
media computing groupJan Borchers 1

Designing Interactive Systems II
Computer Science Graduate Program SS 2011

Prof. Dr. Jan Borchers
Media Computing Group

RWTH Aachen University

http://hci.rwth-aachen.de/dis2

1



media computing groupJan Borchers

Review

• From Batch-processing to GUI

• Design Space of Input Devices
• Primitive Movements and Compositions

• Expressiveness and Effectiveness

• Window System Architecture
• Tasks 

• Conflicting goals 

2

2



media computing groupJan Borchers 3

The 4-Layer Model
of Window System Architectures

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

Applications

m
or

e 
ab

st
ra

ct
, u

se
r-

or
ie

nt
ed

3



media computing groupJan Borchers 4

• UI Toolkit (a.k.a. Construction Set)
• Offers standard user interface objects (widgets)

• Window Manager
• Implements user interface to window functions

• Base Window System
• Provide logical abstractions from physical resources (e.g., windows, mouse 

actions)

• Graphics & Event Library (implements graphics model)
• High-performance graphics output functions for apps, register user input actions, 

draw cursor

The 4-Layer Model
of Window System Architectures

4



media computing groupJan Borchers 5

A Note On Gosling's Model 
(Reading Assignment)

• Same overall structure

• But certain smaller differences
• E.g., defines certain parts of the GEL to be part of the BWS

• Written with NeWS in mind

• We will follow the model presented here
• More general

• 5 years newer

• Includes Gosling's and other models

5



media computing groupJan Borchers 6

Graphics & Event Library

• Device-dependent sublayer to optimize for hardware

• Device-independent sublayer hides HW vs. SW 
implementation (virtual machine)

Logical coordinates Canonical events

Memory addresses Driver-specific data

Graphics hardware Device drivers

Graphics objects
& actions Event queues

Device-independent

Device-dependent

BWS

UITK

WM

GEL

HW

Apps

6



media computing groupJan Borchers 7

The RasterOp Model

• Original graphics model

• Suited to bitmap displays with linear video memory
• Addresses individual pixels directly

• Absolute integer screen coordinate system
• Resolution problem

7



media computing groupJan Borchers 8

The Vector Model

• API uses normalized coordinate system
• Device-dependent transformation inside layer

• Advantage: units are not pixels of specific device anymore

• Applications can output same image data to various screens and printer, 
always get best possible resolution (no “jaggies”)

• Originally implemented using Display PostScript
• Included arbitrary clipping regions

• a.k.a. “Stencil/Paint Model”

8



media computing groupJan Borchers

Graphics Library Objects: Canvas

• Memory areas with coordinate system and memory-to-
pixel mapping

• Defined by: Start address, size, bit depth, logical 
arrangement in memory (only relevant for pixmaps)

• Z format (consecutive bytes per pixel, easy pixel access)

• XY format (consecutive bytes per plane, easy color access)

9

Z format XY format

9



media computing groupJan Borchers 10

Graphics Library Objects:
Output Objects

• Elementary
• Directly rendered by graphics hardware

• E.g., Circle, line, raster image

• Complex
• Broken down by software into elementary objects to render

• Example: Fonts

- Broken down into raster images (bitmap/raster/image font, quick but jagged when 
scaled)

- Or broken down into outline curves (scalable/outline/vector fonts, scalable but 
slower)

- Real fonts do not scale arithmetically!

10



media computing groupJan Borchers 11

Graphics Library Objects:
Graphics Context 

• State of the (virtual) graphics processor

• Bundle of graphical attributes to output objects
• e.g., font, line width, color index, copy function, ...

• Goal: reduce parameters to pass when calling graphics 
operations

• Not always provided on this level
Attribute Value

Font Gill Sans

Font size 24 pt

Font color (0,0,0)

Line width 2 px

... ...drawString(x, y, “Turtle”);

11



media computing groupJan Borchers 12

Graphics Library: Actions
• Output (render) actions for objects described above

• Three “memory modes”
• Direct/Immediate Drawing

- Render into display memory and forget

• Command-Buffered/Structured Drawing, Display List Mode

- Create list of objects to draw

- May be hierarchically organized and/or prioritized

- Complex but very efficient for sparse objects

+ +
+ +

12



media computing groupJan Borchers

• Data-Buffered Drawing
• Draw into window and in parallel into “backup” in memory

• Memory-intensive but simple, efficient for dense objects

13

Graphics Library: Actions

+ +

13



media computing groupJan Borchers 14

Graphics Library: Actions

• Who has to do redraw?
• Buffered modes: GEL can redraw, needs trigger

• Immediate mode: application needs to redraw (may implement buffer or 
display list technique itself)

• Mouse cursor is always redrawn by GEL (performance)

- Unless own display layer for cursor (alpha channel)

- Triggered by event part of GEL

• Clipping is usually done by GEL (performance)

14



media computing groupJan Borchers 15

Event Library: Objects

• Events
• Driver-specific: physical coordinates, timestamp, device-specific event code, in 

device-specific format

• Canonical: logical screen coordinates, timestamp, global event code, in window 
system wide unified format

• Event Library mediates between mouse/kbd/tablet/... drivers and window-
based event handling system by doing this unification

• Queue
• EL offers one event queue per device 

15



media computing groupJan Borchers 16

Event Library: Actions

• Drivers deliver device-specific events interrupt-driven 
into buffers with timestamps

• EL cycles driver buffers, reads events, puts unified events 
into 1 queue per device (all queues equal format)

• Update mouse cursor without referring to higher layers

16



media computing groupJan Borchers 17

GEL: Extensions

• GL: Offer new graphics objects/actions (performance)

• EL: Support new devices

• How extensible is the GEL?
• Most systems: Not accessible to application developer

• GEL as library: extensible only with access to source code (X11)

• GEL access via interpreted language: extensible at runtime (NeWS)

- NeWS example: Download PostScript code into GEL to draw triangles, gridlines, 
patterns,...

17



media computing groupJan Borchers 18

GEL: Summary

• Hides hardware and OS aspects

• Offers virtual graphics/event machine

• Often in same address space as Base Window System

• Many GEL objects have peer objects on higher levels
• E.g., windows have canvas

18



media computing groupJan Borchers 19

Base Window System: Tasks

• Provide mechanisms for operations on WS-wide data 
structures

• Manage shared resources - ensure consistency

• Core of the WS

• Most fundamental differences in structure between 
different systems

• user process with GEL, part of OS, privileged process

• In general, 1 WS with k terminals, n applications, m 
objects (windows, fonts) per app (r WS if distributed)

19



media computing groupJan Borchers 20

Base Window System: Structure

WM

GEL
HW

UITK
Access Control Addressing

Request Demultiplex

Mutual Exclusion Multiplex

Memory Allocation Queue/Dequeue

Canvas Events

Graphics Library Event Library

Requests, Output,
Changes

Dialog input,
State messaging

Apps
for apps 1..n

Connection Mgmt.

Resource Operations

Synchronization

Elementary op's.

Objects

BWS

20



media computing groupJan Borchers 21

Base Window System: Objects

• Windows, canvas, graphics contexts, events
• Requested explicitly from applications (except 

events), but managed by BWS—why?
• Manage scarce resources for performance & efficiency

• Applications share resources

• Consistency and synchronization

• Real vs. virtual resources
• (Video) memory, mouse, keyboard, usually also network

• Applications only see “their” virtual resources

21



media computing groupJan Borchers 22

Windows & Canvas

• Components:

• Owner (application originally requesting the window)

• Users (reference list of IDs of all applications temporary aiming to 
work with the window)

• Size, depth, border, origin

• State variables (visible, active,...)

• Canvas

• =Window without state; not visible

• Operations:

• Drawing in application coordinate system

• State changes (make (in)visible, make (in)valid,...)

22



media computing groupJan Borchers 23

Events

• Components:
• Event type

• Time stamp

• Type-specific data

• Location

• Window

• Application

• Event Processing:
• Collect (multiplex) from device queues

• Order by time stamp, determine application & window

• Distribute (demultiplex) to application event queues

Device 1...Device n

App 1...App m

Order

23



media computing groupJan Borchers 24

Events

• BWS can generate events itself based on window states 
(e.g., “needs restoring”) or certain incoming event 
patterns (replace two clicks by double-click), and insert 
them into queue

24



media computing groupJan Borchers 25

Fonts

• Increasingly offered by GEL (performance), but 
managed here

• Load completely into virtual memory, or

• Load each component into real memory, or

• Load completely into real memory

• Components
• Application owner, other apps using it (as with windows)

- Typically shared as read-only ➞ owner “just another user”

• Name, measurements (font size, kerning, ligatures,...)

• Data field per character containing its graphical shape

25



media computing groupJan Borchers 26

Graphics Context

• Graphics Context Components
• Owner app, user apps

• Graphics attributes (line thickness, color index, copy function,...)

• Text attributes (color, skew, direction, copy function,...)

• Color table reference

• GEL: 1 Graphics context at any time, BWS: many
• Only one of them active (loaded into GEL) at any time

26



media computing groupJan Borchers 27

Color Tables

• Components
• Owner app, user apps

• Data fields for each color entry

- RGB, HSV, YIQ,...

• Fault tolerance
• BWS should hold defaults for all its object type parameters to allow 

underspecified requests

• BWS should map illegal object requests (missing fonts,...) to legal ones (close 
replacement font,...)

27



media computing groupJan Borchers 28

Communication Bandwidth

• WS needs to talk to other apps across network
• Typically on top of ISO/OSI layer 4 connection (TCP/IP,...)
• But requires some layer 5 services (priority, bandwidth,...)
• Usually full-duplex, custom protocol with efficient coding
• Exchange of character and image data, often in bursts
• Each application expects own virtual connection

➡ Bandwidth is scarce resource

• Components of a Connection object:
• Partner (IP+process,...), ID, parameters, encoding, message class (priority,...)
• Elementary operations: decode, (de)compress, checksum,...
• Optional operations: manage connection, address service

28



media computing groupJan Borchers 29

• Basic set of operations for all object types
• Allocate, deallocate

• Other elementary operations for certain types
• Read and write events to and from event queues

• Filtering events for applications

• How to manage window collection in BWS?
• Tree (all child windows are inside their parent window)

• Why?
- Remember: on the BWS level, all UI objects are windows—not just document 

windows of applications!

BWS: Actions

➞ Visibility, Event routing

29



media computing groupJan Borchers 30

In-Class Exercise

• Determine a valid tree structure for the window 
arrangement shown below

6

1

2

4

5

3

6

7

30



media computing groupJan Borchers 31

Shared Resources

• Reasons for sharing resources: Scarcity, collaboration

• Problems: Competition, consistency

• Solution: Use “users” list of objects
• Add operations to check list, add/remove users to object

• Deallocate if list empty or owner asks for it

• How does BWS handle application requests?
• Avoid overlapping requests through internal synchronization

• Use semaphores, monitors, message queues

31



media computing groupJan Borchers 32

Synchronization Options

• Synchronize at BWS entrance
• One app request entering the BWS is carried out in full before next request 

is processed (simple but potential delays)

• Synchronize on individual objects
• Apps can run in parallel using (preemptive) multitasking

• Operations on BWS objects are protected with monitors

- Each object is monitor, verify if available before entering

- high internal parallelism but complex, introduces overhead

32



media computing groupJan Borchers 33

OS Integration

• Single address space
• No process concept, collaborative control (stability?)

• “Window multitasking” through procedure calls (cooperation on common 
stack)

• Xerox Star, Apple Mac OS Classic, MS Windows 3.x

• BWS in kernel
• Apps are individual processes in user address space

• BWS & GEL are parts of kernel in system address space

• Each BWS (runtime library) call is kernel entry (expensive but handled with 
kernel priority)

• Communication via shared memory, sync via kernel

33



media computing groupJan Borchers 34

OS Integration

• BWS as user process
• BWS loses privileges, is user-level server for client apps, Communication via 

Inter-Process Communication (IPC)

- Single-thread server (“secretary”): no internal parallelism, sync by entry

- Server with specialized threads (“team”): each thread handles specific server 
subtask, shared BWS objects are protected using monitors

- Multi-server architecture: Several separate servers for different tasks (font 
server, speech recognition and synthesizing server,... — see distributed window 
systems)

34



media computing groupJan Borchers 35

BWS: Summary

• BWS works with device- and OS-independent 
abstractions (only very general assumptions about OS)

• Supports system security and consistency through 
encapsulation and synchronization

• map n apps with virtual resource requirements to 1 hardware

• Offers basic API for higher levels (comparable to our 
Simple Reference Window System)

• Where are window controls, menus, icons, masks, ...?

35



media computing groupJan Borchers 36

The 4-Layer Model
of Window System Architectures

User Interface Toolkit

Window Manager

Base Window System

Graphics & Event Library

Hardware

Applications

m
or

e 
ab

st
ra

ct
, u

se
r-

or
ie

nt
ed

36



media computing groupJan Borchers 37

Window Manager

37



media computing groupJan Borchers 38

Window Manager: Motivation

• Position and decorate windows
• Provide Look&Feel for interaction with WS
• So far: applications can output to windows

• User control defined by application

• May result in inhomogeneous user experience

• Now: let user control windows
• Independent of applications

• User-centered system view

• BWS provides mechanism vs. WM implements 
policy

BWS

UITK

WM

GEL

HW

Apps

38


