
by
Moritz Wittenhagen

DragonEye
Fast Object Tracking and

Camera Motion
Estimation

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.-Ing. Jens-Rainer Ohm

Registration date: April 30th, 2008
Submission date: Oct 30th, 2008

iii

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Thesis Overview 3

2 Related Work 5

2.1 DRAGON . 5

2.2 DimP . 8

2.3 Trailblazing . 10

2.4 Schematic Storyboarding 11

3 Requirements for DRAGONEYE 13

3.1 Technical requirements 13

iv Contents

3.2 User requirements 14

3.3 Implications for the Implementation 17

3.3.1 Kernel Tracking 19

3.3.2 Point Tracking 21

3.3.3 Silhouette Tracking 28

3.3.4 Occlusion Handling 30

4 Camera Motion Estimation 31

4.1 Least Squares 36

4.2 RANSAC . 38

4.3 Implementation 39

5 Object Tracking 43

5.1 Why not Optical Flow? 43

5.2 Point Tracking 47

5.2.1 Object Detection 49

5.2.2 Movement Representation 51

5.2.3 Position Determination 52

5.2.4 Model Update 57

5.3 Color Tracking 58

5.3.1 Model Combination 59

5.4 Implementation 60

5.4.1 Parallelization 60

Contents v

5.4.2 Combination of Object Tracking and
Camera Motion Estimation 61

6 Evaluation 65

6.1 Camera Motion Estimation 66

6.1.1 Tests on artificial data 67

6.1.2 Tests on real videos 69

6.2 Tracking . 71

6.2.1 Translative Motion 73

6.2.2 Complex scenes 75

6.2.3 Occlusions 80

6.3 Speed . 84

7 Summary and future work 87

7.1 Summary and contributions 87

7.2 Future work 89

A Code Excerpts 91

A.1 CoreImage Filter 91

B Videos Used for Evaluation 93

Bibliography 103

Index 107

vii

List of Figures

1.1 Relation of object motion and timeline 2

2.1 DRAGON’S Interface 6

2.2 Tracking in DRAGON 7

2.3 DimP’s Interface 8

2.4 Background stabilization in DimP 9

2.5 Tracking in DimP 9

2.6 Interface of Trailblazing 10

2.7 Movement visualization by Goldman 11

3.1 Invariance to object size 14

3.2 Shift of the interest point 16

3.3 CAMShift . 20

3.4 Scale Space Representation 23

3.5 SIFT Keypoint detection 24

3.6 SIFT descriptor computation 27

3.7 SIFT matching 27

viii List of Figures

3.8 Silhouette tracking 29

4.1 Translational camera model (Pan) 32

4.2 Translational camera w/o intermediate frames 32

4.3 Translational camera model (Zoom + pan) . . 33

4.4 Ghosting artifacts 36

4.5 Suitable MPEG motion vector 40

4.6 Unsuitable MPEG motion vector 40

4.7 SIFT features with different starting octaves . 42

5.1 Occlusions and optical flow 45

5.2 Resolving occlusions in DRAGON 46

5.3 Visualization of the developed point tracker . 48

5.4 Feature distribution with SIFT 50

5.5 Visualization of the tracking process 53

5.6 Effects of motion blur 58

5.7 Small objects and CAMShift 59

5.8 Operation dependency graph 62

6.1 Graph — Number of iterations 67

6.2 Graph — Duration of iteration 67

6.3 Graph — Number of iterations 68

6.4 Camera Motion Test — pan 69

6.5 Visualization without intermediate frames . 70

List of Figures ix

6.6 Camera motion test — zoom + pan 71

6.7 Camera motion test — large foreground objects 72

6.8 Trajectory 1 — Beach volleyball player 73

6.9 Trajectory 2 — Shopper 74

6.10 Trajectory 3 — Girl 75

6.11 Trajectory 4 — Volleyball 76

6.12 Trajectory 5 — Zoom on car 76

6.13 Trajectory 6 — Zoom and motion blur 77

6.14 Trajectory 7 — Layup 78

6.15 Trajectory 8 — Basketball 79

6.16 Trajectory 9 — Stroller 80

6.17 Trajectory 10 — Pink shirt 81

6.18 Backpack — Occlusion Handling 81

6.19 Trajectory 11 — Cyclist 82

6.20 Cyclist — Occlusion handling 82

6.21 Trajectory 12 — Pink shirt 83

6.22 Proportions of task duration 84

B.1 Scene 1 . 93

B.2 Scene 2 . 94

B.3 Scene 3 . 94

B.4 Scene 4 . 95

B.5 Scene 4 — Player 1 trajectory 95

x List of Figures

B.6 Scene 5 . 96

B.7 Scene 5 — Couple trajectory 96

B.8 Scene 6 . 96

B.9 Scene 6 — First car trajectory 97

B.10 Scene 7 . 98

B.11 Scene 8 . 98

B.12 Scene 8 — Couple’s breast trajectory 99

B.13 Scene 8 — Couple’s hip trajectory 99

B.14 Scene 9 . 100

B.15 Scene 9: Matress trajectory 100

B.16 Scene 10 . 101

B.17 Scene 11 . 101

B.18 Scene 12 . 102

B.19 Scene 9: Barbor trajectory 102

xi

List of Tables

6.1 Comparative results 73

6.2 Results of speed testing 85

xiii

Abstract

Recently, multiple research groups proposed the concept of direct manipulation,
which makes the task of navigation in videos directly related to content of the
video. However, the developed systems are still too slow for a broad application of
the technique. To increase the accessibility of direct manipulation a system has to
fulfill certain requirements:

• Computation times have to be so small that the system can work in situation
with time constraints.

• The system has to accommodate for the user’s greater comprehension of a
scene. This includes camera motion, fore- and background, and occlusions.

Based on the requirements, we developed and implemented the DRAGONEYE sys-
tem. The tracker employs point tracking, with points provided by SIFT [Lowe,
2004], and color tracking with the CAMShift algorithm [Comaniciu et al., 2003]. A
model of the tracked object is built and continuously updated to fit the current con-
ditions. This model allows the detection and recovery from occlusions.
Secondly, the system estimates the effects of camera motion and represents them as
a homography.
Tests of the system showed that the tracking results are comparable to the current
tracking approaches, and the system outperforms the other algorithm in the case
of occlusions. The tests also showed that improvements are still necessary in case
of rotations around the y-axis and non-rigid movement.

xiv Abstract

xv

Überblick

Verschiedene Forschergruppen haben jüngst das Konzept der direkten Manipula-
tion vorgestellt, das Navigation in Videos durch direkte Interaktion mit dem Inhalt
erlaubt. Allerdings sind die entwickelten Systeme noch zu langsam für eine breite
Anwendung dieser neuen Technik. Um die Zugänglichkeit der Systeme zu erhöhen
müssen sie bestimmten Anforderungen genügen.

• Berechnungen des Systems müssen schnell erfolgen, um auch die Anwen-
dung in Szenarien mit Zeitbeschränkung zu gewährleisten.

• Das System muss das größere Verständnis eines Benutzers beachten, und
speziell Informationen über Kamerabewegung, Vor- und Hintergrund, sowie
Verdeckungen in einer Szene haben.

Basierend auf diesen Bedingungen, haben wir das DRAGONEYE System entwickelt.
Der Tracker verwendet Punkttracking, mit durch SIFT gefundenen Punkten, und
Farbtracking mit dem CAMShift Algorithmus. Der Tracker erstellt ein Modell des
getrackten Objektes und passt es in jedem Schritt den neuen Gegebenheiten an.
Dieses Modell ist dann besonders nützlich um Verdeckungen zu erkennen und zu
behandeln.
Tests zeigen, dass die Resultate unseres Systems mit den aktuellen Systemen ver-
gleichbar sind und unser System die anderen Algorithmen im Fall einer Verdeck-
ung übertrifft. Notwendige Verbesserungen betreffen hauptsächlich Rotation um
die y Achse und Verformungen.

xvii

Acknowledgements

First of all, I would like to thank Prof. Borchers for introducing me to the field of
HCI and bringing a little light to the otherwise often dull and dry CS lectures. Spe-
cial thanks goes to Thorsten Karrer and Malte Weiß for taking me on as a diploma
thesis student. Then, I want to thank everyone who had to deal with me in the last
48 hours of this thesis and did not kill me. Especially, Robert Hochstrat and Niko-
laus Koemm who did the main part of the proof reading. I want to thank Leonhard
Lichtschlag, Nori Vontin and Mei-Fang Liau for great afternoons and nights at the
chair. I want to thank my roomies Rafael Müller and Lukas Bernatzki for listening
to my rants.
And finally, I want to thank my family for supporting me the last few months.
This is for everyone I forgot: Thank you all!

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

Today, the production of videos has become more and more
popular for average users over the last years. Systems like
YouTube1 allow for uncomplicated distribution of videos
and encourage people to present their videos online. The
process of video editing is made easier by products specifi-
cally designed for non professional users, for example Ap-
ple iMovie or Microsoft Movie Maker. These systems offer
a low complexity and low entrance threshold. Professional
systems, such as Apple Final Cut Pro, have a much higher
threshold but give the user the possibility of more complex
scene analysis; for example movement analysis which can
be employed to estimate missing frames in a slow motion
sequence. Video navigation is essential for the process of
editing videos. Common approaches for navigation, like
the timeline metaphor, require the user to abstract from the
content of the video. If he is interested in an object’s po-
sition, he has to understand how this is related to time,
namely how long the object will take to get to the desired
point. Afterwards, this has to be applied to the timeline,
which represents time difference as a distance on a slider
bar. Unfortunately, the distance on this timeline is depen-
dent on the length of the video, forcing the user to estimate
that distance as well. The same scene in a longer video
is represented by less space on the timeline, making espe-
cially fine grained navigation impossible with the standard
timeline slider. For the whole process, the user has to map

1http://www.YouTube.com

http://www.YouTube.com

2 1 Introduction

1

1

3

3

10

12

1210

6

6

8

8

Figure 1.1: Relation between object motion and timeline [Karrer et al., 2008]:
Since the car accelerates, the points on the timeline move closer together while the
corresponding points on the path stay equidistant. The user has to be aware of the
acceleration to be able to choose the correct point to drag the slider to

a distance to a time difference and he has to map this time
difference back to another distance which is not related to
the actual object movement anymore. Figure 1.1 visualizes
this problem.

The more direct access to video provided by direct manip-Direct manipulation
ulation described by Karrer et al. [2008] is beneficial to be-
ginners as well as professional users. First-time users have
to learn less metaphors and do not need to gather experi-
ence on how they work, reducing the entrance threshold
even further. Professional users can benefit from the reduc-

1.1 Thesis Overview 3

tion of cognitive steps necessary to complete a navigation
task because the process can become more efficient and fo-
cussed on the task of editing. Several research groups have
studied how to gain a more direct access to video content.
Dragicevic et al. [2008] and Karrer et al. [2008] focussed on
the problem of in-scene navigation, Kimber et al. [2007] pre-
sented a system for video surveillance and Goldman et al.
[2006] developed a technique for representing scenes as a
still frame that shows contained movement in the style of
a storyboard. All these systems use the concept of direct
manipulation at some point. Direct manipulation allows
for video navigation based on video content. The video
player is aware of how a pixel, or an object, moves and
the user can then employ this information for navigation.
The user clicks on the object he is interested in and can sim-
ply drag it to the position he wants it to be at. In this way,
he does not have to abstract from the content. This makes
the whole process metaphor free — there is no indirection
in between an object moving because the video is playing
and an object moving because the user drags it. Thus, di-
rect manipulation reduces the cognitive load necessary for
navigation and the user can focus more on his task, for ex-
ample video editing. Consider the example in figure 1.1.
If the user does not drag the slider but the car, the accel-
eration of the car does not affect the interaction. The user
only needs to know where the car goes, which can be vi-
sualized very well by showing its path. These paths, or
trajectories, have to be computed for visualization as well
as the interaction. Current approaches for computing the
trajectories for direct manipulation have the drawback of
requiring a precomputation step. Furthermore, the algo-
rithms are not designed to deal with some problems, such
as occlusion, occurring in many videos. This warrants the
development of a new, faster, algorithm, which will make
the system more easily accessible to the general public.

1.1 Thesis Overview

This thesis deals with the development of a new tracking al-
gorithm for DRAGON, the system originally developed by
Karrer et al. [2008]. In chapter 2 — Related Work — we

4 1 Introduction

present existing systems that employ direct manipulation
and their respective application areas. Based on the prop-
erties described in related works, as well as some broader
requirements, in chapter 3 — Requirements for Direct Ma-
nipulation — we define which properties an algorithm for
direct manipulation must have. The chapter also shortly
describes existing tracking algorithms and how well they
fit the given requirements. With these requirements, we ex-
plain why the current approaches do not suffice for direct
manipulation. In chapters 4 — Camera Motion Estimation
— and 5 — Object Tracking — we describe the algorithms
developed for this thesis. Chapter 6 — Evaluation — deals
with the mathematical analysis of the approach. The de-
veloped algorithms are tested for limits and the tracking
algorithm is compared to the previous implementations of
DRAGON and DimP. Test are performed on artificial data, as
well as several video scenes. Finally, chapter 7 — Summary
and Future Work — contains a synopsis of our work and
implications and ideas for future work dealing with direct
manipulation.

5

Chapter 2

Related Work

“Two weeks in the lab can spare you one
afternoon in the library”

—Unknown

Current implementations of direct manipulation were de-
signed for different purposes and thus employ different
kinds of visualizations and algorithms.

2.1 DRAGON

Karrer et al. [2008] focus on the current problems of video
navigation and presents direct manipulation as a solution.
Figure 2.1 shows the interface developed for direct manip-
ulation. Clicking on a point will compute the trajectory
for that point. Clicking on the blob allows interaction with
the respective object. The interface presents several tools
to deal with special situations. Trajectories show the path
of objects, so even a user who does not know what ex-
actly happens in the scene will know where to drag an ob-
ject to achieve a certain goal. A clicking sound every ten
frames represents the speed of the object in case the infor-
mation is necessary. Finally, inertia allows to handle situ-
ations where the trajectory is ambiguous and errors of the
algorithm. Trajectories become ambiguous when an object Trajectory ambiguity

6 2 Related Work

Figure 2.1: DRAGON’S Interface: The line shows the girl’s path through the scene
and the blob represents the current position of the interest point

passes the same point twice. Consider a swinging pendu-
lum; the pendulum will pass the same point multiple times
and thus this point is consistent with multiple points in
time. Close to the turning points, the time difference is not
a good heuristic to distinguish correct and incorrect points,
because past and future points may be have equal time dif-
ferences. Inertia allows the user to give the object a push
in a certain direction, which is related to a direction in time,
and it will continue to move into the same direction in time.
The “harder” the user pushes the object, the longer it will
move. This technique also allows to handle incorrect out-
puts of the tracking algorithm because an object will con-
tinue to move even after the computed trajectory ends. In

2.1 DRAGON 7

this way, the object can be pushed over an occlusion and
grabbed again when the occlusion is resolved.

DRAGON uses an accurate optical flow algorithm by Weiss
[2007] as basis for tracking. Optical flow is defined as
“[...] the distribution of apparent velocities of movement
of brightness patterns in an image” [Horn and Schunck,
1981]. A more common understanding of optical flow
it the apparent movement of points in an image. This
is different because optical flow computation assumes
brightness constancy, while the latter only assumes some
kind of matching between pixels. The optical flow algo-

Figure 2.2: Tracking in DRAGON: The white arrows are a
(discrete) visualization of the flow field from this frame to
the next

rithm employed implicitly deals with objects by imposing
constraints on the movement of spatially related pixels.
This allows for a very simple tracking algorithm at runtime
that is only dependent on a single point. As soon as the
user clicks on a point, the computed flow fields (see figure
2.2) dictate the movement of this point in consecutive
frames. The approach allows for tracking of very small
objects and is suited for very different kinds of videos.
On the other hand, the algorithm is much too slow for DRAGON requires

precomputed flow
fields

real-time application of direct manipulation. Currently
it takes approximately two minutes to process a pair of
640x480 video frames on one core of a Intel Xeon 2.8 GHz

8 2 Related Work

Figure 2.3: DimP’s Interface: The left image shows the interaction when the user
stays close to the girl’s path. The right image shows what happens when the cursor
is farther away from the object.

quad-core processor. So even when employing all cores
of a dual-processor machine, it takes about 15 seconds to
compute flow in one direction. Hence, precomputing flow
fields is necessary when using DRAGON, although it is
infeasible in most situations.

2.2 DimP

Dragicevic et al. [2008] also directly deal with introducing
direct manipulation to video scenes. The basic idea of their
system DimP is the same as DRAGON. Only the visual-
ization works a little different. Trajectories vanish when
the mouse is close to the indicated trajectory (Figure 2.3).
The user can click on any point in the video to start the in-
teraction, but in regions that show relevant movement the
mouse cursor changes to a hand to indicate interesting po-
sitions even in a still frame. DimP also considers moving
cameras. This is necessary because “[...] people perceive

2.2 DimP 9

Figure 2.4: Background stabilization in DimP [Dragicevic et al., 2008]: A scene
with an upward pan of the camera. The actual movement of the object in the scene
(a), the corrected trajectory, which is now closer to the user’s perceived motion (b),
and the shift that occurs while dragging (c)

relative motion rather than absolute motion” [Dragicevic
et al., 2008]. Relative motion is induced by surrounding ob-
jects in a scene. The player creates relative trajectories in
respect to the camera motion and shifts frames inside its
window in a way that the background of the original frame
stays stable (Figure 2.4. Only translational movement of the
camera is considered.

Figure 2.5: Tracking in DimP: The red dots represent SIFT
features in this frame that could be matched to the next
frame. The green lines visualizes the flow field interpolated
from these features

DimP employs the same tracking technique as DRAGON.
The system interpolates flow fields (Figure 2.5) based on

10 2 Related Work

points detected and matched by the SIFT point detector (see
section 3.3.2). The drawback of interpolating flow fields is
loss in accuracy (see 6). Although this estimation approach
is faster than DRAGON — tracking takes about 2.5 seconds
for a pair of 128x128 frames on a single core — it is still not
fast enough for real-time application.

2.3 Trailblazing

Kimber et al. [2007] developed Trailblazing, a system forVideo surveillance
video-surveillance. One part of Trailblazing is a user inter-
face, which allows tracking of persons over multiple cam-
eras (Figure 2.6). Navigation in Trailblazing is done by di-
rect manipulation. The user can click objects in the video
stream and drag them along the trail shown by the system.
It is also possible to manipulate a person’s representation
on a floor plan to interact with the video.

The current version of Trailblazing cannot support cam-

Figure 2.6: Interface of Trailblazing [Kimber et al., 2007]:
Three views of the same hall. All can be used for navigation

2.4 Schematic Storyboarding 11

era movement because the algorithm finds moving ob-
jects based on pixels changing between consecutive frames.
Naturally, camera movement implies change in every pixel, Unsuitable for

camera movementpreventing the algorithm from detecting foreground ob-
jects. Trailblazing is not able to distinguish objects occupy-
ing the same space, since a changing pixel is not related to
a particular object. Especially a split of a moving region
poses a problem to the system. To deal with this problem,
all possible paths are shown to the user, leaving the deci-
sion for a direction up to him. Although this approach is
sufficient for video surveillance with stationary cameras, it
does not work for the general application of direct manip-
ulation because of its limitations.

2.4 Schematic Storyboarding

The system described in Goldman et al. [2006] is designed
to extract a storyboard from a given video scene. This sto-

Figure 2.7: Movement visualization by Goldman [Gold-
man et al., 2006]: A scene is represented by important
keyframes and 3D movement arrows representing object
movement

ryboard contains information about movement of persons
and cameras, which is represented by arrows placed inside
a panoramic view of the scene (Figure 2.7). This visual-
ization allows faster comprehension of video content than
single frames. In addition to the storyboard visualization
the information can be employed for direct manipulation.
Clicking on the arrow moves the object to its respective
position in the video and clicking and dragging the back-
ground allows to change camera position. Video and vi-

12 2 Related Work

sualization are separated in this approach. The developed
system presented by Goldman does not implement an au-
tomatic tracking technique, but focusses on the interaction.
Tracking has to be done manually for objects, as well as the
background.

13

Chapter 3

Requirements for
DRAGONEYE

“First, solve the problem. Then, write the code.”

—John Johnson

Before describing the developed tracking algorithm and
the camera motion estimation, we define requirements for
a tracking algorithm to be used for direct manipulation.
These requirements are derived from the nature of the
problem on the one hand and people who are supposed to
work with the system on the other hand.

3.1 Technical requirements

Since DRAGON is supposed to work on arbitrary videos, the
main prerequisite for tracking is the ability to work without
previous knowledge of the objects contained in the scene.
Thus, the object’s size and shape, as well as all features Unknown object size

and shaperequired for tracking have to be determined dynamically.
Objects in a scene usually have very different sizes. This is
not as much related to physical size as to camera zoom and
camera position. Size should not affect tracking accuracy
and tracking speed should not change noticeably with enti-
ties of different sizes. Behavior , as well as appearance, are Unknown object

behavior

14 3 Requirements for DRAGONEYE

Figure 3.1: Invariance to object size: The bus and the couple in the background
should be tracked equally fast

not known beforehand when using DRAGON. The tracker
has to be able to handle objects moving toward the cam-
era, effectively becoming larger, turning objects, and non-
rigidity. The better the algorithm can handle these prob-
lems, the better it is suited for DRAGONEYE.

3.2 User requirements

User requirements are based on what people expect from a
tracking system. These expectations are derived from how
humans themselves follow objects. Although it is not re-
alistic to expect the tracker to be as effective as the human
visual system, limitations should be understandable by the
user. One limitation will be produced by occlusions. TwoOcclusion
basic kind of occlusions exist: self occlusion and scene oc-
clusions. Usually full occlusions and partial occlusions are
distinguished. During a full scene occlusion, the object is
fully obstructed by another object in the scene. Partially
occluding objects only hide a portion of the object of inter-
est and self occlusions are occlusions by different parts of

3.2 User requirements 15

the same object. The algorithm should at least be able to
handle self occlusions and partial scene occlusions. Both
are usually no problem for a human and should produce
as few problems as possible. Because there is no way of Full occlusions are

problematictelling when and where an object reappears after a full oc-
clusion, the algorithm will not be able to handle full occlu-
sions perfectly. In the case the entity shows unexpected be-
havior, like turning or changing its shape while hidden, the
problem is not solvable without knowledge about possible
states of the object. When continuing on the expected path,
retaining shape and appearance, people will have no trou-
ble finding the object again. The tracker should at least be
able to track an object that did not change form, speed and
direction while it was hidden. The better the prediction of
behavior works, the better is the algorithm. An algorithm
that considers recent behavior over a set of frames as well
as the last known behavior will be better suited than an al-
gorithm that only considers the most recent information.
Informal user studies at out chair show that it is not neces- Absolute accuracy is

not requiredsary to follow the clicked point with absolute accuracy (see
Figure 3.2), but only the containing object. People do not
notice it when the tracked point moves from one end of the
object to the other over several frames. This does not mean
that the trajectory is allowed to show erratic behavior, but
small inaccuracies are acceptable. Erratic behavior means
that the interest point position moves back and forth on the
object. This might hinder the interaction because trajecto- Erratic behavior

hinders the
interaction

ries become ambiguous, making frame accurate navigation
harder. Precomputation of any sort is not feasible for di-
rect manipulation. Video editing is often done under heavy
time constraints. For example to create a replay of an inter-
esting goal in the course of a soccer match. Since the main
interest in this editing task is predominantly the position,
the editor could benefit from direct manipulation. A pre-
computation time of more than a few seconds, will make
direct manipulation infeasible in such situations. Reducing
tracking times will cost accuracy of the algorithm. Up to
a certain point this is acceptable, since very small objects,
will mostly be of little concern to the user. The exact limits
have to be determined through user tests.

We suspect that this is due to the fact that the point is not
the locus of attention but the object itself is. This is sup-
ported by the result that not showing the tracked point after

16 3 Requirements for DRAGONEYE

Figure 3.2: Shift of the interest point: The interest point shifted toward the back
of the car during the course of the occlusion. Users do not usually notice this shift,
because they are thinking about the car as a whole.

grabbing the object does not affect the interaction at all.

LOCUS OF ATTENTION:
“Your locus of attention is a feature or an object in the
physical world or an idea about which you are intently
and actively thinking.” [Raskin, 2000]

Definition:
Locus of Attention

Since we do not know where the users locus of attention
lies, the tracker needs to be versatile enough to accommo-
date for different loci of attention. For example, consider
a scene, where a man walks down the street. In the ini-
tial frame, the arm is close to the torso. A user might be
interested in tracking his arm, because he is going to pick
something up, or the user might be interested in following
the man down the street and does not care about the rest.
It is not possible to guess the correct locus of attention, so it
has to be indicated by the user.

Another important aspect that has to be handled by di-Camera motion
rect manipulation is background compensation. In lots of
scenes, an object is followed by the camera. Most sports
videos alternately show an overview and a detailed view
of what is happening. In the detail view, the camera usu-
ally follows a specific player. This has the effect that the
player stays static in the center of the video while the back-

3.3 Implications for the Implementation 17

ground moves. A person watching this video, would per-
ceive the player as moving, since she understands the dif-
ference between player and background on a higher level.
So, if she clicks on the player, she might expect a trajec-
tory that shows the real movement of the player and not
the static movement caused by the compensating camera
movement. To handle this, DRAGON has to be able to repre-
sent the current camera movement in some way. A good ex-
ample for this was implemented by Dragicevic et al. [2008],
as discussed in section 2.2. Camera motion compensation
should be an optional feature to still allow dragging the en-
vironment to “move” the camera.

3.3 Implications for the Implementation

DRAGONEYE has to fulfill at least the following require-
ments.

1. The tracker can handle objects of unknown color,
shape and texture

2. The tracking algorithm can deal with rotation, size
changes and form changes

3. Size does not noticeably affect tracking speed

4. Self occlusions do not affect tracking

5. The tracker can handle partial scene occlusions

6. Full scene occlusions can be handled in case the object
shows predictable behavior

7. Tracking needs to be fast enough for real-time appli-
cation

8. Support for the computation of camera motion

The fact that we have to be able to track arbitrary objects Arbitrary Objects
obviously makes it impossible to use any tracker requir-
ing previous knowledge about tracked entities. Any model
used has to be created from information given by the user.

18 3 Requirements for DRAGONEYE

In the optimal case this would only be the point the user
clicked on, since this point is obviously part of the object
that is supposed to be tracked. Unfortunately, a single point
is not enough when considering the problems posed by oc-
clusions. Occlusions usually pose a problem for all trackingOcclusions
algorithms. Handling full scene occlusions requires three
phases. First, occlusion detection, second, behavior predic-
tion, and third, recovery of the lost object. To do this effec-
tively, a tracking algorithm for direct manipulation needs
some kind of object model that can be used to reacquire the
object after an occlusion. Partial scene occlusions can be
handled if the part of the object that is still visible is reli-
able enough to continue tracking. In any other case we face
the same problems as with full scene occlusions. Self occlu-
sions can usually be handled better than scene occlusions.
A tracker can replace the tracked part of the object with the
occluding part. But this implies that the tracker knows that
the occluding object is in fact another part of the occluded
object. If this relationship is unknown, self occlusions pose
similar problems as scene occlusions. Only a failure in oc-
clusion detection would not be as dramatic (for the user),
since the tracked object does not change.
The problem of occlusion is one of the reasons that simpleOcclusions are a

problem for simple
flow-based trackers

objectless tracking like in the original DRAGON is not suf-
ficient for direct manipulation. Occlusions cannot be de-
tected deterministically if the tracker has no notion of ob-
jects. A more detailed discussion of the limits of the current
approaches can be found in chapter 5.
Point three implies that the algorithm is either so fast thatObject Size
changes in size do not noticeably affect speed, or the the ac-
curacy of the algorithm is not significantly reduced if image
size is adapted according to the current object size.

A lot of research has been done in the field of object track-
ing. In the following, we try to give a short overview of im-
portant object representation and tracking techniques and
evaluate their usefulness for direct manipulation. For a de-
tailed review of object tracking, we refer to Yilmaz et al.
[2006] (broad review of object representation techniques
and tracking algorithms) and Mikolajczyk and Schmid
[2005] (comparison of point tracking algorithms).

3.3 Implications for the Implementation 19

3.3.1 Kernel Tracking

A template is a description of an image region, also called
kernel. Content of this kernel is described by color distribu-
tion [Fieguth and Terzopoulos, 1997], texture [Comaniciu
et al., 2003], or other descriptive features. The idea of a ker-
nel tracker is to find the region in an image that matches
this template best. Kernel tracking has the advantage that
objects can be represented by different kinds of features fit-
ting the occasion.
Fieguth and Terzopoulos [1997] use color to describe an im-
age region. A region is rectangular and receives a descrip-
tor based on the average color in the RGB color space

(r, g, b) =
∑n

i=0(ri, gi, bi)
n

for every pixel in the region. The region is tracked by find-
ing a new center position for a new region of the same size,
that best matches the old descriptor based on finding the
optimal region of the same size in the next image. The op-
timal region is the region centered in (x, y) where ψ(x, y) is
minimal.

ψ(x, y) =
max(r

r′ ,
g
g′ ,

b
b′)

min(r
r′ ,

g
g′ ,

b
b′)

This approach is very simple, but requires a brute force Brute force search
search for the optimal position. It allows for fast tracking
if only a limited number of positions is tested. The latter
can be achieved by assuming only small changes from one
frame to the next and prediction techniques like a Kalman
filter (see section 3.3.4). The authors also propose an ex-
plicit occlusion model to deal with obstructed objects. The
approach only considers translational movement and can
only deal with limited change in size or rotation.

Continuously adaptive mean shift (CAMShift) presented CAMShift
by Comaniciu et al. [2003] does not require a specific ob-
ject representation. Any representation that can be ex-
pressed by a probability density function (pdf) will work.
The implementation by Comaniciu and the implementa-
tion contained in OpenCV [Ope] use a color histogram as CAMShift can work

with any probability
function

a discrete estimate for the pdf. Comaniciu employs his-
tograms in RGB color space while the OpenCV sample im-
plementation uses the hue component of the HSV color

20 3 Requirements for DRAGONEYE

Figure 3.3: CAMShift [Comaniciu et al., 2003] An image sequence containing oc-
clusions and heavy motion blur because of fast camera movement

space. Instead of using a brute force approach to find theIterative approach
best matching center position, the position is changed itera-
tively until converging on a point. The change in each iter-
ation is determined by the mean-shift approach Comaniciu
and Meer [2002]. When using mean-shift, the next position
of a kernel is determined by the so-called mean-shift vector.
The authors propose to use special kernels with Epanech-
nikov kernel profile Comaniciu and Meer [2002]. A radially
symmetric kernel has a Epanechnikov profile if the weight
of a pixel in the kernel can be expressed by the distance to
the center.

k(x) =

{
1− x 0 ≤ x ≤ 1
0 x > 1

When using such a kernel, the mean-shift vector ~m is de-
fined as

~m =
∑nh

i=1 xiwi∑nh
i=1wi

− y

where y is the kernel center, xi are the pixel locations in
the kernel, and wi are weights for each pixel based on the
quality of the template match.

wi =
m∑

u=1

√
q̂u

p̂u(ŷ)
· δ[b(xi)− u]

3.3 Implications for the Implementation 21

q̂u defines the probability of a feature u in the original
model, p̂u is the probability in the tested region, δ is the
Kronecker delta function and b(x) defines the mapping of a
pixel x to a feature class.
Intuitively, a pixel xi is weighted higher if it was mapped
to a feature class that fits the model. Thus, the center is
shifted towards such better fitting pixels. CAMShift can
deal with size changes by testing multiple kernel sizes. The
authors propose three tests with 10% larger or smaller tar-
get kernels. A good value for the maximal number of shifts
is 20. Usually not more than four are required before con-
vergence is reached. CAMShift based on color histograms
produces good results in the presence of motion blur (Fig-
ure 3.3), which is often a problem for different algorithms
because of their reliance on stable gradients.

The resistance to motion blur is a good argument for us-
ing kernel tracking with color histograms in DRAGONEYE.
Since arbitrary videos have to be considered a tracker can-
not rely on a single feature type for object tracking. Also,
direct manipulation requires a single point that can be used
as a reference; even if the visualization worked on objects
and not points because the interaction needs to be. The rep-
resentation as a kernel might proof to be too unstable for
effective point tracking. Constant changes in size and form
will introduce erratic changes in the trajectory which might
be acceptable during a motion blur but might hinder the in-
teraction when positions on the trajectory become ambigu-
ous because of this.

3.3.2 Point Tracking

Objects can also be represented as a set of points, which
are subsequently used to determine an object’s position,
and sometimes pose. These sets can be simple and only
contain a single point, for example a centroid, or they can
contain many points, chosen to represent different parts of
the object [Serby et al., 2004]. The tracking mechanism in
DRAGON is an example for the first approach. An is rep-
resented only by a single point; namely the point the user
clicked on.
Tracking points requires two algorithms; one to find points

22 3 Requirements for DRAGONEYE

and one to match points onto each other. The Harris cor-Harris Corner
Detector ner detector Harris and Stephens [1988] focusses on finding

corner like structures. Corners have the property that they
show both significant horizontal as well as vertical image
gradients. These gradients are represented in the eigenval-
ues of the local autocorrelation matrix, since it contains in-
formation about changes in the neighborhood of the point.
If both eigenvalues are small, the image does not change
much in the local neighborhood. A large difference in the
eigenvalues means, that the autocorrelation function shows
large changes in one direction, which indicates an edge.
If both eigenvalues are high, the autocorrelation function
shows changes in both directions, indicating a corner. The
local autocorrelation matrix C can be estimated using the
first order tailor expansion, yielding

C =
∑

(x,y)∈W

(
Ix(x, y)2 Ix(x, y) · Iy(x, y)

Ix(x, y) · Iy(x, y) Iy(x, y)2

)

where Ix and Iy are the partial image derivatives and W is
the autocorrelation window.
The original Harris detector is only invariant to rotation. It
has since been extended by Mikolajczyk and Schmid [2001]
to handle scale changes as well. Robustness against scaling
is achieved by detecting points in several versions of the
image, each representing different object sizes.

Handling size changes in an image is often done using aScale space
describes signals at
different scales

multi scale representation of the image Lowe [2004], Miko-
lajczyk and Schmid [2001]. This multi scale representation,
also called image pyramid, is described by the scale space
theory by Witkin [1983], Lindeberg [1991]. Scale space is
defined on signals as “[...] embedding of the original signal
into a one-parameter family of derived signals constructed
by convolution with a one-parameter family of Gaussian
kernels of increasing width.” Lindeberg [1994]. Images can
be represented as two-dimensional discrete signals, so scale
space theory applies to images as well. Figure 3.4 shows
an example of a smoothed signal. An example of Gaus-
sian smoothing in an image can be found in figure 4.7 in
chapter 4. Both examples show how details are discarded
with increasing width of the Gaussian kernel. Lindeberg
showed that only the Gaussian kernel and its derivatives,
especially the Laplacian of the Gaussian ∆f — the sec-

3.3 Implications for the Implementation 23

Figure 3.4: Scale space representation [Witkin, 1983]: A
one dimensional signal convoluted with several Gaussians
(Eq. 3.1) of increasing width.

ond order derivative — can be employed to analyze im-
ages in scale space. Zero crossings and extrema of the sig-
nal smoothed with the Laplacian determine the position of Stable points in an

image can be found
using the Laplacian

corners and blobs, respectively. Even without the notion of
stable points in scale space, the pyramid approach has been
applied for several decades to analyze images.

G(x, σ) =
1√
2πσ

e−
x2

2σ2 (3.1)

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (3.2)

G(x, y, σ) = G(x, σ) ·G(y, σ) (3.3)

∆f(x, y) =
∂2f(x, y)
∂x2

+
∂2f(x, y)
∂y2

(3.4)

Lowe [1999, 2004] introduces SIFT which is based on Lin- SIFT

24 3 Requirements for DRAGONEYE

debergs finding of stable points in scale space. SIFT is de-
signed to be robust to rotation, scale changes, and illumi-
nation changes. A keypoint is detected by SIFT, when it
is an extremum in a image pyramid built of difference im-
ages between gaussian convoluted images. Extrema in this
pyramids are extrema in a 3x3x3 environment (Figure 3.5).
This directly relates to extrema of the Laplacian because it
is approximated by the DoG (Difference of Gaussians). In

Figure 3.5: SIFT keypoint detection [Lowe, 2004]: If the
sample in the center level is a maximum of all eight sur-
rounding points, it is a keypoint candidate.

contrast to the Laplacian ∆f(x, y) (Equation 3.4), the Gaus-
sian G(x, y, σ) is separable (Equations 3.1 – 3.3), allowing
for faster computation. Since the Gaussian images are re-
quired for descriptor computation later on, the difference
of Gaussians is easily obtained by computing the difference
image of two adjacent convoluted images. The σ for the
Gaussians are chosen to produce a multiple of two after s
convolutions. These s convolutions are called an octave.
In this way, the image can simply be resampled at the end
of an octave using every second pixel. This drastically re-
duces computation time at higher levels, since image size is
halved every octave.

3.3 Implications for the Implementation 25

Not all points found in this way are suitable for stable rep-
resentation of an object. Low contrast points and points
on edges are usually susceptible to even small amounts of
noise. Points lying on edges, i.e. showing large differences
of the eigenvalues of the Hessian matrix, and low contrast
responses are eliminated. The Hessian matrix contains sec-
ond order derivatives, but the edge suppression principle
is similar to the autocorrelation matrix used for the Harris
detector.

Matching of points in two different images requires de- Point description and
matching techniquesscriptors. Existing descriptors are based on several char-

acteristics, including pixel intensity, gradients or position
of surrounding points. A very simple descriptor consists of
only pixel intensities (or colors) which can then be matched
using cross correlation. The dimension of such descrip-
tor vectors grows very fast with the size of the consid-
ered patch around the detected point and thus require a
high computational effort to match. Intensities are also
very susceptible to illumination changes. Normalized gra-
dients, as applied by Lowe [2004], are invariant to affine
— of the form a · I + b — changes in illumination. Lazeb-
nik et al. [2003] propose a distance based descriptor which
classifies pixels surrounding the interest point by distance
and intensity. In a comparative study, Mikolajczyk and
Schmid [2005] showed that the SIFT descriptor is only out-
performed slightly by GLOH (Gradient Location and Ori-
entation Histogram [Mikolajczyk and Schmid, 2005], which
is an extension of the SIFT descriptor. A good descriptor
will be very helpful in case of an occlusion. If points can be
distinguished very accurately, occlusions can easily be de-
tected because a portion of the tracked points is lost. Also
reacquiring the object after an occlusion is easier if points
are unambiguous.

The SIFT descriptor is always computed on the level of the SIFT descriptor
Gaussian pyramid closest to the pyramid level of the DoG
pyramid on which the corresponding point was found. A
Gaussian circular window defines the pixels used to de-
scribe the point. The size of this window increases with
the height of the pyramid. This is what makes the the de-
scriptor resistant to scaling when the area around the point
scales conforming to the point itself. To make the descrip-
tor invariant to rotation, the main orientation of the point is

26 3 Requirements for DRAGONEYE

computed. Orientations of the surrounding points, which
are later on used as the descriptor, are then only stored rel-
ative to the main orientation. Equation 3.5 is used to com-
pute the local orientation of a point in an image L.

θ(x, y) = tan−1
(L(x, y + 1)− L(x, y − 1)
L(x+ 1, y)− L(x− 1, y)

)
(3.5)

m(x, y) =
[
(L(x, y + 1)− L(x, y − 1))2 + (3.6)

(L(x+ 1, y)− L(x− 1, y))2
] 1

2

The second equation 3.6 describes the magnitude of the lo-
cal image gradients. Orientation of samples in a region
around the point are weighted by the magnitude and a
Gaussian with σ = 1.5 time the level-σ. The results are
used to form a histogram with 36 bins — a bin represents
10 degrees. The mode of this histogram then defines the
orientation of the keypoint. Should a second bin of this his-
togram come within 80% of the mode, multiple orientations
are assigned to increase stability.

The descriptor is formed in a similar way. 16 Histograms
with only eight instead of 36 bins are formed in a 16x16
sample window. Each histogram corresponds to a 4x4 sub
window. Separating the histograms in smaller blocks al-
lows for non-rigidity and affine transformations such as
shearing. Gradients are allowed to shift up to four samples
while still belonging to the same histogram. Also, changes
in one histogram do not necessarily effect the others. All
these histograms define the descriptor. It is normalized to
be invariant to affine changes in illumination. Truncation to
0.2 and a second normalization produce resistance to non-
linear changes in illumination. Such changes more com-
monly affect gradient magnitudes and leave the orientation
untouched. The truncation reduces the influence of large
magnitudes and increases the importance of orientation.

The difference between two SIFT descriptors is defined byDescriptor matching
the euclidian distance in 128 dimensional space. Reliable
matching of two descriptors requires a way to eliminate
false matches. Lowe introduced an approach based on tests
with the ratio of the distance to the best match and the

3.3 Implications for the Implementation 27

Figure 3.6: SIFT descriptor computation [Lowe, 2004]: A
simplified example of descriptor computation with 4 his-
tograms in a 8x8 by sample window. The circle indicates
the gaussian. The orientations, weighted by magnitude, in-
dicated by length of the arrows are assigned to 8 histogram
bins on the right, yielding 4 histograms.

distance to the second best match. Matches with a ratio
smaller than 0.8 are discarded. Thus, 90% of false matches
and only 5% of correct matches are rejected 3.7.

Figure 3.7: SIFT matching [Lowe, 2004]: The probability
distribution of the ratios between distance to best and sec-
ond best match in a database of 40000 descriptors

Besides simple point tracking with SIFT as in DimP, Tang SIFT tracking

28 3 Requirements for DRAGONEYE

and Tao [2005] propose a tracker defining objects as graphs.
Position and pose of the objects is then determined by
graph matching. The composition of the model graph is de-
fined by an m-order Hidden Markov Model. Features are
added and removed from the model based on the binomial
distribution. A feature is added when it was observed n
times over the last m frames and B(n;m, p) > τ , where B is
the binomial distribution, p is the probability for observing
the feature and τ is the threshold for adding. Features are
thrown out if the binomial distribution falls below a second
threshold. To simplify the NP-complete problem of graph
matching, only a subgraph of the complete image graph is
searched for the model.

3.3.3 Silhouette Tracking

Complex non-rigid objects are usually hard to track by
means of point or kernel tracking. Kernel tracking requires
a predefined kernel in which to look for the object and
points descriptors are based on surrounding characteris-
tics as well. An object does not necessarily follow these
concepts. For example, an object might have a form that
does not fit the kernel and thus the kernel is is either dom-
inated by the background or may become too small for
stable tracking. Point descriptors might be thrown off by
changes in contour affecting gradients or the arrangement
of surrounding points. Silhouette tracking defines an object
by this surrounding shape and can handle changes better.
Yilmaz et al. [2006] classifies silhouette trackers into two
different categories. Shape matching and contour tracking.
The first approach tries to fit a shape model from previous
frames to a new frame, while the second approach evolves
the contour from one frame to the next. Shape matching
does not explicitly handle shape changes. Instead parts of
the object that are not affected by shape changes are em-
phasized. For example, a walking person, would normally
show large changes in arm and leg shape, while the torso
and head do stay stable. Huttenlocher et al. [1993] assumes
that objects may exhibit only small changes in shape, while
position may change drastically. Shapes are defined using
edge maps [Canny, 1986] and represented using binary im-
ages. Matching of shapes is done by computing an adapta-

3.3 Implications for the Implementation 29

Figure 3.8: Silhouette tracking [Yilmaz et al., 2004]: An example of a silhouette
tracking with sophisticated occlusion handling

tion of the Hausdorff distance between two sets of points.
The Hausdorff distance is defined as.

H(P,Q) = max(h(P,Q), h(Q,P))

h(P,Q) = max
p∈P

min
q∈Q

||p− q||

The distance d between two shapes is then defined a

d(P,Q) = min
g∈G

H(g(P), Q)

for a set of allowed transformations G. Allowed transfor-
mations, such as translation or rotation, can be defined ac-
cording to the application. Intuitively this means that a
shape matches another shape well when each point (on the
edge map) is close to a point on the other edge map. The
Hausdorff distance has been adapted to reduce the strong
influence of outliers. Li et al. [2001] employs shape match-
ing to estimate the pose of objects in different frames. The
authors propose to use another version of the Hausdorff
distance for matching. Objects are also represented us-
ing edge maps. Additionally, they proposes to compen-
sate background movement which is applied to reduce the
occurrence of background points in the model. Contour
tracking explicitly deals with changes in shape by evolv-
ing a contour from one frame to the next. In contrast to

30 3 Requirements for DRAGONEYE

shape matching, contour evolution does not require the ob-
ject to have stable parts, but it is important that the position
does not change too much between frames to have a valid
starting point for the evolution. Yilmaz et al. [2004] devel-
oped a contour tracker based on an energy functionals, that
maximizes the probability of a pixel belonging to the back-
ground or the object. The probabilities are defined by color
and texture features learned in previous frames. Moreover,
Yilmaz introduces a probabilistic shape model that allows
to estimate the object contour in the case of an occlusion.
Silhouette tracking performs very well in case of rigid and
non-rigid objects. On the other hand, it relies on a good
definition of an initial contour that defines the first model.
Models created by background subtraction cannot handle
different objects in the same area, and will fail in the pres-
ence of camera movement. When using background stabi-
lization combined with background subtraction, the initial
model relies very heavily on correct camera motion estima-
tion. Hence, silhouette tracking cannot be applied to direct
manipulation directly because shape definition would be a
large burden for the user. Also, the knowledge about the
complete contour might actually be too much, and unnec-
essary for the interaction.

3.3.4 Occlusion Handling

The presence of occlusion in video scenes will be a problem
that cannot be avoided in direct manipulation. It has to be
dealt with explicitly. Especially full scene occlusions pose
a problem since they have to rely on prediction techniques.
These prediction can be based on the relation between dif-
ferent objects in the scene or on recent behavior of the ob-
ject. A common prediction techniques is the Kalman filter
[Welch and Bishop, 2001, pp. 20 - 22], which tries to predict
the state of an object based on the previous behavior. This
behavior is encoded in a matrix A, which is updated in ev-
ery step, effectively doing an iterative least squares. The
error that is minimized in this case, is the difference of the
predicted and correct state.

31

Chapter 4

Camera Motion
Estimation

As mentioned in section 3.2 knowledge of the effects of
camera motion is necessary to support the users greater
understanding of a scene. With this information, we are
able to show visualizations such as panoramic views of the
whole scene or cutouts of the panoramic as in DimP. This
is also called background stabilization, because the pre-
viously moving background appears still. Besides show-
ing the stabilized scene, the system also needs to present
a trajectory which is altered according to camera motion.
Camera motion can be modeled in several ways. The sim-
plest idea is to only consider translational movement. Only
a single vector would describe the movement for all pix-
els in the video. This vector could be extracted by com-
puting the average movement over all known points, or
with more sophisticated approaches considering different
movement induced by background and foreground objects.
DimP [Dragicevic et al., 2008] is an example of a system that
uses a translational movement model for background sta-
bilization. The representative vector is found by greedy bi-
nary segmentation of the space of movement vectors, yield-
ing the most dense region in the space. Unfortunately , Translational model
camera motion is much more versatile than translation. For
pans, which technically are not a translation, the error intro-
duced by only considering translation between individual
frames is small (Figure 4.1). Errors start to be visible with

32 4 Camera Motion Estimation

increasing distance in frames (Figure 4.2). Zooms and rota-
tions, on the other hand, cannot be reproduced by a single
motion vector (Figure 4.3). Since especially zooms are quite
usual in video scenes, direct manipulation requires a more
complicated motion model, which can handle these effects.

Figure 4.1: Translational camera model (Pan): 20 frames of
a pan related by a translational movement model. Created
with Photoshop CS3

Figure 4.2: Translational camera model without Interme-
diate Frames: The error of the translational model becomes
clearer when intermediate frames are left out. Created with
Photoshop CS3

Affine transformations represent more complex movement,Affine model
including translation, zoom and rotations. An affine map is
defined by two components; a linear map A, and a transla-
tional component ~v (Equation 4.1). In computer vision, lin-

33

Figure 4.3: Translational camera model (Zoom + pan): 20
frames of a pan and zoom related by a translational move-
ment model. The zoom part of the camera movement can-
not be visualized. Created with Photoshop CS3

ear maps define combinations of scale, rotation and shear,
while translation can obviously not be expressed linearly.

p′ = A · p+ ~v (4.1)

A two dimensional affine map contains six parameters(
x′

y′

)
=

(
a11 a12

a21 a22

)
·
(
x
y

)
+

(
a13

a23

)
or in homogeneous coordinatesx′y′

w

 =

a11 a12 a13

a21 a22 a23

0 0 1

 ·

x
y
w

Thus, an affine map is a special case of a homography with-
out perspective component (see equation 4.3). Estimating
an affine model requires at least three points to work. A Estimating affine

models takes 3
points or more

point has two components, so with three points we have
the six values necessary to solve the linear equation system
with six unknowns. More points are better since it allows
for compensation of errors by point detection. The overde-
termined system arising from using more point can subse-
quently be solved using least squares (see 4.1), assuming
that this error is distributed normally.

Affine models cannot represent changes in perspective.
These are taken into account by a homography. Homogra-

34 4 Camera Motion Estimation

phies, also called perspective mappings, are usually used
in mosaicking systems, such as

Projective mappings from a point
(
x y

)T to a point(
x′ y′

)T are defined as

x′ =
h11 · x+ h12 · y + h13

h31 · x+ h32 · y + h33
(4.2)

y′ =
h21 · x+ h22 · y + h23

h31 · x+ h32 · y + h33

where h11 to h33 are the parameters of the mapping.

For two dimensions it can be written as a 3x3 matrix which
looks as follows.

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.3)

When applying a homography to a point PC =
(
x y

)T

in cartesian coordinates, we transform it to homogeneous
coordinates PH =

(
x y 1

)T and multiply H with PHx
y
w

 = P ′H = H · PH

To convert a point in homogeneous coordinates back to
cartesian coordinates, we divide all components by the
third, perspective, component and use the first two com-
ponents as position components.

P ′C =
(

x
w
y
w

)
Combining two homographies is as simple as multiplying
the two respective matrices, yielding another homography.
For camera movement, this means, that the camera move-
ment from frame x to frame x+ t can be computed by mul-
tiplying the t homographies for the intermediate frames.

P ′ = (Hx ·Hx+1 · ... ·Hx+t−1) · P

P ′ = Hx→x+t · P

35

The same matrix Hx→x+t can be applied to all points.

Unger [2004] uses a biquadratic model containing twelve
parameters to distinguish fore and background in a video
scene.

x′ = b1 · x+ b2 · y + b3 · x2 + b4 · y2 + b5 · x · y + b6

y′ = b7 · x+ b8 · y + b9 · x2 + b10 · y2 + b11 · x · y + b12

The qudratic dependency of the coordinate prevents the
combination of two models to a model of the same com-
plexity, which requires the combination of models for each
point individually.

P ′ = Bx+t−1(...Bx+1(Bx(P))...)

This increases the complexity of computing the combined
motion over several frames.

All the mentioned models consider the background to be
planar, which is obviously not the case in most video
scenes. The assumption fails as soon as the center of pro-
jection starts to differ. Although the assumption is incor-
rect, the resulting mosaics look good, which is sufficient
for visualization [Dragicevic et al., 2008, Hsu et al., 2000,
Irani et al., 1995]. The reason for this is that the background
structure forms a (virtual) plane. In many cases, this virtual
plane represents the background sufficiently.Problems arise
when several background structures form completely dif-
ferent planes. Most algorithms will choose the larger plane
and thus the other plane will show ghosting artifacts (Fig-
ure 4.4). Determining the exact camera motion, or its ef-
fects, requires us to know more about the underlying 3D
structure of a scene. Although this structure can be com-
puted from three images of the same frame [Hartley and
Zisserman, 2000, pp. 262 – 278], the process is computation-
ally more expensive. Inaccuracies are a problem too, since
estimating the 3D geometry requires us to guess the intrin-
sic camera parameters as well. Chon et al. [2007] describes
a specialized solution for mosaicking roadside buildings
filmed from a moving car. In spite of the problems of mul-
tiple planes, we believe that the usually the largest plane is
of the most interest to the user. Thus, considering the time
constraints for direct manipulation, a planar homography
should be enough for direct manipulation.

36 4 Camera Motion Estimation

Figure 4.4: Ghosting artifacts [Chon et al., 2007]: An ex-
ample of mosaicking with extreme ghosting artifacts

Finding such a homography is a well researched topic in
the field of computer vision and is done with the DLT al-
gorithm [Hartley and Zisserman, 2000, pp. 91, 109, 592]. It
requires a set of sample points, that can be used to solve a
linear equation system. We try to find an homography that
matches points Pi =

(
x y 1

)T in the first image to points

P ′i =
(
x′ y′ 1

)T in the second image.

Since a scalar factor for this matrix does not effect the result-
ing coordinates (see 4.2), we can scale the matrix by a factor
1

h33
. This would only pose a problem if h33 was zero which

can only happen in the special case that
(
0 0

)T maps to in-
finity. Therefore, we can assume h33 to be one. This yields
the matrix

H =

h11 h12 h13

h21 h22 h23

h31 h32 1

which has eight unknowns. Thus, we require four points of
which we know the position in both images to compute the
homography.

4.1 Least Squares

Although four points are theoretically enough to compute
a homography, we have to consider the problems arising
from errors caused by the point detection step. Hence,
we have to consider more than four points. To solve the

4.1 Least Squares 37

overdetermined linear equation system given by more than
four points, DLT uses least squares. For each point Pi =
(xi, yi, wi)T and a correspondence P ′i = (x′i, y

′
i, w

′
i)

T we get

P ′i ×HPi =

y′ih
3TPi − w′ih

2TPi

w′ih
1TPi − x′ih

3TPi

x′ih
2TPi − y′ih

1TPi

where hiT denotes the i-th row of the result homography
H. Consequently we get the 3x9 matrix Ai

Ai =

0 xiw
′
i −xiy

′
i

0 yiw
′
i −yiy

′
i

0 wiw
′
i −wiy

′
i

−xiw
′
i 0 xix

′
i

−yiw
′
i 0 yix

′
i

−wiw
′
i 0 wix

′
i

xiy
′
i −xix

′
i 0

yiy
′
i −yix

′
i 0

wiy
′
i −wix

′
i 0

T

with

Ai ·

h1

h2

h3

 = 0

When solving for H the 3rd equation in Ai is usually omit-
ted, yielding a new 2x9 matrix Ai

The Ai are subsequently assembled into a 2nx9 matrix A.

A =

A0

A1

·
·
An

The (overdetermined) system

A · h = 0

with the constraint ||h|| = 1 to avoid the trivial solution,
can then be solved by employing least squares. An exact

38 4 Camera Motion Estimation

solution generally does not exist. Instead a norm ||Ah|| is
minimized, which is done using the singular value decom-
position of A.

The SVD (Singular Value Decomposition) of a matrix A isSingular value
decomposition defined as

A = UDV T

with U and V orthogonal matrices andD a diagonal matrix
with non-negative entries. The entries in D are called sin-
gular values of a matrix A and are the square roots of the
eigenvalues of the matrix ATA

After applying the SVD to A, we need to minimize
||UDV Th||. Since U and V are orthogonal, it holds that
||UDV Th|| = ||DV Th|| and ||h|| = ||V Th||. Substituting
V Th with y yields the problem of minimizing ||Dy|| with
the condition ||y|| = 1. Thus, minimizing ||Dy|| requires
y to have a 1 at the position of the smallest singular value
in D, which yields h = V y. This is also the eigenvector
corresponding to the smallest eigenvalue of ATA.

4.2 RANSAC

Least squares is very susceptible to outliers. These are
caused by errors in the matching algorithm or simply by
points on an object not belonging to the background. Also,
we assume points to be located on a single plane, which is
not the case for most images, making points on one plane
outliers for the other planes. Thus, we are required to use
an outlier suppression technique. RANSAC, short for ran-
dom sample consensus, is such a technique. The principle
of RANSAC is simple

1. Take a random sample of sufficient size from all data
points

2. Use the sample to compute the model

3. Terminate if the enough of the other data points fit the
model or go to step 1

4.3 Implementation 39

In the case of estimating a homography we use four points
to compute H . To determine how well it fits all the other
points, we use the algebraic error

ea =
n∑

i=0

||H · Pi − P ′i ||2

As discussed in Chum and Pajdla [2002], this is not the best
error function since it does not account for errors in the first
frame and is dependent on the homography. On the other
hand, better error functions like the geometric error, which
consider errors in both frames are more costly in terms of
computation time. It has been shown that the algebraic er-
ror works well enough when appropriate normalization is
employed (see [Hartley and Zisserman, 2000, p. 109]).

4.3 Implementation

we used the implementation of the DLT algorithm pro-
vided by OpenCV [Ope]. RANSAC was implemented in
Objective C and Cocoa. Visualization of the estimated ho-
mographies was done with Core Image (see Appendix A.1).

we first tried to use motion vectors used in standard video
compression algorithms. These motion vectors typically
define the rough movement of so-called macro blocks be-
tween images. In this way, only differences between the
corresponding macro block pixels in the old and new frame
have to be encoded. The vectors for the macro blocks usu-
ally fit well, when they correspond to the underlying ob-
ject and camera motion (Figure 4.5). Unfortunately, the al-
gorithms are not designed to find the correct motion, but
rather vectors that fit the compression technique. Thus, the
vectors corresponding to the camera motion are not always
found. Especially with a fast moving camera, the vectors
often do not fit the camera motion as seen in figure 4.6.
Finally, we decided to use points detected by SIFT. We used
the GPU implementation by Wu.

we chose to allow a maximum of 150 iterations of the
RANSAC algorithm. The iteration stops early if more than

40 4 Camera Motion Estimation

Figure 4.5: Suitable MPEG motion vectors: Motion vec-
tors fitting the camera motion. Extracted from MPEG4 en-
coded video

Figure 4.6: Unsuitable MPEG motion vectors: Motion vec-
tors not fitting the camera motion. Extracted from MPEG4
encoded video

70% of the features fit the model. If less than 40% of fea-
tures can be used for estimation, the algorithm returns no
homography. In this case, the homographies in a radius of
three frames are considered, assuming camera motion does
not change much between frames. In a typical movie scene
foreground objects are in camera focus and thus, show
more detail than background objects. Low level features
are directly related to detail, because they are found in very
small regions. Since these detail features more often lie on

4.3 Implementation 41

foreground objects 4.7, they are of no concern for camera
motion estimation. In fact, if too many of such foreground
detail features exist, the camera motion estimation will be
influenced, resulting in more RANSAC iterations or incor-
rect estimations of the background. To avoids this effect,
features for camera motion estimation should originate on
higher pyramid levels, which usually provide a more suit-
able object to background ratio. In videos taken with cam-
corders designed for home use, the depth of field is usu-
ally larger. In this case, foreground objects do not necessar-
ily show more features than the background. Since using
higher pyramid levels reduces the number of features in
both parts, this is also a wanted effect. Less features sim-
ply mean faster download of features from graphics mem-
ory and faster testing of compliance to other features. In
case the background was very lightly textured and does not
show many features, this also makes no difference, because
well textured foreground objects will dominate the compu-
tation on any level.
Unfortunately the SIFT implementation does not allow to
change the starting octave dynamically, which is neces-
sary for object tracking (see 5.4). Thus, images are scaled
down to a size of 64x64 before feature extraction, which
has the same effect. Downscaling uses CGImage in the Ap-
ple Quartz API with high interpolation enabled. To allow
for faster creation of trajectories, the algorithm starts com-
puting camera motion as soon as the user stops the player.
This is possible, since the camera motion is not dependent
on a trajectory. Then, as soon as the user clicks on a point,
only the object has to be tracked, which allows for a fast
start when computing trajectories. More details on the com-
bined implementation of camera motion and object track-
ing can be found in section 5.4.

42 4 Camera Motion Estimation

Figure 4.7: SIFT features with different starting octaves (Photo courtesy of
Jonathan Diehl): Increasing the starting octave (-1 to 2) first only has an impact
on detail features in the foreground while the background is not affected, yielding
a better ratio between foreground and background object in higher octaves

43

Chapter 5

Object Tracking

“How did you do it?”
“I dropped a logic bomb through the trapdoor.”

—Hugh Jackman in Password: Swordfish

we chose to develop a point tracking algorithm based on
point detection to track objects. The tracker learns and
continuously adapts an object model based on detected
points. The model is not dependent on a specific detec-
tor, but can work with any point detection and matching
algorithm. In our implementation we decided to use SIFT
because of its well known stability and the existence of sev-
eral implementations, including implementations running
on the GPU [Wu, Sinha et al., 2006]. Additionally, we use
CAMShift on color histograms as a second tracking algo-
rithm to augment the tracker in situations where the de-
veloped point model has problems or point matching fails.
In the following, we present our reasons for abandoning
optical flow as a basis for tracking, and introduce the new
algorithm in detail.

5.1 Why not Optical Flow?

Optical flow has proven to be a suitable basis for finding Advantages of
optical flowobject trajectories. DRAGON as well as DimP use flow

based approaches to track objects. It allows for simple

44 5 Object Tracking

trajectory creation that does not rely on specific object
attributes. This is one of the main requirement for direct
manipulation as discussed in chapter 3. DRAGON’S dense
flow algorithm can be used to track even tiny objects and
both algorithms do not rely on rigidity to work. Tracking
does not require more information than the one point the
user clicked on. As DimP shows, computation time can be
reduced by estimating flow instead of computing dense
flow fields and the SIFT features required can be computed
faster with implementations running on the GPU [Sinha
et al., 2006]. Also, specialized algorithms exist that can
compute dense flow fields more efficiently. Complex
solvers, such as the multi-grid solvers presented by Bruhn
and Weickert [2005] and Bruhn et al. [2005], can compute
up to 18 accurate flow fields per minute for a frame size of
316x252 on a 3.06 GHz Pentium machine.

The main problem of optical flow tracking arises from theDisadvantages of
optical flow lack of object awareness. Simple flow based object track-

ing as employed in DimP and DRAGON has to rely on the
assumption that the motion vectors between every frame
pair are correct. Unfortunately, these motion vectors do not
necessarily need to be correct mathematically, they need to
be correct for the user. Assume the case of a perfect opti-
cal flow algorithm that can map any pixel on the screen to
its respective position in next frame, defined by motion of
the corresponding 3D object. This is still not enough, be-
cause the user’s notion of correctness changes with the ob-
ject he is interested in. Especially in the case of occlusions,
the difference between mathematically correct and correct
for the user are drastic. In figure 5.1, the user will be inter-
ested in the movement of the person. If the tracker simply
follows pixels, the trajectory will stop on the tree, which
is correct if pixels are considered, but incorrect for the user.
This implies that object awareness of the tracking algorithm
is a crucial point for direct manipulation. Although the un-
derlying optical flow computation usually address objects
implicitly with special constraints, objects are not explicitly
dealt with in the algorithm.

The current tracking techniques built on top of optical flow
have no notion of objects. Thus, the algorithms cannot de-
termine when occlusions occur and even small partial oc-

5.1 Why not Optical Flow? 45

Figure 5.1: Occlusions and optical flow: The optical flow vectors (blue) on the tree
are the null vector, because there is no motion of the tree. Thus, the person cannot
be followed by simple flow tracking while occluded.

clusions usually produce tracking errors 5.1.

Neither DRAGON nor DimP are able to detect occlusions
and recover from them. If an algorithm recovers from oc-
clusions it is due to the underlying flow algorithm. In
case the tracked object is large enough, fast enough, and
the occluding object small, the smoothness constraint in
DRAGON’S flow algorithm produces motion vectors that
help to recover from the occlusion (Figure 3.2). The
smoothness constraint expects spatially close pixels to The smoothness

constraint produces
incorrect vectors

move coherently, which is based on the assumption that
spatially close pixels originate from the same object in the
3D scene. This can affect flow vectors close to the border of
objects incorrectly, because the assumption does not hold
near the edge. In the streetlight example 5.2, there is no
apparent movement of the streetlight and thus, all vectors
originating on the streetlight are supposed to be the null
vector. The fact that the tracker follows the car if the user
clicks on the street light shows that this is not the case. In
this case the incorrectness helps the interaction, since the
user will usually aim to interact with the car. Problems arise
when it unexpectedly does not work (Figure 6.21), or the
user actually wanted to interact with the smaller object.

Occlusions by small objects are also less problematic for
DimP, since small object have less features that may occur
in two adjacent frames impacting the flow field interpola-

46 5 Object Tracking

Figure 5.2: Resolving occlusion in DRAGON: When click-
ing on the streetlight a trajectory fitting the car is computed.
This helps to resolve occlusions, when a motion vector of
the car ends on the street light.

tion. Again, this is not intended, because tracking of these
small objects is impossible. In both cases, the technique wasOcclusions are only

handled as a side
effect

never specifically designed to handle occlusions and the ef-
fect on occlusion recovery is rather a side effect, which only
occurs when the occluding object is sufficiently small. Since
occlusions are very common in video scenes, direct manip-
ulation requires an algorithm that can deal with this prob-
lem explicitly.

Several approaches extending optical flow algorithms withOcclusion aware
optical flow occlusion awareness exist [Ince and Konrad, 2008]. These

approaches are tailored to extrapolate optical flow in dis-
appearing regions — i.e. regions occluded in the second
frame. Extrapolation is necessary to compute vectors de-
scribing the behavior of the disappearing pixels. Indepen-
dent of occlusions, this is a desirable quality for direct ma-
nipulation, since trajectories are not supposed to end before
an object disappears. Nevertheless, this alone is not suf-
ficient to determine pixel position over multiple occluded
frames. To ascertain the correct position, the algorithm

5.2 Point Tracking 47

needs some way to decide whether the tracked pixel is vis-
ible or hidden. In the first case, it can use the flow between
adjacent frames to continue tracking and in the second case,
the “hidden” flow has to be estimated or computed in a dif-
ferent way.

Handling occlusions requires us to have some model of the Occlusion handling
requires an object
model

object. This model can be based on any distinctive feature
like color, gradients, points, flow vectors or a combination.
Instead of implementing an object model on top of optical
flow to rectify flow vectors not fitting the current situation,
we propose to employ a tracking algorithm that bases its
tracking decision directly on the object model.

5.2 Point Tracking

We propose to introduce an object model that is suitable for
tracking as well as detecting and handling occlusions. The
object model is built of points which are spatially related to
an initial point — i.e. the point the user clicked on. This
is the point that is supposed to be followed across frames
to build the trajectory. Several points represent the object.
These points may have occurred over the course of mul-
tiple frames and change according to the current lighting
conditions and object form. In every frame, the algorithm
extracts existing points and then finds the points that fit the
model best. The best points are used to determine the cur-
rent object position. Newly occurring points are evaluated
in terms of whether they fit the model and, in case they do,
are incorporated into the model. In addition to points, re-
cent movement is part of the model. Thus, if not enough of
the extracted points fit the model — for example due to mo-
tion blur or occlusions — movement can still be estimated
based on the assumption that it changes slowly over the
course of several frames. As soon as extracted points fit the
model again, the algorithm proceeds as before. Contrast-
ing to the flow implementations, we use several frames as
reference. In this way, points shortly lost by the point detec-
tor, for example because of a person turning their head or
an occlusion, can be used again as soon as they resurface.
Moreover, it increases tracking stability, should the point

48 5 Object Tracking

New feature

Object feature

Non-object feature

Lost feature

Tracked point

Object movement

Figure 5.3: Visualization of the developed point tracker: Top left: The tracker
learns features in the first frame. Top right: features are classified of belonging to
background or foreground. Bottom: Older feature not found in the previous frames
are used as reference

detector fail to find points in every frame. Using multiple
frames is realized by trying to to find the object in a frame,
instead of determining its movement from one frame to the
other. All parameters mentioned here were chosen by pre-
liminary testing on several videos, non of which were used
for the evaluation.

The tracking idea can be visualized as in figure 5.3 and
consists of the following steps:

5.2 Point Tracking 49

1. Load the current frame and detect points

2. Match new points to the points contained in the
model and candidate points

3. Remove matches that fit the background motion

4. Predict the position of the interest point from each
match individually

5. Cluster the matches based on the predicted positions

6. Evaluate each cluster in terms of distance to the inter-
est point and usage of the points in previous tracking
steps

7. Update the interest point position based on the
barycenter of the best cluster

8. Update the object size based on the points used to
forming the cluster

9. Evaluate whether each match fit the determined
model

10. Devalue model points that did not fit the object move-
ment or could not be found

11. Add newly found points in the vicinity as candidates
for object points

12. If the object position could be determined, repeat
with next frame

13. In case the object could no be found for several
frames, stop

5.2.1 Object Detection

Without any knowledge about distinctive features, it is im- Segmentation by
differing movementpossible to distinguish foreground and background. Thus,

before the model can be built, the object needs to be set
apart from the background. We decided to use the object
movement to distinguish it from the background. We con-
sidered two heuristics of classifying features as object or
non-object features.

50 5 Object Tracking

• Features close to the interest point that are moving
according to a common movement model

• Features surrounding the interest point moving ac-
cording to a common movement model

The first approach can have false positive responses when
another object, close to the intended object, shows a better
fitting model. Approach two discourages false positives,
because now the other object(s) would have to completely
surround the correct object. Unfortunately, false negatives
can occur when the user clicked close to the object border,
where surrounding the interest point with feature points is
impossible. Also, depending on the applied point detec-
tor, the object might not show features in all parts. After
preliminary testing with SIFT, we decided to use the first
way because SIFT is a blob detector and discourages points
at the border of objects. The other heuristic would require
the user to click at points surrounded by non-zero small
enough gradients (when using SIFT), which is incompre-
hensible to the normal user. Figure 5.4 shows an exam-
ple where a car could not be tracked when clicking on the
hood. The relation “farther away from the other object” im-

Figure 5.4: Feature distribution with SIFT: The car shows
only a single feature on the hood. So requiring surrounding
features will fail when the user clicks to close to the border
or this one point cannot be found in the next frame.

plied by the first technique is easier to grasp. Another point

5.2 Point Tracking 51

detector that emphasizes edges could work better with the
second technique. In the end, the best technique has to be
decided by user tests.

5.2.2 Movement Representation

To determine the next point of the trajectory, some kind of
movement model has to be determined from model points
and applied to the interest point. We considered two move-
ment models for direct manipulation; an affine model (see
chapter 4) and a translational model. Translational models
only represent translative movement and cannot represent
movement induced by scaling or rotation. This does not
mean that they cannot take those kinds of movement into
account during computation. Affine models can also rep-
resent these more complex movements, but they are also
harder to compute. We require at least three points to com-
pute an affine model. This is a strong constraint for track-
ing, making it especially hard to track small objects. An
affine model would also require some kind of model nor-
malization to allow for estimation from different reference
frames. For example, a detected rotation would have to be
applied to all model points to keep the estimation stable.
Thus, an error in estimation will always affect these nor-
malized coordinates.
Translational models only require a single feature but are
less accurate when it comes to more complicated move-
ment. Since a rotation or a deformation have different ef-
fects on different parts of an object, this produces errors
when the interest point does not coincide with the point
used for estimation. Rigidity is not a given prerequisite,
but we can assume that objects do not change shape rapidly
from one frame to the other. If they do, SIFT, or most other
point detectors, will not be able to match points reliably
anyways because of motion blur. Thus, the error intro-
duced by assuming rigidity will usually be small. Also,
more points can be employed to estimate the position of
the interest point to reduce such errors. It would preferable
to have an object model that has information about every
part of the object. Such a model would allow for new in-
teractions incorporating zoom and rotation as well. Unfor-
tunately, initial testing showed that the constraints reduce

52 5 Object Tracking

tracking stability and especially small objects show unsta-
ble trajectories.The user tests mentioned in chapter 3 indi-
cate that accuracy is not one of the main concerns. We be-
lieve that a translational model that considers the possibil-
ity of zoom and rotation will be sufficient for the current
interaction.

5.2.3 Position Determination

To track an object, any point in radius r around the interest
point I is considered as a possible object point. For everyStep 11 — Adding

new points considered point Pj the vector

~vj = Pj − I

defines the point’s relation with the interest point. This vec-
tor is computed when a point is found the first time (Step
11). Each point has a score for tracking importance s(P),
representing how reliably it could be used for tracking in
the past. Initially it is set to 1.

Figure 5.5 visualizes the tracking process. After computing
points for a frame (Figure 5.5 a), each model point is tested
for correspondence with the new points. All points that
could be paired, and do not match the camera motion areStep 2 — Removal of

background points subsequently tested for a common model (Figure 5.5 b and
c). A point is compliant to the camera motion when

||HCamera · POrigin − PMatch||2 < ε

where || · ||2 is the euclidian norm and HCamera is the ho-
mography defining the camera motion from the frame the
point was found in originally to the current frame. ε com-
pensates for the error in the estimated homographies. If
camera motion compensation is disabled, only points that
do not move at all are removed. A point that was already
part of the model at some point, is never removed in this
step. This ensure the ability of tracking objects stopping in
the course of a scene.

In step 4, each point Pj is used to estimate the new positionStep 4 — Position
estimation of the interest point I ′ by adding the vector ~vj to the new

5.2 Point Tracking 53
11

2

2

2
1

1

2

1
2

2

1

1
1

2
2

1

1
2

1

2
1

(a
)

(b
)

(c
)

(d
)

(e
)

Fi
gu

re
5.

5:
V

is
ua

li
za

ti
on

of
th

e
tr

ac
ki

ng
pr

oc
es

s:
(a

)p
oi

nt
de

te
ct

io
n

(b
)p

oi
nt

m
at

ch
in

g:
th

e
nu

m
be

r
re

pr
es

en
ts

th
e

ag
e

in
th

e
m

od
el

(c
)c

am
er

a
m

ot
io

n
co

m
pe

ns
at

io
n

an
d

re
m

ov
al

of
ba

ck
gr

ou
nd

fe
at

ur
es

(d
)i

nt
er

es
tp

oi
nt

es
ti

m
at

io
n

an
d

cl
us

te
ri

ng
(e

)t
he

be
st

cl
us

te
r

an
d

th
e

es
ti

m
at

ed
in

te
re

st
po

in
t

54 5 Object Tracking

position P ′j (Figure 5.5 d).

I ′j = P ′j + ~vj

This yields a set of possible positions for the new interest
point, which can be visualized like in figure 5.5 d. To esti-
mate the correct position, this set is divided into clusters .Step 5 — Clustering
These clusters represent estimations that follow a common
model, that is to say the cluster. Thus, the clustering algo-
rithm has to be able to deal with

• an unknown number of clusters, caused by multiple
objects in the same area.

• an unknown number of outliers, caused by points on
the background that could not be discarded

• differing cluster shapes, caused by non-rigidity, rota-
tions and zoom

Clustering is performed by a variant of the Density-BasedClustering with
DBSCAN Spatial Clustering of Applications with Noise (DBSCAN)

clustering algorithm. DBSCAN is a clustering algorithm
that does not require a predefined number of clusters, it can
handle outliers, and clusters do not have a predetermined
shape. DBSCAN clusters points according to the following
rules

1. If all points were classified, stop

2. Get next unclassified point Pu

3. Get all points C closer to Pu than distance d

4. If |C| is smaller than minimum cluster size k, classify
Pu as noise; go to 1.

5. Mark point Pu as belonging to cluster C

6. If all points in C processed; go to 1.

7. Get next point Pc from C

8. Mark point Pc as belonging to cluster C

5.2 Point Tracking 55

9. Get all points N closer to Pc than distance d

10. If |N | is smaller than minimum cluster size k; go to 6.

11. Add all points in N to C; go to 6.

In our implementation, we chose d = 4 and k = 3. The
next step is to assess the emerging clusters C by how well
they fit the interest point , and how they are structured. Step 6 — Cluster

evaluationThe estimated interest point of a cluster C is defined as its
barycenter IC . After the model initialization phase in the
first three frames, at least l previously used points are re-
quired, or the cluster is discarded. The idea is to get rid of
clusters that have no relation to the model. Our prelimi-
nary tests showed that l = 1 is unfortunately to sensitive
to false points in the model, and we had to choose l = 2,
which makes tracking hard for small objects with less sta-
ble points.

For each point the distance from the original point to the
respective interest point IC is computed.

I = ||IC − Pj ||2

The average over all values in a cluster īC , as well as the
average tracking importance s̄C and number of points nC

in the cluster are normalized according to the maximum
values in all clusters.

îC =
īC

max
C

īC

ŝC =
s̄C

max
C

s̄C

n̂C =
n̄C

max
C

n̄C

These values are weighted according to α, β and γ with

α+ β + γ = 1

56 5 Object Tracking

Finally, this yields a cluster quality qC .

qC = α · ŝC + β · îC + γ · n̂C (5.1)

We chose to combine all values in a single quality value in-
stead of defining a disjoint hierarchy like for example the
lexicographical order. The reason is that a single value is
not meaningful enough. For example, consider a video of
a launching space shuttle where the user wants to manipu-
late the shuttle. As long as the external booster is attached,
features on the booster are as reliable as on the rocket. The
moment the booster is separated from the rocket, its fea-
tures become incorrect for the shuttle path. If these features
were for some reason a little bit more stable than the ones
on the shuttle, only considering stability would lead to in-
correct trajectories; namely the booster trajectory. Combin-
ing the values avoids this effect. Now, the smaller distance
to the interest point compensates for less stable tracking.
Tracking importance (α · ŝC) and distance from the inter-
est point (β · îC) are the most important properties. A high
tracking importance relates to the tracking reliability of the
points in the cluster. Distance from the interest point (β · îC)
can discriminate between several clusters with good track-
ing importance. The idea is, that a cluster that originates
from points close to the interest point is better than a clus-
ter that originates from points close to the border of the ob-
ject. Secondary to the shuttle example, this is interesting
in the case of nonrigid objects. Several parts of the object
that could be tracked together before might now be inde-
pendent of each other. The part most important to the user
is probably the one closest to the interest point. Cluster size
(γ · n̂C) is the least important property because it can easily
be dominated by larger objects moving in the background
or next to the tracked object. With this reasoning we pro-
pose to use

α ≈ β >> γ

Our implementation uses α = 0.45, β = 0.55 and γ = 0.

The barycenter of the cluster with the highest quality qC de-Steps 7 and 8 —
New interest point
and object size

fines the new interest point I ′. The smallest rectangle con-
taining all feature points defines the current object size. To
accommodate for missing features because of non-rigidity
and occlusions, a maximum size change of 25% is allowed.

5.2 Point Tracking 57

A special case has to be considered when the object is not
moving. This means, that all model points as well as back-
ground points conform to the object movement which is
in this case equivalent to the background movement. To
avoid classifying background points as stable model points,
new model points may only be learned when the object is
moving. Since a static object does not show a lot of fea-
ture changes this should not reduce tracking stability. This
makes the tracker dependent on correct camera motion es-
timation. In the case camera motion was identified incor-
rectly, and background points are classified as parts of the
object, β should be large enough to compensate for the ef-
fect and prioritizes points close to the interest point as soon
as movement starts again.

5.2.4 Model Update

The vector ~m = I ′−I from the old to the new interest point Step 9 and 10 —
Point evaluationdefines the object translation for the respective frames. The

model is updated according to this vector. Each point re-
ceives a new importance value st(P) for frame t which we
defined as

st(P) =

st−1(P) + 1 P ∈ C
st−1(P)− 1 P ∈M \ C
st−1(P)− 0.2 otherwise

(5.2)

where C is the set of points used to define the vector ~m and
M is the set of points that could be matched in the current
frame t. In this way, a point that is not found in every frame,
but regularly at least every second frame is still classified
as stable. Points that do not fit the model are not removed
immediately to accommodate for detection outliers and in-
correct clusterings. A point is removed from the model or
list of candidates when s(P) becomes smaller than or equal
to zero. Since the initial value was one, points on differ-
ent objects are constantly considered as model points but
are removed immediately since they do not fit the model.
In this way, false negatives are also corrected very quickly
since it takes only three frames until they are considered
again.

58 5 Object Tracking

5.3 Color Tracking

One of the main problems of point detectors, and SIFT in
particular, is the dependence on image gradients. Unfor-
tunately, gradients are very susceptible to motion blur and
may change rapidly if an object starts moving. Motion blur
has a direct effect on the definition of edges and thus gradi-
ents defining orientation and descriptors in SIFT. Although
SIFT itself employs gaussian blurs, a motion blur has differ-
ent effects than a gaussian blur. Especially the fact that mo-
tion blur only occurs along the movement axis has a very
different impact on gradients than gaussian blur. Figure
5.6 shows an example. To enhance the tracker to be able to

Figure 5.6: Effects of motion blur [Schuon and Diepold,
2006]: The underlying structure is a regular black and white
grid. Gradients in blur direction (a) are affected while per-
pendicular gradients stay almost constant (b)

deal with this problem, we propose to use a second, track-
ing phase, which uses CAMShift (see 3.3.1) based on color
histograms. Color is not as susceptible to motion blur, mak-
ing it a good choice for an additional feature. We chose to
implement it based on histograms on the hue component
of the HSV color space. The initial kernel of the object has

5.3 Color Tracking 59

a size of 10% of image height and width and is centered at
the point where the user clicked. Using this heuristic en-
ables us to track objects even if SIFT is never able to detect
the object boundaries. Small objects with few features are
hard to track by SIFT because multiple features are required
for tracking. Figure 5.7 shows an example where CAMShift
helps in such a situation.

Figure 5.7: Tracking a small object with CAMShift: Al-
though the tracked region is only about 20x30 pixels large,
CAMShift produces a good trajectory.

5.3.1 Model Combination

Combining the proposed models requires the detection of Combination of point
and color trackingerrors in one of the models. SIFT can distinguish objects in

a scene very accurately. Thus, as long as the point tracker
is able to track the object, we chose to trust it. Also, as long
as the point tracker is able to track the object, tracking re-
sults are used to test correctness of the CAMShift tracker.
When the movement of the CAMShift tracker differs from
the movement indicated by SIFT, CAMShift is newly ini-
tialized to avoid diverging models. If SIFT tracking is not

60 5 Object Tracking

possible, CAMShift will be trusted as long as the size does
not change drastically in between frames. This means a size
increase of 33% over five frames. This does not hold for the
first five frames after initialization to allow the kernel to
grow to the object size. Fast growth often indicates that the
tracker has lost the object an started to track colors of the
background.

5.4 Implementation

We implemented the object tracking in Objective C with Co-
coa on Mac OS X 10.5 and incorporated both into DRAGON.
For point detection we employ SIFT, which is well known
for its stability to changes in object pose and illumination.
Loading single frames from a video is done via the Quick-
time API. The latter proved to be very slow for random ac-
cess of video frames, which can take several seconds. Thus,
instead of loading single images from the stream, multi-
ple frames are preloaded and cached, allowing Quicktime
to make use of intermediate data during the extraction.
For the backward estimation, frames are also read forward
from the farthest frame on to ensure the use of the opti-
mized forward decoding algorithms.

5.4.1 Parallelization

Achieving frame rates for real time application with theSpeed increase by
parallelization proposed algorithm requires a high degree of paralleliza-

tion. For example, SIFT features for the next frame can
already be extracted while the camera motion and ob-
ject model are computed. The parallelization is imple-
mented using the concept of operations, provided by the
Cocoa API. Operations are designed to partition a task
into smaller subtasks which can be handled by different
processors in parallel. Programming with operations only
requires the definition of the relation between individual
tasks. We segmented camera motion estimation and track-
ing into the following subtasks

5.4 Implementation 61

• Image loading
Decoding video can take some time, and is thus done
separately.

• SIFT feature extraction
Handles extraction and storage of SIFT features.

• Homography estimation
Uses the points determined by the point extractor to
estimate the effects of the camera motion.

• Point tracking (model update)
Tracks the objects by means of the described point
tracking algorithm

• CAMShift tracking
Tracks the object with CAMShift based on color his-
tograms

• Merge of tracking results
Combines the result of the two tracking approaches
to a single position

• Success test
Tests whether tracking has to be stopped because the
object was lost by both algorithms

The relation between these steps are shown in the depen-
dency graph 5.8. Additional steps are possible. For exam-
ple model features can already be matched, while camera
motion is computed. On the other hand, the speed increase
from this will be marginal, since the model update is very
fast anyways (section 6.3).

5.4.2 Combination of Object Tracking and Camera
Motion Estimation

In theory, the same image is used to compute the camera
motion and the position of the object. Thus, SIFT features
have to be extracted only once for each frame. To com-
pute SIFT features, we use the GPU implementation by Wu
Wu. The slowest part of this SIFT implementation is down-
loading feature descriptors from graphics to main memory.

62 5 Object Tracking

Image Loading

SIFT Detection

Homography
Estimation

Point Tracking

CAMShift
Tracking

Result Merge

SIFT Detection

Figure 5.8: Operation dependency graph: Relations be-
tween the steps of the tracking process

Features cannot be downloaded selectively, making it in-
feasible to compute features for camera motion and object
tracking simultaneously. When considering a whole frame,
camera motion estimation only requires features on high
pyramid levels, while object tracking also makes use of fea-
tures on lower levels. Objects can be small and thus require
more low level features for stable tracking. Downloading
all low level features in the areas irrelevant for object track-
ing would take too long. Instead, the object is cut out, yield-
ing separate images for background and objects. SIFT fea-
tures are extracted for each of these images. This is still not
the optimal way because the image pyramid has to be ini-
tialized with the similar data twice and some keypoints are
detected in both extractions. To achieve invariance to dif-Images are scaled to

a resolution of 64x64 ferent object and video sizes, the two images are scaled to a
size of 64x64 using resizing with CGImage with high inter-
polation enabled. The aspect ratio of the window is always
left untouched. This has the same effect as starting on a
higher pyramid level. Images smaller than that will not be

5.4 Implementation 63

altered before the detection. This measure reduces feature
count, while increasing speed of the SIFT detection step.
Especially features in finer structure of an object are lost. So,
the extracted features will ensure that the movement of the
whole object and not a small detail is preferred. This will
usually be of more interest to the user. If the user indicates
that she is interested in finer structures, the algorithm could
put more weight on lower pyramid levels containing infor-
mation about details. Lowe [2004] chose the SIFT standard
parameters to achieve maximum stability. This is impor-
tant for our algorithm as well since it allows to download
as little features as possible. Sometimes it might be a good
idea to increase feature count even if it costs stability. For
example to create new trackable features if an object has too
few. This can be achieved by using a lower pyramid level,
or a different number of levels for each pyramid octave.
Unfortunately, the SIFT implementation does not allow to
choose these parameters dynamically. These and the afore- A more specialized

SIFT implementation
is required

mentioned problems with the SIFT implementation show
the necessity of a new implementation tailored for direct
manipulation. Images that are used for CAMShift tracking
are not scaled down, because CAMShift works very fast, so
keeping the information can benefit accuracy.

65

Chapter 6

Evaluation

The developed algorithms were tested on artificially cre-
ated data as well as on real videos. The artificial data was
mainly used to determine limits of the algorithms, whereas
video data showed the usefulness in real world circum-
stances. We decided to not do user test since the new al- User tests
gorithms do not lead to new interactions, but rather to a
different realization of the old interaction technique. Espe-
cially the actuality that computation takes less time, can-
not be evaluated with user tests. In fact, we would ex-
pect worse results with the new technique compared to the
old DRAGON implementation since users cannot be made
aware of the necessary precomputation step. Also, Chris-
tian Brockly currently works on several tests concerning the
interaction in a second diploma thesis.

We used twelve videos with varying resolutions and qual-
ity to compare the different algorithms. None of the videos
were used for preliminary testing during creation of the al-
gorithms and the trajectories and points of origin were cho-
sen beforehand to represent different problem cases. Con-
tent of the videos covered simple movement like transla-
tion only, more complicated movement like rotation around
the y axis, different camera motions and all sorts of oc-
clusion. All videos were taken with a full HD 1080i cam-
era. The videos were deinterlaced with motion prediction
in Final Cut Pro. We tested versions with resolutions of
1920x1080, 960x540, and 480x270. Videos were stored un-

66 6 Evaluation

compressed to allow using the mov container as well as
avi for compatibility with DimP. We did some additional
tests with H.264 compressed videos for the new algorithm,
which showed no visible difference in the output trajecto-
ries. Since most of the tests were redundant, this chapter
will only show interesting results. Description of the re-
maining scenes and trajectories can be found in appendix
B.

Unfortunately, we discovered a bug in the GPU SIFT imple-
mentation shortly before evaluation. Because of the bug, in-
correct descriptors are assigned to to the features. Since we
could not find a way to fix it in time, we decided to do all
tests with the CPU implementation by Vedaldi [Vedaldi].

6.1 Camera Motion Estimation

The motion estimation algorithm was evaluated using ar-
tificial data. This was done mainly because it is hard to
create realistic video scenes with a known camera motion.
We developed a program that can create the two neces-Experiment creation
sary set of input points for the algorithm, i.e. original and
matched points. Original points can be placed manually,
randomly or in a predefined shape. A provided homogra-
phy defines the matched points of the algorithm.Before the
matched points are used as input for the camera motion
estimation, a given percentage of the points is defined as
mismatches, showing random behavior. Furthermore, all
matched points are offset by noise vectors with values ran-
domly chosen from a normal distribution with given stan-
dard deviation and mean zero. This offset is called position
error. In addition to the computation with artificial points,
the homography can be computed from two given images
with points detected by SIFT.
The test are designed to answer the following questions.

• Is an homography a valid estimation of camera move-
ment for the application of direct manipulation?

• How do mismatches affect the estimation?

• How does position error affect the estimation?

6.1 Camera Motion Estimation 67

6.1.1 Tests on artificial data

0

0,5

1,0

1,5

2,0

0,2 0,5 1 2

O
ut

p
ut

 e
rr

or

Standard deviation of input position error

30 Features 50 Features 100 Features

0,2 0,5 1 2
30 Features 0,12 0,33 0,69 1,83

Figure 6.1: Error of estimation

0

0,175

0,350

0,525

0,700

30 Features 50 Features 100 Features

D
ur

at
io

n
of

 o
ne

 it
er

at
io

n
(m

s)

Figure 6.2: Duration of iterations

68 6 Evaluation

0

37,5

75,0

112,5

150,0

0,2 0,5 1 2

N
um

b
er

 o
f i

te
ra

tio
ns

Standard deviation of input position error

30 Features 50 Features
100 Features 10% Mismatches
20% Mismatches 30% Mismatches

Figure 6.3: Number of iterations

The second and third item relate to the point detection al-
gorithm that can be used for camera motion estimation.
These tests are done using artificial data. 30 (50, 100) ran-
dom points are created with position errors of 0.2, 0.5, 1
and 2 pixels. For 30 points, each of the position error val-
ues was tested with 10%, 20% and 30% mismatches. Cor-
rect matches are defined by a random homography with
random values for, rotation (∈ [0, 25]), translation (∈ [0, 10])
and scaling (∈ [0.8, 1.2]). The perspective values (m31,m32)
are randomly chosen from an interval [0, 0.0001]. The cre-
ated points are used as input for the homography estimator.
The mean of the algebraic error

ea = ||Houtput · P −Hinput · P ||2

for 100 points placed on a regular grid and the number of
RANSAC iterations are used as comparative value. Each
test is done 50 times. The results show that the error stays
relatively small with growing position error. An error of
2 pixels, will be acceptable if it happens only occasionally.

6.1 Camera Motion Estimation 69

Figure 6.4: Stable estimation of a pan (80 frames)

Using more features reduces the error only slightly, but also
costs more computation time for a single iteration. Number
of iterations increases drastically with mismatched features
(or object features) because of RANSAC. The feature num-
ber has no significant effect on necessary iterations. A less
accurate algorithm than SIFT could work in terms of the
resulting homography. Although the necessary iterations
increase, in common videos, usually more than 30% of the
frame will show foreground objects, which have the same
effect as mismatches. For this reason, the number of fea-
tures used should be kept small to avoid increasing the du-
ration of the estimation process too much.

6.1.2 Tests on real videos

The effect of camera motion is not always a homography
since the underlying 3D structure is not taken into account.
Thus, the second test consisted of taking a whole sequence

70 6 Evaluation

Figure 6.5: Estimation of a pan, visualized without intermediate frames

of images and use the homographies between frames to vi-
sualize the relation between frames of a whole scene. We
did one test where we only related the first and the last
frame by multiplying the intermediate homographies to
compute the relation between these non-adjacent frames.
Another test showed every intermediate frame. The dif-
ference between these tests is that errors accumulating by
multiplying all homographies will be smaller in the second
test. If this looks noticeably better, the interface will have
to compute and show all intermediate images, even if the
interaction dictates a jump over several frames. This would
either require a sophisticated video decoding and caching
techniques or a different approach for camera motion es-
timation to accommodate for the real-time application. we
tested camera motion estimation on six videos. Representa-
tive results can be seen in figures 6.4 — 6.7 and in appendix
B. Camera motion estimation works very well on most of
the tested scenes, although the images do not represent a
single plane. As expected, the individual error between

6.2 Tracking 71

Figure 6.6: Stable estimation of a combined zoom and pan with motion blur (20
frames)

frames is smaller when showing intermediate frames. On
the other hand, the example in figure 6.5 shows that the
relation between frames 1 and 80 is still clear without inter-
mediates. Camera motion estimation fails in the presence
of large foreground objects that dominate the computation.
The street in figure 6.7 barely shows any texture, and thus
very few features which could be used for a correct estima-
tion.

6.2 Tracking

Usefulness of the tracking algorithms in real world situa-
tions was determined using data extracted from 14 video
scenes. We identified 22 correct trajectories by hand, al- Video annotation
lowing for comparison of correct and computed trajecto-
ries. Trajectories were extracted from the original flow field

72 6 Evaluation

Figure 6.7: Camera motion estimation with large foreground objects (40 frames):
The bus dominates the scene because the background has very few features

implementation of DRAGON, and the implementation de-
scribed in this thesis,as well as DimP. We use two compar-
ative values; the mean of the euclidian distances betweenComparative values
correct points and estimated points θp = ||p1 − p2||2, as
well as the mean of the euclidian norm of the distance be-
tween motion vectors between frames θ~m = ||~m1 − ~m2||2.
The latter gives additional information how stable a tracker
follows an object. If the tracker jumps erratically between
parts of the correct object, the position error will stay small,
while the movement error increases. Quantizing the qual-
ity of the trajectories is not easy. The trajectories defined by
hand show errors themselves and users do not necessarily
devalue trajectories with less accurate positions of single
points. This makes the visual quality of trajectories most
important. A SIFT trajectory ending early will stay on the
last position to compute the remaining values. Trajectories
found in different image sizes will only be mentioned To
compare videos of different sizes and make comparative
values more understandable, the trajectories are mapped

6.2 Tracking 73

onto a resolution of 160x90. Table 6.1 shows the results of
ten of the trajectories.

DRAGONEYE DRAGON DimP
Trajectory θp θ~m θp θ~m θp θ~m

Couple 2.5885 1.0251 2.5660 0.8642 13.7102 1.1715
Volleyball (Girl) 1.4539 1.1231 1.2684 1.1644 1.1200 1.1069
Volleyball (Ball) 43.1157 7.7961 30.8003 4.7085 29.7602 4.6057

Shopper 3.5385 0.2013 0.9011 0.1508 10.0483 0.1859
Zoom on car 2.5404 0.7217 - - - -

Zoom and blur 15.0873 4.1576 - - - -
Stroller 11.3459 0.2726 5.5481 0.2503 3.5291 0.2653
Layup 13.2528 2.9885 5.3253 1.4019 18.0821 1.4219

Basketball 32.4265 1.4981 70.7380 0.9416 62.0682 0.9924
Pink shirt 1.4889 0.5783 6.0879 0.5763 10.8381 0.6034
Backpack 3.2816 0.8167 - - - -

Cyclist 20.4849 1.2835 - - - -

Table 6.1: Comparative results

6.2.1 Translative Motion

Figure 6.8: Trajectory 1 — Beach volleyball player: Green:
correct — Yellow: DRAGON — Orange: DRAGONEYE —
Red: DimP

We considered 3 trajectories for slow, translative move-
ment. All tracking algorithms produce good results on
large enough objects. Only DimP looses the couple in scene

74 6 Evaluation

Figure 6.9: Trajectory 2 — Shopper: Green: correct — Yel-
low: DRAGON — Orange: DRAGONEYE — Red: DimP

B.12 after a few frames. The size limits for DimP and DRAG-
ONEYE are hard to determine, since texture of an object
has a large impact on feature number as well. For exam-
ple, the girl in figure 6.8 and the woman in figure 6.9 have
roughly the same size in pixels. The girl is tracked correctly
by both algorithms, while DimP cannot find a correct tra-
jectory. Although DRAGONEYE creates a correct trajectory
for the woman, its beginning is based on SIFT features on
the two men behind her. If they moved in a different di-
rection, she could not be tracked at all. We implemented
CAMSHift to help in such situations. Unfortunately, no sta-
ble histogram was found until the end. Towards the end,

6.2 Tracking 75

Figure 6.10: Trajectory 3 — Girl: Green: correct — Orange:
DRAGONEYE — Lilac: DRAGONEYE (480x270)

new and stable SIFT features emerge as well. These can be
used to track her directly when the two men start to move
differently. This shows that the algorithm successfully pri-
oritizes (new) features close to the interest point. Figure
6.10 shows a case where this prioritization fails in the low
resolution version of the video. The two cyclist first move
coherently, but he slows down at the end. Some features
of the man’s bag are added for 2 frames, which is already
enough to shift the interest point away from the correct fea-
tures, making correct prioritization impossible. This indi-
cates that the threshold for combined movement should be
chosen smaller in lower resolution videos.

6.2.2 Complex scenes

Scenes with camera movement, rotation around the y axis,
motion blur, and non-rigidity pose bigger problems for the
algorithms. Fast and small objects with heavy motion blur,
like the volleyball (Figure 6.11) cannot be tracked by any of

76 6 Evaluation

Figure 6.11: Trajectory 4 — Volleyball: Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

Figure 6.12: Trajectory 5 — Zoom on car: Green: correct —
Orange: DRAGONEYE

the algorithms. Zooms do not pose a problem for DRAG-
ONEYE, as figures 6.12 and 6.13 show. The second video
also contains motion blur, which ultimately brings the al-
gorithm to fail. Unfortunately, CAMShift fails as well. A
surprising result was produced by the stroller trajectory
(Figure 6.16). The scene shows a woman pushing a stroller,
turning it around and back toward the camera. The move-
ment is not particularly fast and the stroller is large enough
to create sufficient SIFT features. These features cannot stay
stable for long because of the rotation, but we expected all
tracking algorithms to handle such movement. DimP and
DRAGON yield good results. DRAGONEYE on the other
hand fails after the rotation, when the woman shortly talks
to someone before turning back. The reason for this is that
background features are shortly affected by the rotation,
moving far enough to be taken up into the model. Unfor-

6.2 Tracking 77

Figure 6.13: Trajectory 6 — Zoom and motion blur: Green:
correct — Orange: DRAGONEYE

tunately they are not thrown out again since the stroller al-
most turns around the interest point, which consequently
shows only small displacements. Since these background
features are stable over several frames they overrule the
features emerging when the woman starts to turn back to-
wards the camera.

The next trajectory (Figure 6.14) represents a basketball Layup shot
player doing a layup. The camera follows the player, which
produces heavy motion blur towards the end. The player
himself shows very non-rigid movement, which should be
problematic for SIFT. The optical flow based algorithm per-
forms best in this scene, although the accuracy is lower in
comparison to working trajectories in other scenes. SIFT
tracking works only for a few frames. CAMShift takes over
and performs well until another player in the background
enters the tracked region. Both players are tracked simulta-

78 6 Evaluation

Figure 6.14: Trajectory 7 — Layup: Green: correct — Yel-
low: DRAGON — Orange: DRAGONEYE — Red: DimP

neously afterwards, which produces an incorrect trajectory
since they move away from each other. In a higher resolu-
tion video, new stable features on the face make tracking
feasible for SIFT. This works until the camera moves up-
ward producing heavy motion blur. DimP also performs
well until the other player comes into view, although the
two events are unrelated in this case. The player looses the
only stable feature it had for a few frames which suffices to
loose track of the region.

6.2 Tracking 79

Figure 6.15: Trajectory 8 — Basketball: Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

The trajectory in figure 6.15 follows another basketball
player. The scene is badly lit and the player turns around
the y axis several times on his way to the basket. Also,
the camera vibrates every time the ball hits the ground.
Surprisingly, optical flow fails almost immediately without
any apparent reason. DimP works until the first vibration
and DRAGONEYE continues tracking afterwards because of
CAMShift. In the high resolution video, CAMShift can fol-
low the player over the whole trajectory.

80 6 Evaluation

Figure 6.16: Trajectory 9 — Stroller: Green: correct — Yellow: DRAGON — Orange:
DRAGONEYE — Red: DimP

6.2.3 Occlusions

Neither DimP nor the optical flow tracking in DRAGON

handle occlusions explicitly. Therefore, the following tests
mainly show the quality of occlusion handling in DRAG-
ONEYE. We will not show the results of all algorithms here.
The only exception is trajectory ?? because the occluding
object is only 4 pixels wide. The algorithm has very lit-
tle problems with partial occlusions. The backpack trajec-
tory (Figure 6.17) shows that it takes less than 5 frames to
learn features from the man’s back and head (Figure 6.18),
which are subsequently used for tracking while the girl’s
head occludes the backpack. The cyclist in figure 6.19 is al-
most completely occluded by the flowers on the streetlight,
although, there are still features in every frame. The algo-
rithm uses features from old reference frames to track parts
of the bike that reemerge on the other side of the street light
(Figure 6.20).

6.2 Tracking 81

Figure 6.17: Trajectory 10 — Backpack: Green: correct —
Orange: DRAGONEYE

Figure 6.18: Backpack — Occlusion Handling: Two de-
tail views from the backpack scene, the features used for
tracking and the cutout used for detecting possible object
features

82 6 Evaluation

Figure 6.19: Trajectory 11 — Cyclist: Green: correct — Yel-
low: DRAGON — Orange: DRAGONEYE — Red: DimP

Figure 6.20: Cyclist — Occlusion handling: In this frame,
the tracker employs old features as reference

Figure 6.21 shows a good example of where the lack of
occlusion handling in DRAGON may be surprising for the
user. The video shows a woman walking away from the
camera, producing slow upward movement in the video.
A thin cable, which we did not even notice when we took
the video, hangs above the street. In the video, this cable is
not more than 4 pixels high, but because of the slow move-
ment, the smoothness constraint cannot create motion vec-
tors crossing the cable. Thus, the trajectory ends at the ca-
ble. Because of the slow movement, the SIFT part of DRAG-
ONEYE is not able to track the woman either. CAMShift, on

6.2 Tracking 83

Figure 6.21: Trajectory 12 — Pink shirt: Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

the other hand, can track her nicely, because of the distinc-
tive color of her shirt.

The remaining trajectories did not show any more surpris-
ing results. They can be found in appendix B

When it comes to very small objects, such as the famous
pigeon1, can neither be tracked be tracked by DimP, nor
DRAGONEYE. In this case optical flow outperforms both.
In most other cases DRAGON and DimP yield very similar
results. DRAGONEYE works better in the presence of oc-
clusions, but its SIFT part is a little bit more susceptible to
non-rigid objects, which is the price of requiring multiple
features for tracking. Although some of the scenes indicate

1http://hci.rwth-aachen.de/download/DRAGON/
1057-karrer.mov

http://hci.rwth-aachen.de/download/DRAGON/1057-karrer.mov
http://hci.rwth-aachen.de/download/DRAGON/1057-karrer.mov

84 6 Evaluation

that CAMShift is able to deal with such objects, CAMShift
tracking is still to unstable in general. The example with
the volley ball shows the need for a new heuristic of when
to trust or not trust the tracker, since observing only size
changes often does not lead to stopping the tracker.

Different video sizes do not affect tracking stability
strongly. From the scenes depicted here, only the shopper
and the beach volleyball cannot be tracked in the low reso-
lution version.

6.3 Speed

Speed tests were performed on a Mac with a two 2.8 GHz
Intel Xeon Quad-core processors and 6 GB RAM. Four cores
were used for tracking to leave enough CPU time for ad-
ditional tasks like the visualization. We measured timing
independently for all operations. To validate the benefits
of the multithreaded implementation, timing values for a
complete model iteration are computed as well. Table 6.2
shows the measured timings and figure 6.22 visualizes the
proportions of the individual task duration considering dif-
ferent video resolutions.

28%

1%

40%

13%

15%
3%

480x270

31%

1%

32%

17%

8%

11%

960x540

30%

0%

25% 10%

11%

23%

1920x1080

CAMShift Tracking SIFT Tracking
Homography Estimation SIFT Detection
Merge Image Loading

Figure 6.22: Proportions of task duration

6.3 Speed 85

Resolution Operation Average duration (ms)
Image Loading 37.4
CAMShift Tracking 4.4
SIFT Detection 52.1 · 2

480 x 270 SIFT Tracking 19.3
Homography Estimation 17.1
Merge 1
Complete 191
Image Loading 43.1
CAMShift Tracking 15
SIFT Detection 45 · 2

960x540 SIFT Tracking 11.1
Homography Estimation 24.2
Merge 1
Complete 224
Image Loading 83.2
CAMShift Tracking 63.7
SIFT Detection 67.6 · 2

1920x1080 SIFT Tracking 31.2
Homography Estimation 27.1
Merge 1
Complete 729.0

Table 6.2: Results of speed testing

The results show that especially image loading takes a sur-
prising amount of time. The average timings are so low
because we already preload several frames at once. The
actual loading step for ten consecutive frames takes up to
1067 ms / 1235 ms / 2556 ms. This has a large impact on the
average duration of the complete tracking step, since every
time a sequence is loaded, the rest of the tracker has to wait.
This manifests in the interface in this way, that the trajecto-
ries are always build in thrusts. We believe that the he main
reason for the slow image loading is that the Quicktime API
is built for loading frames sequentially and continuously.
As soon as we stop loading, Quicktime probably frees sys-
tem resources, which have to be reacquired before the next
loading step. The rest of the tracking produced very good
results. The CPU is fast enough to compute SIFT features
in only 25 to 113 ms. The difference is due to the number
of features in the region and the size of the current search
window. On the Macbook Pro we used for most of the pre-

86 6 Evaluation

liminary testing, computing features on the CPU takes in
between 115 and 300 ms. This is where the GPU imple-
mentation would be beneficial since it works faster on the
Macbook and would also remove burden from the CPU.
Computation of the optical flow fields for the test videos
took 1 minute and 46 seconds for a pair of frames in one
direction. When employing all cores, a frame takes roughly
13 seconds. Thus, for a resolution of 960x540 the speedup
over the optical flow algorithm is 13000ms

224ms ≈ 58. Compari-
son with DimP is not as accurate since DimP ran on a PC
with different specifications. Computing the SIFT based
flow took approximately 2.5 seconds on a Intel CoreDuo2
machine with 2 GB RAM. With this number, DRAGONEYE

is 2500ms
224ms ≈ 11 times faster than DimP.

87

Chapter 7

Summary and future
work

The final chapters contains an overview of our work and an
outlook on what research should be done in the future.

7.1 Summary and contributions

This thesis presented a set of requirements for a tracking
algorithm that is supposed to be used for direct manipula-
tion. These requirements were based on experience in ex-
isting systems, as well as general technical conditions and
the user. The main results were

• Invariance to object attributes

• Handling of occlusions

• Support for camera motion compensation

Based on the listed requirements, we evaluated the use-
fulness of several tracking techniques for our algorithm
DRAGONEYE. CAMShift tracking with color histograms is
useful because it can handle motion blur and form changes
well. Problems can arise by the representation as a kernel,

88 7 Summary and future work

which does not necessarily allow stable tracking of the in-
terest point.
The SIFT point detector already proved to be useful for di-
rect manipulation in DimP. This, and the high repeatability
and stable positioning of feature points, even under chang-
ing form and lighting, indicated its usefulness for DRAG-
ONEYE. This also coincides with the requirements for cam-
era motion estimation which requires a set of points to com-
pute a representation of the camera motion.

We used the two techniques to develop and implement
DRAGONEYE, an object tracker based on point and color
tracking. The algorithm is designed to handle occlusions
by learning features in the vicinity that move coherently
with the interest point. In this way, even full occlusions
of the object of interest can be handled, if another object
in the scene fits its movement because these other features
can be used during the occlusion. CAMSHift tracking was
implemented to overcome problems posed by motion blur
and small objects. Second to tracking, we implemented ho-
mography estimation and visualization to represent cam-
era movement in a scene, allowing for interaction that is
more suitable for the user’s greater understanding of the
video.

Finally, we compared the quality and speed of the de-
veloped algorithm with two existing implementations em-
ploying flow fields as a basis for tracking. The results show
that especially the point tracking part of the algorithm per-
forms well. The algorithm has limits when it comes to small
objects and strong non-rigid movement, impeding the de-
velopment of a stable model. The algorithm is currently 50
times faster than the original DRAGON and 10 times faster
than DimP, which corresponds to a rate of approximately 5
frames per second.

The main contributions of our work are:

• Definition of technical requirements for direct manip-
ulation

• Development and implementation of DRAGONEYE

• Evaluation of the developed algorithm

7.2 Future work 89

7.2 Future work

Changing object size and different levels of interest require Implement suitable
SIFT detectora SIFT detector that is configurable on the fly, while being

faster than the CPU implementation. Camera motion es-
timation and object tracking could be done with a single
detection, reducing the time for this expensive step of the
algorithm. Also, the image loading step has to be improved
to allow for faster tracking and, even more important fast
visualization of the results.

The evaluation shows that the new algorithm performs
well on simple movement and partial occlusions. Improve-
ments are necessary for videos with motion blur and ro-
tation around the y-axis. The latter could be achieved by
a gaussian weighting of point importance based on their
distance and average object size. In this way, stable back-
ground points close to the edge of an object are less likely to
overrule the center points that actually belong to the model.
Performance during the occurrence of motion blur cannot
easily be improved for the point tracking algorithm. Es-
pecially the SIFT descriptor, which is based on gradients
does not stay stable in the presence of motion blur. Several
scenes showed that CAMShift is a good addition to the SIFT
tracking algorithm. It enables the algorithm to work, even
if the object moves very slowly or SIFT features are unre-
liable. Unfortunately, the implementation currently lacks
tracking stability. This makes DRAGONEYE very reliant on
SIFT. The CAMShift implementation works with the hue Improve CAMShift

implementationcomponent of the HSV color model, which restricts the ap-
plicable colors of objects, since grey and black do not have
a unique hue. Although this works for specialized applica-
tions, direct manipulation requires more generality. For ex-
ample, instead of converting the YUV color provided by the
Quicktime API to HSV, CAMShift could work on the pro-
vided color components directly. This would also reduce
the processing time needed for image conversion. Different
techniques for detecting the original object shape, allowing
for a better selection of the initial kernel could also prove
useful. For example, mean-shift segmentation Comaniciu
and Meer [2002] will yield regions that fit the tracker well.
How well these regions represent the object that is interest-
ing to the user has to be determined in additional tests.

90 7 Summary and future work

Full occlusions are also still a problem. Although users will
understand more easily why an algorithm fails during a full
occlusion, improvements are still possible and will also in-
crease the stability in other situations. Currently, prediction
is done by assuming that the behavior of the object does not
change during an occlusion. The last state the algorithm es-
timated is not always correct, especially when accuracy is
reduced because of the partial occlusion before complete
loss of the object. Thus, techniques that consider the exis-
tence of estimation errors for their prediction will produce
better results. A simple stochastic filter doing this is the
Kalman filter (see section 3.3.4). Another way would be to
employ the user’s knowledge when an object is fully oc-
cluded. As soon as the tracker detects a full occlusion, the
position the user points at can be emphasized when trying
to reacquire the object. It is important, however, that the
user recognizes the need for pointing at the exact position,
which is not necessary for the standard interaction. Also,
this interaction must actually be faster than using the iner-
tia in DRAGON to push the object over the occlusion and
regrabbing it.

The most important part of future work is to test the al-User tests
gorithm in the wild, i.e with users and their own videos.
The trajectories provided in our test videos do not, and can-
not, represent any possible scenario. Furthermore, a ques-
tion like “How important is the ability to track small objects
for the algorithm?” cannot be answered without interface
tests, and are an important subject of future work.

Camera motion estimation can be improved as well. Since
we assume our image to be planar, errors will arise in some
scenes. As argued before, models that consider the exact
3D representation are not viable. It is likely though, that
the user is interested in only one plane at a time. Thus, in
case a different plane is of interest, the user can indicate the
correct plane, and the planar homography corresponding
to the indicated plane can then be used for visualization.

91

Appendix A

Code Excerpts

A.1 CoreImage Filter

This simple CoreImage filter applies a homography
to an image by choosing a new sample position
based on the nine parameters of an homography 4.3.
samplePosition = originalPositionT ·HT

kernel vec4 applyHomography (sampler src, float m11, float ..., float m33)
{

vec2 newCoord;
vec2 originalCoord = destCoord ();
newCoord.x = m11 * originalCoord.x + m21 * originalCoord.y + m31;
newCoord.y = m12 * originalCoord.x + m22 * originalCoord.y + m32;
float w = m13 * originalCoord.x + m23 * originalCoord.y + m33;
newCoord.x /= w;
newCoord.y /= w;
return sample (src, samplerTransform (src, newCoord));

}

93

Appendix B

Videos Used for
Evaluation

This appendix contains images of the scenes we used for
evaluation, as well as the trajectories that were not de-
scribed in chapter 6.

Figure B.1: Scene 3: A stabilized version of scene 1 created
by DRAGONEYE

Scene 4 shows two students playing beach volleyball. Both

94 B Videos Used for Evaluation

Figure B.2: A stabilized version of scene 2 create by DRAG-
ONEYE

Figure B.3: Scene 3:

players simply move toward the net. We tested trajectories
in the breast region of both players. Additionally, we tested
the falling ball, which moves very fast, and is blurry.

Scene 5 shows people crossing a busy street.

95

Figure B.4: Scene 4

Figure B.5: Scene 4: Player 1 trajectory Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

We tested three trajectories. The first one starting on the
backpack of the man in the center.

The backpack becomes occluded by the girls head after
only five frames, while the upper body and head of the man
carrying it stay visible. The second trajectory starts on the
couple on the left. The second interest point is never oc-
cluded and moves coherently with the couple. Both objects
stay rigid over the course of the scene. A third trajectory
starts on the girl’s scarf. In the beginning, her movement
fits that of her friend, while he slows down towards the
end. Also, she turns her head away from the camera and
back to it.

96 B Videos Used for Evaluation

Figure B.6: Scene 5: The green dots show the starting
points of the tested trajectories

Figure B.7: Scene 5 — Couple trajectory: Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

Figure B.8: Scene 6

97

Figure B.9: Scene 6 — First car trajectory: Green: correct —
Yellow: DRAGON — Orange: DRAGONEYE — Red: DimP

The sixth scene shows the same intersection at a wider an-
gle. Again, three trajectories are computed; the woman on
the bike, the first car, and the woman to the right of the
advertising pillar moving towards the street. The car is oc-
cluded by the lights and almost stops before leaving the
frame. The cyclist is almost completely occluded by the
flower pot on the street light and does not show any track-
able SIFT for several frames. The woman is smaller than
the other objects — roughly 5% of frame width and 20% of
frame height — and is also moving slowly. The latter is es-
pecially challenging for SIFT tracking, because it currently
relies on movement for object detection.

98 B Videos Used for Evaluation

Figure B.10: Scene 7

Scene 7 depicts a woman pushing a stroller, turning it
around and back again. This kind of 3D rotation, will have
a strong influence on SIFT features. Using old features will
thus not be feasible. On the other hand, the difference be-
tween two frames is small and thus little features will be
lost during tracking.

Figure B.11: Scene 8

In Scene 8, a woman moves away from camera and hence,
shows very little movement. Also, a couple crosses her path
from left to right for a few frames, during which she pro-
duces a partial occlusion up to their hips. We tested trajec-
tories at breast height and hip height of the couple and the

99

Figure B.12: Scene 8 — Couple’s breast trajectory: Green: correct — Yellow:
DRAGON — Orange: DRAGONEYE — Red: DimP

Figure B.13: Scene 8 — Couple’s hip trajectory: Green: correct — Yellow:
DRAGON — Orange: DRAGONEYE — Red: DimP

back of the woman.

Scene 9 depicts a basketball player doing a layup. He is
followed by the camera, which produces heavy motion blur
toward the end. We tested one trajectory on the players
chest and a second one at the mattress leaning against the
wall.

Scene 10 shows several basketball players. One trajectory

100 B Videos Used for Evaluation

Figure B.14: Scene 9

Figure B.15: Scene 9: Matress trajectory

on a player who is moving around the others to the basket
is tested. No occlusions occur, but the scene is badly lit, the
player turns several times while moving, and the camera
vibrates every time the ball bounces of the ground.

In scene 11, a bus crosses the scene, taking up a large por-
tion of the space.

101

Figure B.16: Scene 10

Figure B.17: Scene 11

Scene 12 shows a simple pan. We tested one trajectory on
the small sign on the building saying “Babor”.

102 B Videos Used for Evaluation

Figure B.18: Scene 12

Figure B.19: Scene 12: Barbor trajectory

103

Bibliography

Opencv. URL http://sourceforge.net/projects/
opencvlibrary/.

A. Bruhn and J. Weickert. Towards ultimate motion esti-
mation: combining highest accuracy with real-time per-
formance. In ICCV ’05: Proceedings of the Tenth IEEE In-
ternational Conference on Computer Vision, volume 1, pages
749–755, 2005.

A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and
C. Schnorr. Variational optical flow computation in real
time. IEEE Transactions on Image Processing, 14(5):608–615,
2005.

J. Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 8(6):679–698, 1986.

J. Chon, T. Fuse, E. Shimizu, and R. Shibasaki. Three-
dimensional image mosaicking using multiple projection
planes for 3-d visualization of roadside standing build-
ings. IEEE Transactions on Systems, Man, and Cybernetics,
37(4):771–783, Aug. 2007.

O. Chum and T. Pajdla. Evaluating error of homography.
In CVWW’02: Proceedings of the Seventh Computer Vision
Winter Workshop, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(5):603–619, 2002.

D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object
tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 25(5):564–577, 2003.

http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/

104 Bibliography

P. Dragicevic, G. Ramos, J. Bibliowitcz, D. Nowrouzezahrai,
R. Balakrishnan, and K. Singh. Video browsing by direct
manipulation. In CHI ’08: Proceeding of the Twenty-Sixth
Annual SIGCHI Conference on Human Factors in Computing
Systemscomputing systems, pages 237–246, New York, NY,
USA, 2008. ACM.

P. Fieguth and D. Terzopoulos. Color-based tracking of
heads and other mobile objects at video frame rates. In
CVPR ’97: Proceedings of the Conference on Computer Vision
and Pattern Recognition, page 21, Washington, DC, USA,
1997. IEEE Computer Society.

D.B. Goldman, B. Curless, D. Salesin, and S. M. Seitz.
Schematic storyboarding for video visualization and
editing. In SIGGRAPH’ 06: Proceedings of the Thirty-Third
International Conference on Computer Graphics and Interac-
tive Techniques, pages 862–871. ACM, 2006.

C. Harris and M. Stephens. A combined corner and edge
detection. In Proceedings of The Fourth Alvey Vision Confer-
ence, pages 147–151, 1988.

Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry. Cambridge University Press, New Yorck, second
edition, 2000.

B. Horn and B. Schunck. Determining optical flow. Artificial
Intelligence, 16(1–3):185–203, August 1981.

C. Hsu, T. Cheng, R.A. Beuker, and J. Horng. Feature-based
video mosaic. In ICIP ’00: Proceedings of the International
Conference on Image Processing, volume 2, pages 887–890,
2000.

D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge. Tracking
non-rigid objects in complex scenes. In ICCV ’93: Pro-
ceedings of the Fourth International Conference on Computer
Vision, pages 93–101, 1993.

S. Ince and J. Konrad. Occlusion-aware optical flow estima-
tion. IEEE Transactions on Image Processing, 2008.

M. Irani, P. Anandan, and S. Hsu. Mosaic based representa-
tions of video sequences and their applications. In ICCV
’95: Proceedings of the Fifth International Conference on Com-
puter Vision, pages 605–611, 1995.

Bibliography 105

T. Karrer, M. Weiss, E. Lee, and J. Borchers. Dragon: a direct
manipulation interface for frame-accurate in-scene video
navigation. In CHI ’08: Proceeding of the Twenty-Sixth An-
nual SIGCHI Conference on Human Factors in Computing
Systems, pages 247–250, New York, NY, USA, 2008. ACM.

D. Kimber, T. Dunnigan, A. Girgensohn, F. Shipman,
T. Turner, and Tao Yang. Trailblazing: video playback
control by direct object manipulation. In ICME ’07: Pro-
ceedings of the IEEE International Conference on Multimedia
and Expo, pages 1015–1018, 2007.

S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture rep-
resentation using affine-invariant regions. In CVPR ’03:
Proceedings of the Conference on Computer Vision and Pattern
Recognition, 2003.

B. Li, R. Chellappa, Q. Zheng, and S.Z. Der. Model-based
temporal object verification using video. IEEE Transac-
tions on Image Processing, 10(6):897–908, 2001.

T. Lindeberg. Discrete scale-space theory and the scale-space
primal sketch. PhD thesis, 1991.

T. Lindeberg. Scale space theory: a basic tool for analyzing
structures at different scale. Journal of Applied Statistics,
1994.

D.G. Lowe. Object recognition from local scale-invariant
features. In ICCV ’99: Proceedings of the Seventh Interna-
tional Conference on Computer Vision, volume 2, page 1150.
IEEE Computer Society, 1999.

D.G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):
91–110, 2004.

K. Mikolajczyk and C. Schmid. Indexing based on scale
invariant interest points. In ICCV’01: Proceedings of the
Eights IEEE International Conference on Computer Vision,
volume 1, pages 525–531, 2001.

K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(10):1615–1630, 2005.

J. Raskin. The humane interface. ACM Press, 2000.

106 Bibliography

S. Schuon and K. Diepold. Comparison of motion deblur
algorithms and real world deployment. In 57th Interna-
tional Astronautical Congress, 2006.

D. Serby, E.K. Meier, and L. Van Gool. Probabilistic object
tracking using multiple features. In ICPR ’04: Proceedings
of the Seventeenth International Conference on Pattern Recog-
nition, volume 2, pages 184–187, 2004.

S.N. Sinha, J. Frahm, M. Pollefeys, and Y. Genc. Gpu-
based video feature tracking and matching. Technical
report, Department of Computer Science, UNC Chapel
Hill, 2006.

F. Tang and H. Tao. Object tracking with dynamic feature
graph. In PETS ’05: IEEE International Workshop on Per-
formance Evaluation of Tracking and Surveillance, 2005.

M. Unger. Object detection in video sequences. Master’s
thesis, RWTH Aachen University, 2004.

A. Vedaldi. siftpp. URL http://web.me.com/
vedaldi/code/siftpp/siftpp.html.

M. Weiss. Depth-discontinuity preserving optical flow
using time-multiplexed illumination. Master’s thesis,
RWTH Aachen University, University of Southern Cali-
fornia, 2007.

G. Welch and G. Bishop. An introduction to the kalman fil-
ter. In SIGGRAPH’ 01: Proceedings of International Confer-
ence on Computer Graphics and Interactive Techniques, 2001.

A. P. Witkin. Scale-space filtering. In IJCAI ’83: Proceedings
of the International Joint Conference on Artificial Intelligence,
pages 1019–1022, 1983.

C. Wu. Siftgpu. URL http://cs.unc.edu/∼ccwu/
siftgpu/.

A. Yilmaz, Xin Li, and M. Shah. Contour-based object track-
ing with occlusion handling in video acquired using mo-
bile cameras. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(11):1531–1536, 2004.

A. Yilmaz, O. Javed, and M. Shah. Object tracking: a survey.
ACM Computing Surveys, 38(4):13, 2006.

http://web.me.com/vedaldi/code/siftpp/siftpp.html
http://web.me.com/vedaldi/code/siftpp/siftpp.html
http://cs.unc.edu/~ccwu/siftgpu/
http://cs.unc.edu/~ccwu/siftgpu/

107

Index

background stabilization . see camera motion

camera motion. .8, 16
CAMShift . 19, 59
continuously adaptive mean shift see CAMShift
Corner Detection . 22

DBSCAN . 54
DimP . 8

- occlusions . 45
direct manipulation . 2

- requirements . 13–18
Dragon . 5
DragonEye

- color tracking . 58
- point tracking . 47–57

evaluation . 65–86

flow tracking . 7
future work . 89–90

Harris detector . 22

Kalman filter . 30
kernel tracking . 19

mean shift . see CAMShift
motion blur . 58

occlusion . 14
optical flow . 7

- occlusion awareness. .46
- smoothness constraint .45

point tracking . 21

relative trajectory . see trajectory

scale space . 22

108 Index

SIFT . 23
- descriptor . 25
- descriptor matching . 26
- keypoints . 24

tracking techniques . 18–30
Trailblazing . 10
trajectory . 3

- ambiguity . 5, 15
- relative . 9

Typeset October 30, 2008

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Thesis Overview

	Related Work
	Dragon
	DimP
	Trailblazing
	Schematic Storyboarding

	Requirements for DragonEye
	Technical requirements
	User requirements
	Implications for the Implementation
	Kernel Tracking
	Point Tracking
	Silhouette Tracking
	Occlusion Handling

	Camera Motion Estimation
	Least Squares
	RANSAC
	Implementation

	Object Tracking
	Why not Optical Flow?
	Point Tracking
	Object Detection
	Movement Representation
	Position Determination
	Model Update

	Color Tracking
	Model Combination

	Implementation
	Parallelization
	Combination of Object Tracking and Camera Motion Estimation

	Evaluation
	Camera Motion Estimation
	Tests on artificial data
	Tests on real videos

	Tracking
	Translative Motion
	Complex scenes
	Occlusions

	Speed

	Summary and future work
	Summary and contributions
	Future work

	Code Excerpts
	CoreImage Filter

	Videos Used for Evaluation
	Bibliography
	Index

