TRACTUS: Understanding and Supporting Source Code
Experimentation in Hypothesis-Driven Data Science

Krishna Subramanian

Johannes Maas

Jan Borchers

RWTH Aachen University
52074 Aachen, Germany

{krishna, borchers} @cs.rwth-aachen.de

ABSTRACT

Data scientists experiment heavily with their code, compro-
mising code quality to obtain insights faster. We observed ten
data scientists perform hypothesis-driven data science tasks,
and analyzed their coding, commenting, and analysis prac-
tice. We found that they have difficulty keeping track of their
code experiments. When revisiting exploratory code to write
production code later, they struggle to retrace their steps and
capture the decisions made and insights obtained, and have to
rerun code frequently. To address these issues, we designed
TRACTUS, a system extending the popular RStudio IDE, that
detects, tracks, and visualizes code experiments in hypothesis-
driven data science tasks. TRACTUS helps recall decisions and
insights by grouping code experiments into hypotheses, and
structuring information like code execution output and doc-
umentation. Our user studies show how TRACTUS improves
data scientists’ workflows, and suggest additional opportuni-
ties for improvement. TRACTUS is available as an open source
RStudio IDE addin at http://hci.rwth-aachen.de/tractus.

Author Keywords
Data Science; Programming IDE; Exploratory programming;
Information visualization; Observational study.

CCS Concepts

*Human-centered computing — Information visualiza-
tion; Web-based interaction; User interface design; User
studies;

INTRODUCTION

Every day, millions of data scientists use textual programming
to obtain insights from data [25]. In their work, they follow
an exploratory programming practice, which involves experi-
mentation through source code to test ideas [20]. Since such
experimentation leads to messy code, data scientists often
rewrite their code to make it reusable, i.e., write production
code [20, 28]. Additionally, data scientists document their
code as well as insights obtained during their work and ratio-
nale that justifies their analysis methods [1, 29].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI 20, April 25-30, 2020, Honolulu, HI, USA.

2020 Association of Computing Machinery.

ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376764

johannes.maas1 @rwth-aachen.de

Writing production code by retracing code experiments, and
then documenting insights and rationale can be laborious, as
experimental code is hard to understand and navigate. To un-
derstand how this is currently done, we observed ten academic
data scientists perform data science tasks. We qualitatively
coded the observations to understand our participants’ work-
flow. Many participants do not capture insights and rationale
during experimentation, but recall these later by frequently
re-executing source code. We also identified how participants
organize their source code, explore ideas through code, and
what information they use to rationalize their approach when
writing production code later.

To address the problems we identified, we propose an algo-
rithmic and visualization solution that builds on our findings.
This solution (a) identifies and tracks the data scientist’s code
experiments, (b) groups these experiments into meaningful
units, hypotheses, and (c) captures information that can help
data scientists report insights and rationale. It visualizes this
information alongside code, allowing users to interact with it.
To realize our idea, we built TRACTUS, an addin for RStudio?,
a prominent statistical programming IDE [36].

This paper thus makes the following contributions:

e results of a video analysis that help understand data sci-
entists’ workflow during exploration and when rewriting
code;

e TRACTUS, an RStudio addin that identifies, tracks, and
visualizes code experiments grouped by hypotheses, and
contextual information that can help data scientists recall
rationale and insights; and

e results of two validations of TRACTUS that show how it can
improve data science workflow.

BACKGROUND AND RELATED WORK

In this section, we review background information and prior
research on data science, exploratory programming practice,
source code visualization, and history navigation.

Analysis Paradigms and Transparent Statistics

There are two paradigms of hypothesis-driven data analysis:
(a) exploratory data analysis (EDA) and (b) confirmatory anal-
ysis [33]. EDA is used in several research fields to generate
insights from data [22]. In HCI, EDA is often used in ex-
ploratory studies [7] and domains like data visualization [11].

1http ://rstudio.com

http://hci.rwth-aachen.de/tractus
http://dx.doi.org/10.1145/3313831.3376764
http://rstudio.com

Confirmatory analysis complements EDA, and is usually used
after EDA [33]. It involves using methods like null hypothesis
significance testing (NHST), estimation using 95% confidence
intervals, and regression analysis.

NHST is one of the most prevalent methods for validating
research hypotheses [5, 7]. It involves computing p-values
and using them as thresholds to validate hypotheses [23]. It is
often employed in dichotomous testing, where the researcher
would accept or reject a hypothesis on the basis of statistical
significance [9]. Over the past decade, NHST has garnered
a lot of criticism in HCI [7, 9]. One critique is HARKing,
i.e., Hypothesizing After the Results are Known [7, 17], also
known as “p-hacking” [12], “fishing” [16], or “wandering
down the garden of forking paths” [12]. It refers to a situation
where the researcher tries many analyses, but reports only the
final, successful analysis. Like Gelman [12] and Pu et al. [27],
we believe that HARKing is unintentional, and that it is a
design problem. Omitting parts of the analyses from reports
also leads to a lack of transparency [10, 30].

Data Science Programming and Tool Support

Data science is a broad term that refers to tasks in which infor-
mation and knowledge are extracted from data [26]. During
such tasks, there is usually no clear end goal; the data sci-
entist experiments with her ideas to identify goals [20]. In
hypothesis-driven data science, these ideas are the hypotheses
the data scientist comes up with. Prior research has identi-
fied that during experimentation, data scientists practice code
cloning and use informal versioning like comments to main-
tain code alternatives [18]. Since experimentation often leads
to messy code, data scientists need to rewrite code to make it
maintainable and reusable [20, 28]. Since cleaning up these
messes can be hard, analysts often use the execution output to
identify and understand code [14].

Prior research has produced several artifacts to help data scien-
tists. Burrito [13] captures and displays source code outputs,
timeline of activities, and notes from a data science project
to help data scientists capture their data science workflow.
Variolite [18] is a lightweight version-controlling system that
helps data scientists maintain code alternatives and track out-
puts. More recently, Code Gathering Tools (CGT) [14] is an
interactive extension to Python notebooks that can help data
scientists find, clean, and manage code. Verdant [19] is also a
notebook plugin that visualizes code history to help program-
mers find prior code. Unlike these tools, TRACTUS tracks the
experiments by grouping them into hypotheses, and presents
this structured visualization to help the user stay oriented.

Visualizations of Source Code and History

Source code visualization is a well explored area of research.
Systems like Code Bubbles [4], Code Thumbnails [8], and
Stacksplorer [21] visualize code to help improve comprehen-
sion and navigation. Programming IDEs employ other forms
of visualization like icons and graphical overlays next to the
code to encode information like syntax highlighting, code
conventions, and version control information [32]. In data
science, an important task is tracking the sources of data, i.e.,
data provenance. Provenance Explorer is a tool that supports

’ Hypothesis 1

AN v @ An analysis step

@@ \

* A key insight

.
o
o
e

Production code
and report

Figure 1. During data analysis, data scientists validate several hypothe-
ses. This involves several steps like loading data, viewing descriptive
statistics, and confirmatory analysis. Analysis generates insights, which
may lead to further analyses. After experimentation, data scientists
write production code and/or reports.

this task by visualizing the data and events associated with
it as a graph [6]. Prior research artifacts, e.g., [19, 38, 39],
visualize source code history to improve code comprehension
and foraging.

Terminology
To support our discussion, we define the following terms:

* Hypothesis: A concrete, binary statement that the data sci-
entist aims to validate. Hypotheses can be seen as the building
blocks of analysis.

* Step: A high-level, meaningful task in data science, e.g.,
loading a dataset, viewing data characteristics, and testing the
effect.

* Analysis: A collective term for the various steps that consti-
tute validating a hypothesis.

* Alternative Step and Alternative Analysis: A variant of an
analysis step and analysis. The selection of an alternative step
often leads to an alternative analysis. E.g., removing an outlier
might require using a non-parametric test.

* Rationale: The data scientist’s justification for the methods
chosen during the analysis.

e Insight: Information or knowledge obtained from data that
the data scientist wants to disseminate.

* Exploratory and Confirmatory Phases: The exploratory
phase is the initial analysis phase that follows exploratory pro-
gramming practice. The confirmatory phase (not confirmatory
analysis [33]) involves writing production code and reports.

MOTIVATIONAL STUDY

Data Collection
We collected observational videos from ten academic data
scientists. All participants reported to have prior experience

(median = 2 years, range = 0.5 to 10 years) using RStudio
for data science. We aimed to improve the external validity
of our data by collecting videos from participants of varied
experience and backgrounds like Numerical Analysis, Applied
Psychology, and HCI. In the ensuing discussion, we will refer
to our participants as PO1-P10. Seven videos were recorded
in our lab and three at the participant’s workplace. Six par-
ticipants analyzed fabricated data comparable to a real-world
task (details in supplements), while others used data from their
work. During the recording, participants were encouraged to
think aloud. After the session, the experimenter clarified any
questions that came up during the observation. We logged the
video and audio of the session. We collected approximately 8
hours of content (median = 54 min.).

Method

The first author watched the videos to extract clips that met
one or more of the following criteria: (a) participant interacts
with RStudio, (b) participant interacts with another app to
conduct analysis, e.g., does a web search on analysis proce-
dure, and (c) participant thinks aloud about analysis. After
performing an initial analysis on these clips, we generated
three tiers of process codes [3]. These codes were used to
categorize (1) domain-agnostic programming tasks, e.g., writ-
ing comments, creating a new file, or cloning code; (2) tasks
in analysis, e.g., computing descriptive statistics, visualizing
data, or building models; and (3) steps in exploratory work-
flow, e.g., creating alternatives, writing production code, or
searching for code. Since our goal was to better understand
data scientists’ workflow, not provide a statistical breakdown
of it, we used a qualitative analysis methodology.

FINDINGS

In this section, we describe our participants’ workflow from
exploratory to confirmatory phase based on our video analysis.
Since our participants were from academia, we recommend to
refrain from generalizing our findings to all data scientists.

How do data scientists experiment through code?

Many participants (PO1, P03, and PO7-10) used consoles to
begin their analysis and then eventually documented source
code in scripts.

All participants used a standard routine (Fig. 2) to explore
alternatives: (1) Find and clone base code, (2) contextualize
code, and (3) evaluate state. Base code, such as code from
previous or current analyses or samples from the web, was thus
crucial to kick-start code experiments. As one can expect, such
code experiments were not conducted in a reusable, modular
fashion. Also, most participants (PO1, P04, and P06-10) did
not report using any functions or modular code in their work.
This is a known finding from prior research [18, 31].

After cloning, participants used the names and values of vari-
ables in the current session to update the arguments in the
clone to suit their new exploration. As the final step in this rou-
tine, participants executed the source code to evaluate its state.
This led to comparison of alternative explorations, insights,
and helped determine next steps.

hist(kbd[kbd$Layout == "QWERTY",]$Speed)
hist(kbd[kbd$Layout == "Dvorak",]$Speed)
hist(kbd[kbd$Layout == "Neo",]$Speed)

plot(Speed ~ Layout, data = kbd)

hist(kbd[kbd$Layout == "QWERTY",]$Error)
hist(kbd[kbd$Layout == "Dvorak",]$Error)
hist(kbd[kbd$Layout == "Neo",]$Error)

plot(Error ~ Layout, data = kbd)

e

Figure 2. Data scientists follow an exploration routine: Clone base code,
view the context of current dataset to modify the arguments of cloned
code, and execute code to determine its state.

How is the source code organized?

Most participants (P02—-04 and PO6-10) organized their source
code into blocks. Each block represented one meaningful
step in the data science task, e.g., loading data or cleaning up
data. Blocks were usually prefixed with a small descriptive
comment, usually a high-level description of the task. PO1 and
P05 used code blocks infrequently, and reported that they do
not always use it. While documentary structures like white
spaces and comments are used to improve code readability
[35], some participants (PO1, PO4, and PO8) reported using
blocks to be able to navigate source code later:

“[These] blobs [i.e., blocks] are useful when I go through
[i.e., review] the source code. [They] help me parse code
easier.” —P04

How are hypotheses validated and what leads to alterna-

tive analyses?

As stated before, a hypothesis is a binary statement that ex-
presses the relationship between two or more variables. All
participants performed significance tests during our obser-
vation. In addition to the significance test, other steps that
constitute hypothesis validation are visualizing data, com-
puting descriptive statistics, performing tests for statistical
assumptions, and performing post-hoc tests. For significance
tests, hypotheses were primarily expressed using R’s formula
notation?. The simplest notation is of the form, measure
~ factor, which refers to the hypothesis that investigates
whether the factor has a significant effect on the measurement.
While code corresponding to the other steps also used this

2http ://tinyurl.com/y50£f721r

http://tinyurl.com/y5of72lr

eoe ~/Codefractus-rstudio-addin/adcin/executeCodeAddin - RStudio Source Editor
@] analysis.R*

Source on Save = O /- =+ 53| 5 Source -
StdevU = sd(UniS$WPM)

StdevG = sd(Graf$WPM
StdevE = sd(Edge$WPM

alphabets$Alphabet = factor(alphabets$Alphabet)
plot(WPM ~ Alphabet, data = alphabets

® N U A WN P

Attempting ormalize
9 |NUni = log(Uni$wPM)

10 NGraf = log(Graf$wPM

11 |NEdge = log(Edge$WPM)

13 | hist(NUni
14 hist(NGraf)
15 hist(NEdge)

17 |

17:1 | (Top Level) + R Script *

Figure 3. Reconstruction of the analysis code written by P08. Data sci-
entists use code blocks, sometimes prefixed with a descriptive comment,
to group meaningful steps in the analysis.

notation, column selection and dataset manipulation opera-
tions were more prevalent. E.g., POl performed a test for
normality using, shapiro.test(data[data$method ==
“Unistrokes”,].speed), where Unistrokes is a level of
the factor, method, and speed is the measurement. (The par-
ticipant analyzed a dataset that compared text entry techniques
in mobile phones.) The statement would therefore be part of
validating the hypothesis, WPM ~ method, i.e., investigating
whether typing methods have an effect on the typing speed.

In addition to validating several hypotheses, participants also
performed multiple analyses to validate the same hypothesis.
We found that several participants (PO1, P02, P04, and P10)
conducted these alternative analyses after the data was modi-
fied, e.g., by transformations or outlier removals. This is not
surprising, since the analysis method is almost entirely depen-
dent on the data characteristics [12]. These changes to data
mostly resulted from obtaining insights in the analysis, e.g.,
learning that data is log-normally distributed or that a certain
test would not be valid for the situation. However, there were
a few instances where the data was modified impulsively by
participants:

“Iwill just [see] what happens to distribution when these
[data] points are removed.” —P02

Participants used variable names like logData and data_new
to track the different versions of data.

How do data scientists rationalize their analysis?

As discussed in the previous section, data scientists report the
rationale for the decisions made in their work, along with the
key insights. Participants used the following information to
rationalize analysis decisions:

e Most participants (PO1, PO5-10) had predetermined one or
more analysis steps, often based on their prior experience.

E.g., before performing analysis, PO7 knew that one of the
factors in his data had three levels:

“I will probably be doing an ANOVA test [sic]
here, followed by pairwise comparisons.” —P07

Participants do not capture this information explicitly during
exploration, but later include them through documentation
when writing production code.

e All participants used previous execution results as rationale,
since results often lead to new insights about data. E.g.,
PO8 used a quantile-quantile plot to rationalize the use of a
non-parametric test.

e Some participants (P02, P03, P06, and P09) used resources,
e.g., web articles?, as rationale. These were later docu-
mented in the production code using comments.

How do data scientists track data insights?

While insights result from executing source code, it is often
more than then results themselves, and includes the analyst’s
interpretation. Thus, insights were often detailed and too
verbose to be captured as comments. E.g., an insight generated
by P08 is:

“I would recommend [users to] use EdgeWrite [a text-
input technique] here because the variance [of typing
speed] is low, but one can also use Graffiti which has a
higher average.” —P08

Only P04 and PO5 used RMarkdown notebooks to track
such verbose insights. P06 and P09 used comments with
abstract information to document insights (e.g., Test is
inconclusive, see model o/p); this abstraction leads to
information loss. However, most participants (P01-03, P07,
P08, and P10) did not use comments to document insights.
They relied upon their short-term memory instead:

“The information [about insights from exploration] is
something I still have in my head and it’s usually [just] a
few key insights.” —P0O7

Except for P04 and PO5 who used RMarkdown notebooks, all
participants had to re-execute current code, often several times,
when writing production code to recall rationale and insights.
This shows that data scientists overlook the need for capturing
information on regular intervals during exploration.

Even during exploration, some participants found it difficult
to keep track of the source code that produced a data insight,
which often leads to re-executions. E.g., PO7, who could not
find a code snippet she was looking for during exploration,
uttered:

“One of these three distributions is not normal... where
is the line [of code] where [sic] I computed [i.e., plotted]
the histograms?” —PO7

3E.g., https://stats.idre.ucla.edu/other/mult-pkg/whatstat/

https://stats.idre.ucla.edu/other/mult-pkg/whatstat/

What do data scientists use comments for?

Comments were used for documenting insights and rationale;
navigation; and managing alternatives. While all participants
used comments for these purposes in production code, some
participants (PO1, P07, PO8, and P10) were reluctant to use
comments during exploration:

“I write comments [only] when I have found something
interesting [i.e., an insight].” —-P08

This is an implication of the exploratory programming prac-
tice, in which the focus is on getting results faster. Comments
in production code were used to provide a high-level task
description, e.g., apply ANOVA (P06). Some participants P02—
04 used comments to describe what was programmatically
done, e.g., loop through each data segment... (P02).
Several participants (P02, P03, P05, P07, and P08) used com-
ments to also capture rationale and insights in production code,
e.g., Preconditions for wilcox test are met (P07).

PO2 used stylized comments to distinguish comments about
insights from other comments. P03 used section comments*
for task descriptions, to navigate code more easily. There
were some individual differences in frequency and style, e.g.,
length, verbosity, and use of inline vs. tail comments. Some
participants (P3, P4, and P7) used comments to temporarily
disable code snippets.

How do data scientists rewrite source code?

After exploring alternatives to obtain data insights, partici-
pants rewrite exploratory code to be able to reuse it. This
code will be disseminated and/or stored for later. Participants
rewrote code in two ways: (1) Clean up current code (P01,
P02, P04-06, and P09) and (2) Rewrite code from scratch
(P03, P07, P08, and P10). To prune current code, participants
used code blocks, comments, and variable names to under-
stand which source code to keep. Additionally, to identify
relevant code snippets, participants re-executed source code, a
behavior also exhibited during exploration. Participants often
changed variable names when temporary names were used,
added or modified comments, and rearranged code. Rewriting
code required participants to retrace their steps by viewing
the current exploratory code, prior executions in the console,
and the history of commands. The relevant code is identified
via results shown in the console and comments, if used. This
code is then often cloned into a new file, and arguments are
modified when appropriate.

Participants often found it difficult (1) to find the correct ver-
sion of the source code and (2) to make sure that the execution
dependencies of the code were intact. E.g., after validating
several hypotheses, P07 wanted to move the code used to val-
idate a hypothesis to a new file. He looked through his code
to find relevant code, but upon pasting it into the new file and
executing it, he found that an earlier statement that was used
to set one column variable as a factor was not copied. This led
to faulty execution.

4https ://support.rstudio.com/hc/en-us/articles/
200484568-Code-Folding-and-Sections

R session Visualization
|
Source code and A
execution output
-

RStudio addin
execution dependencies,
hypothesis information,

_ contextual information
S~—V

r Parser \J
N

R script files

Figure 4. TRACTUS consists of three components: RStudio addin, parser,
and the visualization. The RStudio addin feeds the R code and execution
output from the R session to the parser. The parser breaks down the
code, detects the hypothesis that the code belongs to, and finds execution
dependencies in code. This information is then visualized.

Summary of Findings

1. During exploration and while rewriting code, data scientists
have difficulty keeping track of the code that produced data
insights and the states of code experiments.

2. Exploration involves a standard routine of finding base code,
cloning, contextualizing, and evaluating it.

3. Hypotheses are the building blocks of analysis. Source
code written to validate hypotheses have syntactic signals
that make them detectable. Data manipulations lead to
alternative analyses, and data scientists have to remember
variable names to keep track of data versions.

4. Data scientists organize their code into blocks when writing
code; these are used as checkpoints for navigation later.

5. Data scientists use (a) prior knowledge of statistical pro-
cedure, (b) text & graphic output of source code, and (c)
external resources like webpages to rationalize their analy-
sis.

6. Data scientists do not capture data insights initially, but
instead rely on their memory and sparse documentation.

7. It is hard for data scientists to track the data dependencies
in their code. This leads to faulty executions in production
code.

8. Data scientists rerun code frequently to recall rationale,
insights, and the states of explorations.

TRACTUS

To mitigate the problems we identified in our formative study,
we present an interactive application, TRACTUS, that can help
data scientists track source code that yielded insights during
exploration (Finding #1) and understand their source code

https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections

explorations better when writing production code and reports
later (Finding #8). The resulting system can reduce code
re-runs, as well as help data scientists manage explorations,
rewrite code for reuse, and write reports. We first provide
an overview of TRACTUS, discuss the details of implemen-
tation and interaction design, and then describe TRACTUS’
architecture.

Tractus consists of three components as shown in Fig. 5:

1. The parser is the back-end of TRACTUS, which breaks
down R source code to obtain (a) the hypotheses investi-
gated by the data scientist during analysis, (b) the execution
dependencies among variables in source code, and (c) con-
textual information in source code such as the block and
tail comments. In addition to comments, execution out-
put and the order of execution are sent to the parser by
our RStudio addin. Hypotheses are the atomic building
blocks of analysis (Finding #3) and mimic the data scien-
tist’s thought process. Execution dependencies are captured
to help minimize incorrect and faulty production code ex-
ecution (Finding #7). Contextual information helps data
scientists rationalize their analysis (Finding #5) and rewrite
source code after exploration (Finding #6).

2. The web app or visualization, which acts as the front-end
of TRACTUS as shown in Fig. 5. The web app receives
information about source code groupings according to the
hypothesis that is tested, execution dependencies, and con-
textual information from the parser, and visualizes it in
real-time. It monitors the parser output for changes and
updates the visualization when necessary. In the visualiza-
tion, the source code is organized into blocks to improve
navigation (Finding #4), and variables used in the analysis
are emphasized to help track data provenance (Finding #3).
Furthermore, based on our Finding #2, the visualization
also supports data injection. This allows data scientists to
select a block of code and modify the dependent and in-
dependent variables in it. The visualization can be shown
in the RStudio viewer pane or in a web browser. Since
RStudio’s viewer pane does not support certain features like
autocomplete or copy-to-clipboard, web browsers might be
preferable.

3. The RStudio addin, which integrates the parser and web
app into the R session. The addin watches the R session
for new source code executions, captures them, and feeds
them to the parser along with execution results. Note that
only the valid statements, i.e., statements that successfully
execute, are sent to the parser. The addin is also responsible
for displaying the web app (i.e., the visualization front-end
of TRACTUS) in the viewer pane of RStudio.

We designed TRACTUS in an iterative manner, gathering
feedback from R analysts at every stage. After low-fidelity
sketches to evaluate the visualization, we built two high-
fidelity implementations (Fig. 6 and Fig. 5) to evaluate both
the interaction and the visualization. We will now describe the
parser and visualization in detail.

Parser

The parser is the back-end of TRACTUS that is responsible for
detecting key information from the R source code. The parser
is agnostic to the source of the R code—it could be an R script
file, an R session’s history database file, or raw source code
fed in via the RStudio addin. Tracking the R session’s history
allows TRACTUS to capture code experiments that are done
via console, a common practice among our participants. We
validated the parser by using it to parse existing R scripts; we
discuss the validation results at the end of this subsection.

Detecting Components of a Statement

The parser deconstructs the given R source code into an Ab-
stract Syntax Tree (AST) [2] representation. The AST reveals
the components of each statement such as the variable, expres-
sion, function name, and arguments (name and value). Then,
the parser filters out statements that do not have to be visual-
ized like package installations, statements that do not execute
successfully, and control structures like loops and conditions.
Unlike existing parsers, our custom parser captures comments
(both inline and block) and line feeds in order to later detect
code blocks.

Detecting Execution Dependencies

Detection of execution dependencies is not new [15, 37]. Ex-
ecution dependencies are detected by tracking variables and
statements. A statement that uses a variable depends on the
statement that defined or modified that variable. Statements
that use multiple variables depend on multiple statements;
conversely, a variable can be depended upon by multiple state-
ments. The parser ignores dependencies in control structures,
e.g., dependencies from statements that are inside an if block
to those outside the if block. Our parser validation revealed
few instances of this, since hypothesis testing typically has a
linear, albeit branching, control flow.

In addition to helping users understand their explorations bet-
ter, revealing the execution dependencies also helps capture
the alternative explorations that result from data modifications
(Finding #3). Alternate explorations use a different data and
are tracked in our visualization more easily (Fig. 5g).

The parser first keeps track of the variables resulting from
the AST representation and then uses this information to cu-
mulatively detect execution dependencies in the code. These
dependencies are captured by the parser as a labeled Directed
Acyclic Graph (DAG), in which each node is a statement and
each directed edge is labeled with the variable name that estab-
lishes the dependency between the connected statements. A
simple traversal of this graph results in all statements required
to execute a statement with correct values.

Detecting Hypotheses

Data analysis using hypothesis testing usually consists of sev-
eral hypotheses, each with possible alternative explorations
(Finding #3). The parser detects hypotheses in statements
by exploiting R’s formula notation, data selection, and data
manipulation operations (Finding #3).

In R, there are certain significance tests that allow users to
specify hypothesis without this special formula notation, e.g.,

SourceonSave = O /- FRun | °% Source g Connected to Tractus.

Read in data
keyboard = read.csv("~/keyboard.csv")
View(keyboard)
keyboard$Subject = factor(keyboard$Subject) # convert to nominal fad
summary(keyboard)

v Hypotheses explored

Error ~ keyboardLayout

> Manage source code (currently nothing is selected)

View descriptive stats (Speed)

library(plyr)

ddply(keyboard, ~ keyboardLayout, function(data) summary(data$Speed
ddply(keyboard, ~ keyboardLayout, summarise, Speed.mean=mean(Speed)

v # Read in data

v <- read.csv(..)

Plot Speed response LELL] <- factor(..)

hist(keyboard[keyboard$keyboardLayout == "QWERTY",]$Speed)

summary(...)
hist(keyboard[keyboard$keyboardLayout == "Colemak",]$Speed) vi# View descriptive stats (Speed)
hist(keyboard[keyboard$keyboardLayout == "Dvorak",]$Speed) @ ddply(.)

plot(Speed ~ keyboardLayout, data=keyboard) # boxplot ddply

v_# compute new log(Speed) column ..
O =3 o
logSpeed ~ keyboardLayout
shapiro.test(..)
v n <- aov(..)
logSpeed ~ keyboardLayout
shapiro.test(..)

Plot Error response
hist(keyboard[keyboard$keyboardLayout == "QWERTY",]$Error)
hist(keyboard[keyboard$keyboardLayout == "Colemak",]$Error)
hist(keyboard[keyboard$keyboardLayout == "Dvorak",]$Error)
plot(Error ~ keyboardLayout, data=keyboard) # boxplot

Check if normal
shapiro.test(keyboard[keyboard$keyboardLayout == "QWERTY",]$Speed)
shapiro.test(keyboard[keyboard$keyboardLayout = ”Colemak”,,]%peeh)

O

qgnorm(...)

(D)

Speed ~ keyboardLayout
v # Plot Speed response
hist(.)

plot(..)
v # Check if normal
shapiro.test(..)

shapiro.test(
shapiro.test(..)

v # Do one-way ANOVA
v [<- aov(.)

Speed ~ keyboardLayout

(C)

Error ~ keyboardLayout
v # Plot Error response
hist(.)
hist(.)
hist(.)
plot(.)
v # Check if normal
shapiro.test:

shapiro.test:

shapiro.test
v m<— aov(..)
Error ~ keyboardLayout
shapiro.test(..)

shapiro.test(keyboard[keyboard$keyboardLayout == "Dvorak",]$Speed)

Do one-way ANOVA

qqline(.)

qgnorm(...)
v # Do one-way ANOVA, now to loghPM

qqline(..)
v [l <- aovC)

m = aov(Speed ~ keyboardLayout, data=keyboard) # fit model
print(m)
anova(m) # report anova

Check if normal

shapiro.test(keyboard[keyboard$keyboardLayout == "QWERTY",]$Error)
shapiro.test(keyboard[keyboard$keyboardLayout == "Colemak",]$Error)
shapiro.test(keyboard[keyboard$keyboardLayout == "Dvorak",]$Error)

m = aov(Error ~ kevboardLavout. data=keyboard) # fit model
(Top Level) + R

%af -)

anova(m) # report anova

logSpeed ~ keyboardLayout

®

anova(..) Analysis of Variance Table

Response: Speed

Df Sum Sq Mean Sq F value Pr(>F)
keyboardLayout 2 1193.1 596.57 11.816 5.092e-05 ***
Residuals 57 2877.8 50.49

Signif S codesy QL canes iy 001 sl g Pl R 95 LR AN =]

Figure 5. TRACTUS is an algorithmic and visualization extension to RStudio that can support data science workflows. TRACTUS detects, captures, and
visualizes: (1) source code experiments grouped as hypotheses, e.g., Fig. 5c, (2) dependencies across source code, which are visualized as an indented
branch in the tree, e.g., Fig. 5g shows code that is dependent on the log-transformed dataset keyboard (Fig. 5e), and (3) based on our formative study,
information that data scientists use to recall rationale and insights such as block comments (Fig. 5d) and execution output (Fig. 5h). Code sections
corresponding to hypotheses that have the same execution dependency are placed next to each other to facilitate comparison, e.g., Fig. 5b and 5c.

the ezZANOVA function in the ezZANOVA R package®. How-
ever, we found very few instances of this in our parser val-
idation. We encountered false positives where the formula
notation was used in a plotting function rather than for spec-
ifying relationships between variables. An example is the
ddply function, in which the user uses the formula notation
to specify how to split the data frame, e. g. ddply(kbd, ~
Layout, function(data) summary(data$Speed)). In
general, however, we did not discover significant mismatches
in our parser validation. In summary, the parser detects hy-
potheses by looking for the following:

e R’s formula notations like measurement ~ factor and
measurement ~ factorl*factor2*factor3. R’s for-
mula notations can be used to specify advanced factor de-
signs.

e Dataset manipulation operations like subdivisions:
subset(data, factor == “level”)$measurement

e Dataset column selections, e.g.,
data[data$factor == “level”,]$measurement

Capturing Code Blocks
Data scientists organize their source code into code blocks
with a leading block comment (Finding #4). We wanted to

5https ://www.rdocumentation.org/packages/ez/versions/3.
0-1/topics/ezANOVA

capture such blocks; a block includes all statements in the
block as well as the leading comment. To do so, whenever the
parser encounters a line of code that is a comment, it assumes
that a new block is present. All comments following the first
line of comment are considered to be the block’s comment
until the first line containing an expression is encountered.
This and all subsequent expressions are linked to the block
until an empty line is encountered, upon which the block is
closed.

Parser’s Output: Hypothesis Tree

The parser uses a tree data structure to capture the hypothesis
information of source code. We refer to this as the hypothesis
tree. It is constructed by parsing the source code one statement
at a time, extracting source code components and dependen-
cies. To represent execution dependencies, the parser ensures
that dependent statements are added as a child to the state-
ments it depends on. (In situations where there are multiple
parents, we pick the most recent parent in the source code
to retain a tree structure. A DAG would reflect this one-to-
many dependency more precisely, but our tree representation
is simpler and resembles the source code more closely.) If
the statement belongs to a hypothesis, it is added under the
corresponding branch in the tree. (Each branch represents
a hypothesis; a branch is created upon first encounter of a
hypothesis in a statement.) Any metadata associated with the

https://www.rdocumentation.org/packages/ez/versions/3.0-1/topics/ezANOVA
https://www.rdocumentation.org/packages/ez/versions/3.0-1/topics/ezANOVA

hypotheses
keyboard
O read.csv ~keyboardLayout Il
Speed ~ keyboardLayout
QO View Error ~ keyboardLayout [l
logSpeed ~ keyboardLa... Il
Q factor
O summary @ ddply hist @ hist
Olog @ ddply hist @ hist
O View @ shapiro.test hist ©® hist
m @ aov plot ® plot
m @ shapiro.test shapiro.test @ shapiro.test
m @ qqnorm shapiro.test @ shapiro.test
m @ qqline shapiro.test ® shapiro.test
m @ aov m ® aov m @ aov
m @ anova m ® print m @ shapiro.test
m ® anova m @ qgnorm
m @ qqline

Figure 6. The first version of TRACTUS. After evaluating this version
with users, we made several design improvements, e.g., symmetrical tree
required horizontal scrolling for large files, and improved the underlying
architecture in the current version.

statement, like its execution output and tail comment, is also
added to the hypothesis tree.

Parser Evaluation

TRACTUS’ parser was validated using a corpus of 38 R scripts,
which were randomly sampled from the Open Science Frame-
work (OSF)® and by solicitation from researchers at our local
university. We were eventually able to achieve a 82.4% cov-
erage with these files. 4 files had syntax errors and failed to
execute. Of the remaining 34 files, TRACTUS successfully
parses and visualizes 28 files. The parser failed to parse the
remaining 6 files due to several reasons, e.g., deeply nested
statements. (See supplements for details.) The parser can
successfully parse large files (> 7500 LOC). In such cases,
the groupings in the visualization can be collapsed to aid navi-
gation.

Visualization

The RStudio addin runs a web view alongside the R source
code that visualizes the hypothesis tree. In this subsection, we
describe the visualization and how users can interact with it.
We start by describing the layout of the app, how information
is presented and organized at a higher level of abstraction, and
then discuss concrete details.

Layout

The visualization is shown next to the user’s code. The top
panel of the visualization provides an overview of the hy-
potheses explored in source code. Clicking on a hypothesis
highlights the corresponding nodes in the visualization. The
top panel also provides options to perform new explorations
and generate code to reproduce results. (These features are
discussed later in this section.) The rest of the visualization
shows the user’s code grouped into hypotheses.

6http://osf.io

Visualizing Dependencies and Hypotheses

TRACTUS aims to provide an overview of the user’s work, and
helps her transition from exploration to writing production
code and reports. To support this, we chose a tree visualiza-
tion instead of a graph as described earlier. Our algorithm
constructs the tree visualization in the following manner:

1. If the statement has no dependencies, it is placed under the
root node.

2. If the statement has one dependency, it becomes a child of
the dependent statement’s node in the tree, e.g., Fig. Sa.

3. If the statement has multiple dependencies, it becomes a
child of the chronologically most recent parent.

The resulting visualization encodes the dependencies among
statements. TRACTUS then uses the information about each
statement’s hypothesis for grouping. Statements that were
determined to analyze a hypothesis are placed (e.g., Fig. 5¢)
under a branch and color coded. Consequently, statements that
do not belong to a particular hypothesis, e.g., code used for
loading datasets, are distinguishable from other code. As a
second level of grouping, statements that belong to the same
comment block are grouped, e.g., Fig. 5f. Unlike tail com-
ments, block comments are explicitly shown to the user. Inside
groups, statements retain their source code order.

Visualizing Contextual Information

To reduce visual clutter, TRACTUS progressively discloses
[24] new information. For variable assignment statements, it
displays only the variable and function names by default; ad-
ditional information like the execution output, the statement’s
line number in an R code file, tail comment (if any), and the
complete expression of the statement are revealed upon hover-
ing with the mouse pointer, e.g., as shown in Fig. 5h. Users
can collapse or expand branches in the visualization to focus
on specific code groups—both at the level of hypotheses and
code blocks.

TRACTUS uses visual cues to help users forage information
faster. Prior statements that had changed a variable’s value
and statements that do not contribute to the business logic,
e.g., print () and cat (), are displayed, but are intentionally
made less noticeable.

Data Injection

To help semi-automate the exploration routine (Finding #2),
TRACTUS supports data injection. This can help users who
want to explore a new alternative based on an existing base
code. The user selects the base code in the visualization, clicks
on a button to inject data, and selects, from a list that TRACTUS
creates by analyzing existing code, the measure and factor(s).
TRACTUS then generates the code with new variables and
copies it to the clipboard. This avoids the need to manually
manage data dependencies.

Result Reproduction

TRACTUS can also generate code to reproduce the result of
a statement. While this is not a novel feature [14, 37], it
improves TRACTUS’ utility. When the user selects one or more
desirable statements, TRACTUS uses dependency information

http://osf.io

to retrieve all statements necessary to reproduce the expected
result.

Architecture

All components of TRACTUS can be modified independently
of each other. This makes extensions easier, e.g., to work
with more metadata, support more visual artifacts, or support
other scripting languages like Python. The parser is written
in Rust’, a high performance, robust programming language,
and returns a structured JSON tree that can be visualized
differently if desired. The visualization is built using D3.js®
and can be run in a web browser. The RStudio addin is written
in R. For more implementation details, see supplements.

EVALUATION

We evaluated TRACTUS with users in two studies. The first
explored how data scientists use TRACTUS to understand R
code written by others. After using the results of this study
to improve TRACTUS, in our second study we explored how
TRACTUS helps data scientists in various stages of their analy-
sis.

Study 1: Can TRACTUS Help Understand Source Code?
Three participants (1 female; 2 self-reported as intermediate
users, 1 a beginner) used the initial version of TRACTUS (Fig.
6) to understand and then describe three R scripts. We sampled
scripts of three different sizes (small: 25 LOC; large: over
500 LOC) from real-world research projects on OSF. Sessions
were 40 minutes long on average.

Analysis and Findings

Our analysis motivated several design improvements. The
symmetrical tree structure in this version required horizontal
scrolling and was hard for the study participants to navigate,
even for files that were only moderately long. Participants
also mentioned that the visualization had too many details that
added to the visual clutter. We fixed these issues and also
improved the underlying architecture of TRACTUS to make it
faster and more easily extendable.

All participants commented that TRACTUS helped them under-
stand source code better than navigating code without TRAC-
TUS, especially when the source code gets larger. P1 suggested
better ways to group information in the visualization. P2 liked
the hover-interaction, and mentioned that the visualization
helped him easily spot which statistical model was used for
each hypothesis.

Study 2: Can TRACTUS Improve Data Science Workflow?
We conducted a second study to validate the benefits of TRAC-
TUS during experimentation and when writing production code.
Seven academic data scientists (3 female, median age = 29)
took part in the study. They were recruited through mailing
lists and social media. P1, PS5, and P6 self-identified as begin-
ners, P2, P4, and P7 as intermediates, and P3 as an expert R
analyst.

To establish a baseline of our participants’ workflow, we asked
them to first use RStudio without extensions before using

7https ://www.rust-lang.org
8https://d3js.org

RStudio with TRACTUS. Participants were given datasets’ to
analyze. Datasets had several measurements and factors; many
hypotheses could potentially be validated from the dataset. To
maintain ecological validity, participants were asked to first
perform EDA to generate hypotheses by themselves, and then
perform confirmatory analyses. Based on their findings, par-
ticipants wrote a report of their work. After the analysis,
participants gave their feedback about TRACTUS. All partic-
ipants analyzed at least two datasets, and sessions were 100
minutes long on average.

Analysis and Findings
We analyzed the screen recordings by selectively theming the
data [34] to identify the following:

Execution dependencies: P1, P3, P4, and P6 reported that
the visualization of execution dependencies was useful during
the initial exploratory phase. The visualization was particu-
larly effective in helping participants track variables that were
created a while ago. P3 compared the visualization to the
Environment pane in RStudio, which is one approach used
by participants to track variables when using RStudio without
TRACTUS, mentioning that the ability to understand the origins
of a variable was useful:

“[The execution dependency graph] reminds of the En-
vironment pane, [but] it is just better as it [also] shows
where [a] variable came from.” —P3

In this situation, the participant had not named the variable
appropriately, but the dependency graph helped him infer the
context (in this case, the variable was the result of a subset
function).

Code curation and code quality: One unintended side effect
of TRACTUS was that it encouraged participants to curate their
code. After performing exploratory analysis, P2 and P3 used
the visualization to remove scratchpad code from their script
so that the visualization would become less messy. E.g., P2
found that there were several nodes in the visualization that
represented his explorations to fix a bug; since this did not
contribute towards the analysis, he wanted to delete these lines
of code. P2 also mentioned that he would not have removed
these lines of code when using RStudio without TRACTUS,
indicating that the visualization improves awareness of source
code. In contrast to removing source code, three participants
(P3, P4, and P6) used the visualization to improve the quality
of their R code, e.g., by renaming variables.

Exploration states: Since the visualization groups code accord-
ing to hypotheses, it helped participants notice patterns across
analyses. Several participants (P1, P3, P4, and P6) were able
to compare the states of hypotheses to understand similarities
and differences:

“[Using TRACTUS, it is] easier to compare analyses side
by side to say ‘yeah, it’s the same’ or find [out] what is
different.” —P1

9Source: https://github.com/fivethirtyeight/data; see supple-
ments for dataset details.

https://www.rust-lang.org
https://d3js.org
https://github.com/fivethirtyeight/data

This also proved to be useful when writing reports later, since
participants could easily detect differences between explo-
rations.

Orientation and navigation: TRACTUS can help data scientists
be more oriented during analysis. E.g., when analyzing his
data, P2 wanted to test several hypotheses. He selected one and
tested it, but while doing so, he identified another hypothesis
and set off on a different analysis path. When this did not lead
to promising results, P2 used TRACTUS to backtrack to the
initial hypothesis to continue the analysis.

The benefits of TRACTUS do not cease after analysis. P4
mentioned that the visualization was useful to kick-start new
analyses, since the visualization captures the analysis proce-
dure more succinctly and is more easily understandable than
source code.

Design improvements: We also identified several areas of
improvement based on this study. Three participants (P1,
P4, and P5) found the visual notation, especially execution
dependencies, hard to understand initially. We redesigned the
visualization to reduce clutter by reducing the information
shown and by making some changes to the layout.

Overall, participants were mostly positive about TRACTUS and
looked forward to using it. During all ten sessions, TRACTUS
was able to detect the hypotheses accurately except for two
instances. In both these instances, the participant specified the
hypothesis in an unexpected manner, e.g.:

read.csv(“~/data.csv”)$measure ~
read.csv(“~/data.csv”)$factor

While this is valid, it is uncommon and our parser failed to
detect the hypothesis. (The parser is programmed to only
expect variables in a formula notation.)

DISCUSSION

Towards Reproducible, Transparent Data Science

For an analysis to be reproducible, executing its code should
reproduce the expected, correct results. TRACTUS uses the
execution dependencies to capture reproducible code. Addi-
tionally, TRACTUS can be extended to work with R packages
like reprex!'?, which provides more powerful sharing options.
TRACTUS proposes a visualization that can help users get an
overview of the analysis; this can be shared in research pa-
pers to promote transparency. Note that TRACTUS captures all
source code in an R session, even the scratchpad code executed
in the console. TRACTUS could be extended to capture Mark-
down!! from R Notebooks, allowing more powerful narratives
to be included in the visualization.

‘Mindfully’ Navigating the Garden of Forking Paths?

We believe that one of the prominent issues with NHST, wan-
dering down the garden of forking paths, is a design problem.
TRACTUS makes the paths (i.e., all analyses) visible to the data
scientist. Our evaluation indicates that this improves user’s
awareness of source code, leading to code curation. This could
be an antidote to over-testing, and help data scientists be more

lOhttps ://github.com/tidyverse/reprex
1 1https ://daringfireball.net/projects/markdown/

oriented and structured in their analysis. Additionally, TRAC-
TUS can be extended to track all significance tests the data
scientist conducts and warn against over-testing.

Extending the Approach

TRACTUS has the potential to be extended to other domains.
Domains that use explicit notations for explorations (like the
formula notation for hypothesis testing) can be accommodated.
Other data science domains that do not fit this criteria, e.g.,
machine learning, would require a different method to detect
explorations. Since this currently depends on syntactic signals
in code, it could be programming language-specific.

Other programming languages used for hypothesis-driven data
science, like Python, have syntax similar to R that can be lever-
aged to detect hypotheses. E.g,. Python uses the following syn-
tax for selecting data: variable = data[data[’factor’]

== level][’measure’].

LIMITATIONS

TRACTUS parsed most (82.4%) of the R scripts it was tested
with, as well as the scripts from our user studies. However, the
parser does not support all R code; the supplements contain a
list of limitations. Complex structures like deeply nested state-
ments are supported, but slow down the parser significantly.
Tail comments that occur before a statement or expression
is complete, e.g., for(i in 1:n) #Comment, are not sup-
ported.

As mentioned earlier, participants from our motivational study
were from academia. Thus, our findings may not generalize to
all data scientists. E.g., data scientists in business may follow
rigorous coding guidelines and write modular code, reducing
problems with finding prior code and results. Also, in our
motivational study, we observed data scientists for an hour.
Real-world data science projects last weeks or longer, and the
analysis code could span multiple files. TRACTUS currently
does not support multiple files, but its underlying algorithm
can be extended to do so with little effort.

SUMMARY

Data scientists produce valuable insights from data to influ-
ence our lives in profound ways. This paper discusses the
problems they face in their work, and proposes TRACTUS
to address these problems. Our qualitative evaluations show
the benefits of TRACTUS. Among other benefits, its visual-
ization can help read and understand existing analysis code,
support new analyses, and serve as a lightweight medium to
share analyses. TRACTUS is open source and is available at
http://hci.rwth-aachen.de/tractus.

ACKNOWLEDGEMENTS

This project was partly funded by the German B-IT Foun-
dation. We thank Ilya Zubarev for his contributions in the
early stages of this project. We thank Christian Corsten, Nur
Hamdan, Chat Wacharamanotham, and all reviewers for their
valuable feedback. Finally, we thank all our participants for
their time and involvement.

https://github.com/tidyverse/reprex
https://daringfireball.net/projects/markdown/
http://hci.rwth-aachen.de/tractus

REFERENCES
[1] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y.

(2]

K]

[4

[5

[}

[}

—_

(6]

[7

[8

[9

[

—_

—

Lim, and Mohan Kankanhalli. 2018. Trends and
Trajectories for Explainable, Accountable and
Intelligible Systems: An HCI Research Agenda. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 582, 18 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174156

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’ Anna, and Lorraine Bier. 1998. Clone Detection
Using Abstract Syntax Trees. In Proceedings of the
International Conference on Software Maintenance
(1998), 368-377. DOIL:
http://dx.doi.org/10.1109/icsm.1998.738528

Robert Bogdan and Sari Knopp Biklen. 2007.
Qualitative Research for Education: An Introduction to
Theory and Methods (5 ed.). Pearson.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. 2010. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 2503-2512. DOI:
http://dx.doi.org/10.1145/1753326.1753706

Paul Cairns. 2007. HCI... Not As It Should Be:
Inferential Statistics in HCI Research. In Proceedings of
the 21st British HCI Group Annual Conference on
People and Computers: HCL...But Not As We Know It -
Volume 1 (BCS-HCI ’07). British Computer Society,
Swinton, UK, UK, 195-201.
http://dl.acm.org/citation.cfm?id=1531294.1531321

Kwok Cheung and Jane Hunter. 2006. Provenance
Explorer — Customized Provenance Views Using
Semantic Inferencing. In The Semantic Web - ISWC
2006, Isabel Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Mike Uschold, and
Lora M. Aroyo (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 215-227. DOI:
http://dx.doi.org/10.1007/11926078_16

Andy Cockburn, Carl Gutwin, and Alan Dix. 2018.
HARK No More: On the Preregistration of CHI
Experiments. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 141, 12
pages. DOTI :http://dx.doi.org/10.1145/3173574.3173715

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. 2006.
Code Thumbnails: Using Spatial Memory to Navigate
Source Code. In Proceedings of the Visual Languages
and Human-Centric Computing (VLHCC ’06). IEEE
Computer Society, USA, 11-18. DOI:
http://dx.doi.org/10.1109/VLHCC.2006.14

Pierre Dragicevic. 2016. Fair Statistical Communication
in HCI. Springer International Publishing, Cham,

[10]

(11]

[12]

[13]

[14

[15

[16

[17

[18

[}

—_

—_

[

—_—

Switzerland, 291-330. DOI:
http://dx.doi.org/10.1007/978-3-319-26633-6_13

Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma,
Matthew Kay, and Fanny Chevalier. 2019. Increasing
the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 65, 15
pages. DOI :http://dx.doi.org/10.1145/3290605.3300295

Jean-Daniel Fekete, Danyel Fisher, Arnab Nandi, and
Michael Sedlmair. 2019. Progressive Data Analysis and
Visualization (Dagstuhl Seminar 18411). Dagstuhl
Reports 8, 10 (2019), 1-40. DOT :
http://dx.doi.org/10.4230/DagRep.8.10.1

Andrew Gelman and Eric Loken. 2013. The Garden of
Forking Paths: Why Multiple Comparisons Can Be a
Problem, Even When There Is No “Fishing Expedition”
or “p-Hacking” and the Research Hypothesis Was
Posited Ahead of Time. Department of Statistics,
Columbia University (2013).

Philip J. Guo and Margo Seltzer. 2012. BURRITO:
Wrapping Your Lab Notebook in Computational
Infrastructure. In Proceedings of the 4th USENIX
Conference on Theory and Practice of Provenance
(TaPP’12). USENIX Association, Berkeley, CA, USA, 7.
http://dl.acm.org/citation.cfm?id=2342875.2342882

Andrew Head, Fred Hohman, Titus Barik, Steven M.
Drucker, and Robert DeLine. 2019. Managing Messes in
Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). ACM, New York, NY, USA, Article
270, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300500

Yoshiki Higo and Shinji Kusumoto. 2009. Enhancing
Quality of Code Clone Detection with Program
Dependency Graph. In 2009 16th Working Conference
on Reverse Engineering. IEEE Computer Society,
315-316. DOI :http://dx.doi.org/10.1109/WCRE. 2009. 39

Macartan Humphreys, Raul Sanchez de la Sierra, and
Peter van der Windt. 2013. Fishing, Commitment, and
Communication: A Proposal for Comprehensive
Nonbinding Research Registration. Political Analysis 21
(2013), 1-20. DOI:
http://dx.doi.org/10.1093/pan/mps021

Norbert L. Kerr. 1998. HARKing: Hypothesizing After
the Results are Known. Personality and Social
Psychology Review 2 (1998), 196-217. D01 :
http://dx.doi.org/10.1207/s15327957pspr0203_4

Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1265-1276.
DOI :http://dx.doi.org/10.1145/3025453.3025626

http://dx.doi.org/10.1145/3173574.3174156
http://dx.doi.org/10.1109/icsm.1998.738528
http://dx.doi.org/10.1145/1753326.1753706
http://dl.acm.org/citation.cfm?id=1531294.1531321
http://dx.doi.org/10.1007/11926078_16
http://dx.doi.org/10.1145/3173574.3173715
http://dx.doi.org/10.1109/VLHCC.2006.14
http://dx.doi.org/10.1007/978-3-319-26633-6_13
http://dx.doi.org/10.1145/3290605.3300295
http://dx.doi.org/10.4230/DagRep.8.10.1
http://dl.acm.org/citation.cfm?id=2342875.2342882
http://dx.doi.org/10.1145/3290605.3300500
http://dx.doi.org/10.1109/WCRE.2009.39
http://dx.doi.org/10.1093/pan/mps021
http://dx.doi.org/10.1207/s15327957pspr0203_4
http://dx.doi.org/10.1145/3025453.3025626

—

[19] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty,

Amber Horvath, and Brad A. Myers. 2019. Towards
Effective Foraging by Data Scientists to Find Past
Analysis Choices. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 92, 13
pages. DOTI :http://dx.doi.org/10.1145/3290605.3300322

Mary Beth Kery and Brad A. Myers. 2017. Exploring
Exploratory Programming. 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC ’17) (2017), 25-29. DOT:
http://dx.doi.org/10.1109/vlhcc.2017.8103446

Jan-Peter Kriamer, Thorsten Karrer, Jonathan Diehl, and
Jan Borchers. 2010. Stacksplorer: Understanding
Dynamic Program Behavior. In Adjunct Proceedings of
the 23nd Annual ACM Symposium on User Interface
Software and Technology (UIST GAZ10). Association for
Computing Machinery, New York, NY, USA, 433-434.
DOI:http://dx.doi.org/10.1145/1866218.1866257

Wendy L. Martinez and Angel R. Martinez. 2004.
Exploratory Data Analysis with MATLAB (Computer
Science and Data Analysis). Chapman & Hall/CRC.

Raymond S. Nickerson. 2000. Null Hypothesis
Significance Testing: A Review of an Old and
Continuing Controversy. Psychological Methods 5
(2000), 241. DOI:
http://dx.doi.org/10.1037/1082-989x.5.2.241

Jakob Nielsen. 2006. Progressive Disclosure. (2006).
http://nngroup.com/articles/progressive-disclosure/

(last accessed on 20-09-2019).

Gregory Piatetsky. 2018. How Many Data Scientists Are
There? (2018). https://www.kdnuggets.com/2618/09/
how-many-data-scientists-are-there.html (last accessed

on 20-09-2019).

Foster Provost and Tom Fawcett. 2013. Data Science
and its Relationship to Big Data and Data-Driven
Decision Making. Big Data 1 (2013), 51-59. DOI:
http://dx.doi.org/10.1089/big.2013.1508

Xiaoying Pu and Matthew Kay. 2018. The Garden of
Forking Paths in Visualization: A Design Space for
Reliable Exploratory Visual Analytics. 2018 IEEE
Evaluation and Beyond - Methodological Approaches
for Visualization (BELIV) 00 (2018), 37-45. DOI:
http://dx.doi.org/10.1109/beliv.2018.8634103

D. W. Sandberg. 1988. Smalltalk and Exploratory
Programming. ACM SIGPLAN Notices 23 (1988),
85-92. DOI :http://dx.doi.org/10.1145/51607.51614

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor,
and Eivind Hovig. 2013. Ten Simple Rules for
Reproducible Computational Research. PLOS
Computational Biology 9, 10 (10 2013), 1-4. DOI:
http://dx.doi.org/10.1371/journal.pcbi. 1003285

—_

[}

—

[30] Joseph P. Simmons, Leif D. Nelson, and Uri Simonsohn.

2011. False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis Allows

Presenting Anything as Significant. Psychological
Science 22 (2011), 1359-1366. DOI:
http://dx.doi.org/10.1177/0956797611417632

Krishna Subramanian, Johannes Maas, Michael Ellers,
Chat Wacharamanotham, Simon Voelker, and Jan
Borchers. 2018. StatWire: Visual Flow-based Statistical
Programming. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI EA ’18). ACM, New York, NY, USA, Article
LBW104, 6 pages. DOI:
http://dx.doi.org/10.1145/3170427.3188528

Matus Sulir, Michaela Bacikovd, Sergej Chodarev, and
Jaroslav Porubin. 2018. Visual Augmentation of Source
Code Editors: A Systematic Mapping Study. Journal of
Visual Languages & Computing 49 (2018), 46-59. DOI1:
http://dx.doi.org/10.1016/j.jv1c.2018.10.001

John W Tukey. 1980. We Need Both Exploratory and
Confirmatory. The American Statistician 34 (1980),
23-25.DOI:
http://dx.doi.org/10.1080/00031305.1980.10482706

Max van Manen. 1990. Beyond Assumptions: Shifting
the Limits of Action Research. Theory Into Practice 29,
3(1990), 152-157.
http://www.jstor.org/stable/1476917

Michael L. Van De Vanter. 2002. The Documentary
Structure of Source Code. Information and Software
Technology 44, 13 (2002), 767-782. DOI :
http://dx.doi.org/10.1016/s0950-5849(02)00103-9
Special Issue on Source Code Analysis and
Manipulation (SCAM).

Rajesh Vikraman. 2018. Global Report on State of Data
Science & Machine Learning - 2018 Based on Kaggle
Survey. (2018).
https://rpubs.com/cvrajesh/kagglesurvey2018 (last
accessed on 20-09-2019).

Mark Weiser. 1981. Program Slicing. In Proceedings of
the 5th International Conference on Software
Engineering (ICSE ’81). IEEE Press, Piscataway, NJ,
USA, 439-449.
http://dl.acm.org/citation.cfm?id=800078.802557

Moritz Wittenhagen, Christian Cherek, and Jan
Borchers. 2016. Chronicler: Interactive Exploration of
Source Code History. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3522-3532.
DOI:http://dx.doi.org/10.1145/2858036.2858442

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013.
Visualization of Fine-Grained Code Change History.
2013 IEEE Symposium on Visual Languages and Human
Centric Computing (2013), 119-126. DOI:
http://dx.doi.org/10.1109/vlhcc.2013.6645254

http://dx.doi.org/10.1145/3290605.3300322
http://dx.doi.org/10.1109/vlhcc.2017.8103446
http://dx.doi.org/10.1145/1866218.1866257
http://dx.doi.org/10.1037/1082-989x.5.2.241
http://nngroup.com/articles/progressive-disclosure/
https://www.kdnuggets.com/2018/09/how-many-data-scientists-are-there.html
https://www.kdnuggets.com/2018/09/how-many-data-scientists-are-there.html
http://dx.doi.org/10.1089/big.2013.1508
http://dx.doi.org/10.1109/beliv.2018.8634103
http://dx.doi.org/10.1145/51607.51614
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1177/0956797611417632
http://dx.doi.org/10.1145/3170427.3188528
http://dx.doi.org/10.1016/j.jvlc.2018.10.001
http://dx.doi.org/10.1080/00031305.1980.10482706
http://www.jstor.org/stable/1476917
http://dx.doi.org/10.1016/s0950-5849(02)00103-9
https://rpubs.com/cvrajesh/kagglesurvey2018
http://dl.acm.org/citation.cfm?id=800078.802557
http://dx.doi.org/10.1145/2858036.2858442
http://dx.doi.org/10.1109/vlhcc.2013.6645254

	Introduction
	Background and Related Work
	Analysis Paradigms and Transparent Statistics
	Data Science Programming and Tool Support
	Visualizations of Source Code and History
	Terminology

	Motivational Study
	Data Collection
	Method

	Findings
	How do data scientists experiment through code?
	How is the source code organized?
	How are hypotheses validated and what leads to alternative analyses?
	How do data scientists rationalize their analysis?
	How do data scientists track data insights?
	What do data scientists use comments for?
	How do data scientists rewrite source code?
	Summary of Findings

	Tractus
	Parser
	Detecting Components of a Statement
	Detecting Execution Dependencies
	Detecting Hypotheses
	Capturing Code Blocks
	Parser's Output: Hypothesis Tree
	Parser Evaluation

	Visualization
	Layout
	Visualizing Dependencies and Hypotheses
	Visualizing Contextual Information
	Data Injection
	Result Reproduction

	Architecture

	Evaluation
	Study 1: Can TRACTUS Help Understand Source Code?
	Analysis and Findings

	Study 2: Can TRACTUS Improve Data Science Workflow?
	Analysis and Findings

	Discussion
	Towards Reproducible, Transparent Data Science
	`Mindfully' Navigating the Garden of Forking Paths?
	Extending the Approach

	Limitations
	Summary
	Acknowledgements
	References

