often, they are just applied as an opti-
cal effect to existing graph drawings by zooming in on a
focus point and distorting nodes that are far away from the
focus point (see Figure[2). But fisheye views are not lim-

e 0o [m| MainController.m - Converter —
(Remove from Path:) (Jll Updates v) (_Hide) (Reload) Overlays: (Left Right)
MainController sl (A a MainController
s [self convertl; =] -
& buttonClicked: L input
MainController f/convert from Celsius Converter
A [/to Fahrenheit o 2
& init -{vold]convert; B caf:
f/get celecius value Eaincumm"er
float ¢ = [self.input floatValuel; |l converter
f/convert to fahrenheit } | MainController
float f = ([self.converter c2f:f]; =
| update:
ffupdate view
[self update:f];
} A
s || ={voj te:(floatlf: 1
|é ———————— FES

A

Figure 3: Stacksplorer displays the callees of the current
focus method on the left of the editor view and the called
methods on the right. Overlays are used to show where the
methods on the right are called in the code. Picture from
the Stacksplorer Websiteﬂ

ited to optical effects there are also semantic ones. [Jakob-
sen and Hornbeek, 2009] modified the Eclipse IDE Editor
to display relevant lines from the same file as the currently
viewed code below and above the editor view and could
show that their modified editor was adopted and actually
used in real-life work.

0.2.3 Strahler Numbers

Strahler numbersﬁ have been developed in hydrology to
measure stream networks but have recently been used in
more general graph applications as well. They measure the

IWikipedia gives a nice overvie over Strahler numbers on binary
trees, for other trees there are several generalizations

Phttp:/ /hci.rwth-aachen.de/stacksplorer
http:/ /en.wikipedia.org/wiki/Strahler number

http://hci.rwth-aachen.de/stacksplorer
http://en.wikipedia.org/wiki/Strahler_number

0.2 Related Work

complexity of subtrees and are generally higher if a node
has more branches. Although they were originally defined
on binary trees but have been generalized to n-ary trees and
DAGs. In this case they have the property that they are
equal to the minimum number of registers needed to com-
pute an n-ary expression encoded by such an n-ary treeﬁ
They have even been generalized to special kinds of non-
acyclic graphs. [Auber, 2002]

Herman et al.| [1998] used Strahler numbers to highlight
paths that lead to bigger/more complex subtrees giving
hints to the user which paths are worth further exploration,
while exploring the graph in a zoomed-in state. |Auber
[2002] used these numbers to prioritize edge rendering of
large graphs so a bare skeleton could already give an im-
pression of the overall graph before the rendering finished.

0.2.4 Current IDEs

Several of the more popular IDEs already have call graph
visualization features but they all use different kinds of tree
views/indented lists to visualize them (see Figure [to 7).
Eclipse, NetBeans and Intelli] also only allow you to view
just one side of the call graph (either callees or callers) at a
time.

Microsoft Visual Studio displays a node for callees and one
for callers in the same view but one has to expand this col-
lection of callees/callers before being able to see them and
has to expand a similar collection on each level down the
call hierarchy. Even worse: One can interleave callee and
caller relationships in this tree view thus at one point the
child relation might mean ”callee” and further down the
tree it might mean “caller” (see Figure [7]for an example).

Also none of the mentioned tree views updates automat-
ically when another method is selected. The user has to
invoke it explicitly for a method they find interesting. Thus
there seems to be room for improvement.

*An n-ary arithmetic expression can be encoded as an n-ary tree and
vice-versa

Strahler numbers are
a measure of the
complexity of
subtrees.

Strahler numbers
have been used for
graph navigation and
prioritizing graph
rendering.

Most big IDEs use
tree views to show
the call hierarchy.
But they are often
not implemented
very well.

|Calls from 'decrementProductCount{ActionEvent, ProductToDisplay)' - in project 'ProductSelling"
e decremeanroductCDunl(ﬁcuunEwanr, Pru-duclTnDlsplav] void - pmductScIIing_contrcllcl'.SimpIc

byte - productSelli

L] setCount\[b\ﬂ:e] Twvoid - prnductSeIIing_model.dommn.Prcduct

updateDisplay(} : void - productSelling.view.components.ShoppingCartPanel

@ gerChosenProductList() : List<ProductToDisplay> - preductSelling.controller.ShoppingCart
@ isEmpty() : boolean - java.util.List (2 matches)

@ getRecentlyBoughtProducts() : List<ProductTeDisplay> - productSelling.controller.Shoppir
d:ConﬁrmationPanelEIJsl<ProductTDDisplay>} - productSelling.view.components.Confirmati
@ removeAll() : void - java.awt.Container (5 matches)

4
v o

@ changedLocale{locale) : void - productSelling.view.components.ConfirmationPanel
@ getlLocale() : Locale - java.util.ResourceBundle (2 matches)

@ addiComponent) : Component - java.awt.Container (4 matches)

@ validate() : void - java.awt.Container {2 matches)

d:JLabEI(String} - javax.swing.JLabel

d:gerString{StringJ 1 String - java.util. ResourceBundle {3 matches)

@ setFont(Font) : void - javax.swing JCompanent

d: Font{String, int, int} - java.awt.Font

@ add{Component, Object] - void - java.awt.Container (2 matches)

@ setText(String) : void - javax.swing.JLabel (2 matches)

@ createTable() : JTable - productSelling.view.components.ShoppingCartPanel

@ getViewport() : JViewport - javax.swing.)5crollPane

& DecimalFormat(String, DecimalFormatSymbols) - java.text. DecimalFormat

d: DecimalFormatSymbols{Locale) - java.text.DecimalFormatSymbols

& formatidouble) - String - java.text.NumberFormat

@ getTotalPrice() : float - productSelling.controller.ShoppingCartController

@ repaint() : void - java.awt.Component

P @ updateDisplayForProductCountChange() : void - productSelling.view.components. PicturesOrL
P @ getSource() : Object - java.util.EventObject

» @ updateDisplay() : void - productSelling.view.components. ProductButtonPanel

Y Y Y Y Y Y Y Y Y Y YYIYFYYIYFYYYY

v

Figure 4: Eclipse’s call hierarchy view: Only one direction
(callees or callers) is viewable at a time.

=

v =D «» SimpleShoppingCartController.decrementProductCount(ActionEvent, ProductToDis
¥ o % ProductToDisplay. getCount))(2 usages) (productSelling. model.domain)
(m) & ProductToDisplayPlaceholder in ltemAddedByBarcodeFrame.getCount() (pro
(m) & SimpleProduct.getCount() (productSell
o) % Product.setCountibyte) (produciSelling
vy @ ShoppingCartPanel.updateDisplay() (productSelling view.compaonents)
P D% ShoppingCartController.getChosenProductList() (productse controller)
» o % ShoppingCartController.getRecentlyBoughtProducts() (2 usages) (productsell
» (& ConfirmationPanel.ConfirmationPanel(List<ProductToDisplay>) (productsell
» (m % ConfirmationPane l.changedLocale(Locale) (produciSe
» '\-)'Ea ShoppingCartPanel.createTable() (productSelling view.components)
P D% ShoppingCartController.getTotalPrice() (productsel)
» (m % PicturesOrListFramePanel. updateDlspIavForProductCountChange[) 2 usages) (p
» (m % ProductButtonPanel.updateDisplay() (productSelling view.components)

odel.domain)

v

model.domain)

g.view.components)

Figure 5: Intelli]’s call hierarchy view: Only one direction
(callees or callers) is viewable at a time.

0.2 Related Work

e productSelling.controller.SimpleShoppingCartController

ProductToDispl.

(i decrementProductCount{ActionEwv
s OCCLITENCES

newCount) :: p

¥ (y updateDisplay(:: productSelling.view.components.Shop|
G getChosenProductlist() :: productSelling.controller.Shopp
(i iSEmpty() 2 java.util.List, 2 occurrences
(i getRecentlyBoughtProducts() :: productSelling.controller.Shopp
ra ConfirmationPanel(List<ProductToDisplay> chosenProducts)
(T removeAll) :: java.awt.Container, S occurrences
(i changedLocale(locale newlLocale) oductSelling.view.components.ConfirmationPanel

va.util.ResourceBundle, 2 occurrences

ponent cmpnt) oo t.Container, 4 occurrences

(Cw validare() 2 java.awr.Container, 2 occurrences

i JLabel(String string) :: javax.swing.)Label

(G getString(String string) :: java.util.ResourceBundle, 3 occurrences

(i setFont(Font fong) 2 x.swing.) Component

tSelling.model.domain.Product
ngCartPanel
ingCartController

gCartController, 2 occurrences
oductSelling.view.components.ConfirmationPanel

T

N

[‘l if (product.getCount() > 0) {
[l (tProduct) product).setCount((byte) (product.qetCount() - 1)):

Figure 6: NetBeans’ call hierarchy view: Only one direction
(callees or callers) is viewable at a time.

Meine Projektmappe - E

= % Deploy()
= | aufrufe an "Deploy"
= % Deploy_wWithSourceandDestinationDirectories _CopiesOneToTheOther()
= L Aufrufe an "Deploy _WithSourceAndDestinationDirectories_CopiesCOneToTheOther"
(i) Esliegen keine Suchergebnisse vor.
= L Aufrufe von "Deploy _WithSourcedndDestinationDirectories_CopiesOneToTheOther”
W Combine(string)
% Combine(string, string)
W CombineFilestring)
W Create()
W Create)
@ Deploy()
= [Aufrufe an "Deploy”
= % Deploy_WithSourcedndDestinationDirectories_CopiesOneTaTheOther()
l—}_ Aufrufe an "Deploy_WithSourceandDestinationDirectaries_CapiesOneToTheOther"
5 aufrufe von "Deploy_withSourceAndDestinationDirectories_CopiesOneTaTheCther!
"W Runi)
5 aufrufe von "Deploy”
ﬁ Exists
ﬁ Exists
% FileDeployer{SubtextUpgrader, IDireckory, SubtextUpgrader,IDirectory)
¥ GetTempPathi)
¥ IsTrueibool)
ﬁ Mame
5 Hame
W MewGuid()
@ Openrite()
W Streamtriter(System. 0. Stream)
W SubtextDirectory(string)
W ToString()
% WriteLinegstring)
% Run()
= [aufrufe von "Deploy”
% CopyTo{SubtextUpgrader,IDirectory, System,Predicate <3ubtextUpgrader,IFile =)
5 Destination
¥ Equalsistring, System,StringComparison)
Mame:
% RemoveOldDirectories()
% RemoveOldFiles()

Figure 7: Visual Studio’s call hierarchy view: Both direc-
tions can be see at a time but directions can be interleaved
as well (Caller — Callee — Caller visualized as children).

10

We would like to
implement the
depth-view as an
accessory view
similar to
Stacksplorer.

0.3 Our Work

<I makePixelBlackForLine

>
<| drawLine |>
D>
>

drawRect

<I drawButton
<I drawlinterface

Figure 8: A sample visualization of a potential call stack.
The arrow buttons left and right of a method can be used to
exchange the methods by some call sibling methods. The
arrow at the side of the top method symbolizes that this
method is called recursively. The drawRect method is the
current focus method and thus there are no other choices
and thus no arrow buttons for it.

As mentioned in the introduction developers ask questions
that can be answered by searching across paths. Stack-
splorer already provides some support to do so but we
think this support can be improved since Stacksplorer does
not provide the depth-view of the call graph. Thus, we
would like to implement a view on the call graph providing
this perspective. It should still support navigation along
the call graph as Stacksplorer does. We also think the ap-
proach of Stacksplorer to implement this view as an acces-
sory view that can be used while writing code is good be-
cause this way the programmer can still work on the code
and and does not have to switch modes. Thus we would
like to keep the visualization compact and small to fit be-
side the editor view.

0.3 Our Work

11

As an accessory view we do not have a lot of screen space.
However, as Stacksplorer has shown it is possible to nar-
row down the editor view a bit in the horizontal dimension
without affecting the code readability too much, especially
on todays wide-screen displays. If we have a part of the
width of the display to ourselves we can use the complete
height, thus our view will probably be higher than wide.

A tree view would fit these space requirements but similar
to Stacksplorer its focus is on all of the direct successors
and to see a complete path one usually has to expand all
the children on the path manually. And then it still shows
a lot of unnecessary information if all one is interested in is
one specific path.

One visualization that is already used in many debuggers
and has the property of being usually higher than wide is
that of a stack of methods. We would like to extend this
concept by providing a mechanism to exchange a method
by one of its siblings to customize the stack that is shown.
We imagine this to work like a combination lock where each
ring (=set of method siblings) can be turned independently.
Although in our case turning one ring would affect the de-
scending methods. A very basic drawing of this concept
can be seen in Figure

Reducing the number of shown methods to just one stack at
a time causes the problem of which stack to show by default
when the user has not chosen anything yet. To find a decent
initial stack we plan to order the siblings by their Strahler
number and selecting the ones with the highest value. This
way we have a least a consistent order of the siblings. The
Strahler number of a method might correlate with the rel-
evance of the method to the developer but we could not
find any research about this relationship and proving or
disproving this is out of the scope of this thesis. We will
also make use of the tags that can be assigned to methods
with the current version of Stacksplorer to find more rele-
vant methods.

A treeview is to
cumbersome to use.

We would like to
extend the stack
visualization to a
combination lock like
visualization.

Possibilities to
choose a default
stack include order in
the graph, tagged
methods and
Strahler numbers.

12

We will implement a
tree view as well.

To evaluate our new call graph view we also plan to im-
plement a basic tree view (which Xcode does not provide
so far) and then compare our implementation to this basic
tree view and the original Stacksplorer implementation in
a user test.

0.3.1 Preliminary Time Schedule

The scheduled time for a bachelor’s thesis is 4 months.
Since we already started to work on it a few weeks ago
we will take the 9th of May as the start date. That would
mean that we have to be finished on the 9th of September.
That makes 17 full weeks. Using this calculation we will
probably have a few days buffer in the end in case some-
thing goes wrong. We have already read a few papers and
skimmed a lot more but we would like to read some more
to start with a solid understanding of programmer naviga-
tion behavior, program understanding and different graph
visualizations. After that we will come up with a design of
the stack visualization and requirements specification for
the plugin as a whole. We plan to test the design as a low-
fidelity prototype in some quick qualitative user tests. Then
we spend a lot of time implementing the actual prototype
and evaluating it. In the end we will write up all the results
in the thesis.

what until when | how long

read (more) papers May 30th 3 weeks
design & test Lo-Fi prototype | June 13th 2 weeks
& write down requirements
implement prototype July 18th 5 weeks
design user study July 25th 1 week

do user study
write thesis

August 8th | 2 weeks

Sept. 5th

4(.5) weeks

17 weeks

13

Bibliography

Keith Andrews and Janka Kasanicka. A Comparative
Study of Four Hierarchy Browsers using the Hierarchi-
cal Visualisation Testing Environment (HVTE). In 2007
11th International Conference Information Visualization (IV
'07), pages 81-86. IEEE, 2007.

David Auber. Using Strahler numbers for real time visual
exploration of huge graphs. In International Conference on
Computer Vision and Graphics, pages 56—69, sep 2002.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J LaViola Jr. Code
bubbles: a working set-based interface for code under-
standing and maintenance. In Proceedings of the 28th inter-
national conference on Human factors in computing systems,
pages 2503-2512, New York, NY, USA, 2010. ACM.

Katalin Erdos and Harry M. Sneed. Partial comprehension
of complex programs (enough to perform maintenance).
In 6th International Workshop on Program Comprehension.
IWPC’98, pages 98-105, SES Software Eng. Service, Bu-
dapest, jun 1998. SES Software Eng. Service, Budapest,
IEEE Comput. Soc.

Alexander A. Evstiougov-Babaev. Call graph and control
flow graph visualization for developers of embedded
applications. In Graph Drawing, pages 337-346, AbsInt
Angew Informat GmbH, Saarbrucken, Germany, 2002.
AbsInt Angew Informat GmbH, Saarbrucken, Germany:.

G. W. Furnas. Generalized fisheye views. In Proceedings of
the SIGCHLI conference on Human factors in computing sys-
tems, pages 16-23, New York, NY, USA, 1986. ACM.

14

Bibliography

Martin Graham and Jessie Kennedy. A Survey of Multiple
Tree Visualisation. Information Visualization, 9(4):235-252,
dec 2010.

Ivan Herman, Maylis Delest, and Guy Melancon. Tree vi-
sualisation and navigation clues for information visuali-
sation. Computer Graphics Forum, 17(2):153-165, jun 1998.

Mikkel Ronne Jakobsen and Kasper Hornbaek. Fisheyes in
the field: using method triangulation to study the adop-
tion and use of a source code visualization. In Proceedings
of the 27th international conference on Human factors in com-
puting systems, pages 1579-1588. ACM, apr 2009.

Jan-Peter Kramer. Stacksplorer Understanding Dynamic
Program Behavior. Master’s thesis, RWTH Aachen Uni-
versity, jan 2011.

Thomas D. LaToza and Brad A Myers. Searching across
paths. ACM, may 2010.

Kaitlin Duck Sherwood. Path exploration during code
navigation. Master’s thesis, The University of British
Columbia (Vancouver), aug 2008.

Ian Sommerville. Software Engineering. Pearson Education
Limited, Essex, England, 8 edition, 2007.

	Introduction
	Related Work
	Graph and Tree Visualizations in General
	Fisheye Views
	Strahler Numbers
	Current IDEs

	Our Work
	Preliminary Time Schedule

