
Pair Programming Interfaces and Research

Roland Doepke
RWTH Aachen

52056 Aachen, Germany
roland.doepke@rwth-aachen.de

Markus Soworka
RWTH Aachen

52056 Aachen, Germany
markus.soworka@rwth-aachen.de

ABSTRACT
Pair programming is an aspect of Extreme Programming
where two software programmers work together at one com-
puter on the same code. We give an overview of current
research on pair programming and its benefits over individ-
ual programming.
We will see that pair programming is an effective way of
programming while the role of the navigator stays unclear.
As distance collaboration is mandatory due to globally dis-
tributed organizations we also consider distributed pair pro-
gramming. However, this makes user interfaces necessary
which permit that geographically distributed developers may
work together over the internet as if they were using one
computer.
We will present several attempts for this, namely Sangam,
CollabVS, Facetop and CodeGraffiti. Sangam and CollabVS
are IDE input-based solutions, whereas Facetop is a highly
video dependent approach on distributed collaboration. The
fourth approach, CodeGraffiti, enhances collocated pair pro-
gramming with handwritten code comments and sketches.
We will observe that Facetop overloads the user with unnec-
essary information, whereas IDE Solutions lack extendabil-
ity.

Author Keywords
Pair programming, distributed collaboration, user interfaces

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation: Group and
Organization Interfaces

INTRODUCTION
Explaining pair programming is simple: It is a style of
programming where two programmers are simultaneously
working on the same piece of code at the same computer.
One of them, the driver, has full control over the integrated
development environment (IDE), while the other, the navi-
gator, observes the work. These roles frequently switch dur-
ing the programming session, giving the navigator control

over mouse and keyboard and vice versa. That’s it.
But this raises questions as well:

• How efficient is the work of two programmers doing “the
work of one” at the same time?

• How does the navigator contribute to progress?

• Why it is so successful?

• And lastly, as project teams are getting more and more
spread around the globe: Does this work with partners
who do not sit directly next to each other at one computer,
as well?

We will try to answer these questions within the paper, but
first of all we have to get more into detail about pair pro-
gramming.
Pair programming is mainly used as a practice of Extreme
Programming [3]. But as it turned out to be working well, it
was also used in other development methodologies—while
other aspects of Extreme Programming stay highly debated
or simply can not efficiently be used alone. Extreme Pro-
gramming is a style of programming where a project is di-
vided into many small tasks, with each of them having at
least one test case, that are written before a single line of
program code is written. Commonly these tasks are written
on index cards. The so-called user stories on the cards are
translated into test cases—basically program code which au-
tomatically tests other code for correctness.
After this, the programmer begins to write code to handle
these test cases—which then can be checked automatically.
The project is done, if no test case fails any more.
As this is the approach for a single programmer, for multi-
ple developers it gets vastly more difficult. Models and test
cases have to be developed in a team which makes commu-
nication between all participants the main issue. And how
could communication with someone be better than interact-
ing with someone at all stages of development? This is the
point where pair programming comes in: apart from meet-
ings with the whole team, programmers work in teams of
two—but switch their team partner within the team at regu-
lar intervals.
According to “Brook’s Law”, adding more people to a soft-
ware project does not necessarily decrease its development
time [4]. That is why one could think that pair program-
ming does not speed up the development process and two
programmers need twice as much effective time as one pro-
grammer. Only one of them is working and the other is
wasting time watching him. But programmers who tried pair

1

programming felt that this is not the case and several studies
substantiated this. We will focus on this in the second chap-
ter.
Assuming that pair programming, as it is now, is an effec-
tive way of programming—integrated development environ-
ments (IDEs) usually are not intended to work with more
than one user at once. You could suppose that IDEs solely
made for this purpose would work even better. That is why
we will look at some user interfaces which try to help pro-
grammer pairs with their work in the third chapter.
Lastly we will compare and judge these and give suggestions
on improvements.

MAKING THE CASE FOR PAIR PROGRAMMING
Reading papers about pair programming means reading
anecdotes about pair programming. Any paper we investi-
gated contained own experiences where the authors proudly
presented how positive their experiences with pair program-
ming were or how well their test persons did with pair pro-
gramming. As this might be not a very scientific way of
investigation it shows at least how inspiring pair program-
ming is.
According to Cockburn and Williams [7] we divide into
eight aspects of software engineering and organizational ef-
fectiveness aligned with pair programming:

• Economics. To proof pair programming is not less effec-
tive than individual programming, Williams et al. [20] in-
vestigated a software engineering course at the University
of Utah, where one part of the class coded class projects
by themselves, as they had for years and the other part of
the students completed their projects with a collaborative
partner. At first they noticed an increase of 15% more cod-
ing time on the initial program. One of the advantages of
extreme programming is that code can be automatically
tested with test cases. Thus, making it easy to system-
atically check code for its correctness. With the course
instructor’s test cases it was shown that pair programmed
code passed more tests than the code written by individu-
als. The resulting code had about 15% fewer defects, sta-
tistically significant. Other, earlier studies came to even
better results for pair programming [17].
Taking into account industry data about costs of software
defects [13], it is almost obvious why a little more coding
time on initial code with fewer errors is better than fix-
ing these errors later on. Cockburn and Williams demon-
strated this for a program of 50,000 lines of code [7]: It
would use 15 times more time to program and to fix de-
fects in a quality assurance department, given a conser-
vative value of 10 hours per defect. Fixing these bugs
“on the field” would take even 60 times more time—
calculated with a conservative factor of 40 hours per de-
fect.
This doubtlessly shows, that pair programming does not
double the time needed.

• Satisfaction. Another plus is the enjoyability of pair
programming which leads to higher acceptance. Ini-
tially many programmers are skeptical, because “it takes
the conditioned solitary programmer out of his com-
fort zone”. But pair programming teams reported that

they “enjoyed pair programming more”—and, addition-
ally, that “they were more confident in their programs than
when they programmed alone” [7].

• Design quality. Written code not only had fewer defects,
they also had fewer lines of code with same functional-
ity. While it would be an interesting challenge to show
if shorter code means better design it is rather difficult to
evaluate design quality with objective measurements. But
fewer lines of code at least mean fewer lines of code to
maintain. That is why pair programmed code seems to be
of better quality and to have lower probability of errors.
This is not surprising because different people bring dif-
ferent experiences and prefer different courses of action
[9]. Exploring a larger number of alternatives than a sin-
gle programmer alone “reduces the chances of selecting a
bad plan”.

• Continuous Reviews. Inspections are a cost-effective way
of removing defects from software. As we explained ear-
lier, fixing bugs on the field means much higher costs.
However, inspections are found not enjoyable or satis-
fying by the majority of programmers. As a result they
are often not done or are held with unprepared inspectors
[7]. During pair programming a continuous review takes
place. Additionally, the reviewer is prepared as good as
possible. Mistakes are found as they entered, “saving the
cost of compilation” and “coding standards are followed
more accurately with the peer pressure to do so”.

• Problem solving. Sooner or later programmers will come
to the point where something does not work as intended.
Pair programmers are able to solve these unexpected
errors faster than individual programmers. Cockburn and
Williams refer to “pair relaying” [7]: By “contributing
their knowledge to the best of their abilities”, program-
mers are able to share their knowledge and energy.

• Learning. Each programmer has different skills in pro-
gramming or designing. In pair programming the two pro-
grammers work in one “line of sight” [14], so they learn
form each other by watching and listening to the other per-
son. This is especially useful if one of the programmers is
a novice. By sharing the same workspace, the novice ab-
sorbs the experts knowledge. Furthermore, learning with
a partner is easier and more effective.

• Team Building and Communication. Increased team
togetherness is commonly—however an anecdotal
evidence—observed in pair programming teams. People
learn to work together. But they need to get used to work
with a partner. Advising them to think out loud can do
the trick: One of Cockburn’s interview partners explained
how a random collection of several software engineers
grew together as a team solely with pair programming
[7].

• Staff and Project Management. A key number to estimate
project risk is the so called truck number: “How many or
few people would have to be hit by a truck (or quit) be-
fore the project is incapacitated?” Here, the worst value
is one. Spreading knowledge within the team by rotating

2

pair partners does reduce the risk. That is why the project
team benefits from the increased learning due to pair pro-
gramming.

Role of the Navigator
Complex software must be developed collaboratively, but it
is shown that adding more heads to a project does not nec-
essarily decrease its development time [4]. But working in
teams of two does not seem to hurt.
To get behind the reasons why pair programming is that suc-
cessful, it was observed how the navigator contributed to the
code generation. The navigator seems to have a much more
objective point of view. Bryant et al. give a wide overview
of previous works in their paper ”Pair Programming and the
Mysterious Role of the Navigator” [5]. First of all, working
in a pair encourages a programmer to talk. Talking about
problems to oneself can help achieving a better understand-
ing of a problem [6]. Anecdotally, many programmers stress
they achieved an ‘eureka’ moment by explaining a difficult
problem to somebody else. Ainsworth et al. refer to this
effect as getting rid of ‘cognitive off-load’ [1]. By verbal-
ization the programmer frees up ‘working memory’ which
allows him to think further.
Another possible explanation would be the separation of a
task into subtasks. This way, a programmer would have to
think only about a subtask and thus being concerned only
with a subset of complexity. But earlier studies showed that
this happens only to a small extend.
However, the authors inspiring this chapter concentrated on
the actual role of the navigator. Thereby they tried to catego-
rize the navigator as a reviewer, catching syntax and spelling
errors or as a foreman, working at higher levels of abstrac-
tion. The authors audio recorded pair programming ses-
sions of commercial pair programmers, counted utterances
and sorted these utterances of the navigators into classes.
These were classified into six different levels of abstraction.
According to the authors, syntax is the lowest level of ab-
straction, such as correcting punctuating marks. Links to the
real world, where the programs discuss a real world problem
connected to the program code, would be the highest level
of abstraction. There is also an additional ‘vague’ classifica-
tion for utterances where the level of abstraction could not
be ascertained. Figure 1 shows the classification table.
The findings were analyzed with statistical methods and the
comparison between driver and navigator surprises: At all
levels of abstraction utterances are evenly distributed be-
tween the pair. This implies that both work at similar levels
of abstraction and makes the pair programmers a ‘Tag Team’
which shares the additional cognitive load of typing—in
contrast to earlier assumptions that the navigator would have
the role of a ‘reviewer’ or a ‘foreman’.

The study also reveals a proliferation of utterances at the
‘program block’ level, as figure 2 indicates. The ‘program
block’ level describes utterances related to structures of the
program such as case-blocks, databases, subsystems or li-
braries. Bryant et al. refer to future work but form hypothe-
ses why this could be the case:

• The ‘program block’ level provides the driver with the in-
formation he needs to keep a clear head and stay in focus

Figure 2. Average number of utterances of each level per session for
each role [5]

for the whole task.

• Pair programming keeps the navigator up to speed with
the driver in preparation of a future role change. When
the navigator becomes a driver—because the old driver
needs a break or the former navigator is better informed
in the current programming task—the role change can be
as fluid as possible. That is why no time is wasted for
explaining the status of the code. The ‘program block’
level provides a “missing level of information” which is
not yet covered by the IDE and provides “the ‘glue’ that
holds together the upper and lower levels of abstraction”.
Therefore it would help the navigator to get information
what is happening at this part of the code “to take over in
a fluid manner”.

However, studies on pair programming are limited in various
ways. Bryant et al. already mentioned the most frequently
voiced objections in their paper.
At first the availability of test persons is a problem. These
can only be gathered within the academic and teaching sec-
tor or by voluntary companies. Students have a different
pair programming behavior than commercial programmers
due to less experience. Observing commercial programmers
is purely opportunistic and the pairs observed are those who
are happy to be watched or maybe those who want to get be-
hind why it is not working.
Another limitation is the method of data collection. Not
all information between a collocated pair can be gathered.
People communicate in many “subtle means” which can-
not be tracked by sound, video and screen information—and
Bryant et al. were limited to audio only. On top of this, due
to the sensitive nature of commercial projects, video and
screen recording is often not possible. This leads to prob-
lems. In context of this paper this means the proper classi-
fication of utterances, which lead to having ‘vague’ classifi-
cation contain by far most of the utterances. In our opinion
this fact questions the findings of Bryant et al. : the number
of ‘vague’ utterances include all the utterances where the
authors were unable to classify the statement in one of the
levels of abstraction. It is unclear in which proportion the
‘vague’ level contains utterances of agreement or disagree-
ment, such as “ok”, in contrast to utterances which possibly
could fit into one of the other categories. Taking just the half

3

Code Explanation Examples
Syntax Spelling or grammar of the program. Spelling is indicated in

the transcription by single letter capitals. NOT semantics.
Spelling, dot, F9, 7.

Detailed References to operations and variables in the program. A
method, attribute or object which may or may not be referred
to by name

That’s not actually part of the array that we
want.
If we have this short description field.

Program
Blocks

Blocks of the program. Including tests and abstract coding
concepts. Also strategy relating to the program and its struc-
ture. General naming standards discussions etc. This could
also include cases where the subject of the sentence refers
to ‘some of them’ or ‘they all’ – i.e. a group of conditions.
Anything to do with refactoring. Subsystems or libraries. Di-
rectories or paths, even if named.

We did the content test cases in a similar sort
of way.
I think that before we decommission the
database we should take a snapshot of it.

Bridge The statement bridges or jumps between the real world or
problem domain and the programming domain. This may
be where a case or condition exists in the code and the real
world.

So we need to add a test condition here, to see
if the the bank account is valid for this kind of
transaction.
How can the feed come in earlier than the
trade?

Real
World

Real world problem domain. The user might genuinely put his phone
down....he wanders away, has a bath, comes
back...
Just before the time that we set up we call and
ask him “can i start now”.

Vague Including metacognitive statements and questions about
progress or understanding. References to the development
environment and/or navigating its menu structure. Utter-
ances where the level of abstraction cannot be ascertained.

I know where you’re coming from.
Oh yeah, I see, that bit at the top.

Figure 1. Classification table based on Bryant et al. [5]

of the ‘vague’ classified utterances and classifying these to
the smallest class, the ‘real world’ domain, would be enough
to make it the biggest classification, which could mess up the
results.

Distributed Pair Programming
Usually pair programming is performed by collocated pro-
grammers. On the contrary distributed collaboration is get-
ting more important, teams consisting of people in Europe
working with people in America or Asia become more com-
mon.
A study by Herbsleb et al. of the year 2000 gave out ques-
tionnaires over several years, to several sites of the Bell
Labs—most of them located in Europe (UK and Germany)
and some of them located in India. All sites are involved
in software engineering in the same project. The question-
naire asked, among other things, how many days it took un-
til a request to incorporate a specific functionality into the
software would take until it is implemented, dependent on
where it was developed. The shocking result of this was
that it took about 5 days if the specific modification request
was developed within the own site, and more than twice as
long, namely 12.7 days, if developed across sites [11]. This
presents evidence that “speed presents a challenge indeed in
multi-site work. Diminished communication across distance
and the loss of the subtle modes of face-to-face communi-
cation and coordination that collocated work affords, appear
to have rather dramatic and unfortunate consequences”. An-
other interesting finding of the study was that it was difficult

to find the right people across sites.

To enable pair programming over distance, it is necessary
to provide a workspace that offers tools for communication
between driver and navigator. In the best case programmers
can hear and see each other. Both programmers need to have
a shared view on the code and at least the driver should have
the possibility to edit the code. Under these conditions it is
possible to do pair programming. But how effective is this
technique of programming when the programmers are geo-
graphically distributed?
To achieve insight into this, Baheti et al. conducted an ex-
periment in 2001 in a graduate class with 132 students who
had to do programming projects [2]. 34 of these were dis-
tance learning students, who had a vested interest in do-
ing distributed pair programming. The students were di-
vided into teams of two to four people, each team attached
to one of four groups: Collocated team without pairs, col-
located team with pairs, distributed team without pairs and
distributed team with pairs. The distributed teams with pairs
worked on a shared desktop via VNC, communicating with
a microphone and an instant messenger. This way they had
to work simultaneously with the pair programming method.
To compare the work between the different groups, the stu-
dents used a web-based software-process analysis system.
Over the course the research team supervised the student’s
recorded metrics to make sure that the recorded data was ac-
curate. The analyzed metrics were productivity, measured
in lines of code per hour, and quality, measured in the fi-
nal grades the students achieved for the project. The results

4

show that the “collocated pairs for this experiment were not
more productive (statistically) than distributed pairs”. In ad-
dition it was found that distributed pairs were as efficient as
collocated pairs regarding the quality of their work. After
the project the students were asked to give feedback on the
communication with their team and cooperation within their
team. An interesting result is that the students cooperation
was best rated in distributed paired teams, followed by the
collocated teams with pairs. Even the communication is best
in distributed teams with pairs, according to the survey.
The results show that distributed pair programming was not
less effective than collocated pair programming in this case.
Communication and teamwork do not necessarily have to be
poor because of the geographical distribution—given there
is direct communication possible.
Considering this insight, advantages of distributed pair pro-
gramming over collocated pair programming become more
valuable [19]:

• Visibility is much higher, because each programmer has
his own screen. Thus having more space for interface ele-
ments one programmer uses and the other does not.

• The navigator has the possibility to use his PC to search
the Web for resources while the other continues writing
code.

• Time can be saved, because there is no need for traveling
to meet the partner.

• With the right equipment, meetings are also possible when
the persons are not at home, for example when they are on
a business trip.

• All the work is done electronically instead of using paper
or whiteboards. This takes more time as a downside, but,
as everything is digital, copies and records are available
for all versions of the work which might not been consid-
ered valuable enough to preserve at first sight.

On the other hand, distributed pair programming has some
disadvantages as well:

• It is hard to point on the code, so the programmers have
to describe where the problem is what takes a lot of time.
Many tools for distributed collaboration still do not sup-
port this.

• If there is a problem with one computer, both have to stop
working.

• While communicating the team members can not see fa-
cial expressions of the partner, because webcam videos
are too small, have limited frame rates and are expensive
in bandwidth.

• Other people may not know that the programmer is in a
distributed pair programming session as it is not common
sitting in front a PC but doing collaborative work. Other
people could interrupt them with starting a conversation,
distracting the programmer from working.

• Programmers have to get used to distributed collaboration
to work efficient. They need to get used to the provided

tools and get aware of their limitations. This is often the
case in VNC based solutions. The driver might switch
screens or scroll that fast that the navigator’s video trans-
mission cannot keep up.

• Caused by the physical distance of the programmers, they
have to make time-consuming explanations that could be
easy done by visual diagrams if the programmers were
collocated.

To get rid of some of these issues there are some tools that
try to solve the problems in distributed pair programming,
enhancing simple desktop sharing applications. These need
to fill the requirement of supporting all actions, which make
collocated programming efficient and eliminate as many dis-
advantages of distributed pair programming as possible. In
the next chapter we will present some of them.

USER INTERFACES FOR PAIR PROGRAMMING
The following tools are intended to be used for distributed
collaboration: To begin with you have to distinguish be-
tween asynchronous and synchronous collaboration. Asyn-
chronous collaboration means that the team works at differ-
ent times and integrate their work after they have completed
their task. This can be done by uploading with a version
system like SVN1 to a centralized server. Pair programming
obviously belongs to the other category, synchronous col-
laboration. But to make synchronous collaboration possible,
some efforts have to be done.
A basic approach would be streaming all the output of the
driver to the navigator as image data such as possible with
existing solutions like Teamviewer2. The good thing is that
it supports all applications without any modification. How-
ever, this requires a fast network connection and wastes huge
amounts of bandwidth for few actually used data and pro-
duces other difficulties such as changing roles. Strict firewall
rules also often hinders the easy use. The other approach is
to design the application specifically for collaboration. This
enables the programmers to do asynchronous collaboration
as well, but we are not going into detail in this paper.
We will investigate two IDE tools supporting distributed pair
programming. One of them is Sangam [12, 8], a rather old
tool, which is solely designed for distributed pair program-
ming. Despite its age, we think it is particularly interesting
what the authors thought about making a tool for this pur-
pose. CollabVS [10] is a newer implementation of a col-
laborative programming IDE. It is not intended to be used
for pair programming but comes along with several features
which are handy for distributed pair programming.

Sangam
Sangam is a plugin for Eclipse to enable distributed pair pro-
gramming. The plugin itself was developed by a distributed
team in 2004. Eclipse qualifies as a base for this purpose
because it is a widely accepted IDE, it is open source and a
user can install an arbitrary number of plugins. The job of
Sangam is to gather every action done on the driver’s com-
puter and send it to a server. On the navigator’s computer
1http://subversion.apache.org/
2http://www.teamviewer.com

5

Figure 3. Sangam Eclipse Plugin [12]

Sangam reproduces the action.
Before each programming session all participants have to
connect to a centralized server. There can be more than two
developers but only one can be driver at a time, thus allow-
ing for multiple navigators. After connecting to the server,
the programming session can begin. Figure 3 shows an ex-
ample view of Sangam running in the Eclipse IDE [12]. The
Sangam Editor provides synchronous editing, whereas the
Launcher enables to launch a Java application or JUnit test
together. The toolbar enables the connection to the server as
well as floor management. Floor management defines who
has control over the input devices. Although the navigator
still can use the mouse and keyboard, so remaining in con-
trol over his own PC, the information is not transferred to
the driver’s screen. However, the navigator can still type in
the editor. This is considered as a bug by the authors, but
we found it useful as it can be used for correcting syntax er-
rors without bothering the driver. This requires a protocol
between both programmers as a downside.
A further development of Sangam is Jazz Sangam [8] which
is basically an implementation of Sangam’s technologies
within IBM’s collaborative software development platform
Jazz 3. But since it is four years younger, and Jazz enables
new features, it is a worthy enhancement of Sangam. One re-
quirement of Sangam is that the source code needs to be con-
sistent as it only reproduces changes. Distributed developers
might have different versions of code on their workspace.
Jazz Sangam solves this by bringing its own version control
system, easing the project progress by not having to start
several other programs at first in order to begin. This is why
an instant message client got integrated within the develop-
ment environment. This is a big advantage towards third
party programs running in the background. The user has
all necessary windows at sight without the problem of other
programs hiding important elements.

3http://www.jazz.net

CollabVS
Third party tools, such as IM, version control, voice and
video conferencing are all channels which can help with
distributed collaboration. However, they “tend to be stand-
alone systems that are not integrated with the programming
environment, resulting in significant overhead in using these
systems” [10]. This basically is what CollabVS tries to be: a
“Collaboration-Centered User Interface” merging many dif-
ferent tools into one.
This tool by the Microsoft research team extends the Vi-
sual Studio programming environment, hence the name, and
supports all functionality known from Jazz Sangam. To put
this into a nutshell: synchronized editing windows, built-in
text chat windows and version control come along with Col-
labVS as well. In addition, it offers audio and video chat and
a new concept the authors refer as “real-time presence”.
Figure 4 shows a screenshot of CollabVS, with as many
streams running as possible. All these are optional and can
be placed on different locations. The authors stress the op-
tionality, as “the amount of communication and coding per-
formance by programmer can vary based on their roles”. As
in Sangam, they are all build in within the IDE, enabling
easy placement without hiding other windows.
Audio and video conversation (7) offers many positive ef-
fects. But mainly it eases communication between develop-
ers, since a direct conversation is always faster than typing.
We will get more into detail about direction communication
within the Facetop presentation.
The specialty of CollabVS is that it creates a presence stream
for each developer (1 and 2). This feature contains the func-
tionality of IM tools, showing if the user is online or of-
fline, but adds more valuable programming context. ‘Status’
shows what the programmer is currently doing, e.g. if he is
editing or just viewing the code and where he is doing this:
you can see in which file he is currently active, in which
class and even which method he is working at. Left clicking
on these information opens a window where you can see the

6

Figure 4. CollabVS Interface showing various features. Key features are identified with numbers [10]

current program code of this method.
A user test with CollabVS within the research lab showed
that user like this feature and tend to continuously watch
the presence stream to gain insight on which code frag-
ments their partners work. This leads to awareness of oth-
ers. But how can this asynchronous editing feature help with
pair programming?—With finding a partner! As previously
shown, pair programmers do not always work in pairs. With
the presence streams you can wait for a good opportunity
to interrupt another programmer, and when he is available
to start a pair programming session. It helps with finding
the best partner as well: The awareness of on which files,
classes and methods team members work helps with find-
ing the one who has the most experience with a given code
artifact. To put the whole matter into a nutshell: Presence
streams might work towards one of the reasons, why col-
located teams perform better: physical proximity promotes
that team members help each other more often and are more
aware of what everyone is doing [11].

Nevertheless CollabVS and Sangam both do not fix the
biggest disadvantage of IDE tools: their limited extendabil-

ity. Both support only predefined events. Adding plugins to
the IDE and using them in a pair programming context does
not work by default as events produced by these are not mir-
rored. If such a plugin would for example change code, this
would happen very fast. The navigator would not recognize
this or would be confused on what happened.
Another important feature, namely pointing on code frag-
ments or interface elements, is still not adressed with
Sangam and CollabVS.

Facetop
Missing extensibility and pointing on code fragments makes
video based solutions more acceptable.
While doing distributed pair programming, it is very
important to keep up communication between the two pro-
grammers to maintain the advantages of pair programming.
To do so, it is necessary to create a workspace that simulates
collocated programming. That means you need to hear
the other person commenting on the work and you need to
see the person. In most cases a simple webcam for seeing
the other person is installed, but in some cases this is not
sufficient. The video window is much too small to gather

7

Figure 5. Facetop at semi-transparent level with finger tip tracking
marked green. [18]

facial expressions. Simply resizing it would be no good
solution as well as this would take even more space of the
already messy IDE windows on the one hand. On the other
hand a temporary resize would not fit the principle of pair
programming with talking and coding at once—and both
programmers need to interact with the code by pointing or
gesturing on it. A temporary size adjustment of the video
window would be not sufficient. There exist many tools to
transmit the voice of other persons, but what about the other
problem?
Facetop is trying to solve this by projecting the video of
an ordinary webcam as a transparent image “behind” the
desktop, so the user is seeing himself in the desktop and
can naturally interact with other running applications via
a fingertip-driven “virtual mouse”. Therefore the user’s
fingertip is being tracked and the mouse can be driven from
this tracker (see figure 5). If the tracker loses the fingertip,
because of too fast movements or hiding the finger, it starts
an entire image scan to retrieve it. Besides the user can
adjust the transparency level of the video from opaque to
transparent, so Facetop can be used while working and
there is no need to hard-switch between the video and the
workspace. In addition to simple finger tracking Facetop is
also capable of interpreting finger gestures, for example to
use for Mac Cocoa Gestures. Clicking on interface elements
is achieved by another gesture, the ‘pinching fist’. The user
hides his finger and reveals it afterwards to do a click on an
interface element. Another interaction method is interaction
with voice commands, e.g. to adjust transparency of the
different video layers.
As the fingertracking was a single user application possi-
bility so far, Facetop also extends to a two head version for
collaborative working: two users are visible on a shared
desktop side by side, so they can work as if they were sitting
side by side. Thus they can see each other in large scale and
additionally they can interact with the IDE with help of the
finger tracking (see figure 6).
However, the visual clutter brought by several semi-
transparent images blend over each other seems to be an
obvious problem. Stotts et al. provided several solutions
to limit this issue. One of these is to have all participants
sitting in front of a white wall. However, as this is often not
possible they use algorithms to remove the background of

the programmer by computing which pixels are moving and
remove those which do not change. Another approach on
this is to reduce video information to display only shadows
instead of a rich detailed video. This helps with gesturing
and pointing to focus on the important parts of the code
whenever interpreting facial expressions is not needed.
The users pass the chalk, so to say who is in control over the
interface, by hiding the mouse. As mentioned before, the
tracker starts an entire image scan on each work station until
a new fingertip is found. Once the tracker finds a fingertip,
the mouse can be driven from it, but that also means that
two users can not simultaneously interact with the IDE,
because there is only one mouse pointer.
Additionally to the face-to-face video support, Facetop
offers a whiteboard feature that enables a shared view on
sketches. To realize that, an additional webcam is needed.
This second webcam films a whiteboard and additionally
merges this video with the standard Facetop video of the
user.
A disadvantage might be that the permanent video of
persons or moving objects in the background, such as in
office situations, can be distracting while working and those
can not be computed to hide till now.
Furthermore there is a problem with collaborative work in
Facetop: Each user has access to his whiteboard as it is a
physical artifact. If the first user writes something on the
whiteboard the other user can see it. However, the second
user cannot delete it and has to tell the first one to do that.
That is why this solution is not capable of replacing a
shared whiteboard, but rather merges two whiteboards into
one. This approach eases communication and graphical
explanations between both programmers with cheap and
ubiquitous equipment.
Another downside is the high demand for bandwidth of
the webcam that, if not sufficient, may cause artifacts
or stagnant movements in the video—but as broadband
connections are ubiquitous, this issues becomes trivial.

Figure 6. Facetop in dual-user mode [18]

In 2006 Navoraphan et al. did efforts to combine Sangam
and Facetop [16], which turned out to be a non-trivial task.
The idea behind this mashup is to enhance Sangam’s event
reproduction functionalities with gesturing. As the navigator
was not able to see where the driver was pointing at before,
he can now follow all his actions tracked by video.

8

Facetop is, in its two-user mode, only supported on the Mac-
intosh platform. Sangam is an Eclipse plugin, and that is
why the platform was fixed to Macintosh as well. This later
turned out to be a problem as several bugs of Eclipse and
Java AWT associated to the Mac platform hindered work in
a unattended large extend.
The main task of the developers was to automatically syn-
chronize display of the screens in every aspect. This involves
resolution settings, each component needs to have the exact
same size and the Eclipse window needs to take up the entire
screen as well.
However, user studies are still pending.

CodeGraffiti

Figure 7. Sourcecode explained via a sketch with CodeGraffiti [15]

Using fast sketching things can often be explained more eas-
ily than with words. That is why whiteboards can be found
in many workspaces. Developers utilize these not only to
explain but also to keep hold of design decisions. Smaller
teams, such as in pair programming, often use scratch paper
for this purpose.
However, there are two main issues with this: First, white-
boards will be wiped out and paper will be thrown away
if not considered valuable enough. Second, they are not
digital—thus, making them hard to share over the internet
for distributed collaboration. Of couse they can be scanned
or copied into digital files, but this requires some effort and
they most likely will be stored into a special folder, which is
not linked to the actual code. Existing documentation tools
like Doxygen4 are not suited to capture quick annotations
and do not support graphical annotations. Additionally, as
textural comments grow in size, they make code hard to read.
CodeGraffiti aids with a direct link between Code and
Sketches [15]. It gives the navigator the opportunity to
sketch directly on the shared screen in line with the code,
doing handwritten notes, drawing tables or documenting de-
sign decisions and besides having them directly digitalized
(see figure 7). This is ensured by giving both driver and nav-
igator the hardware they need for this task: the driver has
access to mouse and keyboard. Thus he is in full control of
the code and the IDE. The navigator uses a graphics device,
such as a graphics tablet with a pen or a finger painting de-
vice like iPad and iPhone (see figure 8), to make freehand
drawings or pointing to the code. To establish a connection,
the navigator connects his device to the server, which runs
as a plugin in the IDE.
Sketches done this way are stored in a companion file to each
source file, containing information that links them to anchors
4http://www.stack.nl/ dimitri/doxygen/

in the code. These notes do not compile but are still sticked
to the syntactical code: When the user removes a text anchor,
the sticked sketch becomes uncoupled and can be dragged to
other positions. This sticking technique ensures that when
the user adds lines of code or dislocates the code, the sticked
sketch moves with the code. Aditionally, one graphic can be
sticked to several anchors. Thus making it possible to draw
connections between several code fragments.
Beside annotating code the navigator can draw over inter-
face widgets, reference documentation or other screen ele-
ments. Codegraffiti handles these drawings as ‘ephemeral’
notes which just fade out after a few seconds.
Supporting the intention of pair programming, driver and
navigator always have the same view on the code, so no one
can wander off and work on separate tasks or files. However,
this might hinder workflows, as the the driver has to wait for
the navigator to finish a drawing, until he can scroll down.
CodeGraffiti solves this by sticking the view of the navigator
until he finishes and then jumps to the drivers new view. The
driver can go on with his work without beeing delayed.
With CodeGraffiti programmers are able to retain more
sketches for documentation. Moreover, they can assign
graphics to code very easy and efficient. All in all CodeGraf-
fiti is a helpful tool. However, till now, it only supports Mac
and does not provide integrability to existing major IDEs.

Figure 8. Various CodeGraffiti clients a) Apple iPad/iPhone, b) Wacom
Intuos tablet, c) Wacom Cintiq tablet display [15]

CONCLUSION
We have given insight into current research on benefits and
disadvantages and why pair programming is that success-
ful. However, till today a final answer, especially on this
problem, can not be given. Based on the level of abstrac-
tion, driver and navigator seem to contribute to the code in
the same manner. On the other hand, there were still limita-
tions which led to the ‘vague’ classification problem. Better
methods of observation could lift this issue by considering
the context of every utterance. It should be possible to dis-
tinguish between utterances of agreement, which would be
an additional classification, and real ‘vague’ classifications.
Today’s implementations of IDEs which are capable of log-
ging activities can ease research and open new possibilities
by mitigating the technical limitations. Investigating dis-
tributed pairs can be particularly interesting as all interac-
tions between them need to be digitalized, thus making it
easier to get access to this information. Additionally, differ-
ent information channels, such as video, can be turned off to
show their influence.

While these IDE based user interfaces can help with re-
search, much work still can be done to ease programmer’s
every day life. CodeGraffiti’s capabilities impress, but it
does not allow integration in major IDEs like Eclipse.
The missing extensibility of existing IDE solutions, as men-
tioned one of their biggest problems, can not be addressed by

9

small teams of scientists programming these pair program-
ming IDE extensions within their research activities. They
need to be commercially adopted or focused by the open
source community. But as broadband internet has become
ubiquitous, at least within the industry countries, video and
VNC based solutions are outdoing pair programming spe-
cialized IDEs. Thus making them not interesting for com-
mercial adaption.
Facetop’s video approach with its unique way of interacting
with the code, while being futuristic, however, for us seems
not to be the way to go for future pair programming inter-
faces. The merging of real life video and IDE elements is
very distracting. New image recognition technology pos-
sibly could lift this issue by reducing unnecessary image
information—but pointing in the air to point on interface el-
ements on the screen still seems unintuitive for us.
The upcoming ubiquitous availability of tablet PCs seems to
be more promising: Being able to point directly on interface
elements and do pen-type input could ease communication
between distributed partners. We could think of a distributed
version of CodeGraffiti with enhanced pointing and gestur-
ing possibilities.
Further enhancing pair programming interfaces and still
open questions regarding the role of the navigator are the
reasons why pair programming stays an appealing field for
research and interfaces.

REFERENCES
1. S. Ainsworth and A. Th Loizou. The effects of

self-explaining when learning with text or diagrams.
Cognitive Science, 27(4):669–681, 2003.

2. P. Baheti, E. Gehringer, and D. Stotts. Exploring the
efficacy of distributed pair programming. Extreme
Programming and Agile MethodsXP/Agile Universe
2002, pages 387–410, 2002.

3. K. Beck and C. Andres. Extreme programming
explained: embrace change. Addison-Wesley
Professional, 2004.

4. F. Brooks Jr. The mythical man-month (anniversary
ed.). Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1995.

5. S. Bryant, P. Romero, and B. du Boulay. Pair
programming and the mysterious role of the navigator.
International Journal of Human-Computer Studies,
66(7):519–529, 2008.

6. M. Chi, N. De Leeuw, M. Chiu, and C. LaVancher.
Eliciting self-explanations improves understanding.
Cognitive science, 18(3):439–477, 1994.

7. A. Cockburn and L. Williams. The costs and benefits of
pair programming. Extreme programming examined,
pages 223–248, 2001.

8. J. Devide, A. Meneely, C. Ho, L. Williams, and
M. Devetsikiotis. Jazz Sangam: A Real-Time Tool for
Distributed Pair Programming on a Team Development
Platform. In Workshop on Infrastructure for Research
in Collaborative Software Engineering, Atlanta, GA,
2008.

9. N. Flor and E. Hutchins. Analyzing distributed
cognition in software teams: a case study of
collaborative programming during adaptive software
maintenance. In Empirical Studies of Programmers:
Fourth Workshop, Ablex, Norwood, NJ, pages 36–64,
1992.

10. R. Hegde and P. Dewan. Connecting programming
environments to support ad-hoc collaboration. In
Automated Software Engineering, 2008. ASE 2008.
23rd IEEE/ACM International Conference on, pages
178 –187, 2008.

11. J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter.
Distance, dependencies, and delay in a global
collaboration. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work,
pages 319–328. ACM, 2000.

12. C.-W. Ho, S. Raha, E. Gehringer, and L. Williams.
Sangam: a distributed pair programming plug-in for
eclipse. In Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange, eclipse ’04, pages
73–77, New York, NY, USA, 2004. ACM.

13. W. S. Humphrey. A Discipline for Software
Engineering. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 1995.

14. J. Lave and E. Wenger. Situated learning: Legitimate
peripheral participation. Cambridge university press,
1991.

15. L. Lichtschlag and J. Borchers. Codegraffiti:
Communication by sketching for pair programming. In
UIST 2010 Extended Abstracts, New York, NY,
October 2010.

16. K. Navoraphan, E. Gehringer, J. Culp, K. Gyllstrom,
and D. Stotts. Next-generation DPP with Sangam and
Facetop. In Proceedings of the 2006 OOPSLA
workshop on eclipse technology eXchange, pages 6–10.
ACM, 2006.

17. J. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, 1998.

18. D. Stotts, J. Smith, and K. Gyllstrom. Support for
distributed pair programming in the transparent video
facetop. Extreme Programming and Agile
Methods-XP/Agile Universe 2004, pages 150–192,
2004.

19. D. Stotts, L. Williams, N. Nagappan, P. Baheti, D. Jen,
and A. Jackson. Virtual teaming: experiments and
experiences with distributed pair programming.
Extreme Programming and Agile Methods-XP/Agile
Universe 2003, pages 129–141, 2003.

20. L. Williams, R. Kessler, W. Cunningham, and
R. Jeffries. Strengthening the case for pair
programming. Software, IEEE, 17(4):19–25, 2002.

10

	Introduction
	Making the Case for Pair Programming
	Role of the Navigator
	Distributed Pair Programming

	User Interfaces for Pair Programming
	Sangam
	CollabVS
	Facetop
	CodeGraffiti

	Conclusion
	REFERENCES

