
media computing groupJan Borchers 1

Designing Interactive Systems II

Computer Science Graduate Programme SS 2010

Prof. Dr. Jan Borchers
RWTH Aachen University

http://hci.rwth-aachen.de

media computing groupJan Borchers

Review

• Web 2.0 in keywords
• GWT
• Cappuccino
• HTML5

2

media computing groupJan Borchers

http://qt.nokia.com/

media computing groupJan Borchers 4

Introduction
• Cross platform GUI Toolkit

• Available for X11, Windows, Mac

• Toolkit used by the KDE project

• Managed by a company that provides official support

• Dual license
• after pressure from open source community

media computing groupJan Borchers 5

History

• Started out in 1994 by Trolltech (Norwegian)
• Adopted by Matthias Ettrich for KDE (1996)
• Trolltech introduced Qtopia (2001)

• Application plattform for Linux based mobile devices

• Nokia bought Trolltech (2008)
• Pushed Qtopia to be a new platform for Symbian, Windows CE /

Mobile and Maemo

media computing groupJan Borchers 6

Features

• Extended C++
• MOC files are meta-compiled into C++

• Custom widget behavior accomplished through signals
and slots

• Plug-ins for mimicking look of other toolkits
(Windows, Mac, Motif, etc...)

• UIDS creates XML files, which are meta-compiled into
C++

media computing groupJan Borchers 7

Widget Layout
Code

Representation
XML

Representation

UIDS

media computing groupJan Borchers

Signals & Slots Motivation

• Disadvantages of Callbacks
• Callbacks are strongly coupled to processing function

• Callbacks are not type safe when using (void *)
- Example: Button_CB(Fl_Widget *, void *)

8

media computing groupJan Borchers

Signals & Slots

• Signals are emitted by objects when they change their
state in a way that may be interesting to the outside
world.

• Slots can be used for receiving signals, but they are
also normal member functions.

• Advantages
• loosely coupled, anonymous communication

• type safe

• Similarities to bindings in Cocoa

9 media computing groupJan Borchers 10

Signals & Slots Example

media computing groupJan Borchers 11

Signals & Slots

int main(int argc, char **argv)
{
 QApplication a(argc,argv);
 Hello h(“hello world”);
 QObject::connect(&h, SIGNAL(clicked()), &a, SLOT(quit()));
}

class Hello : public QWidget
{
 Q_OBJECT
public:
 Hello(const char *text, QWidget);
signals:
 void clicked();
};

class Q_EXPORT QApplication : public QObject
{
 Q_OBJECT
public:
 QApplication(int &argc, char **argv);
public slots:
 void quit();
};

media computing groupJan Borchers

Demo

12

media computing groupJan Borchers

Advanced Features

13

• Supports Phonon multimedia framework
• Adheres to MVC paradigm since v4.0 (InterView)
• OpenGL accelerated 2D rendering and

transformations (even on active widgets)
• Extremely sophisticated parallel processing (multi-

threading and IPC) capabilities (e.g., QFuture)
• Qt is one of the most well-documented UITKs (check

out http://doc.trolltech.com)

media computing groupJan Borchers

Qt Embedded / Qtopia Core

• Qt for Linux based mobile devices
• Replaced X by Linux framebuffer

• Has the same API as Qt Desktop
• Learn one API, target multiple platforms (Windows,

X11, Mac OS X, embedded Linux)

14

media computing groupJan Borchers 15

Evaluation

• Availability: high
• free for GPL use on X11, Mac, and Windows

• $3000/license for commercial use

• Productivity: high with Qt Creator
• Performance: signals & slots mechanism adds some

extra overhead, but not a lot
• Graphics Model: rasterop and vector (since v4.0)

media computing groupJan Borchers 16

Evaluation

• Adaptability: mimic various other toolkit, define your
own ‘stylesheets’

• Extensibility: pretty high - free to modify source code
• Resource Sharing: yes

media computing groupJan Borchers 17 media computing groupJan Borchers

Java History

• Java 1.0 (1995): 6-week version of AWT
• Java 1.1: Listeners event model, localization
• Java 2, v.1.2: JFC (Swing, Java2D, Accessibility, Drag&Drop),

audio playback
• Java 2, v.1.3: audio in, MIDI, Timer (for UI, animations, etc.)
• Java 2, v.1.4 (2002): full-screen mode, scrollwheels,

Preferences API
• Java 2, v. 5.0 (a.k.a. J2SE 1.5) (2005): Java 2D, improved

internationalization, Java Sound
• Java SE 6 (2006): Scripting host, dynamic compilation, JDB4

18

media computing groupJan Borchers

Java AWT

media computing groupJan Borchers

What is AWT?

• Abstract Window Toolkit
• OO UI toolkit for the Java platform
• Maps to native widgets of the host platform
• First version of AWT was developed in only 6 weeks!

20

media computing groupJan Borchers

AWT Architecture

• Java is not a complete OS
• No own window manager
• Applications use AWT for

graphics
• AWT works on top of the

Java Virtual Machine (JVM)
JVM

AWT

21

BWS

GEL

HW

UITK

Apps

WM

media computing groupJan Borchers

AWT overview

• Component as top level object
• Containers can contain multiple widgets
• Layout Managers handle the positioning
• Events are being handled with Listeners
• One window per widget (heavyweight)

22

media computing groupJan Borchers

Applets vs Applications

• Java offers two kinds of UI programs:
• Applets

- run inside a web browser (or AppletViewer)

- embedded in HTML source

- restricted access to underlying OS

• Applications
- run as standalone, (almost) full OS access

- subclasses of Frame

23 media computing groupJan Borchers

Hello AWT

import java.awt.*;

public class Hello extends Frame {
 public static void main(String argv[])
 {
 new Hello();
 }
 Hello() {
 Label hello = new Label("Hello World");
 add(hello, "Center");
 setSize(200, 200);
 setVisible(true);
 }
}

24

media computing groupJan Borchers

The Component Class

• Parent class for all things to see and interact with
onscreen (except for menus: MenuComponent)

• Over 150 methods
• from getWidth() to addMouseMotionListener()

25 media computing groupJan Borchers

Events in Java 1.0

• Component class has an action() method
• Public boolean action (Event E, Object o);
• All events belonging to that Component go to action()
• Problem: huge action() methods with lots of if

statements

26

media computing groupJan Borchers

import java.awt.*;

public class OldEvents extends Frame {
 public static void main(String argv[]) {
 new OldEvents();
 }
 OldEvents() {
 Button button = new Button("Click me");
 add(button, "Center");
 setSize(200, 200);
 setVisible(true);
 }
 public boolean action (Event e, Object o) {
 String caption = (String)o;
 if (e.target instanceof Button)

if (caption == "Click me")
System.out.println("Button clicked");

 return true;
 }
}

27 media computing groupJan Borchers

Events in Java 1.1

• Listeners: Developer can choose where events are
supposed to go

• Widgets can have multiple listeners
• Listeners can be connected to multiple widgets
• Event listener interfaces for various kinds of events
• Adapter classes as ready-made listener

implementations

28

media computing groupJan Borchers

import java.awt.*;
import java.awt.event.*;

public class NewEvents extends Frame implements ActionListener {
 public static void main(String argv[]) {
 new NewEvents();
 }

 NewEvents() {
 Button button = new Button("Click me");
 add(button, "Center");
 button.addActionListener(this);
 setSize(200, 200);
 setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 System.out.println("Button pressed");
 }
}

29 media computing groupJan Borchers

Layout managers

• Widgets are dynamically positioned
• Container widgets have child widgets
• Layout managers are attached to containers
• Various types: GridBagLayout, BorderLayout,

FlowLayout, ...
• No (pixel-) absolute positioning

30

media computing groupJan Borchers

Pros

• Advantages of AWT
• Speed: use of native peers can speed up component

performance

• Applet Portability: most web browsers support AWT
classes by default

• Look and Feel: AWT components more closely reflect
the look and feel of the OS they run on

31 media computing groupJan Borchers

Cons

• Disadvantages of AWT:
• high overhead (one window per widget)

• only few widgets (common denominator)

• hard to port (platform specific limitations)

• not very extensible

32

media computing groupJan Borchers

Java Swing
it’s spelled JFC

media computing groupJan Borchers

JFC/Swing?

• Derived from Netscape’s IFC
• Swing is a “lightweight” UI toolkit for Java
• Four times as many widgets as AWT (trees, ...)
• Pluggable look and feel
• Runs on Java 1.1.5+, included with Java 1.2+
• JFC (Java Foundation Classes) include Swing, drag and

drop, clipboard support, etc

34

media computing groupJan Borchers 35 media computing groupJan Borchers

Java
pluggable look-and-feel

DEMO

36

media computing groupJan Borchers

The Swing solution

• Swing is implemented in ”100% pure” Java
• Using AWT only for root-level widgets
• Providing AWT-like API
• Offers advanced widgets on all platforms
• Pluggable look and feel - can mimic host platform or

be a custom theme
• Supports MVC

37 media computing groupJan Borchers

MVC in Swing

• View and controller combined into delegate
• Interfaces for Model and View (e.g. ButtonModel,

ButtonUI)
• Delegates implement ComponentUI
• Allows customization of UIs

38

media computing groupJan Borchers

Hello, Swing
import javax.swing.*;

public class Hello extends JFrame {
 public static void main(String argv[])
 {
 new Hello();
 }
 Hello() {
 JLabel hello =
 new JLabel("Hello World");
 getContentPane().add(hello, "Center");
 setSize(200, 200);
 setVisible(true);
 }
}

39 media computing groupJan Borchers

Other toolkits for Java

• SWT (http://www.eclipse.org/)
• Written in Java, but using native widgets through JNI

• subArctic (http://www.cc.gatech.edu/gvu/ui/sub_arctic/)
• animation, snapping, dragging, etc

• Piccolo (http://www.cs.umd.edu/hcil/piccolo/):
• Toolkit for zoomable UIs

• bindings for Cocoa (discontinued), WinForms,
wxWidgets, gtk, etc

40

media computing groupJan Borchers

Java: Evaluation

• Availability: high (binary portability)
• Productivity: medium with AWT, high with Swing
• Parallelism: external yes, internal depends on OS
• Performance: medium (bytecode interpretation),

memory and performance tradeoffs between AWT
and Swing

41 media computing groupJan Borchers

Java: Evaluation

• Graphics model: RasterOp, Vector based
• Java2D offers vectors, uses GPU for acceleration

• Style: native with AWT, pluggable-simulated with Swing
• Extensibility: high

• It’s open source...

42

media computing groupJan Borchers

Java: Evaluation

• Adaptability: fairly high (Swing)
• custom look and feels, can be switched at runtime

• ResourceBundles can store resources (like text and icons for
different languages)

- but no human-readable format for all languages (properties files limited to
ISO-8859-1)

• Resource sharing: depends on core OS

• Distribution: depends on core OS

43 media computing groupJan Borchers

Java: Evaluation

• API structure: OO
• API comfort: high with Swing
• Independence: high, Swing has support for MVC
• Communication: Clipboard and drag and drop with

Swing (improved with J2SE6)

44

