Supporting Data Workers To
Perform Exploratory Programming

Krishna Subramanian llya Zubarev

RWTH Aachen University RWTH Aachen University
52056 Aachen, Germany 52056 Aachen, Germany
krishna@cs.rwth-aachen.de ilya.zubarev@rwth-aachen.de
Simon Volker Jan Borchers

RWTH Aachen University RWTH Aachen University
52056 Aachen, Germany 52056 Aachen, Germany
voelker@cs.rwth-aachen.de borchers@cs.rwth-aachen.de
ABSTRACT

Data science is an open-ended task in which exploratory programming is a common practice. Data
workers often need faster and easier ways to explore alternative approaches to obtain insights from
data, which frequently compromises code quality. To understand how well current IDEs support this
exploratory workflow, we conducted an observational study with 19 data workers. In this paper, we
present two significant findings from our analysis that highlight issues faced by data workers: (a) code
hoarding and (b) excessive task switching and code cloning. To mitigate these issues, we provide design
recommendations based on existing work, and propose to augment IDEs with an interactive visual
plugin. This plugin parses source code to identify and visualize high-level task details. Data workers
can use the resulting visualization to better understand and navigate the source code. As a realization
of this idea, we present HypothesisManager, an add-in for RStudio that identifies and visualizes the
hypotheses that a data worker is testing for statistical significance through her source code.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).

CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland UK

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5971-9/19/05.

https://doi.org/10.1145/3290607.3313027


https://doi.org/10.1145/3290607.3313027

@ [} my-python-project [~/PycharmProjects/my-pyt

my-python-project ) 4 hello-world.py

orld oy

¥ 1:Project

def analyzeData( n ):

counter = 100
d =20

Script x=

= arange(50)

if(n>50):
return;
else
& = counter 1
returnf(nxd/x)|

ral @ Python Console QventLog

Notebooks ™

Figure 1: Scripting language IDEs allow
data workers to write code using two main
modalities. Script files (above) allow for

traditional code storage and execution.

Notebooks (below) allow programmers to
organize code into cells, show data and
graphs alongside code cells, and include
narratives via Markdown.

KEYWORDS

Scripting languages, Exploratory programming, Grounded Theory methodology, Programming inter-
faces, Data Science

INTRODUCTION

Data science uses quantitative and qualitative methods to solve relevant problems and predict
outcomes from data. It is a frequent activity for data workers in both industry and academia [6], and
includes tasks such as statistical machine learning and significance testing. Data science often has
open-ended goals: Data workers often explore different approaches to obtain insights from data, and
their goal evolves based on these insights. This exploratory workflow is called exploratory programming
[4]. During this activity, data workers often compromise the quality of their source code, in order to
explore alternatives more quickly (quick prototyping). Thus, the needs of data workers performing
exploratory programming are different from traditional programming.

Scripting languages like Python and R are commonly used by data workers for exploratory program-
ming [8]. However, the IDEs for these scripting languages follow the interaction design of traditional
programming IDEs, which may not suit the exploratory workflow of data science. We therefore
wanted to understand how well current scripting language IDEs support exploratory programming.
We collected and qualitatively evaluated data from 19 data workers who use scripting languages for
data science. We discuss two significant issues from our analysis that have design implications for
future IDEs: code hoarding, and excessive task switching and code cloning. To address these issues, we
present design recommendations from existing HCI research and propose to augment IDEs with an
interactive visual plugin.

RELATED WORK

Kery et al. and Rule et al. have investigated how data workers use interactive Python notebooks
[5, 9]. Notebooks allow data workers to weave narrative with source code, which is organized into
cells, and to juxtapose output and graphics with code. Their research showed that data workers
consider notebooks to be personal and messy, and that data workers have difficulties integrating
version control and sharing notebooks with others. In another study, Kery et al. investigated how
data workers perform exploratory programming in general, not with notebooks in particular [3]. They
conducted semi-structured interviews with 10 researchers, and discovered that version control needs
to be better integrated into current IDEs. Unlike existing research, our study is based on observational
data, walkthroughs, and files or notebooks written by data workers, in addition to interviews. We also
accounted for variability in data workers’ domains, expertise, and scripting languages.



Table 1: Experience (in years), domain
of the task, and scripting language(s)

used by participants in our study.

ID  Experience Domain
in years (Scripting Language)

P01 1 ST (R)
P2 2 ST (R)
P03 1 ST (R)
P04 1 ST (R)
Po5 2 ML (Python)
P06 5 3D (Python)
P07 3 ST (R)
Pos 2 ML (Python)
P09 0.5 FA (R)
P10 3 ML (Python), ST (R)
P11 1 3D (Python), NA (MATLAB)
P12 2 EM (R), ST (R)
P13 1 ML (Python), ST (Python, R)
P14 5 ML (Python, MATLAB)
P15 3 ML (Python)
P16 10 ML (Python, R)
P17 3 ML (Python, MATLAB)
P13 7 NA (MATLAB)
P19 8 NA (MATLAB, Python)

ST: Significance testing
ML: Machine learning
3D: 3d modeling

FA: Financial analysis
NA: Numerical analysis
EM: Equation modeling

TParaphrased for better readability.

METHODOLOGY

To obtain an unbiased understanding of how data workers use scripting language IDEs, we followed
the Constant Comparative Method [1] of the Grounded Theory methodology [10]. We collected data
from 19 data workers (8 female) with different backgrounds, task domains, and scripting languages
used. Data was collected through interviews (30 min. on average, all 19 participants), observations (40
min. on average, 12 participants) of participants working on a real-world (n=7) or fabricated task (n=5),
and 41 script files/notebooks authored by participants. Through two cycles of coding, we iteratively
generated our findings by constantly comparing them with the data collected. After several iterations
of initial coding, the first author developed a coding guide, which was used by an independent coder
on two interview transcripts and two observational videos to achieve a Cohen’s Kappa of x = 0.84.
For details about participants’ experience, domains, and scripting languages used, see Table 1.

FINDINGS
Code Hoarding

Since data science involves exploring multiple alternatives, data workers need to keep track of several
code chunks in parallel. These code chunks are stored either within or across script files and/or
notebooks. When the data worker explores an alternative, she does not know if the approach will
pan out to be successful. Therefore, she cannot preemptively decide how to organize code chunks.
Furthermore, data science tasks do not always have an optimal solution—data workers often pick
sub-optimal solutions, e.g., due to performance considerations. This lack of confidence in knowing
whether a piece of code will be used later or not leads to the data workers being cautious of losing code.
This cautiousness in turn leads to code hoarding: Data workers become reluctant to delete analysis
code in script files and interactive notebooks. E.g., P12 had several script files named Untitled stored
on his local disk. Although he was not sure what these script files were about, he did not want to
delete them for fear of losing something valuable. Some data workers find it difficult to clean up
their notebook or script files, and simply do not want to make the effort because they have already
obtained the insights from the data. This occurred more prominently in notebooks, which do not
provide a standard way of structured use.

Consequences: In addition to memory considerations, code hoarding can lead to an overload of
relevant code alternatives that the data worker needs to keep track of. In extreme situations, data
workers may retain code that does not even execute anymore:

“I store everything in notebooks—even the explorations with fake data. | don’t clean it, since |
might need it in the future ... most code does not even execute now, but I just let it be.'” - P13



2Paraphrased for better readability.

Excessive Task Switching and Code Cloning

Another theme that emerged from our analysis is that exploratory programming leads to excessive
task switching and code cloning. While these issues are not uncommon for traditional programming,
they were more pronounced for exploratory programming.

Data science does not occur in isolation—during or after exploration of alternatives, data workers
need to document their progress for dissemination, e.g., by writing a publication or producing a report.
This usually also involves moving the code, often from a notebook to a script file, and refactoring
it. There are two major implications of this: Data workers constantly switch between applications or
modalities, and code chunks are often moved across multiple applications, resulting in clones.

Regarding use of multiple applications and modalities, we found that most users who used notebooks
also used script files. These users preferred interactive notebooks to explore alternatives, but script
files to store their code, because script files allowed for easier testing, execution from the bash shell,
and, in the case of machine learning tasks, compatibility with powerful compute clusters to run on.
However, users found the need for both notebooks and script files frustrating:

“Sometimes | wonder if | can do my task entirely in the notebooks. This way, | don’t have
to copy-paste source code to script files, which is annoying. But then | have to make sure |
properly test it and make really sure that my code works, which would take time?” - P17

Note that although some notebook environments allow data workers to export code cells to script
files, data workers reported often having to make modifications afterwards anyway.

Consequences: Data workers lose their mental model of the task as a result of excessive task
switching; they need more time to read and understand a piece of code, whether it resides in a script
file or interactive notebooks. Consequently, data workers also need more time to decide whether a
given code segment implements an approach they want to go ahead with. Excessive cloning further
lessens the readability of code and makes source code maintenance more difficult.

DESIGN RECOMMENDATIONS

The main cause of code hoarding is the data workers’ fear of losing something valuable. Adding more
explanations, e.g., by following the recommendations in [9], could help data workers understand
code better, and therefore better decide if it is still relevant. To help decide the relevance of various
approaches, data workers could tag their code chunks or cells in interactive notebooks (e.g., as in [3]).
Automatically generated source code visualizations (e.g., [2]) could help with excessive task switching.



variables textEntry hypotheses

textEntry: 36 ~kbdLayout g

read.csv
errors ~ kbdLayout Bl

log(errors) ~ kbdLayout B
speed ~ kbdLayout B

hist
hist

hist

shapiro. test TleveneTest plot

shapiro. test

aov m @ aov

shapiro.test  m@anova shapiro. test

qgnorm plot aov

kruskal_test  m @ summary shapiro. test

kruskal_test

qgnorm

vs.ec @wilcox. test

fitdistr

wilcox. test ks.test

posthoc.kruskal.conover. test

Figure 2: HypothesisManager is an add-in
for RStudio that visualizes R source code
as groups of hypotheses. It is shown along-
side the native source code editor in RStu-
dio and can be used to navigate through
the source code file and inject data.

3http://osf.io

HYPOTHESIS MANAGER

This section describes our proof-of-concept system, HypothesisManager, that can be used to better
support explorations in statistical significance testing tasks. The add-in is integrated into the RStudio
GUI and is shown alongside source code in the ‘Viewer’ pane. A parsing engine detects the variables
in the source code and attempts to identify the datasets and column names. Function call stacks
of code expressions and the R formula notation help identify hypotheses. If the result of such an
expression gets assigned to a variable, this variable is classified as a statistical model, and is tracked
throughout the script to track the hypothesis.

The source code model, which refers to the information that will be visualized, consists of three types
of entities: variables, functions, and hypotheses. Variables are the backbone of the visualization, with
the relevant function calls represented hierarchically to show how the analysis evolves as different
hypotheses are explored.

Interaction: Data workers navigate source code by clicking on the function in the visualization. Due
to space constraints, we only visualize the parent function in a statement that has nested functions.
For assignment operations in which a statistical model is assigned to a variable, and for subsequent
use of this variable in a function invocation, we denote both the variable name and the parent function.
The complete line of code in the source file, user’s comments for this line of code to help the user recall
her thought process, and links to the R help pages for the functions invoked in this line of code are
shown as tooltips. Data workers can use HypothesisManager while performing statistical significance
testing in RStudio and while viewing existing R script files written by themselves or others.

Data Injection: Since HypothesisManager can determine the dataset model (measurements and
factors), it can also inject data into a current hypothesis. Data workers can avoid having to manually
find and replace variable names in the source code. This could allow for faster explorations.

Design Process and Validation: We developed HypothesisManager iteratively, progressively devel-
oping our ideas from paper sketches. While we initially considered a variable-based grouping, we
discovered that data workers actually think about their analysis in terms of hypotheses. We validated
the parsing engine of HypothesisManager with a corpus of 40 R scripts that were randomly sampled
from OSF? and from researchers at our local university. We eventually achieved a 75% coverage.

Applicability to Other Domains: While our parsing engine currently works only for significance
testing, it can be extended to other domains like machine learning. This can be done by first identifying
what constitutes a ‘hypothesis’ in this domain and then classifying the identified functions accordingly.
E.g., a classification pipeline would constitute parsing, attribute generation, parsing, and testing steps

[7].



SUMMARY

Code hoarding, and excessive task switching and code cloning are issues that plague data workers
when performing exploratory programming tasks. We discussed existing HCI research as well as
our proof-of-concept system HypothesisManager as possible solutions for these issues. While we
believe that HypothesisManager has potential benefits, user studies are required for validation. We are
working on making HypothesisManager available to data workers as open source, see http://hci.rwth-
aachen.de/r-hypothesis-manager.

ACKNOWLEDGMENTS

This work was funded in part by the German B-IT Foundation. We thank all participants in our study
for their insights. We also thank Christian Corsten, Nur Hamdan, and Prof. Janne Lindqvist for their
feedback.

REFERENCES

[1] Hennie Boeije. 2002. A Purposeful Approach to the Constant Comparative Method in the Analysis of Qualitative Interviews.
Quality and Quantity 36, 4 (01 Nov 2002), 391-409. https://doi.org/10.1023/A:1020909529486
Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. 2010. Code Bubbles: A Working Set-based Interface for Code
Understanding and Maintenance (CHI °10). ACM, New York, NY, USA, 2503-2512. https://doi.org/10.1145/1753326.1753706
Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Exploratory Programming by Data Scientists.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA,
1265-1276. https://doi.org/10.1145/3025453.3025626
Mary Beth Kery and Brad A. Myers. 2017. Exploring Exploratory Programming. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC) (VL/HCC ’17). IEEE, 25-29. https://doi.org/10.1109/VLHCC.2017.8103446
Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook:
Exploratory Data Science Using a Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (CHI ’18). ACM, New York, NY, USA, 174:1-174:11. https://doi.org/10.1145/3173574.3173748
[6] Cathy O’Neil and Rachel Schutt. 2013. Doing Data Science: Straight Talk From The Frontline. O’Reilly Media, Inc.
[7] Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Andrew J. Ko, and James Landay. 2010. Gestalt: Integrated
Support for Implementation and Analysis in Machine Learning. In Proceedings of the 23Nd Annual ACM Symposium on User
Interface Software and Technology (UIST ’10). ACM, New York, NY, USA, 37-46. https://doi.org/10.1145/1866029.1866038
Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun Kim, Nick P. Johnson, Feng Liu,
Soumyadeep Ghosh, Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and David I. August. 2011. A Survey
of the Practice of Computational Science. In State of the Practice Reports (SC '11). ACM, New York, NY, USA, Article 19,
12 pages. https://doi.org/10.1145/2063348.2063374
Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Explanation in Computational Notebooks. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA,
Article 32, 12 pages. https://doi.org/10.1145/3173574.3173606
[10] Anselm Strauss and Juliet Corbin. 1994. Grounded Theory Methodology: An Overview. Handbook of Qualitative Research
17 (1994), 273-85.

[2

—

3

—

[4

—

[5

—_

[8

[t

[

—


https://doi.org/10.1023/A:1020909529486
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/2063348.2063374
https://doi.org/10.1145/3173574.3173606

	Abstract
	Introduction
	Related Work
	Methodology
	Findings
	Code Hoarding
	Excessive Task Switching and Code Cloning

	Design Recommendations
	Hypothesis Manager
	Summary
	Acknowledgments
	References

