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Review

• From Batch-processing to GUI

• Design Space of Input Devices
• Primitive Movements and Compositions

• Expressiveness and Effectiveness

• Window System Architecture
• Tasks 

• Conflicting goals 
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The 4-Layer Model
of Window System Architectures

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

Applications

m
or

e 
ab

st
ra

ct
, u

se
r-

or
ie

nt
ed

3



media computing groupJan Borchers 4

• UI Toolkit (a.k.a. Construction Set)
• Offers standard user interface objects (widgets)

• Window Manager
• Implements user interface to window functions

• Base Window System
• Provide logical abstractions from physical resources (e.g., windows, mouse 

actions)

• Graphics & Event Library (implements graphics model)
• High-performance graphics output functions for apps, register user input actions, 

draw cursor

The 4-Layer Model
of Window System Architectures
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A Note On Gosling's Model 
(Reading Assignment)

• Same overall structure

• But certain smaller differences
• E.g., defines certain parts of the GEL to be part of the BWS

• Written with NeWS in mind

• We will follow the model presented here
• More general

• 5 years newer

• Includes Gosling's and other models
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Graphics & Event Library

• Device-dependent sublayer to optimize for hardware

• Device-independent sublayer hides HW vs. SW 
implementation (virtual machine)

Logical coordinates Canonical events

Memory addresses Driver-specific data

Graphics hardware Device drivers

Graphics objects
& actions Event queues

Device-independent

Device-dependent

BWS

UITK

WM

GEL

HW

Apps
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The RasterOp Model

• Original graphics model

• Suited to bitmap displays with linear video memory
• Addresses individual pixels directly

• Absolute integer screen coordinate system
• Resolution problem
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The Vector Model

• API uses normalized coordinate system
• Device-dependent transformation inside layer

• Advantage: units are not pixels of specific device anymore

• Applications can output same image data to various screens and printer, 
always get best possible resolution (no “jaggies”)

• Originally implemented using Display PostScript
• Included arbitrary clipping regions

• a.k.a. “Stencil/Paint Model”
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Graphics Library Objects: Canvas

• Memory areas with coordinate system and memory-to-
pixel mapping

• Defined by: Start address, size, bit depth, logical 
arrangement in memory (only relevant for pixmaps)

• Z format (consecutive bytes per pixel, easy pixel access)

• XY format (consecutive bytes per plane, easy color access)

9

Z format XY format
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Graphics Library Objects:
Output Objects

• Elementary
• Directly rendered by graphics hardware

• E.g., Circle, line, raster image

• Complex
• Broken down by software into elementary objects to render

• Example: Fonts

- Broken down into raster images (bitmap/raster/image font, quick but jagged when 
scaled)

- Or broken down into outline curves (scalable/outline/vector fonts, scalable but 
slower)

- Real fonts do not scale arithmetically!
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Graphics Library Objects:
Graphics Context 

• State of the (virtual) graphics processor

• Bundle of graphical attributes to output objects
• e.g., font, line width, color index, copy function, ...

• Goal: reduce parameters to pass when calling graphics 
operations

• Not always provided on this level
Attribute Value

Font Gill Sans

Font size 24 pt

Font color (0,0,0)

Line width 2 px

... ...drawString(x, y, “Turtle”);
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Graphics Library: Actions
• Output (render) actions for objects described above

• Three “memory modes”
• Direct/Immediate Drawing

- Render into display memory and forget

• Command-Buffered/Structured Drawing, Display List Mode

- Create list of objects to draw

- May be hierarchically organized and/or prioritized

- Complex but very efficient for sparse objects

+ +
+ +
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• Data-Buffered Drawing
• Draw into window and in parallel into “backup” in memory

• Memory-intensive but simple, efficient for dense objects

13

Graphics Library: Actions

+ +
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Graphics Library: Actions

• Who has to do redraw?
• Buffered modes: GEL can redraw, needs trigger

• Immediate mode: application needs to redraw (may implement buffer or 
display list technique itself)

• Mouse cursor is always redrawn by GEL (performance)

- Unless own display layer for cursor (alpha channel)

- Triggered by event part of GEL

• Clipping is usually done by GEL (performance)
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Event Library: Objects

• Events
• Driver-specific: physical coordinates, timestamp, device-specific event code, in 

device-specific format

• Canonical: logical screen coordinates, timestamp, global event code, in window 
system wide unified format

• Event Library mediates between mouse/kbd/tablet/... drivers and window-
based event handling system by doing this unification

• Queue
• EL offers one event queue per device 
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Event Library: Actions

• Drivers deliver device-specific events interrupt-driven 
into buffers with timestamps

• EL cycles driver buffers, reads events, puts unified events 
into 1 queue per device (all queues equal format)

• Update mouse cursor without referring to higher layers
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GEL: Extensions

• GL: Offer new graphics objects/actions (performance)

• EL: Support new devices

• How extensible is the GEL?
• Most systems: Not accessible to application developer

• GEL as library: extensible only with access to source code (X11)

• GEL access via interpreted language: extensible at runtime (NeWS)

- NeWS example: Download PostScript code into GEL to draw triangles, gridlines, 
patterns,...
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GEL: Summary

• Hides hardware and OS aspects

• Offers virtual graphics/event machine

• Often in same address space as Base Window System

• Many GEL objects have peer objects on higher levels
• E.g., windows have canvas
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Base Window System: Tasks

• Provide mechanisms for operations on WS-wide data 
structures

• Manage shared resources - ensure consistency

• Core of the WS

• Most fundamental differences in structure between 
different systems

• user process with GEL, part of OS, privileged process

• In general, 1 WS with k terminals, n applications, m 
objects (windows, fonts) per app (r WS if distributed)
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Base Window System: Structure

WM

GEL
HW

UITK
Access Control Addressing

Request Demultiplex

Mutual Exclusion Multiplex

Memory Allocation Queue/Dequeue

Canvas Events

Graphics Library Event Library

Requests, Output,
Changes

Dialog input,
State messaging

Apps
for apps 1..n

Connection Mgmt.

Resource Operations

Synchronization

Elementary op's.

Objects

BWS
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Base Window System: Objects

• Windows, canvas, graphics contexts, events
• Requested explicitly from applications (except 

events), but managed by BWS—why?
• Manage scarce resources for performance & efficiency

• Applications share resources

• Consistency and synchronization

• Real vs. virtual resources
• (Video) memory, mouse, keyboard, usually also network

• Applications only see “their” virtual resources
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Windows & Canvas

• Components:

• Owner (application originally requesting the window)

• Users (reference list of IDs of all applications temporary aiming to 
work with the window)

• Size, depth, border, origin

• State variables (visible, active,...)

• Canvas

• =Window without state; not visible

• Operations:

• Drawing in application coordinate system

• State changes (make (in)visible, make (in)valid,...)
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Events

• Components:
• Event type

• Time stamp

• Type-specific data

• Location

• Window

• Application

• Event Processing:
• Collect (multiplex) from device queues

• Order by time stamp, determine application & window

• Distribute (demultiplex) to application event queues

Device 1...Device n

App 1...App m

Order
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Events

• BWS can generate events itself based on window states 
(e.g., “needs restoring”) or certain incoming event 
patterns (replace two clicks by double-click), and insert 
them into queue
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Fonts

• Increasingly offered by GEL (performance), but 
managed here

• Load completely into virtual memory, or

• Load each component into real memory, or

• Load completely into real memory

• Components
• Application owner, other apps using it (as with windows)

- Typically shared as read-only ➞ owner “just another user”

• Name, measurements (font size, kerning, ligatures,...)

• Data field per character containing its graphical shape
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Graphics Context

• Graphics Context Components
• Owner app, user apps

• Graphics attributes (line thickness, color index, copy function,...)

• Text attributes (color, skew, direction, copy function,...)

• Color table reference

• GEL: 1 Graphics context at any time, BWS: many
• Only one of them active (loaded into GEL) at any time
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Color Tables

• Components
• Owner app, user apps

• Data fields for each color entry

- RGB, HSV, YIQ,...

• Fault tolerance
• BWS should hold defaults for all its object type parameters to allow 

underspecified requests

• BWS should map illegal object requests (missing fonts,...) to legal ones (close 
replacement font,...)
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Communication Bandwidth

• WS needs to talk to other apps across network
• Typically on top of ISO/OSI layer 4 connection (TCP/IP,...)
• But requires some layer 5 services (priority, bandwidth,...)
• Usually full-duplex, custom protocol with efficient coding
• Exchange of character and image data, often in bursts
• Each application expects own virtual connection

➡ Bandwidth is scarce resource

• Components of a Connection object:
• Partner (IP+process,...), ID, parameters, encoding, message class (priority,...)
• Elementary operations: decode, (de)compress, checksum,...
• Optional operations: manage connection, address service
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• Basic set of operations for all object types
• Allocate, deallocate

• Other elementary operations for certain types
• Read and write events to and from event queues

• Filtering events for applications

• How to manage window collection in BWS?
• Tree (all child windows are inside their parent window)

• Why?
- Remember: on the BWS level, all UI objects are windows—not just document 

windows of applications!

BWS: Actions

➞ Visibility, Event routing
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In-Class Exercise

• Determine a valid tree structure for the window 
arrangement shown below
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Shared Resources

• Reasons for sharing resources: Scarcity, collaboration

• Problems: Competition, consistency

• Solution: Use “users” list of objects
• Add operations to check list, add/remove users to object

• Deallocate if list empty or owner asks for it

• How does BWS handle application requests?
• Avoid overlapping requests through internal synchronization

• Use semaphores, monitors, message queues
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Synchronization Options

• Synchronize at BWS entrance
• One app request entering the BWS is carried out in full before next request 

is processed (simple but potential delays)

• Synchronize on individual objects
• Apps can run in parallel using (preemptive) multitasking

• Operations on BWS objects are protected with monitors

- Each object is monitor, verify if available before entering

- high internal parallelism but complex, introduces overhead
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OS Integration

• Single address space
• No process concept, collaborative control (stability?)

• “Window multitasking” through procedure calls (cooperation on common 
stack)

• Xerox Star, Apple Mac OS Classic, MS Windows 3.x

• BWS in kernel
• Apps are individual processes in user address space

• BWS & GEL are parts of kernel in system address space

• Each BWS (runtime library) call is kernel entry (expensive but handled with 
kernel priority)

• Communication via shared memory, sync via kernel
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OS Integration

• BWS as user process
• BWS loses privileges, is user-level server for client apps, Communication via 

Inter-Process Communication (IPC)

- Single-thread server (“secretary”): no internal parallelism, sync by entry

- Server with specialized threads (“team”): each thread handles specific server 
subtask, shared BWS objects are protected using monitors

- Multi-server architecture: Several separate servers for different tasks (font 
server, speech recognition and synthesizing server,... — see distributed window 
systems)
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BWS: Summary

• BWS works with device- and OS-independent 
abstractions (only very general assumptions about OS)

• Supports system security and consistency through 
encapsulation and synchronization

• map n apps with virtual resource requirements to 1 hardware

• Offers basic API for higher levels (comparable to our 
Simple Reference Window System)

• Where are window controls, menus, icons, masks, ...?
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The 4-Layer Model
of Window System Architectures

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

Applications
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Window Manager
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Window Manager: Motivation

• Position and decorate windows
• Provide Look&Feel for interaction with WS
• So far: applications can output to windows

• User control defined by application

• May result in inhomogeneous user experience

• Now: let user control windows
• Independent of applications

• User-centered system view

• BWS provides mechanism vs. WM implements 
policy

BWS

UITK

WM

GEL

HW

Apps
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