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Abstract

Due to new materials, fabrication methods, and the integration of 3-D printing into
existing as well as new areas of soft robotics, the field of research is in a phase
of extensive development. Parts made by 3-D printers find an application in the
mechanical aspects for stabilization and stiffening, as well as in the design of flex-
ible silicone joints in the form of molds. These 3-D printed molds enable the even
faster generation of cost-effective prototypes and a clear starting point for extend-
ing existing joint models. When working with these molds, either new models are
designed from the ground up, or existing models are used, which are then pro-
cessed and altered in full-fledged CAD programs. This process not only requires a
high level of experience with 3-D design and much time but also an understanding
of the subsequent application and the behavior of the silicone used in the further
course. This thesis aims at providing an introduction to the subject of soft robotics,
on giving an overview of the software currently used in the field to design and
construct molds and afterwards to present a software tool that allows the design of
3-D printed molds by utilizing parameterization and cell-based structures to ease
and thus accelerate the current design processes.
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Überblick

Aufgrund von neuen Materialien, Fabrikationsmethoden und der Integration des
3-D-Drucks in bestehende sowie neue Bereiche der Softrobotik, befindet sich das
Forschungsfeld in einer Phase umfassender Entwicklung. Durch 3-D-Drucker
hergestellte Teile finden sowohl in den mechanischen Aspekten zur Stabilisierung
und Versteifung, als auch beim Entwurf und der Gestaltung der weichen Silikonge-
lenke eine Applikation in Form von Gussformen. Diese 3-D-gedruckten Gussfor-
men ermöglichen ein noch schnelleres Generieren von kostengünstigen Prototypen
sowie einen erleichterten Ansatzpunkt zur Erweiterung bestehender Gelenkmod-
elle. Bei der Gestaltung dieser Gussformen wird bisher häufig auf bereits vorhan-
dene Modelle zurückgegriffen die dann in vollwertigen CAD Programmen bear-
beitet werden oder es werden von Grund auf neue Modelle entworfen. Dies er-
fordert nicht nur ein hohes Maß an Erfahrung mit 3-D-Gestaltung, sondern neben
viel Zeit auch ein Verständnis für die spätere Applikation und das Verhalten des im
weiteren Verlauf verwendeten Silikons. Diese Arbeit hat zum Ziel, einen Einstieg
in das Thema Softrobotik bereitzustellen, sowie eine Übersicht über die aktuell in
diesem Feld zur Gestaltung verwendeten Programme zu geben und anknüpfend
daran ein Programm zu präsentieren, dass die Gestaltung von 3-D-gedruckten
Gussformen durch Parametrisierung und auf Zellen basierenden Strukturen er-
leichtern und damit beschleunigen soll. Anschließend verifizieren wir die Bedi-
enbarkeit unseres Tools, um sicherzustellen, dass der Mehrwert gegenüber han-
delsüblicher 3-D-CAD Software gegeben ist.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file
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Chapter 1

Introduction

The research area of soft robotics is a subfield of robotics. Robotics
Robotics, on a higher level, is an interdisciplinary research
field with the goal of the creation of autonomous, human-
assisted, or human-controlled robots for use in a large num-
ber of areas [1]. The primary focus of soft robotics lies in
creating parts for use in those robots, that are using highly
compliant materials to achieve a behavior of parts that are
mostly found in nature, thus mimicking living organisms
[2]. It draws heavily from organisms that are continually
adapting to their surroundings to overcome physical lim-
itations and achieve a combination of movement patterns
and body properties that are rare to find in a rigid, stiff-
ened, and traditional robot.

To achieve these properties, soft robotics makes use of Materials in Soft
Roboticsthree main methods [3]. All three methods use materials

that, if a physical actuator is applied, react by adjusting
their inner structure, and thus changing their shape. The
first method makes use of dielectric elastomer actuators
(DEAs), which are a subgroup of electroactive polymers.
The critical property of electroactive polymers is their pos-
sibility to change their shape when electricity is applied.
Dielectric elastomer actuators combine this property with
an extended elasticity. They consist of an elastomer core
that lays between two electrodes. When a current is ap-
plied, those electrodes virtually reassemble an electrostatic
capacitor and compress the inner core, which then expands
in the remaining directions, thus creating the desired shape
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change [4]. The second method uses shape memory poly-
mers [5] and shape memory alloys. Both of which change
their shape when heating is applied. Shape memory poly-
mers restore to their initial shape when heating is applied,
whereas memory alloys are stretching after the application
of heat. The polymer’s properties come from the usage
of specific types of polymers that shrink when heating is
applied. The alloys get their stretching properties because
they are made from fragile metal wires.

The last method is the central method referenced in thisArtificial Muscles
thesis. In this method, the shape-changing properties are
achieved by using pneumatic artificial muscles [6]. Those
muscles are made from a flexible tube, most commonly
made out of silicone. This tube can be filled with either
air or a liquid, resulting in a change of inner pressure and
thus forcing the flexible body to change its shape. By in-
corporating specific structural patterns within the tube and
by the adjustment of its wall thickness, different behavior
is achieved.
The results of this incorporation of structural patterns andSimulation and

Development adjustments of wall thickness heavily rely on simulation as
well as trial and error within the fabrication and design pro-
cess. The Simulation Open Framework Architecture offers
an efficient open-source way for modeling the mechanical
behavior of the tubes and robots [7, 8]. The simulation of
behavior is the central part of research in this area, while
the body and the tubes design process itself receives little
contribution.
In this thesis, we present a software tool that aims at sim-Contribution

plifying and accelerating the named design process using
macOS. The software will offer a structured design pipeline
based on a user-extensible model library, that provides the
features set for the creation of soft body models and the ad-
justment of their shapes. With the support of commonly
used 3D file extensions, it is easily integrated into existing
design pipelines.
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Chapter 2

Related work

This chapter is going to explore related work in the field
of soft robotics with a particular focus on software that has
the goal of being beneficial to the artificial muscle design
process. It is split into the work on more simulation-driven
software that restricts the user’s design choices but offers
a more in-depth insight into the resulting body’s behav-
ior and the work on more design-driven approaches that
provide 3D modeling capabilities and resources specifically
suited to soft robotics.

2.1 Simulation Focused

2.1.1 Voxelize and VoxCAD

Hiller and Lipson [9] created a simulation engine that quan-
titatively models the statics, dynamics, and nonlinear de-
formation of heterogeneous soft bodies. The library Vox-
elize incorporates this engine and the necessary interfaces
while the user software VoxCAD1 provides the frontend
user interface that allows the construction, editing, and
simulation of objects composed of voxels.

1creativemachineslab.com/voxcad.html

https://www.creativemachineslab.com/voxcad.html
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VOXEL:
A voxel represents a value on a regular grid in three-
dimensional space. Voxels themselves do not typically
have their coordinates explicitly encoded with their val-
ues. Rendering systems can infer the position of a voxel-
based upon its position relative to other voxels.

Definition:
Voxel

While the simplification of the bodies to voxels brings the
benefit of more straightforward computation and a simpler
assignment of material properties like viscosity and rigid-
ness to individual cells and parts of the body, they limit
the accuracy of the simulation and the possible complexity
of used shapes and patterns. In applications where only
the higher-level behavior of a created body is of interest,
this software offers a valuable compromise to get a rough
estimate of the artificial muscle’s behavior under different
stress conditions.

2.1.2 SOFA Framework

The Simulation Open Framework Architecture2 (SOFA)
[10], in its core, is an in-depth open-source framework
providing an interface for a variety of high and low-level
physics simulations, initially aimed for usage in medicine.
It offers a robust core with the possibility of simulating not
only rigid bodies but also soft tissue and multi-material
bodies. Through a plugin system, its extensibility is used
to integrate it into a variety of other research fields. One
of which is its usage for soft robotics. There are several li-
censed plugins, offering not only the simulation of artificial
muscles and soft-body robots but also their control. In con-
trast to Voxelize and VoxCAD, the simulation is not based
on voxels and thus more in-depth, realistic, but also com-
putational heavy.

2sofa-framework.org

https://www.sofa-framework.org
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2.1.3 Game Engines

Lastly, physics engines created for games often incorporate
the ability for soft body and, therefore, soft robotics simu-
lations. While many of those engines are closed source and
not utilized in this field, there is some ongoing research try-
ing to make use of their functionality concerning soft body
simulation in medicine. One of which is the development Soft Bodies in

Medicineof a laparoscopic cholecystectomy simulator based on the
Unity game engine at the Bournemouth University [11].

LAPAROSCOPIC CHOLECYSTECTOMY:
Cholecystectomy is the surgical removal of the gallblad-
der. Laparascopy enables the removal of the gallbladder
while making only small incisions instead of one very
large one.

Definition:
Laparoscopic
Cholecystectomy

While these game engines, in comparison to the before-
mentioned framework, are more straightforward and,
therefore, more accessible, they still have a steep learn-
ing curve and are not suited for fast prototyping or low
experienced users. Although the mentioned simulator is
not aimed at soft robotics, the insights gained throughout
the development process can be stepping stones for similar
projects in the field of soft robotics.

2.2 Design Process Oriented

While the previously mentioned tools are fundamentals, Limitations of
Simulation Focused
Software

offering the mathematical and physical backbone to pro-
vide the field of soft robotics with the necessary simulation
capabilities, they do not offer entry into the research field.
Those tools are mostly used by people who are already con-
fronted with the difficulties of soft robotics design. They are
not suited to get an introduction into the field and to learn
the behavior of soft bodies and the idea behind their design
process. This leads to soft robotics being an abstract idea
many researchers outside of engineering and computer sci-
ence have no access to and, therefore, little and slow inte-
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gration into other fields of science takes place.
Thanks to 3D printers being widely available in research
nowadays, the manufacturing of the necessary molds got
easier and more accessible. Several universities are push-
ing maker communities and offering public access to their
infrastructure so that the general public has more contact
with the fabrication process of 3D printed parts. One of
those universities is the Harvard University3 and more spe-
cific the Harvard Biodesign Lab4 as a part of the John A.
Paulson School Of Engineering And Applied Sciences5.

2.2.1 Soft Robotics Toolkit

The Soft Robotics Toolkit6 is a collection of resources ded-
icated to the exploration of soft robotics and soft bodies,
initiated by the Harvard Biodesign Lab. It developedA Collection of Soft

Robotics Resources into the most extensive resource collection, with over
20 contributing research labs and a large community of
users. It includes blueprints and files of premade soft
robots, soft bodies, and electrical components, as well as
the necessary software for designing and simulating them.
The earlier mentioned SOFA framework is also referenced
in the toolkit. A significant factor in making this toolkit
widely used and suitable for beginners is the included doc-
umentary for each 3D model. This documentary not only
explains the behavior and construction of named models
but also offers an in-depth guide to which adjustments
and modifications are possible and how their impact on
the behavior of the designated part will be. Using this as a
starting point, after gaining insight into the development
process of soft robots, users then can proceed to work on
from ground on self-designed robots and parts.

The focus in this area of research lies heavily on the
technical aspect of soft robotics and on providing finished
material for design processes rather than rethinking and
optimizing the existing workflow. Commonly used appli-

3harvard.edu
4biodesign.seas.harvard.edu
5seas.harvard.edu
6softroboticstoolkit.com

www.harvard.edu
https://biodesign.seas.harvard.edu/
https://www.seas.harvard.edu/
https://www.seas.harvard.edu/
https://softroboticstoolkit.com/
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cations try to implement as much functionality as possible
concerning 3D design and currently struggle to achieve a
non-clustered user interface. This is where SoRoCAD steps
in.
SoRoCAD is the short form for ”Soft Robotics Computer-
aided Design”. It aims at providing a slimmed down
user interface with an optimized functionality towards the
design of soft robotics muscles.

2.3 Application Areas

Besides the central usage of our application in soft robotics
and its directly related fields, the application’s structure
and cell-based design process offer capabilities beyond soft
robotics. With the creation of specialized cell designs with
specific projects and goals in mind, the final resulting mod-
els can be incorporated into existing projects. Although the
material choice is limited to a refined selection of appro-
priate materials in soft robotics, the molds generated from
the designed models can be filled with any material with a
fitting melting points.

2.3.1 PuPoP

One example of such out of field usage is a possible inte-
gration into the ”PuPoP” project [12]. This project, in its
core, aims at providing an interface worn on the palm that
pops several airbags up with predefined primitive shapes
to simulate grasping in a virtual or augmented reality en-
vironment. It is based around simpler primitive shaped
airbags that are stacked onto each other to recreate specific,
more complex shapes inspired by real-world objects. These
shapes could be incorporated in cell designs, adjusted for
integration into SoRoCAD, and through a combination of
different materials, extend the capabilities of said palm in-
terfaces.
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2.3.2 Self-healing UI

Another project offering a possible integration is ”Self-
healing UI” [13]. By utilizing a specialized composite ma-
terial consisting of a self-healing polymer and carbon nan-
otubes in combination with materials like fabric and silicon,
an interface device with self-healing, sensing, and actua-
tion capability is created. With the addition of a software
backend handling the sensing and actuation, this project
extends the toolbox of human-computer interaction offer-
ing new forms of application.
The in this project created sensors are based on repetitive
patterns and shapes that could be transferred into cell de-
signs for SoRoCAD. This could accelerate the fabrication of
said user interfaces.
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Chapter 3

Development of
SoRoCAD

While this project heavily resolves around its implementa-
tion and backend functionality, there will be little to no code
references within this chapter. If you are interested in the
technical aspect of SoRoCAD, have a look at the source files
and the corresponding comments within those. The main
goal of this chapter is to provide a high-level overview of
SoRoCAD’s functionality, its benefits, difficulties, and limi-
tations.

3.1 The Platform

Our software is aimed at running on macOS. While there The Programming
Languageare several programming languages available that are exe-

cutable on macOS, we decided to settle with Apple’s pro-
gramming language, Swift. It offers native performance in
contrast to languages like Python or Java. Furthermore, it
has an easier to read and understand syntax in comparison
to Objective-C, the other primary programming language
on macOS, while offering an almost identical amount of in-
terfaces necessary for our project and its requirements.
In the last few years, the development towards 3D graph-
ics in mobile phones and other industry branches, as well
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as the push into virtual reality and augmented reality, led
to the release of a number of interfaces and frameworks fo-
cusing on 3D modeling, rendering and exporting. These in-
terfaces will be fundamentals to achieve the necessary per-
formance and ease of use required for our software project.
The most significant framework for our project is Apple’s
SceneKit1.
SceneKit is a high-level 3D graphics framework allowingSceneKit
the composing of so-called scenes. These scenes can incor-
porate many different elements, like cameras, lights, and
3D models, and are mostly aimed towards game develop-
ment. SceneKits capabilities include the animation and in-
teraction of named elements, and even a basic physics en-
gine suitable for rigid body collision and particle genera-
tion. The before mentioned elements are encapsulated in
objects called nodes. These nodes are essentially represent-
ing elements in three-dimensional space. The before men-
tioned elements are encapsulated in objects called nodes.
These nodes are essentially representing elements in three-
dimensional space. Depending on the node’s type, they can
consist of geometry, or other for the scene relevant items
like lighting and physics enablers. The main benefit of this
encapsulation is the unification of resources, materials, and
properties of an item into a single easy to manage object.
Furthermore, the underlying low-level system native im-
plementation maximizes performance, not only on macOS
but also on Apple’s mobile platform iOS2.
Because of simplicity and compatibility reasons, we chooseIDE
to develop in the integrated development environment pro-
vided by Apple: Xcode3. It offers everything necessary
for front and backend development, is free and because
of its origin, deeply integrated into macOS. The develop-
ment takes place on a Macbook Pro (2016) running macOS
Mojave (10.14.6). Furthermore, because of the scope of this
thesis, we assume a general understanding of macOS as an
ecosystem and programming environment within the next
chapter.

1developer.apple.com/scenekit
2apple.com/ios
3developer.apple.com/xcode

https://developer.apple.com/scenekit/
https://developer.apple.com/scenekit/
https://www.apple.com/ios/
https://developer.apple.com/xcode/
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3.2 Requirements

SoRoCAD, as a tool, aims at providing a variety of features
to ease the creation and manipulation of soft robotics parts.
This feature set is rooted in requirements for frontend, as
well as backend functionality. While the higher level over-
all requirement is a simple graphical user interface with a
clear structured and easy to follow workflow, it is rooted in
smaller requirements for different parts of the software.

3.2.1 Frontend

The main focus of the frontend is usability. Our software General UI Structure
should provide a familiar user interface structure with a
clear line between different modes and interface elements.
We orient ourselves on industry-standard 2D and 3D
graphics software, namely Autodesk AutoCAD4, Adobe
Photoshop5 and Autodesk Fusion3606. Within those ap-
plications, widely popular interface elements are sidebars,
toolbars, and sliders with the possibility of discrete input
values. Furthermore, their user interfaces are heavily
centered around the content the user is working on, taking
up the majority of the applications window. Adjustments Workflow Orientation
to the content is displayed in real-time whenever possible,
and selection, displacement, and activation of elements is
touchpad optimized and mouse-based. Lastly, the usage
of similar labels for widely used functions, properties,
and elements are of interest for our software to assure the
seamless integration into existing prototyping pipelines.
While SoRoCAD will implement the input possibilities
for discrete values and engineering precision, its primary
focus lies in creating an interactive graphics-oriented
prototyping experience using a WYSIWYG approach.

4autodesk.com/products/autocad/
5adobe.com/products/photoshop.html
6autodesk.com/products/fusion-360

https://www.autodesk.com/products/autocad/overview
https://www.adobe.com/de/products/photoshop.html
https://www.adobe.com/de/products/photoshop.html
https://www.autodesk.com/products/fusion-360/
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WYSIWYG:
What You See Is What You Get in computing, implies
a user interface that allows the user to view something
very similar to the finished result while the document is
being created.

Definition:
WYSIWYG

3.2.2 Backend

Based on the requirements for the frontend, the require-
ments for the backend can be derived. To provide WYSI-
WYG capabilities, the software needs to run responsively
and efficiently. To achieve this, the usage of graphicalThird Party

Frameworks frameworks provided by Apple is crucial since they have
the functionality and integration to provide similar per-
formance on any computer running macOS. Furthermore,
they have the benefit of being developed and updated regu-
larly, while being supported for a more extended period, in
comparison to non-proprietary frameworks, that can eas-
ily be non-functional after small macOS updates. Because
of this, we will limit the usage of third-party frameworks
within SoRoCAD, only making use of such, when its un-
avoidable.
Since, we are working with potentially large 3D objects;File Import, and

Export the backend needs the functionality of not only editing 3D
models, including displacement, combination, and inter-
section but doing so in an efficient manner. Proving sup-
port for importing and exporting standard 3D file types in
minimized time is crucial. SceneKit covers the majority of
the mentioned functionality.

3.3 The Blueprint

Based on the established requirements, we now proceed
to create an initial blueprint, that will be our primary ori-
entation within the design and programming phase. The
blueprint consists of a workflow model and a user interface
scetch.
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3.3.1 The Workflow Model

Figure 3.1: A sketch of the desired workflow structure with its three distinct steps

The workflow will be heavily based on small basic 3D Cell Selection
models named cells. Those cells have a fixed initial size and
are provided in a library within an overview. These cells
incorporate different behavior when exposed to their acti-
vator, pressure. In a first step, the user settles with an initial
cell design the construct should be based around, using in-
formation about the behavior of the cell provided within
the application. He gets the possibility to adjust its dimen-
sions by scaling the cell in all directions. After adjusting
the appearance of the cell, the user proceeds to continue
into a second, independent view. Within this view, he has Body Generation
the ability to stack the previously selected cell in all direc-
tions. Using this stacking functionality, he can generate a
rough outline, of how his final part should look like. Fur-
thermore, he has the ability to select rows, columns, and
layers within the model, to modify their precise position,
rotation, and scaling, thus furthermore refining the initially
generated body.
Afterward, he proceeds into the last view. Within this view,
the user can refine individual cells. By selecting isolated Body Refinement
cells, having the ability to scale, rotate, and offset them
independently, a final version of the desired model is cre-
ated. This model can be refined further by being able to re-
move cells or replace individual cells with other cell types
from the provided library, thus incorporating several cell



14 3 Development of SoRoCAD

types and their corresponding behaviors into the final de-
sign. Lastly, he can export the model itself for further re-
finement in other software, or automatically create a mold
for 3D printing, based on the given model. The molds wall
thickness and dimensions can be adjusted, as well as the
exported models file type extension.

3.3.2 The User Interface

Figure 3.2: A sketch of the planned interface structure with
its sidebar (right), content view (center) and toolbar (top)

The workflow model results in three separate views. TheHigher-level Interface
Structure first of which handles the cell selection, library overview,

and cell adjustment. The second is focused on the body
generation and higher-level refinement, while the third one
offers small, independent adjustments to individual cells.
To keep the interface similar between each view and to
work closely with the previously define requirements, we
settle with a mode selector centered on top, a large content
area displaying the current model, and the corresponding
selection and a sidebar anchored to the right side of the ap-
plications window. The sidebar contains all necessary in-
terface elements to adjust the parameters provided in the
current model. This way, a continuous coherent experience
is created despite having different modes. All interface el-
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ements are anchored to the side and fixed in size, so that a
window resizing leads to a larger content area, instead of
linearly scaling up control elements.

3.4 User Interface Elements

Although Apple provides a variety of user interface ele- Reason for Custom
Interface Elementsment classes for use in Swift programming, we decide to

create our own, to achieve an update agnostic application
appearance. Another reason for our self-designed interface
elements is the fact that while the provided elements are
very refined, their adjustment and customization requires
more work than creating new elements from scratch. Lastly,
Apple provides and implements several, for our applica-
tion, unnecessary functionality into each control element.
This functionality makes adjustments even more compli-
cated, especially when they are not used within our appli-
cation and create unused overhead. We create four main in-
terface elements: Boxes, Buttons, Segmented Controls, and
Sliders, used consistently in our application. Their main
parameters can be adjusted in Xcode.

3.4.1 Boxes

The main fundament of our user interface is boxes. Boxes
represent color filled and potentially outlined squares
of any size. They are implemented by subclassing the
NSView7 class.
In their initialization, they require their own layer. This sep-
arate layer provides them with the functionality of rounded
corners. When the class calls its rendering function, the Structure
complete view gets filled with a specific color defined in
Xcode. Furthermore, depending on its status, it activates
rounded corners with a specific radius and an outline with
a specific width and color. These boxes will be used to pro-
vide other interface elements with a background, as well
as for structural reasons, encapsulating elements for easier

7developer.apple.com/documentation/appkit/nsview

https://developer.apple.com/documentation/appkit/nsview
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Figure 3.3: A variety of colored boxes with optional
rounded corners and borders created by utilizing our cus-
tom box class

grouping and hiding. The central usage of this basic class
is the sidebar’s structure and its background.

3.4.2 Buttons

Within our application, buttons are similar to boxes, withInteraction
the extension of interaction with the user. A button sub-
classes the NSControl8 class, which extends the functional-
ity of a box with functions that handle mouse interaction
and send information about its state to higher interface el-
ements and application delegates. To make the design re-
sponsive, it contains values indicating its push state, a label,
and for the desired activation of other functionality, func-
tions to send notifications when it is triggered. While ren-
dering , the button is rendered in multiple layers. The firstStructure
of which is a color filed box with rounded corners. The
second one contains the label, which is transformed from a
simple string into NSAttributedString9 to be drawn onto
the base layer. The third contains a slightly darker and
smaller box that indicates the buttons state.

8developer.apple.com/documentation/appkit/nscontrol
9developer.apple.com/documentation/foundation/nsattributedstring

https://developer.apple.com/documentation/appkit/nscontrol
https://developer.apple.com/documentation/foundation/nsattributedstring
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Figure 3.4: A push-button created by our button class in
both activation states, regular (left) and pressed (right)

Lastly, each button can be created as a classic push button,
or a state button, which is either on or off. The first will be
used for regular buttons, inducing exporting or import of
files or triggering the removal of cells. The second type will
be used for the cell library overview, which is either visible
or hidden.

3.4.3 Segmented Controls

Figure 3.5: A control element based on three segments cre-
ated by our segmented control class, with the first segment
being selected

This type of control is based on a combination of state type Structure
buttons and a box. In its core, it extends the boxes’ func-
tionality with a mouse coordinate check, thus allowing for
multiple buttons to be encapsulated within the same view.
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After a user interaction, the mouse position then deter-Interaction
mines which of the buttons gets selected. The correspond-
ing button then adjusts by changing its color, disabling the
other buttons, and sending information to the higher-level
objects, inducing an action. All there buttons share the
same rounded-corners box, and therefore the same back-
ground. This control will be used as a selector for the three
view modes, and the three selection modes within the body
generation view.

3.4.4 Sliders

Sliders are the most sophisticated interface element we uti-Structure
lize. They contain a label, a value box, and the slider, con-
sisting of a background and a knob. The label is initialized
and handled in the same way it is within a button and a
segmented control. The value box is a label drawn onto
a NSBezierPath10. The slider is a darker, fixed height NS-
BezierPath, spanning across the majority of the element’s
width. The knob is a small NSBezierPath that is drawn
according to the sliders’ current value and the views and
sliders’ width.

Figure 3.6: A slider based on our slider class, in its regular
state (top) and editing state (bottom)

10developer.apple.com/documentation/appkit/nsbezierpath

https://developer.apple.com/documentation/appkit/nsbezierpath
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To enable user interaction, both mouse position coordinates Interaction
are used. If the user is clicking within the slider, the mouse
position is checked, and a new value is computed based on
the maximum and minimum value, as well as the slider’s
width. The value box then gets updated to display the
new value, and higher-level objects receive an action trig-
gered by the change. A similar routine is executed when
the mouse is dragged.
The width of the slider and the screens resolution limits the
discrete values the slider can select. To overcome this issue,
our slider offers the manual input of values triggered by
double-clicking the value box. This is achieved, by overlay- Direct Value Input
ing the value box with an editable NSTextField11. This text
field is hidden until the user triggers the input by double-
clicking and hides again after a new valid value is entered
and confirmed by pressing enter. Lastly, our slider class
contains optimizations and functionality, like snapping to
integer values or its center value.

3.5 The Backend

After creating our custom user interface elements, we pro-
ceed with the implementation of the necessary backend
functionality later utilized in the user interface and inter-
action.

3.5.1 Handling 3D Files

As previously noted, SceneKit is the backend fundament
in SoRoCAD. Its deep integration and utilization in games
and applications for macOS and iOS led to the implementa-
tion of native file handling solutions. While a SCNScene12

can be initiated empty, SceneKit also provides the ability to
load a scene from a file. When loading a scene from a file,
the file type extension determines the loaded information.

11developer.apple.com/documentation/appkit/nstextfield
12developer.apple.com/documentation/scenekit/scnscene

https://developer.apple.com/documentation/appkit/nstextfield
https://developer.apple.com/documentation/scenekit/scnscene


20 3 Development of SoRoCAD

To save and restore whole scenes, including lighting, cam-File Types
eras, and geometry, SceneKits proprietary file extension
”.scn” is used. If only geometry with its materials and tex-
tures is of interest, thus excluding lighting and cameras, the
file type ”.dae” is recommended.
Finally, if only the geometry is of interest, without any in-
formation on material, widely used file types like ”.stl”
and ”.obj” are supported. Each SCNScene object has cor-
responding initialization and writing functions we utilize
to save and restore individual nodes or entire scenes. In the
initial cell library provided with our application, each cell
is saved to and loaded from a ”.dae” file.

3.5.2 Adjustment of Cell Parameters

The first step in our workflow consists of the selection and
adjustment of a cell. In SceneKit, this cell is represented by
a SCNNode13 object. This object , in its core, is encapsulat-SCNNode Objects
ing all relevant information a 3D model has, including its
position in the SCNScene, its geometry, rotation, scaling,
material, as well as its physical properties for the physics
engine and its pivot. The pivot of a SCNNode determines
its center, relative to which each geometric operation will be
applied. This information crucial when it comes to adjust-
ing properties like scaling and position in our application,
thus we need to make sure the pivot is always a the center
of each cell. Furthermore, the SCNNode class contains a
variety of functions dedicated to providing different infor-
mation like an object’s bounding box, which we utilize to
find its center for repositioning purposes.
In the different steps our software incorporates, each cell-Benefits of

SCNNodes specific slider in the sidebar is mapped to multiple or a sin-
gle function. These functions then adjust the correspond-
ing node parameters and notify the SCNView14 to update
its rendering of the node. In the first step, the cell selection,
each slider is directly connected to a function adjusting the
nodes scale vector, where a value larger than one makes the
node larger, while a value smaller then one does the oppo-
site.

13developer.apple.com/documentation/scenekit/scnnode
14developer.apple.com/documentation/scenekit/scnview

https://developer.apple.com/documentation/scenekit/scnnode
https://developer.apple.com/documentation/scenekit/scnview
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Figure 3.7: An example cell represented by an SCNNode
that is included in the application’s cell library

Lastly, each SCNNode contains the function to remove it- Hierarchy in
SCNScenesself from its parent node and to add another node as its

child node. Each SCNScene has a non-removable root node
that contains every other node as a child node in an array.
This hierarchy is of use when it comes to grouping and join-
ing multiple nodes into a single one.

3.5.3 Generating the Body

In the second step of our workflow, the user proceeds into
another view. Within this view, he has the ability to gen-
erate a body constructed out of the previously chosen cell.
The body is generated by stacking cell objects ontop, beside
and in front of another.



22 3 Development of SoRoCAD

Using this approach, an issue regarding the properties of
the cell arises. The SCNNode class includes a copy andCloning SCNNodes
clone function. Both functions essentially clone the cell
with its properties, but the copy function does not re-
cursively include child nodes. The resulting problem is
that for efficiency reasons, those functions do not clone
the nodes geometry and other SceneKit objects attached to
it. The clone shares these attached objects with the initial
node. This is not desired in our application, since apply-
ing geometric transformations to any node, would result in
changes to all nodes. To overcome this, we implement our
own deep clone function, which not only creates new nodes
but duplicates the attached objects and therefore separates
the geometries. Using our function, we now have the abil-
ity to change the scaling, transformation, and materials of
individual nodes.
The stacking is implemented by first getting the boundingGenerating the Core
box of a single node. Using the bounding box position and
dimension, we can calculate the position of each stacked
node. Starting with the first node having its pivot posi-
tioned at the origin of the scene, we then continue to cre-
ate deep copies of the previously chosen node and stacking
them until the desired number of rows, columns, and lay-
ers is reached. One benefit of this approach is that later
changes to the chosen cell geometry in the first step, are in-
stantly applied to the generated body. The user, therefore,
has a clear separation of steps in the workflow and dodges
the problem of readjusting the body in different steps ac-
cording to small changes made.
After the initial body generation is finished, the softwareGeometric

Transformations proceeds with applying desired geometric transformations
to the nodes. SoRoCAD offers three selection modes: rows,
columns, and layers. The first of which selects nodes in the
direction of the y-axis, the second one in the direction of
the x-axis, and the last one along the z-axis. Since we al-
low multiple transformations to a single node, the software
needs to store all transformation information for each se-
lection mode. For storing this information, we are using
NSDictionary15 objects. These objects, from a usage stand-
point, are similar to arrays, but instead of assigning every
contained object a numeral index, they make use of keys to
retrieve the stored information.

15developer.apple.com/documentation/foundation/nsdictionary

https://developer.apple.com/documentation/foundation/nsdictionary
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In the case of SoRoCAD, these keys are the names of the Identifying individual
Nodesnodes. A node’s name is a string value attached to a SC-

NNode object. In the initial body generation process, each
body gets the name ”x,y,z”, where each variable stands for
the stack count along each axis until the specific node in
the generated object is reached. This naming is utilized on
multiple occasions within the backend, as it provides a con-
venient way of identifying individual nodes.
While creating the deep copy of every node and placing it
according to the desired row, column, and layer count, the
software checks multiple NSDictionary objects using the
nodes name. These objects are storing information on ro-
tation, scaling, and offset for every row, column, and layer.
If no adjustment information is found for a row, column,
or layer, no geometric transformation takes place, and the
node is skipped. If multiple transformations are found,
they get combined according to their property. A node’s
offset and rotation is additive, while its scaling is multi-
plicative.
Finally, after all steps are finished, the body is rendered in Centering the Body
the corresponding SCNView. To make sure the scenes cam-
era behaves in a desired way, a last step is necessary to cen-
ter the generated body in the scene. To achieve this, we first
get the scenes root node bounding box and translate every
node so that the body’s center point aligns with the origin
of the scene.

3.5.4 Joining Nodes

While rendering the previously stacked nodes within the
SCNView, a fundamental problem in 3D graphics, called
Z-fighting, is created.

Z-FIGHTING:
Z-fighting is a phenomenon in 3D rendering that occurs
when two or more objects have a similar or identical dis-
tance to the viewing point. It is usually caused by limited
precision and round-off errors. It results in artifacts and
partly rendered faces, influenced by the viewing angle.

Definition:
Z-fighting
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In our application, there is no way to overcome this
issue without sacrificing the WYSIWYG aspect of it. To
minimize its occurrence, we utilize the SCNNode value
called ”renderingOrder”. In a simplified way, this value
determines which node gets rendered first and which
one gets rendered last. Regarding Z-fighting, we noticed
improvements in certain situations by assigning higher
values to the outer SCNNodes and lower values to the
hidden ones.

Figure 3.8: Example of emerging artifacts from Z-fighting,
created by overlapping nodes

A primary reason this issue arises is that each node gets
rendered as a separate object. A simple solution would
be to combine the geometry found in the generated body
into a single geometry and thus to eliminate any rendering
issues. While this is an option, it is not suitable for our
application, since the joining of nodes would eradicate the
possibility of adjustments to individual nodes. To provideSoft Proof
the user with an artifact-free preview of the current models
state, we implement a feature named ”Soft Proof”. In its
core, it alters the current model so that nodes are slightly
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overlapping each other and then proceeds to join their
geometries into a single one while displaying the resulting
body in a separate view.
Unfortunately, this cannot be implemented using only
SceneKit. Geometric operations like union and intersect
are not part of SceneKits toolkit, as it is not aimed at
in-depth vector-based transformations and granular alter-
nation of SCNNode geometries. While there may be the
possibility of rewriting large chunks of code to achieve the
for SoRoCAD required features, it would most certainly
blow the scope of this thesis.
To overcome this barrier, we utilize the under the MIT The Euclid Library
license published Euclid16 library. Euclid is a library for
creating and manipulating 3D geometry using techniques
such as constructive solid geometry to combine or subtract
shapes from one another. Euclid provides SoRoCAD with
the necessary geometric operators while having a slim
footprint and included SceneKit support. We utilize it to
enable our ”Soft Proof” feature and use it for the creation
of molds based on the constructed models.

CONSTRUCTIVE SOLID GEOMETRY:
Constructive Solid Geometry is a technique used in solid
modeling. It allows the creation of a complex surface or
object by using Boolean operators to combine simpler ob-
jects. This leads to potentially visually complex objects
resulting from the combination of primitive ones.

Definition:
Constructive Solid
Geometry

The ”Soft Proof” feature is implemented by first creating a
new SCNNode object that will be used for encapsulation.
We then proceed to deep copy all nodes in the generated
body and add them as a child node to our freshly created
object, to avoid destroying the generated body’s current
state. Using Euclid , each node’s geometry then gets Combining Geometry
converted into a mesh. This newly created mesh then is
transformed according to the transformation of the node
and stored in an array. After every node is converted,
SoRoCAD continues by applying a union operation to
pairs of meshes, starting with the first meshes in the array.
It continues to do so until all meshes are combined. The
resulting mesh now represents the combined geometry of

16github.com/nicklockwood/Euclid

https://github.com/nicklockwood/Euclid
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all nodes found in the SCNScene. To display this mesh,
we utilize Euclids SceneKit support. It offers a function to
initialize a SCNGeometry17 from a mesh. After creating the
geometry, we can continue by creating a new SCNNode
and attaching the SCNGeometry object to it. As the last
step, the created node’s geometry gets assigned material
and can be displayed by being added as a child to a
root-node of a new SCNScene.

Figure 3.9: The previously presented body after having
its geometry merged using the constructive solid geometry
functionality of the utilized Euclid library

3.5.5 Creating a Mold

Based on the previously introduced pipeline, we can now
proceed with the automated creation of a mold. In our
context, a mold is the negative of the scaled bounding
box containing the negative of the generated and refined
body. To implement the automated generation of the mold,
we use Euclid’s mesh, join, and subtract functions. SoRo-
CAD starts off by deep copying every cell found in the fi-Merging Meshes

17developer.apple.com/documentation/scenekit/scngeometry

https://developer.apple.com/documentation/scenekit/scngeometry
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nal model. Using the mesh conversion function, we again
transfer each node’s geometry into a mesh. Each mesh then
gets applied to the corresponding geometric transforma-
tion to fix its position and rotation since the pure conver-
sion of a node’s geometry only places the unrotated mesh
in the coordinate origin.
We then proceed to create a new mesh. This mesh is initial- Retrieving the

Artifical Muscle Meshized using a cube constructor provided in the Euclid frame-
work. Its dimensions are defined by the bounding box di-
mension of the combined cells mesh or the final model and
can be retrieved using either Euclid or SceneKit. In this
step, we are using variable scaling factors to increase the
cube’s size and thus adjusting the wall thickness of the fi-
nal artificial muscle. The default value used is 1.2 for all
sides, leading to the walls having an additional thickness
of 20% of the overall model. We then proceed to use the
subtract function provided in Euclid to subtract the com-
bined models mesh from the created scaled bounding box
mesh. After this step, we end up with a mesh that looks
precisely the way the final artificial muscle will look like.

Figure 3.10: The cross-section of an example mold that is
encapsuling a model created by stacking the previously ref-
erenced example cell four times

To finally retrieve the mold instead of just a model of the Getting the Mold’s
Meshartificial muscle, we repeat the process once more. We cre-

ate a new cube mesh based on the now artificial muscle
model. We then proceed to scale the cube up until the de-
sired mold wall thickness is reached and then subtract the
artificial muscle model. In this step, we scale the height and
reposition the meshes before subtracting because the final
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mold consists of two separate parts to encapsulate and pro-
vide easy access for pouring in the silicone.
The resulting mesh is converted into a SCNGeometry, and
then a new SCNNode is created based on said geometry.
This node is then added to the root-node of an empty SCN-
Scene and exported using the previously mentioned meth-
ods.

3.6 The User Interface

After implementing the necessary backend functionality,Xcode’s Interface
Builder we now proceed to construct the user interface using the

interface builder integrated into Xcode, with the addi-
tion of our custom interface elements. Each element was
programmed in a configurable way and with support for
the interface builder in mind. The previously presented
blueprint will be our orientation throughout this process.
Before proceeding, we need to extend the SCNViews func-
tionality and establish general rules for our interface.

3.6.1 Fundamentals and Color Palette

With the goal of our user interface to share similarities withGeneral Design
Orientation widely used applications, we decided to stick with a sim-

plistic and flat design approach. We are using minimal but
sufficient contrasts between elements while excluding the
use of computational heavy and potential distracting ani-
mations. Apple provides the majority of the colors found
in our color palette as a reference point for individual user
interface elements. Furthermore, we are limiting the use of
different high contrast colors and settle with a color identi-
fied by ”NSColor.systemPink18” as our central signal color.
Only the visual indication of the selection of nodes, the ap-
plications icon, and the most central interface elements are
sharing this color. All color values can be found within the
source files.

18developer.apple.com/documentation/appkit/nscolor/2879261-
systempink

https://developer.apple.com/documentation/appkit/nscolor/2879261-systempink
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Figure 3.11: The final application icon and used colors

3.6.2 Extending SCNViews

A SCNView, in its core, is the frontend interface element Limits of SCNViews
that allows the user to view and control SCNScenes. While
it offers a large number of functions and objects to call and
control, it relies heavily on extensions to make it suitable for
specific applications. In our case, one missing core func-
tionality is the selection of nodes. We are rewriting the
SCNView’s mouse event handling functions to handle the
selection of individual and groups of nodes. We start by
adding variables to save the currently selected row, col-
umn, and layer number.
Furthermore, we attach an object reference of the type SC- Node Selection

HandlingNNode. This object reference will later be used to reference
the node the user has selected. Within the mouse event han-
dling functions, we use a function called ”hitTest19”. This
function returns every object in the way of a user’s mouse
interaction in the embedded SCNScene. Using the returned
objects, we then check if the object is a valid and selectable
part of the scene and proceed by coloring it in our signal
color and referencing it using our selected node object. Us-
ing our naming scheme, we can use the node’s name to de-
termine the corresponding row, column, and layer number.
Furthermore, we can send an action, notifying other parts
of SoRoCAD that the selection has changed.

19developer.apple.com/documentation/scenekit/scnscenerenderer/1522929-
hittest

https://developer.apple.com/documentation/scenekit/scnscenerenderer/1522929-hittest
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Figure 3.12: A single cell (represented by a SCNNode) se-
lected in our custom SCNView extension highlighted using
our signaling color

3.6.3 The Resulting Interface

After incorporating our design decisions and working
closely with the initial blueprint, we were able to imple-
ment the majority of the planned functionality, aesthetics,
and behavior. We separated the three design steps into in-
dividual views with adjusted user interface elements.
For a better 3D space orientation, we decided to add a cus-Model Orientation

Indicator tom element to each view, indicating the camera’s current
position in relation to the currently displayed model. Be-
cause this decision was founded from a design perspective
in a late step of development, it is added in the upper left
corner of each of our extended SCNView instances. With
each user interaction with the 3D model, the indicator ad-
justs its position accordingly.
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Figure 3.13: The final user interface’s ”Construct” view with the orientation in-
dicator (upper left), the selection mode control (lower left) and its sidebar (right)
containing sliders for row, column and layer based cell adjustments

Figure 3.14: The final user interface’s ”Refine” view with its sidebar (right) con-
taining sliders for individual cell adjustments, buttons for cell removal and cell
type replacement as well as export options
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Chapter 4

Evaluation

To analyze the intuitiveness and real-world performance of
our application, we are conducting a user study. The user
study’s central goal is the qualitative measurement of our
created workflow and user interface. Based on this goal,
we are not focusing on the user’s understanding of soft
robotics or general 3D design, since one of the applications
main initial goals was the ease of use for zero-experience
users. The central part of our evaluation is the qualitative
analysis because of our limited amount of participants.

4.1 Methodology and Study Procedure

We are combining a semi-structured interview with a ques-
tionnaire that users will fill out partly before and after com-
pleting two 3D modeling tasks. Both tasks are based on
the recreation of provided 3D models. The first model is
a simple structure to test the user’s understanding and ex-
perience in 3D modeling, while the recreation of the sec-
ond model aims at stressing the application’s workflow
and user interface by requiring a broad palette of combined
functionality to be used in a targeted manner.
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Figure 4.1: Both models used in the user study. The simpler model (left) is based
on five cells stacked and displaced horizontaly to overlap with one being replaced
with a box cell. The more complex model (right) consists of a 3x3x3 stack of box
cells with a rotated row, replaced row as well as rotated and replaced (top right)
and removed individual cells (bottom)

On the Mac used for the study, two application windowsMethodology
are open at the beginning of a session. The first one is a 3D
view of the current model the user needs to recreate, and
the second window is our application. At every moment,
while working on recreating the model, the user can ana-
lyze and view the model again. We then proceed to start
a screen recording for each task. While the user works on
the given model, no interaction between the investigator
and the user takes place. The investigator only steps in if
the user, after 2 minutes, is not able to achieve a desired
geometrical operation or model outcome. Both models are
recreated with a 30-second break between one another.
After both models are recreated, the user gets handed the
second part of the questionnaire consisting of statements
evaluating the difficulty of each task and whether or not
the interface design and application functionality is clear
to use and understandable. These questions are utilizing
a scale from 1 to 5, where lower numbers indicate a de-
nial of a giving statement while higher numbers indicate
approval.
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The questionnaire consists of the following statements in
the given order:

• Task 1 was difficult

• Task 2 was difficult

• The overall task difficulty was appropriate

• The user interface structure is understandable

• The applications workflow is understandable

We are using MATLAB1 for the quantitative analysis of our
data and MAXQDA2 for the qualitative analysis. The quali-
tative analysis is based on coding. The provided user feed-
back is repeatedly coded under generalized key-points to
then provide a higher level as well as a detailed view of the
collected suggestions.
Before the users take on the tasks, we collect information Procedure
on their age, gender, eye-health, experience with CAD soft-
ware, and whether or not they are currently using the ma-
cOS digital ecosystem, to get an overview over external
factors influencing our data. Afterward, the user gets a
1-2 minute introduction to the general idea behind SoRo-
CAD and the different steps incorporated in our designated
workflow. While the user does get an introduction, nothing
is explained to him in detail. The interface elements func-
tionality, the workflow, and the naming of individuals steps
and elements are not explained.
After the user evaluates the application using the scale and User Feedback

Discussionthe statements, he has the ability to provide additional
feedback regarding the user interface and design and the
general functionality of SoRoCAD. The provided feedback
is then discussed to refine critical points and clear possi-
ble misunderstandings. The discussion is recorded. All
sessions are held in an isolated, distraction-free, and quiet
place.

1mathworks.com/products/matlab.html
2maxqda.de

https://de.mathworks.com/products/matlab.html
https://www.maxqda.de/
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4.2 Quantitative Analysis

4.2.1 Participant Information

Our study participants are aged between 22 and 29, averag-
ing around 24.5, with a median of 24. The majority of our
participants are male, with a share of 75%. The average fe-
male participants’ age is 23, while the males average at 25.

22 (1, 12.5%)

23 (2, 25%)

24 (2, 25%)

25 (1, 12.5%)

26 (1, 12.5%)

29 (1, 12.5%)

Figure 4.2: Our participant’s age distribution

Considering eye-health, 75% of our participants had no vi-
sual impairment, and 25% wore glasses or contact lenses. A
higher experience with 3D design and CAD, in general, was
given in 37.5% of our participants, with 50% of all partici-
pants using a macOS computer in their everyday life. The
majority (66%) of our participants with a visual impairment
were using Macs in their everyday life.
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4.2.2 Task Evaluation

Task 1

The completion of task one, remodeling of the simpler
model, took 3.2 minutes on average with a median of 3.4
minutes, a variance of 1.54 minutes, and a 95% confidence
interval of [2.17,4.24] for µ and [0.82,2.53] for σ under an
assumed normal distribution. Participants who said they
were experienced with CAD and 3D design took on aver-
age 3.52 minutes with a median of 3.5 minutes, while users
with no experience took 3.01 minutes on average with a me-
dian of 2.35 minutes, thus being 14.5% faster on average.
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Figure 4.3: Overview over the time it took each user to complete task 1. The values
range from 97 seconds to 286 seconds with a standard deviation of 75 seconds
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Task 2

The completion of task two, remodeling of the complex
structure consisting of different cell types and requiring a
broader spectrum of functionality, took 7.98 minutes on av-
erage with a median of 5.9 minutes, a variance of 16.89
minutes and a 95% confidence interval of [4.55,11.42] for
µ and [2.72,8.36] for σ under an assumed normal distri-
bution. Participants who said they were experienced with
CAD and 3D design took on average 11.39 minutes with a
median of 13.02 minutes, while users with no experience
took 5.93 minutes on average with a median of 5.48 min-
utes, thus being approximately 48% faster on average.
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Figure 4.4: Overview over the time it took each user to complete task 2. The values
range from 235 seconds to 906 seconds with a standard deviation of 247 seconds
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4.2.3 Questionnaire Results

Statement 1: ”Task 1 was difficult”

1 1.5 2 2.5 3 3.5 4 4.5 5

Statement Rating

Median

25%-75%

9%-91%

Figure 4.5: The box plot for the statement ”Task 1 was diffi-
cult”. All users rated this task 3 from 5 or lower, indicating
a low perceived difficulty with the mean (here µ) and me-
dian hovering around 2 points

The overall perception of the difficulty of task one was low.
Our goal was to create an initial task that does not over-
whelm the participants and only provide an entry into the
application’s use case. Given the provided feedback and
metrics, this goal was met. Although the differences in
completion time between different subgroups of our par-
ticipants were given, no correlation could be found on the
perception of difficulty.
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Statement 2: ”Task 2 was difficult”

1 1.5 2 2.5 3 3.5 4 4.5 5

Statement Rating

Median

25%-75%

9%-91%

Figure 4.6: The box plot for the statement ”Task 2 was diffi-
cult”. The median and mean (µ) hover around 3.5 indicat-
ing a higher perceived difficulty overall, with higher vari-
ance in individual ratings ranging from 2 to 5 points

The results from our task 2 data show a similar pattern. The
second task was perceived as more demanding, on aver-
age, with a broader range of perceived difficulty. Although
the highest rating on perceived difficulty was by a non-
experienced user, the participants who stated that they are
experienced, perceived this task as more difficult on aver-
age, in contrast to non-experienced participants.
Furthermore, no user subgroup (based on gender, experi-
ence, eye-health, or Mac usage) percieved the overall task
difficulty extremely different than the other groups. Lastly,
the majority of users rated the application as clearly struc-
tured, while the overall workflow had a higher variance
in ratings. Especially the experienced users rated low on
the overall workflow, stating in the later interviews that the
workflow was too different in comparison to what they are
used to.
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Statement 3: ”The overall task difficulty was appropriate”

1 1.5 2 2.5 3 3.5 4 4.5 5

Statement Rating

Median

25%-75%

9%-91%

Figure 4.7: The box plot for the statement ”The overall task
difficulty was appropriate”. The mean (µ) hovers around
4.5, and the median is at 4. The values range from 4 to 5
indicating a low variance and supporting the positive re-
ception by the participants

The overall difficulty of the tasks in our user study was per-
ceived as appropriate throughout all participants. In our
interviews, all participants stated that they were not over-
whelmed at any moment in the study, and not a single one
had the perception that the outcome of the task is unachiev-
able using our application.
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Statements 4 and 5

1 1.5 2 2.5 3 3.5 4 4.5 5

Statement Rating

Median

25%-75%

9%-91%

Figure 4.8: The box plot for the statement ”The user in-
terface structure is understandable”. The mean (µ) hovers
around 4.2, and the median is at 4. The values range from
3 to 5 indicating a higher variance and underline the more
negative reception by CAD experienced participants

1 1.5 2 2.5 3 3.5 4 4.5 5

Statement Rating

Median

25%-75%

9%-91%

Figure 4.9: The box plot for the statement ”The user in-
terface structure is understandable”. The mean (µ) hovers
around 4.2, and the median is at 4. The values range from
3 to 5 indicating a higher variance and underline the more
negative reception by CAD experienced participants
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4.3 Qualitative Analysis

We proceed with the evaluation of recommendations for
SoRoCAD. We are using coding to group recommendations
and critique of a similar type into a cluster to extrude the
relevant findings. As a result, using MAXQDA, the in-
puts were clustered under the keywords ”Functionality”,
”Workflow” and ”Design”. The majority of suggestions
were based around the user interface and the design of the
application.

Figure 4.10: The resulting main codes ”Workflow”, ”Functionality” and ”De-
sign”and their sub-codes indicated by arrows

4.3.1 Workflow

Under ”View Independent”, the central critique was the ab-
sence of help elements. In the later interviews, 6 out of the
8 participants stated that it was not clear that switching be-
tween the steps was desirable, and part of the workflow.
Furthermore, the differentiation between the ”Construct”
and ”Refine” step was rated as vague by one user. Espe-
cially the three CAD experienced power users stated that
they would favor a clustered, more complicated interface
with a single view and without separated steps.
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The only view specific critique stated by three participants
was the lack of change saving within the ”Refine” steps.
When users decided to go back into the ”Construct” view,
their cell replacements and deletion were not applied back
again.

4.3.2 Functionality

This code is divided into three sub-codes. The majority
of critique is encapsulated in the ”Editing” sub-code. One
function that was missed by 7 out of 8 participants was an
”undo” function. The users repeatedly tried to use key-
board input to undo the last applied transformation and
were searching for interface elements to trigger such func-
tion. Building on this missing function, users expected to
have the majority of operations mapped to individual keys
and key-combinations. Another major point was the saving
of intermediate changes to individual cells and entire rows.
All users except participants 1 and 8 expected a more con-
sistent behavior regarding this functionality between the
editing in the second and third steps. Lastly, optional set-
tings, like the usage of degrees instead of radians, for the
adjustments of a variety of the application’s elements, was
desired by 5 out of 8 participants.

4.3.3 Design

Within the design code, we grouped and sorted every in-
put regarding the application’s user interface that was not
primarily based on deep backend functionality. The coding
resulted in two major sub-codes, the first of which summa-
rizes the critique of elements that the users do not directly
interact with, while the second one includes interactive el-
ements like sliders, buttons, and the 3D viewer.
In our study and the later interviews, 7 out of 8 users stated
that the struggle with orientation in 3D space within the
application. While the effect of an application of geomet-
rical operations is apparent, the users critiqued the lack of
clear visualization of rotation within the model viewer and



4.4 Summarizing the Findings 45

wished for a visualization of a coordinate grid. They criti-
cized the existing rotation indicator as being too small and
confusing. Another reoccurring point (mentioned by users
2, 3, 5, 6, and 8) of discussion around the 3D editing was the
lack of a wireframe like viewing mode to visualize overlap-
ping cells and their interaction with one another better. As
an alternative to a wireframe view, three users suggested a
color coding of cells with intersecting parts having a bright
contrast color or a different transparency level. Lastly, one
user percieved the applications signal color as too negative,
giving him the impression of behaving wrong within the
interface’s boundaries, suggesting to replace it with a more
neutral color.
The naming scheme of rows, columns, and layers was con-
fusing for the experienced three participants. The result-
ing inconsistency because coordinates, as well as rows,
columns, and layers, were used for labeling, amplified mis-
understandings in geometrical orientation.
Sliders were the interface elements that received the most
substantial amount of critique. Six participants missed
tick marks indicating specific commonly used values for
a given interval as well as a magnetize feature for a more
accessible selection of specific values of interest. Further-
more, one reoccurring suggestion (users 2,3,6,7,8) was the
usage of different units and limits for the individual slider’s
functions. Four users felt limited by the range of possible
values and confused with the unity choice on multiple oc-
casions.

4.4 Summarizing the Findings

We draw the following conclusions based on our user
study. Resulting from our quantitative analysis in combi-
nation with the discussions, the application’s intended use
case was mostly met. All participants were able to recre-
ate the provided models using SoRoCAD. Additionally, , all Central Goal
five zero-experience users performed as well or even better
than the three experienced users within both tasks.
While two of the participants asked for a more streamlined
workflow with a harder separation of steps and viewing
modes, the majority of participants stated that they pre-
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fer the minimalistic clean interface over a more sophisti-
cated 3D design suite when it comes to creating simple to
medium complex models. Furthermore, , the majority ofUI Critique
critique towards the user interface is based around sliders
and visual indicators for orientation, both of which can be
adjusted, reimplemented and fixed without a large amount
of effort because of our modular and adjustment oriented
implementation. Smaller critique points like inconsistent
labeling and confusing interaction behavior require even
less effort to overcome.
The functions that are deeply rooted in the backend areBackend Critique
a more significant point of concern. One of which is the
implementation of a more convenient change saving func-
tionality to assure that the changes made to a particular
model in a given step are saved even after switching modes
and interacting with interface elements that are oriented to-
wards the start of the design process.
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Chapter 5

Summary and future
work

Based on our findings from the evaluation and our efforts
and thoughts on the future development of SoRoCAD, we
can now summarize the overall project’s process and out-
come and will try to provide an insight into what is possible
and should be aimed at in future contributions.

5.1 Summary and contributions

With SoRoCAD, we created a first base of what soft robotics
oriented 3D design software could look like. We were able
to implement the majority of intended features in relation
to design and function. The SceneKit framework provided
by Apple gave us the necessary core features to build a
mostly robust application that was able to sustain user test-
ing successfully. The intended workflow was mostly per-
ceived as useful and as accelerating the understanding of
3D modeling. Furthermore, the implemented function-
ality is already sufficient enough for experimenting with
adoption into the under ”Application Areas” mentioned
projects.
Unfortunately, we were not able to implement all the func-
tionality we intended. One primary functionality that is
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missing is the simulation of models within the software
itself. While we provide the export functionality and in-
terface for future integration, the current limitations given
by SceneKit made it impossible for us to include soft body
simulation in the given time. Furthermore, as a conclusion
drawn from the user study, a variety of adjustments and
additional features on an interaction level is necessary to
make SoRoCAD a viable alternative in 3D design.

5.2 Future work

Based on the previously mentioned necessary adjustments,
and the initially introduced related work, we can derive
three major points of future work around SoRoCAD can be
based on.
The first necessary development is the integration of said
soft body simulation functionality. There are several sim-
ulation frameworks available written in a variety of pro-
gramming languages. The Swift programming language
allows for the integration of C and C++ code through type
conversion headers. These could be used to overcome
SceneKits limitations and, based on external libraries, in-
corporate a single cell as well as whole-body simulations.
Another entry point is the numerous adjustments to inter-
face elements that are necessary. The confusion and misun-
derstandings towards interaction elements, the used signal
color and the representation of 3D space in our user study,
have shown that SoRoCAD requires further user interface
refinement. This could be embedded in studies on the per-
ception of 3D space in a computer environment, to extract
a more refined and natural way of user elements for 3D in-
teraction.
Finally, the cell library currently consists of a limited
amount of cell designs. Since the central design part in
SoRoCAD is based on these cells, a comprehensive exten-
sion of the said library, including a complete tagging sys-
tem describing the behavior of each cell would be benefi-
cial.
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Appendix A

Source Code and
Resources

Xcode Project Files1

Default Cell Library2

Application Icon3

1http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD SourceCode.zip
2http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD Library.zip
3http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD AppIcon.zip

http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD_SourceCode.zip
http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD_Library.zip
http://hci.rwth-aachen.de/public/users/krasnoshchokov/SoRoCAD_AppIcon.zip
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