
Static Stack Visualization:
Supporting Programmer Navigation

and Understanding by Providing
Method Context via Possible Stacks

Visualization

Proposal

Joachim Kurz
Media Computing Group
RWTH Aachen University

joachim.kurz@rwth-aachen.de

June 7, 2011



1 Introduction 1

1 Introduction

Software development does not stop when a product is de-
ployed, instead it is usually necessary to adapt the software
product to changing requirements [Sommerville, 2007, p.
489]. This is called maintenance and costs to do so often Maintenance tasks

are common.make up the majority of the total costs during the software
lifecycle [Sommerville, 2007, p. 489]. Thus it is important
to support programmers during maintenance tasks.

Since such maintenance tasks usually involve changes in
the program code it is important to understand the pro-
gram to estimate the effects a change will have and imple-
ment the change in the most effective way. Often it is not Understanding the

complete program is
not required for a
maintenance task.

necessary to understand the complete program but just a
part of it [Erdös and Sneed, 1998]. One of the basic ques-
tions to answer to understand enough of a program accord-
ing to Erdös and Sneed [1998] is ”where is a particular sub-
routine or procedure invoked?”. Also, programmers spent
a lot of time navigating in source code [Sherwood, 2008]
and tools making navigation in code easier should thus be
welcome.

Stacksplorer [Krämer, 2011] already answers the question
identified by Erdös and Sneed [1998] and supports naviga-
tion along the call graph. The call graph is the graph that is
constructed from program source code by interpreting each
method/function as a node and adding a directed edge be-
tween method a and method b iff a calls b. But Stacksplorer Stacksplorer gives

only little support for
searching across
paths.

only displays the direct successors and predecessors in the
call graph but developers also have questions that they try
to answer by searching across paths. Also, they do not
only search upstream looking for callers of a method (as
implied by Erdös). They also search downstream (follow-
ing method calls), for example, to better understand why a
method is called [LaToza and Myers, 2010] by identifying
methods deeper in the call graph that cause (expected) side
effects. Stacksplorer does support up- and downstream
navigation but only one level at a time.

To support developers in searching across paths we would
like to extend Stacksplorer during this thesis to support the
visualization of possible call stacks thus providing a nar-



2 Related Work 2

row look into the depth of the call graph in contrast to
Stacksplorer’s direct-neighbor-focused breadth-first view
of the call stack. In the following we will first describe the
related work we were inspired by and based our work on
to then describe what we are planning to work on during
this bachelor’s thesis.

2 Related Work

There are many different ways to visualize a program’s
structure in general (not just by displaying different kinds
of program structure graphs like call graphs or control flow
graphs1). Since we do not plan to provide an overview over
the complete code but only over the surroundings of a spe-
cific part (in our case the method in the call graph) we will
not focus on complete program visualization approaches
but instead look for work which tries to visualize only a
part of the program structure. Edge cases in that way are We will focus our

research on partial
visualization of
program structure,
not complete
visualization.

projects like Code Bubbles [Bragdon et al., 2010] which al-
lows the developer to choose which parts of the code they
want to focus on and displays the relations between the
chosen code segments. However, we do not want to create
a whole new Integrated Development Environment (IDE)
but integrate the visualization with Xcodeb , an existing
IDE, more like an accessory view in the same way Stack-
splorer works.

Another edge case are projects that use degree of interest
functions to select which context to display for a currently
viewed code segment like [Jakobsen and Hornbæk, 2009]
but are not limited to call relations. We will have a look at
those projects to see whether they have useful visualization
techniques but will not use their degree of interest functions

1The control flow graph is similar to the call graph, but its nodes
are single statements in the code (for example assembler instructions or
single source code lines) and there is an edge between node a and node b
iff b can be executed in some scenario directly after a has been executed.
For example, a line before an if-else-statement would be connected by
one edge to the first line of the if-clause and by another edge to the first
line of the else-clause.

bhttp://developer.apple.com/Xcode/

http://developer.apple.com/Xcode/


2.1 Graph and Tree Visualizations in General 3

and instead focus on visualizing related methods by using
the call graph.

2.1 Graph and Tree Visualizations in General

A call graph is usually a proper2 directed graph not just
a tree – not even acyclic (because of recursion). But by
constraining the visualization to one focus method plus its
descendants and ancestors and replacing recursion (=cy-
cles) by special nodes the part of the call graph to visualize
can be transformed into a directed acyclic graph (DAG) or
maybe even a tree. Thus we will mainly look at DAG and
tree visualization.

Survey of multiple tree visualisation

a

d

b c

e

Figure 3: Basic types of tree representation – (a) node-link,
(b) nested, (c) adjacency, (d) indented list and (e) matrix
representations.

A fourth representation style is indentation, in which
nodes are listed linearly in order of depth-based traversal
and then indented by an amount proportional to their
depth in the tree. Often, stylised links are drawn to make
parent–child relationships clearer, but this is not always
the case. This is the most common form of tree display
used in contemporary graphical user interfaces (GUIs),
seen in locations such as the folders view of Microsoft
Windows Explorer. In empirical evaluation by Cockburn
and Mackenzie40 this layout has shown to be the objec-
tively preferred choice when compared to other styles of
tree visualisation, though Kobsa41 suggested that much
of this performance advantage is explained by familiarity
because of the ubiquitous presence of Microsoft Windows.

Finally, individual trees can also be displayed via a
matrix representation, but this tends to be less common
than the previous styles for good reason. Firstly, this
is because of the difficulty in following edge paths in
matrices, as recognised by Shen and Ma.42 In Figures 3(a),
(c) and (d), it is clear that D is a ‘grandchild’ of A, and
while slightly trickier in the case of the nested repre-
sentation in Figure 3(b) (Lü and Fogarty43 discuss how
variation in nested representations can greatly affect
this property), in the matrix representation the A–B and
B–D edges need to be discerned independently and then
combined, making the relationship much more diffi-
cult to deduce. A second issue is that essentially a single
tree is not complicated enough in structure to warrant
a matrix representation. One of the main reasons cited
for using matrices to visualise graph types is that they
eliminate edge crossings that occur in other graph repre-
sentations, but a single tree can always be drawn with
no edge-crossings in the other representations and so
this reason no longer applies. Further to this point, a tree
with N nodes has N − 1 edges, and thus when displayed
as a matrix will only fill the square root of the total N2

possible entries, making it highly space-inefficient.
All the layout styles have associated advantages

and disadvantages and the choice of representation is

depending on the tasks that are to be performed with
the structures and the semantics of the data concerned.
Generally node-link representations are more understand-
able to the lay-person and communicate structure readily,
but use up screen space rapidly. Nested representations
allow more nodes to be displayed at once but structure is
more difficult to perceive due to lacking a global child-
parent orientation, plus they emphasise leaf nodes at the
expense of internal nodes. The adjacency and indented
list methods strive for a halfway house between these two
styles, utilising a higher proportion of screen space than a
node-link display, yet making structure relatively simple
to follow. Finally, the matrix reduces the tree essentially
to a look-up table. These basic layout styles are the foun-
dation for all tree visualisations that display internal tree
structure, and the styles themselves can be combined
within a visualisation of a single tree as demonstrated by
Zhao et al,44 in which portions of the tree are drawn as
either nested or node-link representations dependent on
screen space and user interaction. Further, Nguyen and
Huang’s EncCon technique.45 combines the enclosure
and node-link approaches across an entire tree; the tree
nodes being positioned using an optimised nested layout
algorithm and then connected with links.

Multiple tree models × Multiple tree representations

A logical starting point to categorise multiple tree visual-
isations is to distinguish whether ‘multiplicity’ is based
on the number of trees displayed, or the number of trees
modelled in the structure, or both. Table 1 shows a brief
tabular summary of this categorisation and the four basic
cases it produces – with the simplest case of a single tree
model represented as a single tree visualisation being
covered in the previous section.

The second case covers the scenario of one tree model
visualised many times; for instance Wilson and Bergeron’s
dynamic hierarchy visualization46 can display multiple,
differing representations of the same hierarchy, but does
not display multiple structures. A similar caveat applies
to Urbanek’s KLIMT system,47 Schedl et al’s48 stacked
radial tree visualisation and Teoh’s more recent work49

on multiple views for trees. Kules et al50 explore the
situation of simultaneously using two different, linked
representation styles of the same tree – one nested and
one node-link representation.

Of more interest to us are the approaches that deal with
multiple instances of trees in the data we wish to visu-
alise, and these can be divided into visualisations that are
shown as a single tree or show multiple trees. The former
case tends to be visualisations built for hierarchical facet
exploration, such as MoireTrees51 and Facet Folders,52

that try and give a fluid single tree view over a multi-
hierarchical structure for ease of navigation. The latter case
is that of visualisations that display multiple representa-
tions of multiple trees. Here there may not be a universal
coverage of leaves by each hierarchy – some may have

© 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 4, 235–252 239

 at Hochschulbibliothek RWTH Aachen on April 15, 2011ivi.sagepub.comDownloaded from 

Figure 1: Five different tree representation styles. Redrawn
from [Graham and Kennedy, 2010].

Graham and Kennedy [2010] identify 5 types of basic tree
visualizations (see Figure 1):

a) node-link diagram

b) nested diagram

c) adjacency diagram

d) indented list, as used in the Microsoft Windows Ex-
plorer and several IDEs (see 2.4)

2as in non-acyclic and possibly more than one predecessor per node



2.2 Fisheye Views 4

e) matrix representation

But they do not consider the matrix representation in their
evaluation of tree-visualizations because they disregard it
as too complicated and space-inefficient for trees. There are There seem to be no

big differences
between different
basic tree
visualizations.

studies showing that the indented list is subjectively pre-
ferred by users and other studies implying that this is only
due to the familiarity of the users caused by the lists us-
age in Windows [Graham and Kennedy, 2010]. Andrews
and Kasanicka [2007] compare four hierarchy browsers,
one of them an indented list (which they call tree view),
two nested diagrams and one node-link diagram. They
could not find a significant difference in completion time
when letting the users explorer different hierarchies except
for one pair of browsers for one out of 8 different tasks.
Since there is no clearly favorable visualization we think
there is room for improvement and hope a more focused
visualization will perform better for our use case.

2.2 Fisheye Views

342 A.A. Evstiougov-Babaev

cartesian fish-eye views [Abs,San91]) in order to improve working with large
graphs.

The panner offers a scaled-down view of the entire graph in a separate win-
dow, whereas fish-eye views imitate the well-known fish-eye lens effect by ma-
gnifying the focus area and displaying other parts of the graph with less detail.
The parts of the graph that are further away from the focus appear slightly
squashed, meaning the further nodes are positioned away from the focus, the
smaller they appear in the graph window. Thus, the user can concentrate on
areas of particular interest yet being able to consider their context and even to
overview the entire graph (see Figure 5).

Fig. 5. Polar fish-eye view

5 Program Documentation

aiCall integrates a complete framework for printing graphs, export of graphs in
colored Postscript format (on multiple pages for large graphs) and other picture
formats. This permits more concise program documentation produced faster and
understood more easily.

Figure 2: A fisheye view of a control-flow graph. Redrawn
from [Evstiougov-Babaev, 2002].



2.3 Strahler Numbers 5

One graph visualization method respecting the idea of hav-
ing a focus point in a graph and displaying context of dif-
ferent importance is the concept of fisheye views described
by [Furnas, 1986]. Often, they are just applied as an opti-
cal effect to existing graph drawings by zooming in on a
focus point and distorting nodes that are far away from the
focus point (see Figure 2). But fisheye views are not lim- Fisheye views

highlight a focus
point and distort
distant features.

Figure 3: Stacksplorer displays the callees of the current
focus method on the left of the editor view and the called
methods on the right. Overlays are used to show where the
methods on the right are called in the code. Picture from
the Stacksplorer Websiteb.

ited to optical effects there are also semantic ones. [Jakob-
sen and Hornbæk, 2009] modified the Eclipse IDE Editor
to display relevant lines from the same file as the currently
viewed code below and above the editor view and could
show that their modified editor was adopted and actually
used in real-life work.

2.3 Strahler Numbers

Strahler numbers3 have been developed in hydrology to
measure stream networks but have recently been used in
more general graph applications as well. They measure the

3Wikipedia gives a nice overviewc over Strahler numbers on binary
trees, for other trees there are several generalizations

bhttp://hci.rwth-aachen.de/stacksplorer
chttp://en.wikipedia.org/wiki/Strahler number

http://hci.rwth-aachen.de/stacksplorer
http://en.wikipedia.org/wiki/Strahler_number


2.4 Current IDEs 6

complexity of subtrees and are generally higher if a node
has more branches. Although they were originally defined Strahler numbers are

a measure of the
complexity of
subtrees.

on binary trees but have been generalized to n-ary trees and
DAGs. In this case they have the property that they are
equal to the minimum number of registers needed to com-
pute an n-ary expression encoded by such an n-ary tree4.
They have even been generalized to special kinds of non-
acyclic graphs. [Auber, 2002]

Herman et al. [1998] used Strahler numbers to highlight Strahler numbers
have been used for
graph navigation and
prioritizing graph
rendering.

paths that lead to bigger/more complex subtrees giving
hints to the user which paths are worth further exploration,
while exploring the graph in a zoomed-in state. Auber
[2002] used these numbers to prioritize edge rendering of
large graphs so a bare skeleton could already give an im-
pression of the overall graph before the rendering finished.

2.4 Current IDEs

Several of the more popular IDEs already have call graph
visualization features but they all use different kinds of tree
views/indented lists to visualize them (see Figure 4 to 7).
Eclipse, NetBeans and IntelliJ also only allow you to view
just one side of the call graph (either callees or callers) at a
time. Most big IDEs use

tree views to show
the call hierarchy.
But they are often
not implemented
very well.

Microsoft Visual Studio displays a node for callees and one
for callers in the same view but one has to expand this col-
lection of callees/callers before being able to see them and
has to expand a similar collection on each level down the
call hierarchy. Even worse: One can interleave callee and
caller relationships in this tree view thus at one point the
child relation might mean ”callee” and further down the
tree it might mean ”caller” (see Figure 7 for an example).

Also none of the mentioned tree views updates automat-
ically when another method is selected. The user has to
invoke it explicitly for a method they find interesting. Thus
there seems to be room for improvement.

4An n-ary arithmetic expression can be encoded as an n-ary tree and
vice-versa



2.4 Current IDEs 7

Figure 4: Eclipse’s call hierarchy view: Only one direction
(callees or callers) is viewable at a time.

Figure 5: IntelliJ’s call hierarchy view: Only one direction
(callees or callers) is viewable at a time.



2.4 Current IDEs 8

Figure 6: NetBeans’ call hierarchy view: Only one direction
(callees or callers) is viewable at a time.

Figure 7: Visual Studio’s call hierarchy view: Both direc-
tions can be see at a time but directions can be interleaved
as well (Caller → Callee → Caller visualized as children).



3 Our Work 9

3 Our Work

drawInterface

drawButton

drawRect

drawLine

makePixelBlackForLine

Figure 8: A sample visualization of a potential call stack.
The arrow buttons left and right of a method can be used to
exchange the methods by some call sibling methods. The
arrow at the side of the top method symbolizes that this
method is called recursively. The drawRect method is the
current focus method and thus there are no other choices
and thus no arrow buttons for it.

As mentioned in the introduction developers ask questions
that can be answered by searching across paths. Stack-
splorer already provides some support to do so but we
think this support can be improved since Stacksplorer does
not provide the depth-view of the call graph. Thus, we We would like to

implement the
depth-view as an
accessory view
similar to
Stacksplorer.

would like to implement a view on the call graph providing
this perspective. It should still support navigation along
the call graph as Stacksplorer does. We also think the ap-
proach of Stacksplorer to implement this view as an acces-
sory view that can be used while writing code is good be-
cause this way the programmer can still work on the code
and and does not have to switch modes. Thus we would
like to keep the visualization compact and small to fit be-
side the editor view.



3 Our Work 10

As an accessory view we do not have a lot of screen space.
However, as Stacksplorer has shown it is possible to nar-
row down the editor view a bit in the horizontal dimension
without affecting the code readability too much, especially
on todays wide-screen displays. If we have a part of the
width of the display to ourselves we can use the complete
height, thus our view will probably be higher than wide.

A tree view would fit these space requirements but similar
to Stacksplorer its focus is on all of the direct successors
and to see a complete path one usually has to expand all A treeview is to

cumbersome to use.the children on the path manually. And then it still shows
a lot of unnecessary information if all one is interested in is
one specific path.

One visualization that is already used in many debuggers
and has the property of being usually higher than wide is
that of a stack of methods. We would like to extend this
concept by providing a mechanism to exchange a method
by one of its siblings to customize the stack that is shown.
We imagine this to work like a combination lock where each We would like to

extend the stack
visualization to a
combination lock like
visualization.

ring (=set of method siblings) can be turned independently.
Although in our case turning one ring would affect the de-
scending methods. A very basic drawing of this concept
can be seen in Figure 8.

Reducing the number of shown methods to just one stack at
a time causes the problem of which stack to show by default
when the user has not chosen anything yet. To find a decent Possibilities to

choose a default
stack include order in
the graph, tagged
methods and
Strahler numbers.

initial stack we plan to order the siblings by their Strahler
number and selecting the ones with the highest value. This
way we have a least a consistent order of the siblings. The
Strahler number of a method might correlate with the rel-
evance of the method to the developer but we could not
find any research about this relationship and proving or
disproving this is out of the scope of this thesis. We will
also make use of the tags that can be assigned to methods
with the current version of Stacksplorer to find more rele-
vant methods.



3.1 Preliminary Time Schedule 11

To evaluate our new call graph view we also plan to im- We will implement a
tree view as well.plement a basic tree view (which Xcode does not provide

so far) and then compare our implementation to this basic
tree view and the original Stacksplorer implementation in
a user test.

3.1 Preliminary Time Schedule

The scheduled time for a bachelor’s thesis is 4 months.
Since we already started to work on it a few weeks ago
we will take the 9th of May as the start date. That would
mean that we have to be finished on the 9th of September.
That makes 17 full weeks. Using this calculation we will
probably have a few days buffer in the end in case some-
thing goes wrong. We have already read a few papers and
skimmed a lot more but we would like to read some more
to start with a solid understanding of programmer naviga-
tion behavior, program understanding and different graph
visualizations. After that we will come up with a design of
the stack visualization and requirements specification for
the plugin as a whole. We plan to test the design as a low-
fidelity prototype in some quick qualitative user tests. Then
we spend a lot of time implementing the actual prototype
and evaluating it. In the end we will write up all the results
in the thesis.

what until when how long
read (more) papers May 30th 3 weeks

design & test Lo-Fi prototype June 13th 2 weeks
& write down requirements

implement prototype July 18th 5 weeks
design user study July 25th 1 week

do user study August 8th 2 weeks
write thesis Sept. 5th 4(.5) weeks

17 weeks

References

Keith Andrews and Janka Kasanicka. A Comparative
Study of Four Hierarchy Browsers using the Hierarchi-
cal Visualisation Testing Environment (HVTE). In 2007



References 12

11th International Conference Information Visualization (IV
’07), pages 81–86. IEEE, 2007.

David Auber. Using Strahler numbers for real time visual
exploration of huge graphs. In International Conference on
Computer Vision and Graphics, pages 56–69, sep 2002.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J LaViola Jr. Code
bubbles: a working set-based interface for code under-
standing and maintenance. In Proceedings of the 28th inter-
national conference on Human factors in computing systems,
pages 2503–2512, New York, NY, USA, 2010. ACM.

Katalin Erdös and Harry M. Sneed. Partial comprehension
of complex programs (enough to perform maintenance).
In 6th International Workshop on Program Comprehension.
IWPC’98, pages 98–105, SES Software Eng. Service, Bu-
dapest, jun 1998. SES Software Eng. Service, Budapest,
IEEE Comput. Soc.

Alexander A. Evstiougov-Babaev. Call graph and control
flow graph visualization for developers of embedded
applications. In Graph Drawing, pages 337–346, AbsInt
Angew Informat GmbH, Saarbrucken, Germany, 2002.
AbsInt Angew Informat GmbH, Saarbrucken, Germany.

G. W. Furnas. Generalized fisheye views. In Proceedings of
the SIGCHI conference on Human factors in computing sys-
tems, pages 16–23, New York, NY, USA, 1986. ACM.

Martin Graham and Jessie Kennedy. A Survey of Multiple
Tree Visualisation. Information Visualization, 9(4):235–252,
dec 2010.

Ivan Herman, Maylis Delest, and Guy Melancon. Tree vi-
sualisation and navigation clues for information visuali-
sation. Computer Graphics Forum, 17(2):153–165, jun 1998.

Mikkel Rønne Jakobsen and Kasper Hornbæk. Fisheyes in
the field: using method triangulation to study the adop-
tion and use of a source code visualization. In Proceedings
of the 27th international conference on Human factors in com-
puting systems, pages 1579–1588. ACM, apr 2009.

Jan-Peter Krämer. Stacksplorer Understanding Dynamic



References 13

Program Behavior. Master’s thesis, RWTH Aachen Uni-
versity, jan 2011.

Thomas D. LaToza and Brad A Myers. Searching across
paths. ACM, may 2010.

Kaitlin Duck Sherwood. Path exploration during code
navigation. Master’s thesis, The University of British
Columbia (Vancouver), aug 2008.

Ian Sommerville. Software Engineering. Pearson Education
Limited, Essex, England, 8 edition, 2007.


	Introduction
	Related Work
	Graph and Tree Visualizations in General
	Fisheye Views
	Strahler Numbers
	Current IDEs

	Our Work
	Preliminary Time Schedule


