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Abstract

This bachelor thesis integrates and evaluates pinstripe, a wearable input device
for everyday clothing. With the upcoming of more and more wearable devices—
music players, smartphones, display glasses—it is desirable to allow an effortless
interaction with these devices.

Pinstripe allows such an interaction: Making a fold in clothing and moving it to
control a device could be done on the side and without looking. With only a
single micro-controller and the sensor areal woven of conductive thread, it could
be seamlessly integrated in clothing, invisible from the outside.

In this thesis, hardware prototypes were made and the evaluation software was
reworked, which will be described in 3—“Hardware Prototyping and Software
Modification”. Furthermore, prototype and software were tested both in a user
study to evaluate the system and in daily use to detect weak points. The results
will be presented and discussed in chapter 4—“Evaluation”. We will conclude the
thesis with a summary and an outlook on future work.
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Überblick

Diese Bachelorarbeit überarbeitet und bewertet Pinstripe, einen tragbares
Eingabegerät, welches in die Kleidung integriert wird. Da mehr und mehr tragbare
Geräte verwendet werden—MP3-Spieler, Smartphones usw.—sind nicht weiter
ablenkende Interaktionsmöglichkeiten mit diesen Geräten wünschenswert.

Pinstripe ermöglicht eine derartige Eingabe: Eine Falte in der Kleidung bilden
und diese bewegen, um ein Gerät zu bedienen kann nebenbei und ohne optische
Kontrolle geschehen. Da nur ein einziger Mikrocontroller verwendet wird, und die
Sensorfläche aus gewebtem, leitfähigem Garn besteht, kann dieses System gut in
die Kleidung integriert werden, ohne sichtbar zu sein.

In dieser Arbeit wurden sowohl Hardwareprototypen erstellt und die
Auswertungssoftware überarbeitet. Dies wird in 3—“Hardware Prototyping
and Software Modification” beschrieben. Anschliessend wurde Prototypen und
Software einmal in einer Benutzerstudie, um das System zu bewerten, und
andererseits als Dauertest im täglichen Einsatz verwendet, um (hardwareseitige)
Schwachstellen zu finden. Die Ergebnisse werden in Kapitel 4—“Evaluation”
präsentiert. Die Arbeit schliesst mit einer Zusammenfassung und einem Ausblick.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point
in a book, usually in an appendix, or digressions in a
written text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in British English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/file number.file

http://hci.rwth-aachen.de/public/file_number.file
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Chapter 1

Introduction

Technical advantages in miniaturization enable smaller Wearable Computing
and smaller electronic devices, leading to everyday usage
but disappearing computing as described in Weiser [1995].
One example is the wearable music player—compared to
the famous Sony Walkman, mp3-players are nowadays far
smaller and robust, run longer and have greater storage
capacity.

This eventually leads to small players without buttons at Language control
all, but only with a remote only on the headphone cable
like the third generation iPod Shuffle. While later versions
return to buttons on the player because of better usability,
the input on the device itself has its own issues: One has
have to take the device and find the controls, and maybe—
to prevent unintentional input—first unlock the controls
before they can be used.

To offer a more effortless usability, many mp3-players Cable remote
and smartphones additionally offer a remote control on the
headphone cable. This allows an eyes-free interaction with
the device by getting the cable, feeling for the remote and
then pressing, for example, on the according end of the
remote. This is easier than taking the device out of the
pocket and finding the buttons after unlocking, but allows
only few commands. The cable itself may disappear in
the future, as in bluetooth headsets, rendering this kind of
remote control not useful anymore.
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This demands new wearable input control devices whichDesign rules
should fulfill physical and social constraints to be useful.
These constraints are size and movement of the body,
interaction with the device, and its size, form and weight.
Additionally, aesthetics and how to attach the device on the
body are important points. The basic guidelines to meet
these constraints are described in Gemperle et al. [1998].

Marculescu et al. [2003] augmented clothes with electronicElectronic textiles
devices . Since they are tailored to meet the individual
aesthetics and are made to be worn, the last two points
are easily met. By using light, flexible, and low cost
components the resulting device will be unobtrusive.

On the other hand, this leads to new constraints:
The components and their interconnections have to be
washable and ready for daily-use. They use copper wire
within yarn as a kind of bus system, either wire-bonded or
soldered on flexible foil with copper pads with the single
devices.

Since persons do not forget their clothes, the system is
ready to be used anywhere and anytime, and a well
designed interface should allow anybody to use it without
further instructions.

Toney et al. [2003] made an augmented business suit. TheySmart suit
use vibration motors and LEDs on cuffs as direct feedback
in the suit, connected with capacitive input controls and a
wristwatch as processing and output device.

This leaves the electronic system invisible, and input
should resemble adjusting the jacket or the cuffs. In best
case, the user seems to use no technology either at all or just
conventional technology like looking on his wristwatch.

The capacitive buttons used in this study were located
inside the hems, near the natural resting position of
the hands and should be used eye-less, with perceptible
different forms of the buttons. Therefore, the system has to
decide if a detected fingertip on a button is just the search
for the right button or actual a button-press. Furthermore,
the system must suppress capacity changes due to the
coupling with the human body itself.



3

With pinstripe Karrer et al. [2011] proposes another Pinstripe
approach. The directional movement of the fold of a
textile—independent of the concrete position—determines
the input. Also crumpling the textile is another input
possibility. Similar as in the augmented business suit
before, using pinstripe within the cuffs or the tie seems to
be just an adjustment of the clothing.

The fold is detected through interconnection between
conductive stripes on the back of the clothes, leaving
the device invisible from the outside. A flexible, woven
surface of the sensor array and a low weight and energy
consumption are further benefits for using pinstripe as a
wearable input device.

In this thesis, both hardware prototype and software is
reworked to let pinstripe work as a standalone wearable
device with low energy consumption. The resulting
prototype is then tested in personal daily-use to detect
hardware issues in the long-term run. Additionally a user
study validates if that the system is usable without training
and which kind of functions may be best controlled with
pinstripe.
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Chapter 2

Related work

In this part of the thesis we will describe the background
for pinstripe. We will present work related to the hardware
prototype—especially for the interconnection between the
different parts (rigid, flexible, textile)—first. Then the
different types of wearable input devices follow: From
textile variants of normal buttons to the more advanced,
textile-specific and eyes-free types thereafter.

Almost all paper describe both technological background
and implementation in demonstrators and conduct a study.
The following short descriptions will focus mostly on one
aspect relevant for this thesis.

2.1 Interconnections and conductive
textiles

One major concern of textile devices is the flexible printed
circuit board (PCB): It should feature the same flexibility
and durability as normal textile. However, even with
the flexible pcbs nowadays used in electronic devices, the
durability is limited. Bending and relaxing over time
causes eventually a disconnection of the copper layer and
therefore the circuit paths.
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Therefore, textile interfaces use a combination of both
conductive yarn, which could result in a woven conductive
textile, flexible PCBs and rigid components, which have to
be connected somehow.

CONDUCTIVE YARN AND FABRIC:
Conductive yarn can be produced by either inserting
conductive foil or fibres of conductive material,
for example stainless steel, within the common not
conductive fibres of the yarn. Another variant is coating
yarn with a conductive layer. The resulting yarn has—
apart from being conductive—similar characteristics as
normal yarn, and can therefore be used in a likewise
fashion. This includes especially sewing and weaving,
resulting in conductive fabric.

Definition:
Conductive yarn and

fabric

For example, Buechley [2006] used laser cutted Sn/CuA Construction Kit for
Electronic Textiles coated fabric glued together by a heat activated adhesive

with a non conductive carrier material. This fabric can be
soldered as a traditional PCB or connected with each other
with conductive fabric. To test durability, four washing
cycles were applied, which all connections survived.

Vieroth et al. [2009] laminated a copper foil onStretchable Circuit
Boards using

sinusoidal patterns
polyurethane foil, which is later photolithographicly
etched to form stretchable circuit paths on clothing, in
this case a dress with blinking LED, to connect discrete
components on the clothing. To prevent breaking of the
copper path, sinusoidal patterns were used instead of
straight paths. The transition between the flexible PCB
and the unflexible components was mediated through an
enlarged copper area, in addition to encapsulation.

Linz et al. [2005] used conductive yarn as interconnectionEmbroidering
Electrical

Interconnects with
Conductive Yarn for

The Integration of
Flexible Electronic

Modules into Fabric

between components on flexible PCB, combining the two
before-mentioned variants. Using large pads on the flexible
substrate and sewing the conductive yarn several times
through the holes in these pad improve conductivity. An
encapsulation with molding of the interconnection press
the yarn on the surface. Furthermore, making the holes
in the flexible PCB with a needle while sewing improves
reliability compared to prepared holes.



2.2 Types of input devices—Buttons 7

Finally, Post et al. [2000] compared different conductive E-broidery: Design
and fabrication of
textile-based
computing

yarns made (partly) of stainless steel and the different
methods to interconnect: soldering, bonding with
conductive adhesives, stapling and joining. The last one
is the direct connection of a thread with one pin of an
electronic component over a bonding gold wire, melt
together with each other.

2.2 Types of input devices—Buttons

One approach of a textile input device is the transfer of a
press button to the fabric. This may seem simple, but the
technological constraints make this transfer complicated.
The two common approaches use either a resistive or
capacitive technology:

Lee et al. [2010] used a multilayer structure (which is Arm-Band type
Textile-MP3 Player
with Multi-layer
Planar Fashionable
Circuit Board
(P-FCB) Techniques

similarly used by Buechley [2006] with textile layers):
Structures are printed on a flexible substrate, and the
space between two unconnected conductive layers, which
is made by a distance layer, can be bridged by pressing
the conductive layers together, forming a connection and
closing the circuit. This is similar to a standard resistive
button.

Komor et al. [2009] described another resistive approach: Is It Gropable? –
Assessing the Impact
of Mobility on Textile
Interfaces

Here the skin resistance bridges the gap between two
electrodes. To improve conductivity, an interdigital
electrode can be used. The form of the electrodes can
be made different to distinguish different buttons through
contact, using a different button for either searching or
activation, but the buttons remain viewable in contrast to
the version before.

Finally, Holleis et al. [2008] described capacitive buttons: Evaluating
Capacitive Touch
Input on Clothes

The finger above such a button changes the electric field
and the capacitance, therefore detecting a button-press.
These kinds of buttons can be invisible. In a user study,
these kinds of buttons are compared in three forms:
invisible, with a small ornamental hint, and visible. While
the invisible buttons look best, they were less usable.
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Since the input device should be invisible, the buttons onConclusion: Location
needed the other hand need some kind of—at least tactile—hint for

their placement.

2.3 Types of input devices—Add-On

Instead of just applying buttons to the clothing, it may
be useful to modify special pieces of clothing—like the
Keyglove Wearable Input Device1 by Jeff Rowberg. This
device transforms a glove into a replacement for both
keyboard and mouse by applying conductive sensors to
fingers and palm and accelerometer. This approach is to
complex for the use as a mobile interface, which controls
only simple devices.

An easier interface was described by Rantanen et al. [2000].Smart Clothing for
the Arctic

Environment
The so-called Yo-Yo interface was developed to be used in
harsh environment and for survival garment. A winding
mechanism with rotation encoder applied on their survival
vest is connected with a small display unit. Moving this
unit back and forth allows to navigate within a menu on
the display, selecting it by pressing the whole unit. This
provides a robust, easy to use interface, but with the need
of additional (optical) feedback.

Schwarz et al. [2010] used an augmented cord as an inputCord Input: An
Intuitive,

High-Accuracy, Multi-
Degree-of-Freedom

Input Method for
Mobile Devices

device: A conductive thread on the surface determines the
location, a rotary encoder on the end detects twisting and
finally a stretch sensor is triggered if the cord is pulled
by the user. Each input can be used independently or
combined and allows eyes-free interaction.

While some clothes have cords applied and therefore allowConclusion: No
seamingless

integration
to seamlessly integrate such a device, most of these cords
have their functionality, making the input device non-
functional if the cord function itself is needed. Adding an
additional cord contradicts the invisibility aspect, and in
connection with the usage of it, may irritate other people.

1www.keyglove.net

www.keyglove.net
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2.4 Types of input devices—Eyes-free

In the optimal case, the input device has to be integrated
invisibly in the textile, with a big sensor areal to allow eyes-
free interaction without searching for a specific input point
and no need for optical hints on the clothing itself. Again,
several possibilities for such a device exist.

Farringdon et al. [1999] integrated several stretch sensors Wearable Sensor
Badge & Sensor
Jacket for Context
Awareness

on strategic places on a jacket. These stretch sensors—
which are knitted strips—measure the resistance change
proportional to the change of the length of the sensor
field. This allows the system to track movements of the
user. A stretchable base material is necessary, otherwise an
applied stretch sensor would not work. This reduces the
application range of this kind of sensor.

Another possibility is the usage of arrays of sensors like the
buttons before to achieve a greater sensor area. Cheng On Body Capacitive

Sensing for a Simple
Touchless User
Interface

et al. [2008] proposed a linear field of capacitive sensors
on a doctor’s coat as eyes-free and touch less input device,
which should enable the doctor to control devices eyes-free
and even without physical contact, reducing the possibility
of contaminations.

Another capacitive input device by Rekimoto [2001] GestureWrist and
GesturePad:
Unobtrusive
Wearable Interaction
Devices

expands this idea further to a matrix area, which allows
the system to detect gestures by a layer of electrodes
below clothing. Two additional layers reduce unintentional
coupling of the body with the sensor signal, stabilizing the
signal.

Nevertheless, capacitive measurement remains prone to
errors: The distance between back electrode and sensor
electrode is small compared to the distance of (input) finger
and sensor electrode. Therefore, the signal is weak, and
movements of the flexible form may have greater influence
on the capacity than the intentional input. Furthermore,
energy consumption for advanced filtering, computation
and the active sensor field reduces usability of these
concepts.
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Another pad to detect gestures on a flexible area was madeTextiPad:
Implementation and

Evaluation of a
Wearable Textile

Touchpad

by Ivanov [2012]. It uses a piezo-resistive foil between
electrodes to detect the position of a fingertip on the
surface. The basic design of such a piezo-resistive foil is
shown by Hannah Perner-Wilson in instructables2 .

Since a point pressure is detected, disturbances through
body or textile movement like in the capacitive variants are
not possible. On the other hand this kind of usage is still
little more obtrusive than just swiping above a surface.

Pinstripe (Karrer et al. [2011]) offers a different approach:Pinstripe: Eyes-free
Continuous Input on
Interactive Clothing

A textile with conductive stripes is seamed below the
clothing. These stripes are used to detect folds in the textile
and their movement. Since the absolute position of the fold
is not evaluated, only size and movement, and a big sensor
areal is used, the user did not need to fold an exactly located
position on the cloth, allowing the effortless usage without
looking. Furthermore, pinching the garment and rolling the
fold are natural gestures. This concept is further reworked
in this thesis.

2http://www.instructables.com/id/EJKTF3WGV490JGK

http://www.instructables.com/id/EJKTF3WGV490JGK


11

Chapter 3

Hardware Prototyping
and Software
Modification

In this chapter we first describe the general concept used
to program and rework the hardware prototype. In the
second part different hardware layouts are shown, either
different prototypes with their individual advantages and
disadvantages itself or additional hardware used for
programming or user studies. Finally, the software for
the measurement and evaluation of the resulting data is
described.

3.1 System Design

The pinstripe prototype could work either with an Atmega
or MSP430 micro-controller. While first prototypes before
this thesis use the Atmega for rapid prototyping with
the Arduino modules, the latest prototype before uses an
MSP430.

Both micro-controller families have their benefits: While MSP430 or Atmega
are both usablethe TSSOP28 package of the MSP430G2553 allows a smaller

layout than the TQFP32 package of an Atmega168/328,
the need of an external pull-up resistor for the reset input
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and only two pin-change interrupt capable I/O channels
complicate this layout. On the other hand, the benefit
of a lower energy consumption of the MSP430 is partly
compensated by the need of changing four registers instead
of three (Atmega) for the measurement of each stripe. In
major parts both of them are quite similar: They work well
with their internal oscillator and have a similar number of
outputs.

Since energy consumption is not a major concern in the
final prototype—most of the time the micro-controller will
sleep, and a similar one-sided layout is made for both
micro-controller, the decision, which micro-controller to
use is up to the user.

We chose the Arduino IDE1 as programming environmentProgramming
environment:

Arduino/Energia IDE
and Processing

for the Atmega. In combination with an Arduino
Duemilanove, this allows a simple testing of the
functionality. The standalone Atmega based pinstripe
versions where later programmed via Arduino as an
in-system programmer. For this purpose, the hardware
MISO/MOSI/SCK and RESET pins have to be connectable
from the outside—which could be done with crocodile
clamps on the stripes, if needed. The serial connection
in combination with the according Arduino boot loader
would need fewer connections, but since the boot loader
has to be programmed at least once, it was easier to make
an ISP connection and use it for both programming steps.
To allow this change, the main function in the Arduino IDE
is overloaded, which may be deprecated in future versions.

A clone of this, the Energia IDE2 , was used with a
TI Launchpad with a MSP430G25533 as testing device,
which could also be used as a programmer for Spy-by-
Wire capable MSP430. Here, only the RESET and TEST pin
have to be connectable for programming purposes. A boot
loader is not necessary.

Additionally, Processing4 was used to program an
interface on a computer for a user study to test the device.

1http://www.arduino.cc/
2https://github.com/energia/Energia
3http://www.ti.com/ww/en/launchpad/msp430 head.html
4http://processing.org/

http://www.arduino.cc/
https://github.com/energia/Energia
http://www.ti.com/ww/en/launchpad/msp430_head.html
http://processing.org/
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To allow the program to work with different stripe layouts General Program
designand micro-controllers, the micro-controller in use and the

mapping of its I/O pins to the stripes is stored in one define
block for each layout and has to be chosen manually. In
the program, defines are used most of the time instead
of function calls, to prevent unnecessary jumps during
execution and to leave out unnecessary functions.

All hardware specific commands are summarized in an
according header file, which could be easily changed
according to the used micro-controller. This includes
timer or pin-change interrupts for energy saving behavior,
changing the register content of the I/O-pins, sleep and
wakeup functionality and initialization of the micro-
controller (like disabling non-used modules or enabling the
reset pull-up resistor for an Atmega). The needed header
file is then included within the above mentioned stripe
layout.

After a hardware-dependent initialization the pinstripe
micro-controller will sleep until a short circuit between
stripes is detected, then measure all stripes, filter the data
and evaluate them. This will be discussed later in 3.3—
“Software”.

If a command is determined, it is sent to the connected Software vs.
Hardware Serialdevice through the serial port. For these purpose a software

serial communication is used instead of the hardware
version. This has a number of benefits:

• Each pin could be used for the serial port, the layout
of pinstripe is simplified and the serial port could use
pins without pin-change interrupt capability.

• An additional channel for debugging is provided
at a micro-controller with only one hardware serial
channel.

• Only a sending pin is used instead of both sending
and receiving, therefore the number of needed
pins is reduced, and the (more complex) receiving
functionality is disabled. This is only a benefit for
the Atmega version, the MSP430 allows the use of the
hardware sending pin alone.



14 3 Hardware Prototyping and Software Modification

The disadvantage of higher energy consumption is neglect-
able. Compared to the overall program cycle times, serial
communication is rare and therefore the impact on the
general energy consumption is small. Sent commands are
furthermore only few bytes long—and even then, a timer
enabled sleep over few clock-cycles could be done with a
timer triggered sleep function.

3.2 Hardware

Figure 3.1: The original MSP430 version of pinstripe. On
the top the rigid PCB with the micro-controller, below the
flexible PCB as interconnection and in the background the
stripes, made of conductive garment, which are connected
with the black t-shirt textile.

The existing hardware prototypes use either conductivePrevious MSP430
Prototype thread or glue (as the prototype in figure 3.1) to connect the

micro-controller via a flexible PCB with the pinstripe textile
and the conductive stripes.

Conductive thread seems to loose conductivity over timeDisadvantage:
Broken circuit paths,

clumsy
and the conductive glue allows only a bad conductivity.
Furthermore the layout of the MSP version did not
allow to use pin-change interrupts for sleeping between
measurements and uses the bulky standard JTAG interface
instead of the two wire Spy-By-Wire interface for
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programming (although this JTAG could be implemented
efficiently by using the stripes as connectors via crocodile
clamps, as mentioned before, making an additional JTAG
header obsolete). For the Atmega, an integrated micro-
controller version did not exist at all.

3.2.1 Shields for testing

Figure 3.2: Shields for the Launchpad (right) and
Duemilanove (left). Connected with the pinstripe garment
(below) with staples, soldered on a ribbon cable

To test the software, especially the different micro- Design
controllers, a shield was designed both for an Arduino
Duemilanove and the TI Launchpad. Only a reduced
number of stripes could be used with the Launchpad (the
two channel PDIP version of the MSP430G2553) and the
Duemilanove (the TOSCx pins used for an external crystal
are not usable). Additionally, the standard micro-controller
on the Duemilanove is not configured to use the internal
oscillator, and the 5V voltage level did not match with the
3.3V signal level of an iPod, therefore the communication
with the iPod could not be tested with this prototype.
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Both shields, as shown in figure 3.2, simply route nearly
every available general I/O pin—apart from two pins
used for debugging and communication—to a connector,
which allows the connection with the pinstripe textile
through a ribbon cable, shown at the front of the picture.
The conductive stripes of the pinstripe textile are then
connected with a ribbon cable via staples: Each metal staple
makes a mechanical pressure connection with the garment,
and is soldered together with one wire. The pinstripe
textile is sewed together with a carrier textile to improve
mechanical stability of the garment.

A previous version, where the wires and conductive textileDon’t use glue with
the pinstripe textile are wrapped did not work properly. In this attempt,

glueing the pinstripe textile together with a carrier textile
partly isolated the stripes.

3.2.2 Version 1: Conductive thread

Figure 3.3: The first version—A PCB with an Atmega
is connected with the pinstripe textile with conductive
thread.

A small PCB with an Atmega (shown on top of figure 3.3) isConductive thread
connected with the pinstripe textile below with conductive
thread, by sewing a conductive path to the PCB, wrapping
the thread through a hole at the according circuit path
several times before returning to the pinstripe textile, where
the start and end of the thread is interwoven. A header
on the PCB allows connection with the hardware serial
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channel, the voltage pins, and the reset pin. Therefore, it
is possible to program the Atmega with the boot loader
function over the serial line. The boot loader itself can
be programmed via crocodile clamps on stripes which
represent the remaining ISP-pins on the textile below, or by
connecting the according circuit path on the PCB with an
ISP connector and program the boot loader before sewing
the system together.

The disadvantage of this version is that the sewing Disadvantage:
Thread looses
conductivity, complex

is relatively complex: each stripe has to be connected
independently with the according circuit path on the PCB.
Furthermore the thread loses conductivity over time, the
interconnection between some stripe and the PCB was lost
faster than expected, while loose ends of the thread may
cause unwanted interconnections.

3.2.3 Version 2: Flexible PCB

Figure 3.4: The second version—An Atmega put directly
on flexible PCB, stapled together with the pinstripe textile.
Orthogonally aligned in the foreground and rotated 45◦ in
the background

Using the toner transfer method, e.g., a flexible PCB Flexible PCB
was etched to directly solder a micro-controller on
it. The interconnection with the pinstripe textile was
made mechanically with pads, pressed together with the
conductive stripes of the textile by staples.
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EXAMPLE TONER TRANSFER METHOD:
A mirrored layout, printed with a laser printer on
transparencies, special transfer paper or even plain
paper, is applied on a PCB: As far as we have tested,
using transparencies5 worked well: Apply the printed
side of the transparency to the copper of a fine sanded
and cleaned—and optional shortly etched—PCB. After
this, let an iron stand on top of it for 3 or 4 minutes and
full power. Thereafter, rub in the layout for the same time
by moving one edge of the iron in small circles and with
soft pressure (high pressure may move the molten toner
and prevent a sharp layout). After this, directly insert
the PCB (the transparency should then stick on top of it
due to the molten toner) into cold water, which removes
the transparency due to different temperature extension
coefficients. Or—if a paper is used—peel off the paper.
After this step, control the layout and correct minor parts
without toner with a permanent marker or—in case of
bigger faults—remove the whole layout from the PCB
by sanding or acetone and start over. If the transfer
was successful, burn in the layout for additional 3 or 4
minutes on top of the flipped iron. The PCB is now ready
for etching.

Definition:
Example toner

transfer method

A second variant of this version uses stripes rotated
by 45◦. In this case, the folding of the textile will
result in a 90◦ crossing. This reduces the possibility
of missing interconnections and therefore produces more
stable signals, reducing the error made by unconnected
stripes. This attempt was not pursued further, since this
benefit was not necessary for the final version and the
changed distances between stripes due to the rotation did
not allow a direct comparison with the unrotated version:
The rotation virtually enlarges the width of both stripe and
distance between stripes, therefore enlarges the reaction
time of the system and reduces sensibility.

While pads on the PCB near the micro-controller in the
middle of the dark PCBs on figure 3.4 remains for the
programming (here: ISP pins instead of the serial pins as
in the version before) and debugging interface, the iPod
connection (serial and voltage) is moved to the side of the
prototype (the bright solder pads of the header are seen on

http://www.mikrocontroller.net/topic/254046
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the right side of each version): A connection in the middle
as in the prototype before causes the connection cable to
interfere with the folding, and reduces the usability.

Instead of an Atmega 328 as in the Duemilanove, now a
cheaper Atmega 168 is used: According to program size
even an Atmega 88 is possible, while the flash memory
of an Atmega 48 is too small. The use of an Atmega 8 is
not recommended due to the lack of pin-change interrupts.
This would prevent interrupt-triggered sleep functions of
the micro-controller between measurements.

The pinstripe textile is ironed together with a carrier
textile—simulating the t-shirt—with a transfer sheet for t-
shirt printing. This meltable plastic glues both of them
together, while not isolating the conductive garment like
the liquid glue before. With the same method, the pinstripe
garment could later be ironed on the target textile.

While this works well, another design issue has to be Disadvantage:
Broken circuit pathsremoved: The small dimensions of the circuit path—

especially near the micro-controller itself—causes broken
connections due to bending, rendering this version
unusable after a short time.

3.2.4 Version 3: Rigid and flexible PCB

In the final version, bigger dimensioned circuit paths on Combine rigid and
flexible PCBthe flexible PCB (seen from the back in figure 3.5—the

copper circuit paths are visible through the PCB) and the
connection of a flexible and a rigid PCB as micro-controller
carrier (in the middle of the flexible PCB) reduces the
chance of broken circuit path on each PCB itself.

The overlapping pads between garment and PCB were
made bigger and are also pressed together by staples,
which increases reliability. Additionally, this allows a
disassembly of the pinstripe, if the garment has to be
replaced. In a textile version, the staples would be replaced
by non-conductive stitching, which will press conductive
garment and copper foil together in a similar way. The iPod
connector remains on the side of the prototype as in the
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Figure 3.5: The third version—Using both rigid and flexible
PCB. In the background is a version with the Atmega168,
and in the foreground the MSP430 version

version before. A similar connector is added to the rigid
PCB with the remaining programming and debugging
pins.

The pinstripe garments were then ironed together with
different carrier garments as described before. Five
prototypes with the Atmega168 with different textiles—
versions without a carrier garment, and with other different
surfaces (silk, polyester, cotton, and fly-screen)—were
produced for the user study. These final prototypes were
then attached to snap-bands to be worn on the arm to
simply exchange different textiles.

Another version was build with the MSP430G2553 by
exchanging just the rigid PCB part with a different layout.
A pull-up resistor for the RESET pin had to be added as an
additional element because of the missing programmable
pull-up resistor.
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Here, the interconnection between both PCBs is the weak Disadvantage:
Interconnectionspoint, where the copper laminate could break due to

strong bending, especially if solder is applied. Taping this
interconnection for a smoother transition between rigid
and flexible may further reduce this—but a broken path
only occurs after extreme bendings (crumpling the whole
pinstripe prototype) during continuous testing.

3.2.5 iPod connection

Broken cable connections due to pulling was the main iPod connector
cause for failure during continuous testing. Stretching
the cable between iPod and pinstripe prototype causes
the connector cable to unplug at the prototype either or
breaks connection within the connector itself. To improve
repairability and to remove this weak point, another small
PCB was designed to be soldered in the connector itself,
improving the stability of the interconnection. Fixing
the cable with hot-glue within the connector additionally
reduces failures.

3.2.6 Computer connection

The Atmega version of the final prototype has three usable Cable Connection
I/O pins at the programming header on the rigid PCB
(MISO and MOSI, together with RESET) and on the flexible
PCB (SCK, together with VCC and GND). To use this
pinout, a shield for the Duemilanove was designed, which
could be either used as an ISP programmer, for debugging
(using a direct connection with a removed jumper between
the MOSI pin and TX line of the Duemilanove) or finally as
an interface between prototype and computer for the user
study.

In this case, the SCK pin is used to send the debug
information to the computer, while the two other
programmable pins are used to switch between different
evaluation functions on the prototype. For this purpose,
both pins are used as input pins on the prototype.
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Figure 3.6: Duemilanove shield for the user study and
programming

This allows to switch between four different modes
according to applied voltage level on these pins.

Two buttons (shown in the middle of figure 3.6) allow to
switch between the different functions, which could also
be controlled from the computer. The selected function is
indicated with LEDs above the buttons. Between power
jack and usb connector of the Duemilanove a six-pin
connection header is mounted for connections with the
pinstripe prototype, while another four-pin connector next
to the reset pin could be used for the connection with
an iPod—using an opto-coupler for the different voltage
levels. To prevent auto resets of the Duemilanove while
using it as an ISP programmer, a capacitor is mounted
between the reset pin and ground.

For the user study, a modified version with several
connectors was made to directly connect all pinstripe
prototypes used in the study.
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Figure 3.7: Duomilanove with attached RFM70
module (above) and transmitter module (RFM70 and
MSP430G2452, below) for connection with pinstripe

To control a device without cable, a transmitter PCB, Wireless Connection
as shown in figure 3.7, was designed. It features a
MSPG2452, a RFM70 module, and a battery and can be
directly connected with a pinstripe prototype. The MSP in
its 14 pin version uses a modification of the rfm70 library6

by Wouter van Ooijen to control the transceiver module
with 6 of the I/O pins, while the other 4—hardware serial
and I2C channel—are independently usable, allowing the
transmitter module to work also as a standalone device.
This MSP is again programmed with the Launchpad as
programmer over the two wire interface.

A Duemilanove with another RFM70 transceiver works as
receiver station. 5V compatible pins allow a connection
with the Duemilanove, while the transceiver itself need a
supply voltage of 3.3V.

6http://www.voti.nl/rfm70/rfm70-arduino.zip

http://www.voti.nl/rfm70/rfm70-arduino.zip
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The RFM70 transceiver was chosen instead of a common
XBee module, because of its smaller size and the smaller
and simpler header (a single row of eight pins in a 1.27mm
grid instead of the two distant rows of 10 pins in a
2mm grid). This allows a very compact design, even a
direct soldering of the module on the PCB without header.
Furthermore and -most, the RFM70 module only costs part
of an XBee module.

TRANSCEIVER MODULES:
A transceiver module is used to transmit data with
radio frequencies - in this case with the 2.4 GHz
band. A common module is the XBee module, which
could directly transmit and receive data of a RX/TX
connection. This allows a use of the transmitter module
instead of a wired serial connection. In combination
with the sleep control pin, a three pin layout is possible,
while the RFM70 transceiver module needs 6 pins for a
four pin SPI connection (MISO, MOSI, SCK, and CSN),
one pin for sending or receiving and an interrupt output
pin. Different power level (sending power) and channel
(carrier frequencies) could be chosen for both modules,
and receiving up to six addresses simultaneous allows a
radio network (1 to 6 star network) for the RFM70, while
the XBee allows direct transmission of analog data, and
has further network abilities like broadcasting.

Definition:
Transceiver modules

3.3 Software

Each stripe of the sensor field of the pinstripe hardwarePrevious:
Measurement matrix is connected with an I/O pin of the micro-controller. To

determine the position of a fold with the original evaluation
software, one stripe at a time is connected to ground (grey
in figure 3.8, no measured value for this stripe), while all
other stripes are pulled up through the internal pull-up
resistors. Each of the other stripes is then measured, and
if a ground level is detected, a connection to the grounded
stripe exists (blue colored). This procedure is repeated for
the next stripe until all stripes are once grounded.
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Figure 3.8: Matrix evaluation of a pinstripe signal. Each
row of the array is one measurement of one stripe
against each other, while the vertical columns represent the
different stripes. Blue fields indicate a connection between
this stripe and the measuring stripe, indicated grey in each
row. The unsymmetric matrix indicates either noise or
changes of the fold between a slow-going measurement.

The resulting matrix can then be used to detect the size Detect distance by
Weight and Addof the fold on one diagonal by weighting each connection

on one side from the grey diagonal by its position. The
average of these weighted positions is the fold position.
The minimal distance between resulting position and the
diagonal represents half the size of the fold. Comparing
the according positions at the different measurement
determines the fold movement along the diagonale.

The weighting of the single connections of a non- Smoothing by mean
symmetric array, which indicates some errors due to
measurements, allows some kind of correction: Each side
of the diagonal may be evaluated independently, and the
result could be compared. On the other hand, the relative
high number of measurements per array in combination
with the determination of the position already smoothes
the data.
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To prevent errors due to lost connections (e.g., mechanicalLow-pass filter:
Adding old values disconnections of a stripe or loose connections while

moving the fold) or non-intentionally shortened stripes
(e.g., movement of the garment), these values are
additionally smoothed over time by adding weighted old
and new values, forming a low-pass filter. If a movement
is detected, an according command is send to the receiving
iPod, and is repeated according to the size of the fold.

The low-pass filter prevents most unintentionalSafe, but slow and
expensive commands, but increases the time between an

intentional directional change by the user and a resulting
corresponding command. The use of these weighted
values needs floating point calculation, which is less suited
for a micro-controller. Since an exact value is not necessary,
the value could be changed into an integer by multiplying
an according factor and rounding. By choosing this
factor, an efficient weighting may be implemented with
bit-shifting or using the integrated hardware multiplier of
the MSP430.

To speed up the reaction time of pinstripe and nevertheless
getting only intentional commands, the filter algorithm has
to be adapted. For an efficient design, the measurement
of the stripe signal was overworked, too. The resulting
patterns in the measured data then lead to the overworked
filter algorithm, described in the next part of this thesis.

3.3.1 Measurement method and pattern

Instead of setting one stripe on ground and measure allNew: diagonal row
instead of full array other stripes against this one stripe, in this version all

stripes are grounded and one stripe after another is pulled-
up and measured against all others. This represents the
diagonal (grey fields) of the pinstripe matrix from the
original algorithm - while for the rest of the matrix no
data exists anymore. Both movement of the fold parallel
to the main diagonal and the fold size orthogonally to this
diagonal are therefore projected on this line: The distance
between the outer connected stripes determines fold size
and a fold movement changes these connected stripes.
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The main advantage is a faster measurement: Only Fast and efficient, but
less stableone measurement has to be done for each pin, and the

measured value can be directly used as result. This needs
only register manipulations for a single pin, while all other
remain unchanged. A faster measurement itself is not
useful, the fold movement determines an upper bound
for a repeated of measurement: Otherwise no change,
apart from noise could be detected. Instead, it allows an
implementation with lower clock frequency and therefore
better energy consumption. If the pin is pulled-down
through an interconnection with another stripe, this pin
is an outer limit of the fold, if no stripes before or after
are shortened. Furthermore, counting all shortened stripes
could be directly compared with a limit value to detect
crumbling of the textile. The size of the fold could
be computed as the difference between the two limiting
stripes. The fold movement can be obtained by comparing
the difference of the limiting stripes of two measurements
after another.

As an additional benefit, debugging is simplified, since
each row of measured data could be compared with
the predecessor, getting a two dimensional array over
time. The use of fewer measurements to determinate size
and position of the fold in comparison to the original
two dimensional array increases the risk of measuring
unintentional disconnections. This should be taken into
account for the filtering. For this purpose some of the most
common patterns over time are discussed next.
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Figure 3.9: Pinstripe patterns—Fold movement

Each row in figure 3.9 represents one measurement of all Fold movement
(horizontal arranged) stripes. Again a blue field indicates,
that the stripe on this position has a connection to another
stripe. In the vertical direction from top to bottom we
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see changes over time: First, the fold moves and increases
to the left side, then goes to the right side and becomes
smaller (distance between the outermost blue fields). Since
a minimal change of position and fold size could be easily
caused, e.g., by loose connection or by change of the grip,
a bigger position change than one over time should be
necessary to trigger a command.
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Figure 3.10: Pinstripe patterns—Unstable signal

Loose connections and changes in finger pressure orUnstable signal
unintentional moves of the fold may cause changes in
the signal as shown in 3.10. Therefore, the signal
has to be stable for a certain time until a command is
generated: The comparison of a signal with the predecessor
should indicate the same movement as the comparison
of the predecessor with the pre-predecessor or at least no
movement.
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Figure 3.11: Pinstripe patterns—Changes in the fold size

A big change in fold size as shown in figure 3.11 betweenChanges in the fold
size the second and third row from the top may be caused either

by loose connections, unintentional folds, or recatching. To
prevent these commands due to this massive movement of
the fold, a signal is generated only if the fold size changes
within certain bounds between two measurements. A
minimal change has to be allowed, since moving the fold by
rubbing the textile between thumb and index finger results
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in a steady change in fold size. This kind of making a
fold causes also a difference in usability between the two
directions of moving the fold.

3.3.2 Filter algorithm

The pinstripe behavior could be modeled as a line of Frequency filter
buttons, which are pressed and released by the user while
moving the fold. The time between each release or press
depends on how fast the fold is moved. Additionally,
there are only few measurements before a signal should be
generated: The movement of the fold until a command is
generated should be as small as possible for a fast feedback
of the system. In this case a frequency filter can not be used
to detect and filter the intentional signal, because of the lack
of frequency—the ideal user input is a linear movement of
the stripes to one side.

On the other hand, the user may also correct unintentional
moves by changing the direction, and—like buttons—
each activity may be connected with a bouncing behavior.
Furthermore some buttons may be inactive (defect stripes),
or unintentional released by the user, or connected by
movement of the garment itself.

This results in the following thoughts: Design fundamentals

1. The fold has to be moved over a minimal number
of stripes to be count as valid movement, smaller
movements may result because of bouncing behavior.
Changes of very few stripes have to trigger a reaction
for a short reaction time of the system. Therefore, no
longtime analysis to determinate the speed of the user
input for filtering analysis is possible. With a longer
reaction time, more stripes will be crossed by the fold
and therefore a safer signal may be generated.

2. To prevent wrong signals because of unintentional
connections or disconnections of stripes, the size of
the fold has to be stable. Since the size may change
because of rolling the fold a minimal change in the
size between measurements has to be allowed.



30 3 Hardware Prototyping and Software Modification

3. If a movement in one direction is detected, a
corresponding command is only triggered if the next
measurement determines a movement in the same
direction or no movement at all. Comparing more
measurements will result in longer reaction time, but
again in safer signal detection.

4. To prevent wrong commands due to the unknown
behavior while pinching the fold, a delay between the
first measurements and the evaluation may be useful.
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Figure 3.12: System design: Arithmetic operations over
time on the left and decision tree on the right side

This could be efficiently implemented with a micro-
controller (figure 3.12, left side): Only comparisons
between different integer values are needed. Both actual
and previous values are stored in an array, where a
boolean value, which is toggled in each measurement,
determines the actual position. The result of each
comparison at a time can be used as a reference for the next
analogue comparison, preventing a doubled computation.
In particular the leftmost and rightmost stripe, which
are connected with other stripes are stored as actual
position, and the also the total number of connected stripes.
The difference between the outermost stripe positions
gives the fold size, and changes of the position between
measurements give the fold movement.
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If connections between stripes are not detected, the micro-
controller can sleep, since no fold is present. This also resets
all values.

The right side of figure 3.12 represents the decision tree:
If more than a certain number of stripes are connected,
a crumbling of the textile is detected and therefore a
corresponding command (here: “Enter”) could be send.
Otherwise, the actual movement of the fold, represented
here by the ∆x, together with the sum over all previous fold
movements is compared with a trigger value. The trigger
represents the minimal distance which should be covered
by the fold movement before a command is triggered.
If this trigger is reached, the system checks if the size
of the fold stays within the allowed bounds and if the
signal remains stable: The actual ∆x should be at least
zero (no movement) or should have the same prefix as
the ∆x’ before (movement in the same direction). If both
requirements are fulfilled, the corresponding command,
depending on the prefix, could be sent.

Once a command is generated, it could be used in different Control options
ways to accomplish various goals:

1. The number of commands per grab can be limited
through a trigger value, which is only resetted if
the fold is released. This is especially useful for
crumpling the textile to generate a toggle command.

2. This command could be repeated according to the
fold size: Here it makes sense to use a nonlinear
function. Very small fold sizes could not be
reasonably distinguished, and therefore should all
trigger one single command, whereas after a certain
size, the number of repeated commands can be
increased. A simple and efficient function is shifting
the fold size two bits to the right and adding one for
each cycle.

3. The sum over the fold movements may be reseted, if
only one command per certain movement of the fold
is favored, like a skip forward command for an audio-
player. Otherwise the command is repeated until
either the fold moves back to the original position,
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resetting the sum below the trigger value, or the fold
is released. This allows to achieve high numbers of
repeated commands, while releasing the fold allows
a fast feedback and therefore a relative high precision
is still possible.

3.3.3 Command generation

If the evaluation of the measurement determines a stable
movement and size of a fold or a high number of shortened
stripes, which indicates a crumpling of the garment, the
corresponding command is send either to the receiving
device and/or a computer for debugging.

For this purpose a serial sender is implemented, based
upon the Software serial library by David A. Mellis,
as found within the Arduino IDE. Basically—without
receiving and only sending single bytes—it is just a timed
change of the output level of a pin. These timed delay
could be implemented by either counting a number of
clock cycles or—less energy consuming—by a short timer-
controlled sleeping function of the micro-controller. After
such a delay, the next bit of a byte is sent by changing the
pin level.

The bytes to send to control an iPod are derived from
the iPodLibrary7 from David Findlay, with additional
information like according debug bytes and using a chain
of commands instead one single command.

3.3.4 Energy saving

A low clock frequency results in a low energyClock frequency
consumption. Therefore a slow frequency of only 1 MHz is
used for the normal function, and is even lowered between
measurements. Since the Atmega is used with an internal
clock frequency of 8MHz or an external 16MHz crystal on
the Arduino board, different clock frequency dividers are

7https://github.com/finsprings/arduinaap

https://github.com/finsprings/arduinaap
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used. For this purpose the internal base clock frequency
is read out and the according clock divider is selected
automatically.

Between measurements on one hand and as short time Timer interrupt
delays for serial communication on the other, the micro-
controller should sleep, disabling most of its functionality
apart from the internal oscillator. Each tick of the oscillator
is counted until a certain number is reached, where a timer
event is triggered, waking up the micro-controller.

The timing interval can be controlled by changing the
corresponding trigger value, enabling the usage of the
same timer for both types of time delays.

Whenever no fold is present, which results in no Pin-change interrupt
interconnection between stripes, no further measurement is
necessary and the micro-controller can be suspended until
the next interconnection happens. For this purpose, each
second stripe is used as an input and pulled up, while the
other remain grounded. If one stripe of each group is then
connected with one of the other, a pin-change interrupt is
triggered and wakes up the micro-controller.

In rare cases, a fold could connect in rare cases in
connecting only members of each group with each other,
letting the micro-controller sleep. Small movements of the
fold resolve this case.
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Chapter 4

Evaluation

At the end the reworked prototype and software has to
be tested: Both in daily use of the prototype to detect
mechanical design flaws and a user study to determine the
usability of hardware prototype and software, especially
the constraints for textiles and the software response on
user input.

4.1 Daily Use

One major cause for hardware breakdown of the final Mechanical failures
prototype were unintentional pulling on the cable between
pinstripe and iPod. The PCB within the iPod connector
improves repairability, and the connector between cable
and flexible PCB prevents defects on this side. The
connection between rigid and flexible PCB was prone to
defects due to extreme bending: Solder on the flexible
copper laminate makes the circuit path breakable on this
spot. Applying solder only between both PCBs and making
a continuous transition between rigid and flexible PCB may
further reduce the probability of a circuit break.

Additionally, the system behaves less sensitive because Loosing conductivity
the conductive surface of the pinstripe textile wears down
while using.
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4.2 User Study

4.2.1 Design

Each part of the study uses the same configuration onStructure and design
the screen, which is is shown in figure 4.1: On the top a
button, a continuous slider, and an indexed slider is shown
(and greyed out if not active, like the indexed slider in the
picture). Below is a questionnaire for the according part
of the study, which could be filled out at any time before
continuing with the next part. Pinstripe did not work on
top of other clothes, since these textile may be included in
the fold, isolating the stripes from each other. Therefore an
additional snap-band was used in the study to prevent this
behavior, delivering a non-foldable background below the
pinstripe prototype and above the clothes.

The user study first lets the participant compare theCompare textiles
different textiles (the pinstripe garment with only a transfer
film applied, and with polyester, silk, cotton and fly screen
on top of this film). For this purpose, each textile could be
attached on the arm of the participant via a snap-band. To
distinguish the different textiles for evaluation, apart from
color-coding the textile itself, the used textile is indicated
on screen.

After choosing the best suitable textile (and grading all ofGrade different
functionality them), the participant continues the study with this textile.

Gender, handedness, age and experience with wearable
computing are queried next. Furthermore, the participant
chooses how the direction of a fold movement should be
translated in a movement of the slider. After this part, they
evaluate this input mode—how fast the system reacts, if it
delivers the right commands or freezes, if the possibility
of error correction works well, and if this mode may be
generally useful. The same questions are then asked again
for the following, slightly different modes:

1. “Volume”: In the first part crumbling the textile
switches the button on the top, and moving a fold
to the left or right results in a continuous movement
of the slider in the middle, until the textile is either
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Figure 4.1: Screenshot of the user study GUI: In the
upper half the active continuous slider and button and the
inactive indexed slider. In the lower half the questionnaire.

released or the fold is moved back to the start
position, which is like a continuous “Volume” control
of a device.

2. “Skip”: The indexed slider is used—“skipping” back
and forth between each part—and the button. The
button is used as before, but a movement of the
fold in one direction triggers only one command per
covered distance by fold movement, not repeating the
command until released as before.

3. “Switch”: Both slider are in use, “switching” between
each of them via fold size. For example a big fold will
change the volume, while small folds skip forward or
backward.

4. “Select”: This mode uses the indexed slider again,
but with the button function (crumpling the textile)
to confirm the selected input, as “selecting” an entry
from a list.

All the time a green rectangle indicates a target. If it is
reached, it will disappear and a new one will appear on
another position. This is evaluated in the first three modes
by releasing the textile, and for the last mode with the
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Figure 4.2: Evaluation of carrier textiles

crumpling command. Time until the target is reached,
target and size, the raw data of each stripe connection as
well as the processed commands are stored.

4.2.2 Results

As shown in figure 4.2 the best textile to use withDeterming a good
textile pinstripe is no textile at all: The pinstripe textile with

only an applied transfer film (Nothing) for t-shirt print
could be well handed and is highly flexible. On the
other hand, the polyester/cotton (Poly) textile is worse to
grab, but with a lower flexibility a more precise handling
may be possible, reducing the possibility of unwanted
folds. Both disadvantages are mentioned in the study
from some participants. At least this may explain why
one part of the users prefer “Nothing”, while other prefer
polyester/cotton. The fly-screen is between these two most
of the time: with its better grip and firmer garment it is also
in this top flight—although it has a nearly significant worse
grading to the version with only the transfer film.

Cotton and silk remain far behind—either too firm and/or
with a worse grip, although one person rated the cotton
version as best textile and used it in the rest of the study.



4.2 User Study 39

These results could be partly confirmed by the number Evaluating the raw
dataof wrong commands per total number of commands until

a target is reached. To determine this, the data from the
user study was evaluated automatically: The data files of
each user where scanned for the “. . . expected” sentence,
indicating the begin of a new targeting cycle. Each
command on the right side of the numbers—indicating the
connection(“1”) or non-connection (“0”) of stripes—is then
counted, until either a change in the mode occurs or, as
it happens in the example in table 4.1 a “Time” is printed
out. Then time, the expected target (here: crumbling the
textile—or toggle “TP”), and used textile (here: cotton, “C”)
and the number of the different commands is stored, as well
as the actual part of the user study. The user input in the
study is evaluated after a sleep command (“SL”), indicating
that no fold is present—while this is not necessary for
the crumbling, the sleep indicates a release of the textile
and therefore the comparison with the target value for the
slider movements. For example, in 4.1 a time for successful
reaching a target follows the “SL”, which indicates that this
evaluation was made.

. . . Toggle expected: true . . .
Actual value: falseC
0000000011100111000
0000000111111111100TP
0000000111111111100
. . .
0000000111111111100
0000000101100100100
0000000000000000000??
0000000000000000000??
0000000000000000000SL
Time: 3864.0c

Table 4.1: Raw user data

The resulting data can then be used to either compare
different parts of the user study or, for this part of the
evaluation, the different textiles within the first part. These
results are shown in figure 4.3: Only the position of cotton
and fly-screen is flipped, but the differences between all
textiles are not significant and both error rate and standard
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Figure 4.3: Data evaluation of carrier textiles

deviation are high. This high number of wrong inputs—
contradicting the later described overall good grading of
the usability—has several causes: First, there was no
training phase, every user input from the beginning on
is evaluated. This produces a high number of wrong
commands, especially since some user were not able to
handle pinstripe to their satisfaction. Second, the user may
play around with the system and did not want to reach
the target directly, especially here at the beginning. And
a unusable textiles for one user causes extreme high error
rates.

The response time of the system is graded as good for allSystem response
modes in the questionnaire. The overall time according
to the raw user data between waking the micro-controller
up the and first response command is about 486 ms
(counting the number of lines of data, equal the number
of measurements, after waking up until the first command
is sent, times the time for one measurement).

The users graded the response time around 1 for all three
modes—and similarly, the system gave rarely no reaction at
all. But of course in this case also a wrong response counts
as a response.
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Figure 4.4: Evaluation of different modes

Most of the people did not have experience with wearable Evaluate
Functionalitycomputing devices before, but apart from the mode where

the participant has to distinguishing between the two slider
with the fold size (“Switch”), most users could use it:
confirming the slider position with crumpling the textile
(“Select”) was slightly worse, since an additional grip
per command was needed. Crumpling the textile may
also result in short movement, which moves the position
away from the target, reducing usability. Especially error
correction was far worse than the error correction for the
indexed slider (“Skip”).

The usability of the different modes is similar: “Volume”
and “Skip” got the best grades—which version is better
suited for the mobile version has to be determined in
the future, since the difference between these two is not
significant. Additionally, a mobile application with audio
feedback has different constraints than this user study with
visual feedback: A short test within the daily use indicates
that the “Volume” function may change the volume too
fast.

The “Select” function, maybe usable for list selection, has a
slightly lower grade. Here, the major disadvantage is the
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Figure 4.5: Data evaluation of different modes (stdev as
error marker)

additional grip. For a mobile application a feedback for
list selection has to be given either optically or acoustically,
therefore reducing the prime feature of the eyes-free
usability of pinstripe. Without surprise, the “Switch” via
fold size is graded as useless.

According to this data, as shown in figure 4.4, a preference
for “Volume” and “Skip”, followed by “Select” seems
to exist. But all these differences are not significant,
as the relative large standard deviation also indicates.
Only distinguishing different modes with the fold size
(“Switch”) is significantly worse than the other, making it
unusable.

Evaluating the raw data, a wrong command happens often,
especially for the “Switch” mode where only some users
reach a target at all. The high numbers for the “Volume”
were discussed above, and here in figure 4.5 the data
from the best textile grading mode is used again for the
“Volume” evaluation. “Skip” and “Select” achieve much
lower values, indicating only small error rates in real-world
usage. Nevertheless, apart from the mentioned issues with
the “Volume” data, the ranking is the same as the grading
of the users and therefore supporting it.
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The mapping of fold movement to slider movement Other observations
should be user-adaptable, since no mapping is consistently
preferred by all user. Most participants wrap the pinstripe
prototype around the lower forearm, which was the easiest
way to control it while sitting in front of the computer.
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Chapter 5

Summary and future
work

5.1 Summary and contributions

Wearable devices like smartphones and mp3-players are
used today effortless while doing other things. Therefore,
input devices, which do not need much attention, are
necessary. A good example is the remote control on the
headphone cable: It mirrors simply controls like volume
changes of the device on the other end of the cable, but it
is still more convenient to grab the cable, find the remote
and press their buttons than using the same buttons on the
device itself.

But locating the remote is still not effortless. A eyes-free
and therefore more effortless interaction is the goal of the
pinstripe system, which allows the users to control the
device just by making a fold in their clothes. This causes
short circuits between an array of conductive stripes on the
back of the cloth, resulting in a corresponding pattern by
the fold movement.

While wearable prototypes of this system already exist,
they could be further improved by using smaller micro-
controller (either MSP430G2553 or Atmega 168) and less
components. Furthermore, the filter algorithm had to be
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adapted for the system, since the prototype before did not
work in an optimal fashion—the system reacts relatively
slow on user input. On the other hand, a low energy
consumption is necessary for a mobile device.

The evaluation software, including the measurement ofSystem redesign
the stripes, was reworked: An inverted measurement of
the stripes—measure one stripe as an input against all
other outputs instead of the other way around has the
benefit of a more efficient implementation and additionally
allows an easier debugging (a single line of zeros and ones,
representing each stripe and their connections, instead of
the two dimensional array before). It also eliminates the
need of floating point calculation and uses time shifted
comparisons instead of a frequency filter algorithm.

This results in faster reaction times and needs only a slow
clock frequency.

With a slower reaction time, the error rate of misinterpreted
patterns could be further reduced, but since errors can
be corrected easily and quickly, the faster reaction time
may be better. For lower power consumption, pin-change
interrupts are used to detect folds. The micro-controller can
sleep otherwise. Timer interrupts are used as delays with
an otherwise disabled controller.

This prototype was tested both in a user study and in daily
use.

The main remaining issue is the decrease of conductivityDaily Use: Abrasion
of the pinstripe fabric of the stripes due to wear and tear. Other mechanical

failure causes like getting caught with the cable, causing
disconnections within the iPod connector, could be reduced
until the connector becomes the break point, which can
be plugged in again. Another failure cause is the solder
connection between rigid and flexible PCB. This failure
only happens after extreme bending, and could be reduced
by making a continuous mechanical transition between the
two materials..

The software on the other hand works stable, although the
mapping between (vertical) volume control and horizontal
fold movement is not optimal.
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A user study with different textiles indicates that the User Study: Tangible
textiles, no switches
between modes

clothes, which could be used with pinstripe, should have
an easy tangible surface: The plastic surface of a pinstripe
textile coated with a transfer film for t-shirt prints (or a
silicon surface, not tested, but proposed by a participant)
is well graded by the users, while a rough surfaces like
the fly-screen is lower graded. On the other hand, the
textile should not be too flexible, allowing a precise control
without unintentional folds: A polyester/cotton textile also
gets good grades, although it has a worse tangible surface.

Apart from one function, where different functions were
controlled depending of the fold size, the overall usability
was good: The response time was short, and an easy
error correction and low error rate allow a usage without
training.

5.2 Future work

The main issue may be the mentioned instability of the More robust pinstripe
fabricconductivity of the stripes over time. Since bending and a

mechanical connection and movement between the stripes
is necessary for the function, this issue could not be easily
resolved, but may be further reduced by using different
conductive yarns for the pinstripe fabric, e.g., made of
stainless steel.

With a more robust fabric, the system could be tested in Daily-use user study
a longer user study with the intended use as an input or
a wearable device. Here it may be interesting to select
between the two possible mappings of fold movement
to signal generation. Furthermore, a selection between
sending just a certain number of commands per fold
movement, and repeating these commands until either the
fold is released or moved back to the start position may
be interesting. Both modes where popular in the user
survey and a certain mapping, corresponding for example
to handedness, could not be determined.
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For this purpose, a shield with two switches may be added
to the prototype to enable to switch between the two modes
while using pinstripe.

If the decrease of conductivity can not be reduced, another
method of measurement instead the resistive one may be
interesting.

One—not practicable nowadays due to size and costs—Time Domain
Reflectometry (TDR) approach for a similar device could be the use of time

domain reflectometry: Wimmer and Baudisch [2011]
propose a system, where the signal propagation delay is
used to detect for example (capacitive) interconnections
between two wires. Furthermore, both stretchable and
even sketched forms where used. Transferred to the
pinstripe idea, this could be used to either simplify
the fabric layout (rotated by 90◦, and with only two
wires instead of the multiple ones—which could also
be scaled better) or adding a second dimension—but
again, nowadays a corresponding integrated time-to-
digital converter for this scale (size, price, and resolution)
does not exists.

Another possible change is to switch to capacitiveCapacitive
measurement measurements, where only gestures above are detected.

In this case, the distance to other parts of the body—like
the arm—disturbs the measurement. This may be reduced
with a double layer textile—a bottom, grounded layer is
used as fixed potential, while the second layer measures
the gestures on the other side, which would be similar to
the GesturePad design proposed by Rekimoto [2001]. Since
the used MSP430G2553 has the capability for capacitive
measurements1 for all 24 GPIO pins, it is easy to adapt
the hardware prototype: The only necessary part is adding
a second, conductive layer between pinstripe fabric and
human body, which is connected to ground. In this case the
abrasion will be reduced, but the short distance between
the two layer will make a gesture recognition problematic.
A reprogramming of the launchpad version shows that
this measurement method generally works, but with
flexible textiles, the required dimensions and distances,

1http://processors.wiki.ti.com/index.php/MSP430 Low Cost
PinOsc Capacitive Touch Overview

http://processors.wiki.ti.com/index.php/MSP430_Low_Cost_PinOsc_Capacitive_Touch_Overview
http://processors.wiki.ti.com/index.php/MSP430_Low_Cost_PinOsc_Capacitive_Touch_Overview
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disturbances outmatch the signal. One modification may
be a hand-sized grid of nine electrodes on the upper arm.
Using the hand instead of just the finger enlarges the
electrode and results in bigger changes in capacity. This
array may be enough to detect simple patterns like moving
the hand up or down above the sensor for volume control.

Finally a snap band instead of the textile as a carrier can Snap-band as input
devicebe used as an input device or even as a standalone mp3-

player. The metal base could be either work as defined
back layer for a capacitive measurement of gestures above,
or movements of a top layer relative to the bottom layer
could be detected with switches, reed contacts, or even
phototransistor. The corresponding input devices, micro-
controller and battery could be mounted on small, partly
flexible PCBs on top of snap-band.

Even without exactly locating these two capacitive devices,
the hand will be at some point above the sensor areal
by moving along the opposite arm, and triggers a
corresponding command. Power consumption and the
stability of the measurement results as well as duration
of one measurement cycle are the main challenges for this
method. A further improvement of the pinstripe fabric
with a different conductive yarn might be easier and is
more promising.
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Figure 5.1: Future work: Snapband control
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Appendix A

Micro-controller
programming

This section summarizes the micro-controller code used
in this thesis for both Atmega and MSP430 with short
description and code examples.

A.1 Micro-controller selection

First, the overall selection, which micro-controller is used
is done by choosing the according header file with the
used pinstripe layout. In the header file, the same
defines are established for each controller. Similar, both
Arduino and Energia IDE uses defines to establish different
register for each subtype of micro-controller. To distinguish
these types, for example to adapt to different numbers
of channels, a simple scan for the corresponding header
file can be done: If for example AVR ATmega1280 is
defined, the according Arduino board is selected in the
Board menu—and if this is not the right controller, an
upload will not work and therefore no harm will be done.
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Atmega MSP430
#if defined . . . #if defined . . .
. . .( AVR ATmega1280 ); . . .( MSP430G2553 );
. . . . . .
#endif; #endif;

Table A.1: Determine micro-controller

A.2 Pin manipulation

Since we use the Arduino/Energia IDE, pin manipulation
could be done with the shortcuts of the IDE like “pinMode”
etc. This is inefficient—especially if a whole channel has
to be switched, but also due to safety time delays and
–requests. A direct register manipulation is better. A
list of these bitwise register changes is enlisted in table
A.2. Important is the additional possibility of an internal
pull-down resistor at the MSP430, which allows greater
flexibility—which we did not use—but on the cost of an
additional command per pin change during measurements.
Additionally, to these bitwise manipulations all bits of a
channel could be simultaneously manipulated by setting
the whole register, which is useful for initialization.

In the example, “pinNr” stands for a certain output pin
of the Arduino or Launchpad board, while “pin” is a
certain pin of each channel. These channels are enumerated
alphabetical for the Atmega (B,C,D) or numerical for the
MSP430(1,2,3), replacing the x in either DDRx, PORTx and
PINx for the Atmega or PxDIR, PxOUT, PxREN and PxIN
for the MSP430.

To achieve a similar structure for both micro-controller, an
identical structure is defined for the pin layout:

typedef struct pinDefinition {
volatile uint8 t port;
volatile uint8 t ddr;
const volatile uint8 t pin;
volatile uint8 t ren;
uint8 t pinNr;

} pinDefinition;
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Atmega MSP430
pinMode(pinNr, OUTPUT);

DDRx &= ˜(1<<pin); PxDIR &= ˜(1<<pin);
digitalWrite(pinNr, LOW);

PORTx &= ˜(1<<pin); PxOUT &= ˜(1<<pin);
digitalWrite(pinNr, HIGH);

PORTx |= (1<<pin); PxOUT |= (1<<pin);
digitalWrite(pinNr, INPUT);

DDRx |= (1<<pin); PxDIR |= (1<<pin);
PORTx &= ˜(1<<pin); PxREN &= ˜(1<<pin);

digitalWrite(pinNr, INPUT PULLUP);
DDRx |= (1<<pin); PxDIR |= (1<<pin);
PORTx |= (1<<pin); PxREN |= (1<<pin);

PxREN |= (1<<pin);
digitalWrite(pinNr, INPUT PULLDOWN);*

PxDIR |= (1<<pin);
PxOUT &= ˜(1<<pin);
PxREN |= (1<<pin);

digitalRead(pinNr)
((1<<pin) & (PINx)) ((1<<pin) & (PxIN))

Table A.2: Pin manipulation
* do not exist for the Atmega

With this definition e.g. PxDIR in the pin manipulation
is than replaced with *pinDefinition.ddr. To simplify the
layout definition, a define for each micro-controller reduces
the need of definitions to fill the structure to just two
variables: Px for the MSP430 or x for the Atmega and the
pinNr:

Atmega MSP430
#define EXP(channel) #define EXP(channel)

&PORT ## channel, &channel ## OUT,
&DDR ## channel, &channel ## DIR,
&PIN ## channel, &channel ## IN,
&PIN ## channel &channel ## REN

Table A.3: Set pin register
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This code is basically the same as used in the original
pinstripe prototype, on which this thesis is based upon.

The Atmega has the capability to use the Reset-pin as
an general purpose pin: An internal pull-up resistor be
programmed with the corresponding channel C, pinNr.6 as
input and high. In this case an external pull-up resistor is
not necessary.

A.3 Clock frequency

The base clock frequency of the Atmega can be divided
by 1 (0x00), 2(0x01), 4(0x02), 8(0x03) and 16(0x04), while
the MSP has four calibrated clock frequencies (. . . 1MHz,
. . . 4MHz, . . . 12MHz and . . . 16MHz), other frequencies are
possible with according DCOCTL and BCSCTL values.
These values are written to the corresponding register,
with the little difference, that the Atmega has to enable
a timer change first with CLKPR=(1<<CLKPCE);—the
change of the CLKPR register has to happen within few
cycles after this command. Additionally, the internal base
clock frequency of the Atmega differs from the external
clocked Duemilanove—resulting in dissimilar dividers. To
use the correct divider the base clock frequency can be
determined with F CPU == 16000000UL.

Atmega MSP430
Enable frequency change:

CLKPR=(1<<CLKPCE);
Set new clock frequency:

CLKPR=0x03; DCOCTL=CALDCO 1MHZ;
BCSCTL1=CALBC1 1MHZ;

Table A.4: Code example: Select clock frequency
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A.4 Sleeping and timer interrupt

The basic delay(duration) of the Arduino IDE could be
simulated as

for (int u = 0; u < delay; u++) {
asm volatile ("nop");

}

This is not energy efficient (but accurate and stable),
since the delay is programmed by “doing nothing” during
a given time. A better approach uses timer—with a
clock frequency as low as possible again—to count the
clock cycles, while the rest of the micro-controller does
not do anything—using a timer interrupt (see also AVR
and Arduino timer interrupts1 ) in combination with a
sleepmode (as described in AVR and Arduino sleep mode
basics2 , which covers the pin-change interrupts discussed
next.).

Once again, the basic schema is the same for both
controller: First select a timer (here, the Atmega uses the
unchanged main clock frequency, while the MSP430 can
use an additional low frequency oscillator (LFO)), and the
type of counting for each clock cycle. Additionally, the
trigger value, which should be reached by counting, has to
be defined. After this initialization and enabling interrupts,
the timer can start and the controller can go to sleep.
The LPM0;–command both selects type (“0”) of sleep and
enters sleep mode in one step. To enable sleep modes for
the Atmega, <avr/sleep.h> has to be included before.

The different sleep modes allow parts of the controller to
remain active. In this case a low sleep mode with slightly
worse power savings than the deeper ones is used, since the
main clock has to remain active. Other special functions of
the micro-controller are not used at all.

1http://www.engblaze.com/microcontroller-tutorial-avr-and-
arduino-timer-interrupts/

2http://www.engblaze.com/hush-little-microprocessor-avr-and-
arduino-sleep-mode-basics/

http://www.engblaze.com/microcontroller-tutorial-avr-and-arduino-timer-interrupts/
http://www.engblaze.com/microcontroller-tutorial-avr-and-arduino-timer-interrupts/
http://www.engblaze.com/hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/
http://www.engblaze.com/hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/
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Atmega MSP430
Setup:

Use low frequency oscillator:
BCSCTL3|=LFXT1S 2;

Count up function of timer:
TCCR0A=0x02; TACTL=TASSEL 1;

Set trigger value for counter:
OCR0A=kWait; TACCR0=kWait;

Enable timer:
TIMSK0=(1<<OCIE0A); TACCTL0|=CCIE;

Start counting:
TCCR0B=0x01; TACTL|=MC 2;

Enable sleep mode:
set sleep mode( . . .
. . .SLEEP MODE IDLE);
sleep mode(); LPM0;

Exit sleep mode:
sleep disable();

Disable timer:
TCCR0B=0x00;

Clear counter:
TCNT0=0x00;

Interrupt service routine:
ISR . . . #pragma vector= . . .
(TIMER0 COMPA vect) { . . .TIMER0 A0 VECTOR

interrupt void . . .
. . .Timer A(void){

Stop counting:
TACTL&=˜MC 2;

Exit sleep mode:
LPM0 EXIT;

Disable timer:
TACCTL0&=˜CCIE;

Clear counter:
TACLR;

} }

Table A.5: Code example: Timer interrupt

When the counter reaches the trigger value, an interrupt
is released and the interrupt routine is executed and the
micro-controller wakes up. The timer can be stopped and
disabled next and the counter is cleared for the next round.
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Interestingly, this clean-up actions works well on different
places: For the Atmega, most of it happens after jumping
back to the main program, while the MSP430 works best
with nearly everything within the interrupt routine.

For the Atmega, #include <avr/sleep.h> for the
use of sleep modes at the beginning.

A.5 Sleeping and pin-change interrupt

For phases, where no fold—which means no connection
between stripes—is detected, another kind of interrupt is
used to wake up the controller: The pin-change interrupt
which detects if the input level on a pin is changed causes
an corresponding interrupt event. This allows all timer
to sleep, further decreasing the power consumption of the
controller.

While all pins of the first three channel of the Atmega are
capable of pin-change interrupts (see also How to Enable
Interrupts on ANY pin3 ), only the first two channel of the
MSP430 feature this capability. This could be compensated
by a corresponding layout: In this mode, each second stripe
is grounded as a reference signal, which does not need to
be pin-change interrupt capable. The others are pulled-up
inputs and can therefore be grounded by the others if a fold
is present, triggering an interrupt.

The structure is again similar between the two types of
controller: Choose a type of edge detection (rising, falling,
. . . ) and enable these type of interrupt for certain pins—in
this case, all of them (grounded pins will not change, but
do not bother either). While enabling and selecting can be
done in one step for the MSP430 with the PxIES register
for each channel, for the Atmega an additional register has
to be changed: A general register, where the type of edge
detection for all pins is defined (MCUCR).

3http://www.me.ucsb.edu/∼me170c/Code/How to Enable
Interrupts on ANY pin.pdf

http://www.me.ucsb.edu/~me170c/Code/How_to_Enable_Interrupts_on_ANY_pin.pdf
http://www.me.ucsb.edu/~me170c/Code/How_to_Enable_Interrupts_on_ANY_pin.pdf
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After this initialization, the interrupts can be turned on and
the sleep mode can be entered—in this case the deepest one,
turning nearly everything besides the pin-change interrupt
off.

After one of the pulled-up inputs is grounded by
a neighboring stripe while folding the textile, the
corresponding interrupt is triggered, waking the controller
and setting a corresponding flag. Thereafter, the sleep
mode is cancelled, the interrupt disabled and the flag
cleared, thus returning to the initial state.

Atmega MSP430
Setup:

Set interrupt for all pins of a channel:
PCMSKx=0xFF;

Detect edge:
MCUCR=(1<<ISC01) . . .
. . .|(1<<ISC01); PxIES=0xFF;

Enable pin-change interrupt:
PCICR=0x07; P1IE=0xFF;

Enable sleep mode:
set sleep mode( . . .
. . .SLEEP MODE PWR DOWN);
sleep mode(); LPM4;

Exit sleep mode:
sleep disable();

Disable pin-change interrupt:
PCICR=0x00; PxIE=0x00;

Clear interrupt flag:
PCIFR=0x00; PxIFG=0x00;

Interrupt service routine:
ISR(PCINTx vect) {} #pragma vector= . . .

. . .PORTx VECTOR
interrupt . . .

. . .void Port x(void){
Exit sleep mode:

LPM4 EXIT;
Clear interrupt flag:

P2IFG=0x00;
}

Table A.6: Code example: Pin change interrupt
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A.6 Capacitive measurement

The MSP430G2553 has the ability to measure capacitance
on all general purpose pins. It uses the integrated
comparator to charge and discharge the according pin until
a certain voltage level is reached. These charting cycles
are counted for a certain number of time, and are inversely
proportional to the capacitance. A general overview about
measurement methods and design guidelines could be
found at Capacitive Touch Sense Technology4 .

The program code follows the structure of the CapTouch5

library by Robert Wessels: PIN OSC is enabled for the
measuring pin. Each rising and falling edge triggers a
interrupt event and this events are counted for a certain
time with the timer. The watchdog timer is further reduced
by WDTHOLD to measure over a longer time.

4http://www.silabs.com/Support Documents/Software/Capacitive
Touch Sense Technology SPKR.pdf

5https://gist.github.com/2941071

http://www.silabs.com/Support Documents/Software/Capacitive Touch Sense_Technology_SPKR.pdf
https://gist.github.com/2941071
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MSP430
Initializiation:

Timer & Watchdog:
TA0CTL = TASSEL 3 + MC 2;
WDTCTL = WDTPW + WDTHOLD;
WDTCTL = (WDTPW + WDTTMSEL + 0x00 + 0x03);
IE1 |= WDTIE;

Measurement:
Enable capacitive measurement:

PxSEL2 |= (1 << pin);
PxSEL &= ˜(1 << pin);

Enable Counting of timer:
TA0CCTL1 = CM 3 + CCIS 2 + CAP;
TA0CTL |= TACLR;

Sleep until edge detected, count:
bis status register(LPM0 bits + GIE);

TA0CCTL1 ˆ= CCIS0;
Disable capacitive measurement:

PxSEL |= (1 << pin);
PxSEL2 &= ˜(1 << pin);

Cycle number
capacitive = 1/TA0CCR1;

Table A.7: Code example: Capacitive measurement
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Appendix B

Code and Data

Schematicsa

ahttp://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Documentation/Hardware/
Schematics/Jan Thar

Pinstripe source codea

ahttp://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Documentation/Software/
Pinstripe Jan Thar

User studya

ahttp://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Data/User study /Jan Thar

Thesisa

ahttp://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Publications/Thesis Jan
Thar

http://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Documentation/Hardware/ Schematics/Jan Thar
http://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Documentation/Software/ Pinstripe Jan Thar
http://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Data/User study/Jan Thar
http://hci.rwth-aachen.de/public/Research Projects/Pinstripe/Publications/Thesis Jan Thar
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