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selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2015
Marty Pye





v

Contents

Abstract xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Related Work 3

2.1 Three problems with NHST . . . . . . . . . . 3

2.1.1 Misinterpretation of the p-value . . . 3

2.1.2 Lack of Power . . . . . . . . . . . . . . 4

2.1.3 Confusion between p-values and Es-
timates of Effects . . . . . . . . . . . . 5

2.2 Alleviation with the Bayesian Approach . . . 5

2.2.1 Misinterpretation of the p-value . . . 5

2.2.2 Lack of Power . . . . . . . . . . . . . . 6

2.2.3 Confusion between p-values and Es-
timates of Effects . . . . . . . . . . . . 6



vi Contents

2.3 Reusable UI components . . . . . . . . . . . . 8

2.3.1 Visistat/Statsplorer . . . . . . . . . . . 8

2.3.2 B-Course . . . . . . . . . . . . . . . . . 11

2.3.3 WinBUGS . . . . . . . . . . . . . . . . 11

2.4 Uncertainty Visualisation . . . . . . . . . . . 13

2.5 Reporting Bayesian Data Analyses . . . . . . 15

3 Bayesian Analysis Theory and Workflow 19

3.1 Data Identification . . . . . . . . . . . . . . . 22

3.2 Hierarchical Model . . . . . . . . . . . . . . . 23

3.3 Prior . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Interpreting the Posterior . . . . . . . . . . . 24

3.5 Posterior Predictive Check . . . . . . . . . . . 27

3.6 MCMC . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Representativeness . . . . . . . . . . . 28

3.6.2 Accuracy . . . . . . . . . . . . . . . . . 29

4 Interaction Design 31

4.1 Evaluation of Statplorer UI Components . . . 31

4.2 Dataset Selection . . . . . . . . . . . . . . . . 34

4.3 Hierarchical Model Picker . . . . . . . . . . . 35

4.4 Contrasts . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Design Rationale . . . . . . . . . . . . 36



Contents vii

4.4.2 Layout and Navigation . . . . . . . . 37

4.4.3 Contrast Order . . . . . . . . . . . . . 40

4.4.4 Filtering . . . . . . . . . . . . . . . . . 41

4.4.5 A Contrast Tile . . . . . . . . . . . . . 41

4.4.6 Simple Effect Contrasts . . . . . . . . 46

4.5 Semantic Contrast Layout . . . . . . . . . . . 47

4.5.1 Hypothesis Builder . . . . . . . . . . . 48

4.6 Report . . . . . . . . . . . . . . . . . . . . . . 51

5 Implementation 53

5.1 Technologies and Frameworks . . . . . . . . 53

5.2 BayesianStatsplorer Modules . . . . . . . . . 54

5.2.1 Dataset . . . . . . . . . . . . . . . . . . 54

5.2.2 Boxplot . . . . . . . . . . . . . . . . . . 54

5.2.3 Hierarchical Model Picker . . . . . . . 55

5.2.4 MCMC . . . . . . . . . . . . . . . . . . 56

5.2.5 Contrasts . . . . . . . . . . . . . . . . . 56

5.2.6 Report . . . . . . . . . . . . . . . . . . 58

6 Evaluation 61

6.1 Without Users . . . . . . . . . . . . . . . . . . 61

6.2 With Users . . . . . . . . . . . . . . . . . . . . 61



viii Contents

7 Summary and Future Work 67

7.1 Summary . . . . . . . . . . . . . . . . . . . . . 67

7.2 Future Work . . . . . . . . . . . . . . . . . . . 68

A BayesianStatsplorer Mockup 71

Bibliography 81

Index 85



ix

List of Figures

2.1 Three column layout of Statsplorer . . . . . . 9

2.2 A boxplot . . . . . . . . . . . . . . . . . . . . . 10

2.3 Statsplorer test decision tree . . . . . . . . . . 12

2.4 Visualisation of probabilistic dependencies . 13

2.5 A screenshot of WinBUGS . . . . . . . . . . . 14

2.6 A screenshot of DoodleBUGS . . . . . . . . . 15

3.1 Datatype specification in R . . . . . . . . . . . 22

3.2 Exemplary hierarchical diagram . . . . . . . 23

3.3 Contrast plots . . . . . . . . . . . . . . . . . . 25

3.4 A difference contrast . . . . . . . . . . . . . . 26

3.5 Unconverged and converged trajectories . . . 29

3.6 Example of autocorrelated MCMC chains . . 30

4.1 Right column containing report and history . 33

4.2 Dataset selection view . . . . . . . . . . . . . 35

4.3 Main effect contrasts . . . . . . . . . . . . . . 37



x List of Figures

4.4 Main and interaction effects separated in dif-
ferent tabs . . . . . . . . . . . . . . . . . . . . 38

4.5 Expandable main effect contrasts . . . . . . . 39

4.6 Expansion of the simple effect details . . . . . 40

4.7 The filter sidebar . . . . . . . . . . . . . . . . 42

4.8 Simplification of a probability distribution plot 42

4.9 Contrast info menu . . . . . . . . . . . . . . . 44

4.10 Contrast tagged as important . . . . . . . . . 45

4.11 Simple effect contrasts . . . . . . . . . . . . . 47

4.12 Prototypical UI for the hypothesis builder . . 49

4.13 Hypothesis formulation in the hypothesis
builder . . . . . . . . . . . . . . . . . . . . . . 49

4.14 Semantic contrast layout . . . . . . . . . . . . 50

4.15 The report section . . . . . . . . . . . . . . . . 51

5.1 System context diagram . . . . . . . . . . . . 55

5.2 Sequence diagram of the contrasts generation 57

5.3 Generation of a multiple HDI plot . . . . . . 58

6.1 Possible outcomes of a two-by-two factorial
design. . . . . . . . . . . . . . . . . . . . . . . 62

6.2 List of what to check for in the interaction plot. 64

A.1 Mockup: Dataset selection and variable
specification. . . . . . . . . . . . . . . . . . . . 72



List of Figures xi

A.2 Mockup: Main effect contrasts with interac-
tion effect warnings. . . . . . . . . . . . . . . 73

A.3 Mockup: Contrast menu. . . . . . . . . . . . . 74

A.4 Mockup: Multiple HDI plot. . . . . . . . . . . 75

A.5 Mockup: Detail view. . . . . . . . . . . . . . . 76

A.6 Mockup: Tutorial modal view page A. . . . . 77

A.7 Mockup: Tutorial modal view page B. . . . . 78

A.8 Mockup: Tutorial modal view page C. . . . . 79

A.9 Mockup: Contrasts tagged as meaningful. . . 80





xiii

List of Tables

6.1 Summary of the users’ background and ex-
perience. . . . . . . . . . . . . . . . . . . . . . 63





xv

Abstract

Null Hypothesis Significance Testing (NHST) is the established method for data
analysis in HCI, yet p-values, the main results of NHST, are widely misinterpreted
as posterior probability. This leads to many research papers with issues that un-
dermine the value or validity of the statistical testing. Bayesian analysis is an al-
ternative to NHST that provides posterior probability in the results, which is more
intuitive to interpret. However, performing a Bayesian analysis comprises complex
subtasks, such as the setup of a prior probability, the creation of hierarchical mod-
els and assessing simulation quality. These subtasks can be overwhelming for the
majority of scientists who are not extensively trained in statistics. Previous work
shows that presenting NHST subtasks with a graphical user interface improves un-
derstanding. In this thesis, we developed an interaction design which helps guide
the user through the process of a Bayesian analysis, and implemented a modular
framework for a web-based application. Finally, we performed a qualitative evalu-
ation of our software using the think-aloud method.
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Chapter 1

Introduction

Statistical analyses are very prominent in scientific re- NHST has some
limitations and pitfalls
the experimenter has
to take care of.

search, as they are used to validate hypotheses the authors
make. Unfortunately, HCI is plagued with problems when
it comes to the analysis and reporting of inferential statis-
tics. Cairns [2007] found that from 41 research papers sam-
pled from HCI journals, all but one had issues that under-
mined the value or validity of the statistical testing and
therefore the research findings. This is often due to the lack
of formal education of the experimenters and the vastness
of statistical analysis. Attempts at mitigating this have been
made by providing software tools which embed a lot of the
knowledge usually required from the user. This can help
novices avoid some of the common mistakes and pitfalls in
inferential statistics.

However, some of these pitfalls are a consequence of the Bayesian analysis is
being promoted, but
software is needed.

framework we use for statistical analysis, so called Null
Hypothesis Significance Testing (NHST). NHST has been
severely criticised, and some statisticians are pushing for
the adoption of Bayesian analysis, as they deem it more
suitable for the needs and objectives of scientific research.
However, there is a distinct lack of visual tools for con-
ducting Bayesian analyses. Just like for NHST, we need
tools which embed as much of the required knowledge as
possible, and guide the user through the analysis process.
This thesis lays the groundwork for such a tool. We imple-
mented various components of the Bayesian analysis pro-
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cess, and propose an interaction design which we believe
helps guide the user through the process of a Bayesian anal-
ysis.

In summary, the contributions of this thesis to the field of
HCI are:

1. We propose a detailed interaction design for the inter-
pretation and report of Bayesian analysis contrasts.

2. We implemented a highly modular, extendible frame-
work built on top of JAGS1 for a web-based Bayesian
analysis application, with both front- and back-end
components for each of the vital steps in an analysis.

1www.mcmc-jags.sourceforge.net

http://mcmc-jags.sourceforge.net
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Chapter 2

Related Work

In this chapter, we give a brief overview of some prob-
lems with Null Hypothesis Significance Testing (NHST),
and how they are alleviated with a Bayesian approach. We
then go on to list some reusable UI components from other
systems, together with some guidelines on how certain con-
cepts in statistics should be visualised. The following sec-
tions describe some of the problems we face with NHST.

2.1 Three problems with NHST

The established method in HCI for testing hypotheses is Motivation: NHST
has limitations, we
list 3 problems.

NHST. In this procedure, a null hypothesis is compared
with an alternative hypothesis, and one of the two is re-
jected. However, NHST comes with some flaws, and some
scientists claim that these flaws have such impact that we
should reconsider the use of NHST. Kaptein and Robertson
[2012] listed three problems with NHST, which can lead re-
searchers to specifying weak hypotheses of limited scien-
tific use.

2.1.1 Misinterpretation of the p-value

The p-value is defined as the probability of obtaining the Problem 1: p-value is
misinterpreted.
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observed value of a sample statistic or a more extreme
value if the data were generated from a null-hypothesis
population sampled according to the intention of the ex-
perimenter (Kruschke [2010]). However, the meaning of
the p-value is very often misinterpreted by researchers as
the probability of the null hypothesis being true. So a p-
value < .05 would signify that the probability of the null
hypothesis being true is less than .05. If this definition of
the p-value were true, it would be P (H0|D), which is the
probability that the null hypothesis (H0) is true, given the
data (D) collected. In reality, the p-value is P (D|H0), the
probability of the data, given that the null hypothesis were
true.

2.1.2 Lack of Power

With NHST, both Type I and Type II errors can be con-Problem 2: NHST
often has a lack of

power.
trolled. Type I errors, or false positives occur when the
null hypothesis is rejected when it is actually true. Sim-
ply stated, a type I error is detecting an effect which is not
present. Type I errors can be controlled by specifying the
alpha value, which specifies the value of p below which
the null hypothesis will be rejected. Type II errors, or false
negatives occur when the null hypothesis is accepted even
though it is false. Again more simply stated, a type II error
is failing to detect an effect that is present. The proportion
of times the null hypothesis is false but accepted is called
beta. The power of an experiment is the probability of de-
tecting an effect given that the effect really exists in the pop-
ulation, and is 1− beta.

While p-values enable researchers to control type I errors,p > 0.05 is not very
informative controlling type II errors, i.e. calculating the power of an ex-

periment seems to be performed less often, as pointed out
by Cohen [1992]. Experiments which lack power are not
very informative when the null is not rejected, because it
does not distinguish between the cases where the null hy-
pothesis is actually true, and where the method just failed
to reject the null hypothesis. Therefore Cohen [1992] gives
some heuristics for the required sample size given the mag-
nitude of effect the researcher wants to achieve.
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2.1.3 Confusion between p-values and Estimates of
Effects

A third and fairly severe problem of NHST is that re- Experimenters often
neglect effect sizes.searchers tend to give more value to the question of

whether an effect exists, as opposed to how large this ef-
fect is, and to whom it matters. A p-value < .05 does not
necessarily imply that the effect is important. In order to
assess this, the researcher needs to take into account the
magnitude of the effect. Depending on how large this is, he
can decide whether the effect actually has a “significant”
practical impact.

In NHST, it is recommended that standard measures of Standard effect sizes
are hard to interpret
and relate to the real
world consequences.

effect size should be reported together with the p-values.
Standardized effect sizes are suitable for comparing across
different experiments. However, they do not estimate the
actual differences in means or parameter estimates, and
therefore can not really be used to assess theoretical and
practical importance of the findings.

2.2 Alleviation with the Bayesian Ap-
proach

This section describes how the three problems listed above
can be alleviated by using a Bayesian analysis approach.

2.2.1 Misinterpretation of the p-value

As stated above, the classical p-value P (D|H0) is often mis- Bayes’ Rule actually
gives us what we
misinterpret the
p-value to be.

taken for P (H0|D). However, there is a relationship be-
tween a conditional probability and its inverse, and is es-
tablished in Bayes’ Rule (Bayes [1763]).

P (H0|D) =
P (D|H0)P (H0)

P (D)
(2.1)

According to (2.1), the probability of the null hypothe-
sis being true given the data depends on the probability
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of the data given the null hypothesis, P (D|H0), the prior
probability of the null hypothesis, P (H0) and the proba-
bility of the data, P (D). In practice, P (D) is not really
relevant. Usually the experimenter will want to compute
P (H0|D) and P (Halt|D), where P (D) will be the same on
both sides of the equation, and can therefore be eliminated.
As P (D|H0) is given by the p-value, the only remaining fac-
tor that needs to be specified in order to compute P (H0|D)
is P (H0), which is the prior probability of the null hypoth-
esis.

This Bayesian approach is gaining popularity in certain sci-
entific fields (Kruschke [2010]). The Bayesian t-test actually
computes what the researcher wants to know, the probabil-
ity of a hypothesis being true, and which is already what
researchers are misunderstanding the p-value to be.

2.2.2 Lack of Power

As stated above, experiments with a lack of power are notBayesian analysis
quantifies evidence
in favour of the null,

therefore giving
information about the
likelihood of a type II

error.

very informative when they do not reject the null hypothe-
sis, because we cannot distinguish between the cases where the
null is true and where the method just did not detect the null. In
contrast, this consequence of lack of power is less severe in
a Bayesian analysis, as it is actually quantifying the proba-
bility that the null hypothesis is true. Therefore, evidence
in favour of the null hypothesis can be only minor because
the chances are good that the experiment will fail to detect
an effect, or there can be strong evidence for the null hy-
pothesis, implying that the null is actually true.

2.2.3 Confusion between p-values and Estimates of
Effects

As explained above, standardised effect sizes are not veryThe value indicating
presence of an effect

also directly
estimates the size of

the effect.

suitable for judging the practical importance of the finding.
In contrast, the difference estimates in a Bayesian analysis
actually estimate the difference between means, measured
in the dependent variable. Therefore, the value which in-
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dicates that there is an effect also directly implies how large
that effect is, in a unit of measurement which is relatable to
the user.

Additionally to these three specific problems associated Unlike Bayesian
analysis, NHST also
promotes week
hypothesising.

with NHST, we would like to conclude with a more gen-
eral criticism of NHST, which Kaptein and Robertson [2012]
point out. NHST encourages the proposition of weak hy-
potheses which make vague claims about the world. With
the null hypothesis, the researcher predicts that there is no
difference between conditions, and when this is rejected,
he accepts the alternative hypothesis. Unfortunately, the
alternative hypothesis that matches the null hypothesis, i.e.
there is some difference, is fairly vague and not at all spe-
cific. It only rules out one case, the one where the means
are exactly the same across all conditions. Any other rela-
tionship between the variables could be true, and therefore
rejecting the null hypothesis is not really particularly infor-
mative.

Bayesian analysis techniques can alleviate all the problems Bayesian data
analysis alleviates
the problems stated
above.

described by Kaptein and Robertson [2012], both the spe-
cific ones, as described above, and the general criticism
about NHST encouraging the postulation of weak hypothe-
ses, because the Bayesian methodology allows for compar-
ing the credibility of multiple possible hypotheses. The
limitations of NHST are driving the adoption of Bayesian
methods, and in order to help this adoption, we feel an in-
teractive, GUI-based tool for performing Bayesian analyses
would be useful.

There are some software tools available like SAS1, SPSS
Amos2, JAGS3 and BUGS4 that let you perform Bayesian
analyses. Unfortunately, all of these either require the user Existing software is

complicated and
requires much
expertise.

to create his analysis in code, or if they provide a UI, then
they leave all the freedom of choosing the statistical models
up to the user. While this is useful for expert users, novices
are completely overwhelmed, and the danger of setting up
an unsuitable model is pretty high.

1www.sas.com
2www-03.ibm.com/software/products/en/spss-amos
3www.mcmc-jags.sourceforge.net
4www.mrc-bsu.cam.ac.uk/software/bugs/

http://www.sas.com/en_us/home.html
http://www-03.ibm.com/software/products/en/spss-amos
http://www-03.ibm.com/software/products/en/spss-amos
http://mcmc-jags.sourceforge.net
http://www.mrc-bsu.cam.ac.uk/software/bugs/


8 2 Related Work

As we want to create a more limited but therefore more fail-
safe system, similar to the original Statsplorer, we searched
for reusable UI components from systems which let you
perform Bayesian analyses.

2.3 Reusable UI components

In order to build an intuitive, visual tool for Bayesian anal-We searched for
reusable

components from
existing software.

yses, we first looked at some tools which attempt to do this
for the classical NHST approach. Visistat by Subramanian
[2014], later known as Statsplorer by Wacharamanotham
et al. [2015], automatically tests statistical assumptions and
visually guides the user through the steps required to per-
form the analysis, and interpret the results. A formal study
showed that Statsplorer helped novices understand statisti-
cal assumptions and choosing the appropriate tests. In fact,
one of the points in the “Future Work” section listed the
extension of the “Statsplorer back-end to support alterna-
tive statistical analysis procedures, e.g., Bayesian analysis”
. While we were able to transfer some of the front-end so-
lutions from Statsplorer to BayesianStatsplorer, the nature
of the Bayesian process required reinventing several parts
of the front-end too. In the following section, we list the
solutions we could transfer to BayesianStatsplorer.

2.3.1 Visistat/Statsplorer

The Statsplorer interface is divided into three separateReusing a
three-column design. columns, as can be seen in Figure 2.1. The flow throughout

the analysis process is largely from left to right. First, the
user selects the variables he wants to include in the analysis
in the left panel. He can also choose between some different
actions which he wants to perform, like compare the data,
correlate the data, etc. Then he interacts with the centre
column, checking the assumptions, interpreting statistical
tests and understanding why specific tests where chosen.
Finally, he can view the summary of the results in the con-
cise report on the right, and can navigate through the his-
tory of tests he performed. At any point in time, the user
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Variable Selection Tests and Interpretation Report and History

Figure 2.1: The Statsplorer interface (Subramanian [2014]) is divided into 3
columns. The left column handles variable selection, the centre column handles
all the statistical procedures and interpretation, and the right column displays the
report and history.

can go back to the previous column, to change something,
or look at the next column to see what consequences his ac-
tions have in the further steps of the analysis process. This
makes sense due to the inherently linear process of statisti-
cal analyses. However, this layout comes with some limi-
tations, which are elaborated on in chapter 4.1 “Evaluation
of Statplorer UI Components”.

The centre column provides the user with a descriptive plot
of the data, as shown in Figure 2.2, once he has selected the
variables of interest. In the boxplot, he can select the dif- The boxplot is a

useful starting point
for a Bayesian
analysis too.

ferent means he wishes to compare in his test. Once he has
selected them, he can choose “compare” to let Statsplorer
choose the appropriate test and check the corresponding
assumptions. We believe that the boxplot is a good starting
point for the user to start his analysis, both for NHST and
Bayesian analyses. The user can get a brief overview of the
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Figure 2.2: A boxplot of the data, as shown in the centre column of Statsplorer
(Subramanian [2014]). The user can select specific means he wishes to compare.

trends in his data while selecting the means he wants to in-
clude in the comparison, and as this is a descriptive plot, it
is not bound to either the classical or Bayesian approach.

The remaining components of Statsplorer needed to be re-
designed for BayesianStatsplorer, the reasons for which are
stated in chapter 4.1 “Evaluation of Statplorer UI Com-
ponents”. Additionally to the UI components from Stat-
splorer, the following section elaborates on some other po-
tential solutions for modules in BayesianStatsplorer that we
found in existing literature.



2.3 Reusable UI components 11

2.3.2 B-Course

One task that BayesianStatsplorer will perform for the user The visualisation
B-Course uses for
probabilistic
dependencies could
be reused in
BayesianStatsplorer.

is choosing a suitable hierarchical model (see 3.2 “Hierar-
chical Model”. In the original Statsplorer, this is sort of
analogous to choosing the correct test, which Statsplorer
conveys to the user through an easy to interpret decision
tree, shown in Figure 2.3. BayesianStatsplorer could in-
clude a similar decision tree, but for the information about
the actual hierarchical model that was chosen by the sys-
tem. For this, we believe a UI similar to the approach taken
by Myllymäki et al. [2002] might be suitable. They devel-
oped a web-based tool B-Course, which visualises proba-
bilistic dependencies, and lets the user interact with them.
The software uses a tutorial style interface which combines
the steps of the data analysis with additional support ma-
terial. The probabilistic dependencies are visualised as in
Figure 2.4. Unfortunately, the B-Course tool is not work-
ing any more, so we were not able to try out the features
the authors describe in the paper. Basically, BayesianStat-
splorer could use a similar visualisation of the dependen-
cies of the different parameters of the hierarchical model.
Furthermore, BayesianStatsplorer could allow the user to
interact with this visualisation, tweaking the hierarchical
model to suit his needs and expectations.

2.3.3 WinBUGS

Another Bayesian modelling framework is WinBUGS WinBUGS provides
helpful UI for model
specification, but little
UI for result
interpretation.

(Lunn et al. [2000]), which allows full probability models
to be specified either textually with the BUGS5 language or
with a graphical interface called DoodleBUGS. Figure 2.5
and 2.6 show some screenshots of WinBUGS and Doodle-
BUGS. WinBUGS processes the specified model and per-
forms an analysis with the aid of Markov chain Monte
Carlo. The UI components of WinBUGS are suitable for
the Bayesian modeling process, but WinBUGS lacks good
UI for presenting the results of the analysis. It merely gen-
erates numbers and graphs. While the usability and learn-

5www.mrc-bsu.cam.ac.uk/software/bugs/

http://www.mrc-bsu.cam.ac.uk/software/bugs/
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At least one within-groups factor?

Not supported by Statsplorer

Independent Factorial ANOVAMixed-design Analysis of Variance

between-groupswithin-groups

YesYes

Yes Yes

Homogeneity?Homogeneity?

Normality?Normality? No

No

No

No

Figure 2.3: The decision tree shown to the user in Statsplorer (Subramanian [2014]).
It allows the user to understand why a certain test was chosen. BayesianStatsplorer
could include a similar tree structure for displaying why a certain hierarchical
model is deemed suitable by the system.

ing curve of the model specification process can and needs
to be improved, this is not the focus of this thesis. We focus
less on enhancing the process of model specification, and
more on a suitable UI for presenting the Bayesian results.
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Figure 2.4: Visualisation of probabilistic dependencies as
implemented in B-Course by Myllymäki et al. [2002].

2.4 Uncertainty Visualisation

Most of the visualisations in BayesianStatsplorer have to Bayesian Analysis,
just like NHST, needs
to visualize
uncertainty. We can
apply guidelines
about visualizing
uncertainty to the
Bayesian world too.

show some kind of uncertainty, which is the highest density
interval (HDI). Chapter 3.4 “Interpreting the Posterior” ex-
plains what exactly the HDI is. Correll and Gleicher [2014]
worked on some alternative representations of uncertainty
for classical statistics in order to alleviate some of the prob-
lems with error bars. Most of these problems do not ap-
ply to Bayesian statistics, however the authors composed
a set of general guidelines about the visualisation of un-
certainty. Most of these guidelines can also be applied to
Bayesian statistics, and we assured the compliance of our
design with them. The guidelines applicable to Bayesian
statistics are listed below.
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Figure 2.5: A screenshot of WinBUGS (Lunn et al. [2000]). The user can import
some data, define a hierarchical model and create priors for different parameters
through a simple GUI.

• The visual encoding should clearly communicate the
effect size, i.e. the visualisation of the uncertainty
should not come at the expense of the visualisation
of the mean.

• The encoding should encourage the “correct be-
haviour” of the user, for example refraining from
judgement if the means are dissimilar, but the uncer-
tainty is very high.

• The encoding should promote the comparison or esti-
mation of inferences that have not been explicitly sup-
plied.

• The encoding should avoid binary encodings, which
likely requires encodings which display certainty
continuously.
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WinBUGS 329

Fig. 2. Screen dump from a WinBUGS session featuring a DoodleBUGS graph for the Hepatitis B immunization model discussed in Spiegelhalter
et al. (1996a). The data, y[i,j], are serial log-antibody-titre measurements obtained from (K = 106) Gambian infants after Hepatitis B immu-
nization. The graph represents a hierarchical random effects model, with i indexing infants and j indexing repeated measures on each infant. The
y[i,j] are assumed independent conditional on their mean mu[i,j] and on a parameter tau that represents the precision of the measurement
process. Observed baseline log-titre values y0[i] are believed to be subject to the same sources of measurement error and are thus also dependent
on tau . Each mu[i,j] is a deterministic function of log.time[i,j], infant-specific intercept and gradient parameters (alpha[i] and beta[i]
respectively), an ‘errors-in-variables’ covariate (‘true’ baseline log-titre: mu0[i]), and its associated coefficient gamma. Here a linear form is
chosen (mu[i,j] <- alpha[i] + beta[i] * log.time[i,j] + gamma * mu0[i]), but linearity is by no means essential; a logical node’s
functional form is entered at the top of the graph when the node is selected. The alpha[i], beta[i], and mu0[i] are independently drawn from
population distributions parameterised by: alpha0 and tau.alpha; beta0 and tau.beta; and theta and phi, respectively

deterministic) relationships. The BUGS language is described
in detail in Spiegelhalter et al. (1996b).

Graphical specification is achieved via the DoodleBUGS in-
terface. Figure 2 shows the DoodleBUGS equivalent of the
Hepatitis B immunization model discussed in Spiegelhalter et al.
(1996a), which combines a random effects growth curve model
for log-antibody-titre with measurement error on a covariate
(‘true’ baseline log-titre). Nodes, directed links, and plates are
drawn using simple mouse operations. Details of distributional
assumptions or logical functions appear at the top of the graph
when a node is selected (as shown for y[i,j]); these may be
edited by the user.

Figure 2 also shows some results based on iterations 2001–
12000 of an analysis using the depicted model: a ‘time series’
(or trace) plot, a kernel posterior density estimate, the autocor-
relation function, and various summary statistics are shown for
gamma, the coefficient associated with true baseline log-titre val-
ues. (Note that various other types of textual and graphical out-
put are also available.) Such output can be generated at any time
during the analysis – the relevant posterior samples are simply
extracted from the appropriate monitor object (see Section 6.4)
and manipulated accordingly.

From an abstract graphical representation of the model
it is straightforward to ‘read off’ conditional independence

Figure 2.6: A screenshot of DoodleBUGS (Lunn et al. [2000]). The hierarchical
model can be specified graphically in a similar manner to B-Course (Myllymäki
et al. [2002]). Kruschke [2015] uses a similar visualisation (see Figure 3.2) to explain
his hierarchical models.

In chapter 4.4 “Contrasts”, we discuss the design decisions
of our contrast visualisations, the results of which are visi-
ble in Figure 4.8 and 4.11. These visualisations comply with
the guidelines proposed by Correll and Gleicher [2014].

2.5 Reporting Bayesian Data Analyses

Unfortunately, a standard for reporting Bayesian analyses Guidelines for
reporting Bayesian
analyses exist.

does not exist yet. Therefore, we tried to pull together some
guidelines from existing literature on what to report from
a Bayesian analysis. Kruschke [2015] lists some essential
points which should be in a Bayesian report.
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• The report should motivate the use of Bayesian, non-
NHST analysis. As many scientific audiences and
reviewers are familiar with NHST, they appreciate
an explanation as to why the experimenter used
Bayesian analysis instead of NHST. For example, the
experimenter can argue that Bayesian models are de-
signed to be appropriate to the data structure, with-
out having to make assumptions typical in NHST.
The inferences from Bayesian analyses are more in-
formative than NHST, as the posterior distribution re-
veals probabilities of combinations of parameter val-
ues.

• The report should describe the data structure, the model
and the model’s parameters. In his interpretation, the
experimenter wants to interpret the meaningful pa-
rameter values, but for this, he needs to explain the
model. And he can only explain the chosen model
by explaining the data being modelled. Therefore, it
makes sense for the experimenter to recapitulate the
data structure, with the predicted and predictor vari-
ables. Then he can describe the model together with
the meaningful parameters.

• The report should clearly describe and justify the prior. It
is very important for the experimenter to convince the
audience that a suitable prior was used, which did not
predetermine the outcome of the experiment. A scep-
tical audience should be able to accept the used prior.
The prior should be mildly informed by the scale of
the gathered data, and if there is applicable existing
research, it should not be ignored. Optionally, the ex-
perimenter can report the robustness of the posterior
distribution with different priors.

• The report should include the MCMC details, especially
evidence that the chains were converged and of suf-
ficient length. It should indicate that the chains were
checked for convergence, and indicate the ESS of the
relevant parameters.

• The report should interpret the posterior distribution.
As many models can have dozens or even hundreds
of different parameters, it is important for the exper-
imenter to summarise the important ones. Which
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parameters to report is domain-specific and is influ-
enced by the actual results themselves. The posterior
central tendency of a parameter and its HDI can be re-
ported in text alone, histograms of posteriors may be
unnecessary in a concise report. If the model includes
interactions of predictors, the lower order effects need
to be interpreted carefully. If the experimenter uses a
ROPE, he should justify its limits.

These essential points for reporting Bayesian anal-
yses inform the questions in the report section of
BayesianStatsplorer, as described in chapter 4.6 “Re-
port”.
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Chapter 3

Bayesian Analysis
Theory and Workflow

“How often have I said to you that when you
have eliminated the impossible, whatever remains,

however improbable, must be the truth?”

—Sherlock Holmes

In this section we will introduce Bayesian data analysis, Bayesian analysis
relies on two
fundamental
concepts.

which relies on two fundamental concepts. The first con-
cept is that Bayesian inference reallocates credibility across
different possibilities. Certain possibilities can have differ-
ent prior credibility distributions. Based on the information
which is then gathered, the credibilities are reallocated to a
new distribution of credibility, which is called the posterior
credibility distribution. It is called the posterior distribu-
tion because it is what we believe after having gathered the
new evidence. This posterior distribution can then be used
as a prior for subsequent inferences.

Although this first concept of Bayesian inference may Bayesian inference
reallocates credibility
across possibilities.

sound quite complex, the mathematics are actually very
similar to the logical reasoning humans perform on a day
to day basis. Kruschke [2015] gives the following example.
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BAYESIAN REASONING IN EVERYDAY LIFE:
Suppose you step outside one morning and notice that
the pavement is wet, and wonder why. You consider
all the possible causes of wetness, including possibili-
ties such as recent rain, recent garden irrigation, a newly
erupted underground spring, a broken pipe, a passerby
spilled a drink, etc. If all you know until that point is that
the pavement is wet, then all those possibilities will have
some prior credibility based on previous knowledge. For
example, recent rain may have greater prior probability
than a spilled drink. You now continue to make more ob-
servations, you gather more data. If you observe that the
pavement is wet for as far as you can see, and so are the
trees, then you reallocate credibility to the hypothesis of
recent rain. Inversely, if you observe that the wetness is
localised to a small area, and there is an empty cup lying
on the ground, then you would reallocate credibility to
the hypothesis of a spilled drink, even though it had a
lower prior probability.

Definition:
Bayesian reasoning

in everyday life

This reallocation of credibility across possibilities is the
essence of Bayesian inference. Another example is the
quote at the beginning of this chapter. Sherlock Holmes
conceived a set of possible causes for a crime. Each cause
had a certain prior probability. When Holmes then gath-
ered evidence which ruled out causes one-by-one, Bayesian
reasoning forced him to conclude that the remaining possi-
ble cause was fully credible, even if it had a very low prior
probability.

The second fundamental concept of Bayesian analysis isThe possibilities are
parameter values of

mathematical
formulas describing

the data.

related to the nature of typical data in scientific research.
Measurements are full of random variation and influences
of external factors, therefore creating the need to use math-
ematical formulas which describe the trends and spreads
of the data. These formulas have parameters like e.g. mean
and standard deviation, and these parameters are critical
to the second concept of Bayesian analysis. As mentioned
above, the first concept of Bayesian data analysis is that it
reallocates credibility across different possibilities. The sec-
ond concept is that these possibilities are actually potential
parameter values for the mathematical formulas describing
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the trends of the data. It is important that the parameters
in the mathematical model are meaningful. While theo- The parameters must

be meaningful and
interpretable.

retically any mathematical model which describes the data
could be used to perform Bayesian analysis, it is not really
productive to use mathematical models that we do not un-
derstand, with parameters we cannot interpret. The model
also needs to be a suitable description of the data. If the
model does not fit the data well enough, then any trends
might not actually reflect the reality. Bayesian analysis can
also be used to assess relative credibility of different can-
didate descriptions of the data, as described in Kruschke
[2015], chapter 10.

According to Kruschke [2015], Bayesian data analysis typi- A Bayesian analysis
typically involves 5
steps.

cally involves the following steps:

1. The data relevant to the research questions needs to
be identified. What are the independent and depen-
dent variables? What is the measurement scale of the
variables?

2. A descriptive model needs to be defined. The pa-
rameter values of this model will be estimated in the
Bayesian analysis process.

3. A prior distribution needs to be defined for the pa-
rameter values. This prior needs to be justifiable, and
should be acceptable to a sceptical audience.

4. Bayesian inference is used to reallocate credibility
across parameter values. The resulting posterior dis-
tribution needs to be interpreted based on the mean-
ingful parameters. This assumes that the model was
a reasonable description of the data, which is verified
in the last step.

5. The posterior distribution needs to resemble the real
data with reasonable accuracy. This is a posterior pre-
dictive check. Often this involves plotting a summary
of predicted data from the descriptive model against
the actual data.

In the following section, we’ll expand the points above and
describe each step in more detail, together with a descrip-
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dependentVariable = list(name=“DV”, type=“metric”)

keyboardLayout = factor(list( name=“IV1”,
      type=“nominal”,
      ordered=FALSE,
      level=c(“Qwerty”, “Colemak”, “Dvorak”,
      labels=c(“Qwerty”, “Colemak”, “Dvorak”)))

gender = factor(list( name=“IV1”,
      type=“nominal”,
      ordered=FALSE,
      levels=c(“Male”, “Female”),
      labels=c(“Male”, “Female”)))

Figure 3.1: Specification of data types in R. Both keyboard-
Layout and gender are nominal, with three and two levels
respectively.

tion on how this is currently achieved. Current tools andMost Bayesian
analysis tools rely on

R.
frameworks to perform Bayesian statistical analyses rely
heavily on R1 scripts. Therefore in this chapter, we’ll il-
lustrate how one could perform an analysis only relying
on R. As an example we use a simulated dataset from a hy-
pothetical experiment which measured typing speed across
different keyboard layouts, Qwerty, Colemak and Dvorak,
and across different genders, male and female.

3.1 Data Identification

The approach of identifying the data relevant to the re-The experimenter
needs to identify the
type of the variables,

which can be
continuous or

categorical.

search questions is similar to the approach in null hypoth-
esis testing. Once the experimenter has created an experi-
mental protocol (O’Brien and Wright [2002]), he should be
able to identify the measures of the independent and de-
pendent variables. A variable can be of continuous (met-
ric) or categorical (nominal, ordinal or dichotomous) type.
Having the types of all the variables is a prerequisite to con-
tinuing with step 2, and would look somewhat similar to
Figure 3.1 in R.

1www.r-project.org

http://www.r-project.org
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is the same for all groups. The second assumption is sometimes called “homogeneity of
variance.” The entrenched precedent of ANOVA is why basic models of grouped data
make those assumptions, and why the basic models presented in this chapter will also
make those assumptions. Later in the chapter, those constraints will be relaxed.

20.2. HIERARCHICAL BAYESIAN APPROACH
Our goal is to estimate the main and interaction deflections, and other parameters, based
on the observed data. The hierarchical diagram for the model is shown in Figure 20.2.
Although the diagrammay appear a bit unwieldy, it is simply an expansion of the diagram
for single-factor “ANOVA” in Figure 19.2 (p. 558). At the bottom of Figure 20.2, the
datum yi is assumed to be normally distributed around the predicted value µi. Moving
up the diagram, we see that the predicted value is the baseline plus deflections expressed
in Equation 20.1. Each of the parameters is given a prior distribution exactly analogous

Figure 20.2 Hierarchical diagram for model that describes data from two nominal predictors. At the
top of the diagram, the empty braces indicate the pri or distribution on the standard deviations of the
deflections, which could be a folded- t as recommendedby Gelman (2006), a gamma distributionwith
nonzero mode, or a constant if no sharing across levels is desired. Compare with Figure 19.2 (p. 558).

Figure 3.2: Hierarchical diagram that describes the data
from two nominal predictors (Kruschke [2015]), in our ex-
ample keyboardLayout and gender.

3.2 Hierarchical Model

The next step of the Bayesian analysis involves specifying a A hierarchical
statistical model
needs to be
specified.

descriptive hierarchical model which represents the data. A
hierarchical model for our typing speed example is shown
in Figure 3.2. At the bottom, it is shown that the data is
assumed to be normally distributed around the predicted
value µi. Above we see that the predicted value is equal
to the baseline together with the deflections of each predic-
tor, keyboardLayout and gender, and their interaction. More
information about this equation, given by the generalized
linear model, can be found in Kruschke [2015], p. 429. Each
parameter in the equation is given its own prior distribu-
tion, which is explained in 3.3 “Prior”.

An experienced Bayesian analyst could specify the hierar- A hierarchical model
can be specified with
the help of the JAGS
modelling language.

chical model which suits his data using JAGS2. However,
Kruschke [2015] has composed a set of R scripts suitable for

2www.mcmc-jags.sourceforge.net

http://mcmc-jags.sourceforge.net
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common experimental designs. Depending on the amount
and types of independent and dependent variables, the ex-
perimenter can choose from this set of scripts, which con-
tain sample analyses. He can then modify the example to
fit his dataset.

3.3 Prior

Next, a prior distribution for the parameters needs to beA prior distribution for
the parameters

needs to be
provided.

defined. The prior might be able to be informed by pre-
viously conducted and accepted research. If no such prior
knowledge exists or is applicable to the given scenario, a
vague and non-committal prior can be placed on the pa-
rameters, which give equal prior credibility across a range
of possible values. In Figure 3.2, you can see such a non-
committal prior for the standard deviation parameter σy.
The model assumes only one within-group standard devia-
tion across all groups, i.e. the model assumes homogeniety
of variance. The priors for the parameters can also be spec-
ified by the analyst in JAGS. Most of the R scripts available
use non-informative priors as the default setting. Once the
priors have been defined, the MCMC process can be run.
When that is finished the experimenter has to check that the
chains are of sufficient length and have converged. The R
script generates a set of plots that help diagnosing the gen-
erated chains. More about the MCMC process is described
in chapter 3.6 “MCMC”.

3.4 Interpreting the Posterior

The next step is the actual interpretation of the poste-The posterior
distribution needs to

be interpreted.
rior distribution. According to which contrasts the exper-
imenter specified in the R script, several probability dis-
tributions are generated. A collection of all the generated
contrasts for the typing speed example are shown in Figure
3.3. These contrasts are all so-called difference contrasts.
The parameter being estimated is the difference in typing
speed between different groups. Figure 3.4 shows the dif-
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Figure 3.3: The Bayesian analysis generates many contrast plots, which the user
needs to interpret. These were generated using the R script provided by Kruschke
[2015].

ference between Colemak and Dvorak. We can see that
the most credible value for the difference is 0.028. It also
shows the level of certainty in that estimation, by showing
the Highest Density Interval (HDI). The 95% HDI spans the The 95% HDI spans

the most credible
parameter values.

values which cover 95% of the distribution. Here, the HDI
ranges from −0.002 to 0.053. The HDI can also be used to
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Colemak
vs

Dvorak

Difference
−0.02 0.02 0.06

mode = 0.0276
3.4% < 0 < 96.6%

95% HDI
−0.00184 0.0534

Figure 3.4: Difference in typing speed between the key-
board layouts Colemak and Dvorak. As zero is included
in the 95% HDI, we can credibly say that there is no differ-
ence between the two.

make discrete decisions. In Figure 3.4, we can for example
see that 0 is included in the HDI. Therefore we can credibly
say that there is no difference between the two keyboard
layouts. In summary, these are generally the questions theThe experimenter is

usually interested in
several questions.

experimenter asks for each contrast:

• What is the mean estimate of the difference between
the two groups? In Figure 3.4, this is shown as the
mode.

• How precise is the estimate of the mean difference?
This can be assessed by looking at the limits of the
HDI and calculating its width. The narrower it is, the
more certain the experimenter can be about the differ-
ence estimate.

• Is the difference between the two groups zero or close
to zero? In order to assess this, the plot in Figure 3.4
shows zero, together with the probability that the true
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difference is larger than zero, or smaller than zero.

In practice the experimenter has to examine all the dis- The experimenter
has to interpret
several contrasts for
interaction effects
and main effects.

tributions in Figure 3.3 in order to understand the effects
present in the dataset. Usually, he would start by inter-
preting the interaction effect plots. For our typing speed
example, these are the first three plots in the second row
of Figure 3.3. One can identify that there is no interaction
effect between (Qwerty, Dvorak) and (male, female), but
there is an interaction effect between the others, because 0
is not in the HDI. Therefore the experimenter should not
just interpret the main effect of Qwerty vs. Colemak and
Colemak vs. Dvorak, but also interpret the simple effects,
i.e. The difference between Qwerty and Colemak for males,
and the difference between Qwerty and Colemak for fe-
males. The same thing applies for Colemak vs. Dvorak.
However, for Qwerty vs. Dvorak, the experimenter can di-
rectly interpret the main effect contrast, because there is no
interaction effect between those levels of the independent
variable. Chapter 4.4 “Contrasts” describes how our de-
sign facilitates the correct interpretation behaviour by the
experimenter.

3.5 Posterior Predictive Check

The final step involves checking whether the chosen model In the posterior
predictive check, the
predicted data is
compared with the
actual data.

with the estimated parameter values fits the data reason-
ably well. This is the so called “Posterior Predictive Check”.
In this step, the predicted data from the model is plotted
against the actual data. This plot can then be visually in-
spected to determine whether the model describes the data
well. If it does not, the experimenter can consider alterna-
tive descriptive models. For example, if the data appears to
have outliers, the experimenter could choose a heavy-tailed
distribution instead of a normal distribution.

Now that the five steps of a Bayesian analysis have been
discussed, the following section describes the sampling
process which is used to generate the posterior distribution.
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3.6 MCMC

Details of the Markov Chain Monte Carlo (MCMC) methodMCMC is a
procedure for
producing an

approximation of the
posterior distribution.

are described in Chapter 7 of Kruschke’s book. MCMC
is the procedure used for producing accurate approxima-
tions of posterior distributions. For every parameter value
in the defined model, such as the mean, the MCMC al-
gorithm generates a random walk in the space of possi-
ble parameters. The MCMC procedure guarantees that,
in appropriate randomization conditions, the shape of the
frequency distribution approximates the shape of the un-
known probability distribution. The MCMC method can
be used to approximate the shape of posterior distributions
only from the likelihood and the prior, based on ratios of
relative probability. The generated points from the random
walk, altogether, constitute a frequency distribution. This
set of points can be used to calculate the central tendency
of the posterior, together with the HDI. The mathematics
of the MCMC procedure is out of the scope of this thesis.
The experimenter performing a Bayesian analysis should
not have to know the details of the MCMC procedure it-
self. In theory, the mathematics of MCMC guarantee that
infinitely long random walks, also called chains, will repre-
sent the posterior distribution perfectly. In practice, the ex-
perimenter must check the quality of the generated chains.
There a two main criteria which should be fulfilled:Two criteria need to

be fulfilled.

3.6.1 Representativeness

The values in the generated chain should be representativeThe generated
values should be

representative. This
can be checked

visually or
numerically.

of the posterior distribution. The arbitrarily chosen initial
value for the random walk should not skew the values in
the chain, and all the values in the posterior distribution
should be sufficiently explored. Checking for representa-
tiveness can be performed by visually checking the chains
trajectory, or by some numerical metric of convergence. A
sample plot of a random walk trajectory is shown in Fig-
ure 3.5. On the left side, the chains have not converged for
the first few hundred steps. In real-world analyses, the first
few steps are usually excluded. This is the so called burn-in
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Figure 3.5: Random walk trajectories of a parameter. On
the left, the trajectories have not converged, especially in
the first 100 steps. On the right, the chains are nicely con-
verged. (Adapted from Kruschke [2015])

period. On the right, the chains are nicely converged. As a
rule of thumb, the trajectory plot should look like a “hairy
caterpillar”. Convergence can also be checked with a nu- A numerical metric to

check for
representativeness is
called the “shrink
factor”.

merical metric, the so called Gelman-Rubin statistic (Gel-
man and Rubin [1992]) or “shrink factor”. If the value is
1.0, the chains are fully converged, if the value is larger,
then the chains are orphaned or stuck in an unrepresen-
tative parameter space. If the shrink factor is larger than
1.1, the experimenter should investigate whether the chains
have converged sufficiently. If they haven’t, it can help to
perform more iterations in the MCMC procedure.

3.6.2 Accuracy

The generated chain should be large enough so that the The generated
estimations should
be accurate and
stable. Inaccuracy
can be detected by
highly autocorrelated
chains, and
compensated by
using more steps in
the simulation.

estimates of the parameter values are accurate and sta-
ble. The central tendencies and limits of the HDI should
not change significantly if the MCMC process is run again,
even a different initial value is chosen for the random walk.
However, just using chain length as a metric does not suf-
fice. If the chains are clumpy, the random walk got stuck
in a small part of the parameter space, resulting in over-
representation of those values. These clumpy regions of the
chain do not provide independent information, and there-
fore need to be longer. Clumpiness is difficult to detect
visually, but it can be measured with autocorrelation. In
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Figure 3.6: Diagnostic plot for autocorrelation. On the left,
the chains are highly autocorrelated for large lags. This in-
dicates that the chains may need to be longer. On the right,
autocorrelation is low for large lags, indicating that the
chains contain independent information. (Adapted from
Kruschke [2015])

Figure 3.6, you can see a diagnostic plot of autocorrelation.
If the values are well above 0 for large lags, then this in-
dicates that the chains are highly autocorrelated, therefore
may need to be longer in order to provide sufficient infor-
mation about the full posterior distribution. Inversely, if the
autocorrelation for large lags is close to 0, then the chains
are not autocorrelated. The numerical metric for checkingThe numerical metric

for accuracy is ESS. sufficient sample size is called the “Effective Sample Size”
(ESS), which is just the actual sample size divided by the
amount of autocorrelation. How large the ESS has to be
depends on which details of the posterior distribution the
experimenter is interested in. If it is mainly the central ten-
dencies, then the ESS does not have to be as large as when
he’s interested in the limits of the 95% HDI, which are vis-
ited less by the random walk. Kruschke recommends an
ESS of 10 000 or larger, however he states that this num-
ber is only based on experience with practical applications.
Depending on the required accuracy of the HDI limits, the
necessary ESS may be less.
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Chapter 4

Interaction Design

Chapter 3 “Bayesian Analysis Theory and Workflow” de-
scribed the necessary steps to perform a Bayesian anal-
ysis. Next we would like to illustrate how we envision
BayesianStatsplorer to aid in the individual stages of the
Bayesian analysis process. In this thesis, we specifically fo-
cus on how the interaction design can help facilitate the in-
terpretation and reporting of the Bayesian analysis. When-
ever an example is required, we use our exemplary dataset
containing typing speed measured depending on gender
(male/female) and keyboard layout (Qwerty/Colemak/D-
vorak).

Before elaborating on the design of each component in our
BayesianStatsplorer, we’ll briefly evaluate the reusable UI
components of the original VisiStat/Statsplorer.

4.1 Evaluation of Statplorer UI Compo-
nents

As mentioned in 2.3.1 “Visistat/Statsplorer”, Statsplorer Advantages and
Disadvantages of a
three-column layout

uses a three-column layout. Below is a list of the pros and
cons of such a layout.

3 The left-to-right layout allows for the user to intu-
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itively start with the left most actions, and then tran-
sition into the next operations in a natural order.

3 At any point in time, the user can check any of the
three columns for information he needs, without hav-
ing to open or close any tabs, or having to navigate
any menus.

7 The layout does not scale well to smaller screens. The
centre column becomes too small to fit all the required
information and visualisations.

7 There is no way for the user to hide the left and right
columns if he is currently not interested in them.

Each column has a different purpose. The left one is ba-
sically used for variable selection and is therefore trivially
applicable to BayesianStatsplorer.

The centre column displays interaction, main and sim-
ple main effects, all of which need to be visualised in
BayesianStatsplorer as well. The pros and cons of howAdvantages and

Disadvantages of the
results layout

these effects are laid out in Statsplorer are listed below:

3 The entry view shows the main effects in the cen-
tre, with options to investigate interaction and simple
main effects. This lets the user jump right in, inter-
preting the main effects first, which usually reflect at
least some of his research questions.

7 Showing the main effects first could falsely lead the
user to interpret all the main effects before taking the
interaction effects into account. There is a note at the
bottom indicating that the user should interpret the
interaction effects first, but it is not immediately ap-
parent.

7 The user is told to check the interaction effects, even
if there are none.

7 When going down to investigate the simple main ef-
fects, the user has to select which variable to fix, and
at what level, and which one to vary. This becomes
kind of tedious, and hard to remember which combi-
nations have already been visited.
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Figure 4.1: The right column contains the statistical report
and the history of tests the user performed. The report pro-
vides a guideline for which information should be included
in scientific publications. The history lets the user revisit
the different tests that were performed.

7 This layout does not scale well for more variables
with more levels. The main effect view is then too
small to contain all the necessary plots.

Later in section 4.4 “Contrasts”, we demonstrate how we
solved the above issues with BayesianStatsplorer. The de-
sign choices could also largely be applied to NHST, so fu-
ture versions of Statsplorer could adopt some of the more
suitable design solutions.

Finally, we analyse the right column, where the user can Advantages and
Disadvantages of
putting the statistical
report in the right
column.

see his statistical report, and the history of the tests he per-
formed, as shown in Figure 4.1. The report shows him
which information he needs to include in potential scien-
tific publications, while the history lets him revisit different
tests he performed. The pros and cons of this design are
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listed below.

3 The concise reporting style makes it very easy for the
user to copy and paste that information into his own
document.

3 The report is driven by statistical reporting standards
[2012], helping the user’s confidence in the format of
his report.

7 While useful for copy-paste, the report text block does
not contain information about which question each
paragraph answers.

Chapter 2.5 “Reporting Bayesian Data Analyses” discussed
what content should go into a Bayesian analysis report, and
later in section 4.6 “Report”, we present our design for the
report module, which not only allows easy exportation, but
also clarifies which parts of the report answer which ques-
tions.

Bearing in mind the limitations of the reusable UI compo-The limitations of the
original Statsplorer
drove the design of

BayesianStatsplorer.

nents of Statsplorer, we designed the individual compo-
nents of BayesianStatsplorer. The modules went through
several design iterations, the final one is provided in ap-
pendix A “BayesianStatsplorer Mockup”. The following
sections describe some of the rationale behind the design
decisions made for each component.

4.2 Dataset Selection

As described in 3.1 “Data Identification”, the first step ofThe dataset selection
UI could be adopted

from Visistat.
the Bayesian analysis is to specify the roles and types of
the variables in the given dataset. This is analogous to the
process in the original VisiStat by Subramanian [2014], so
we basically adopted the UI from VisiStat. The dataset se-
lection view is depicted in Figure 4.2. Once the user has
uploaded the dataset, he can select the variables he wants
to include in his analysis.
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Figure 4.2: The user can upload a dataset and provide in-
formation about the roles and data types of each variable.

4.3 Hierarchical Model Picker

Once the variable roles and data types have been speci- A suitable
hierarchical model is
derived from the
experimental design
behind the scenes.

fied by the user, the next step would be choosing the cor-
responding hierarchical model. Visistat by Subramanian
[2014] determines the type of statistical test according to
the variables the user selects. A similar mechanism can be
used to select the appropriate hierarchical model. How-
ever, we do not want the user to have to understand the
details of the Bayesian analysis process. Therefore we au-
tomatically choose the hierarchical model suitable for the
selected variables. As Kruschke [2015] composed a set of
R scripts which cover most common experimental designs,
BayesianStatsplorer just loads the corresponding hierarchi-
cal model on the R side, and does not rely on any user input
at this point.
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4.4 Contrasts

Expert and novice analysts tackle the interpretation of con-
trasts differently. The following chapter explains some of
the rationale behind the design of the contrast interpreta-
tion module in BayesianStatsplorer.

4.4.1 Design Rationale

Whenever the experimental design contains more than oneNovices and Experts
tackle contrast
interpretation

differently.

independent variable, the experimenter needs to poten-
tially analyse interaction effects, main effects and simple
effects. The expert might want to evaluate the interac-
tion effects before he evaluates the main effects, because he
knows that higher order interaction effects should be in-
terpreted before the lower order effects, as they influence
them. However, the novice might not know about the in-
teraction effect, and just want to answer his research ques-
tions. Often, the formulated hypotheses are just main effect
contrasts (e.g. I expect Qwerty to be faster than Colemak),
hence the novice is looking for answers to these questions
first. He might not even be aware of what an interaction
effect is, which does not matter as long as there aren’t any
interaction effects. In order for the system to cater to bothWe have three goals

for ensuring that
BayesianStatsplorer

caters to both
novices and experts.

novices and experts, we want to achieve three goals:

1. The system should not initially overwhelm the user,
but still allow the expert to start analysing right away.

2. The system should help transition the novice user to
a more experienced and finally expert user.

3. The design should scale for experimental designs
with potentially many contrasts.

Additionally to the three goals above, we would like the
UI to expand vertically instead of horizontally, as recom-
mended by Vora [2009], in order to keep the possibility of
adding a sidebar for filtering on the left and a sidebar on
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Figure 4.3: The main effect contrasts are the entry point for
the contrast analysis. Contrasts influenced by interaction
effects have a warning next to them, which guide the user
towards the underlying additional information.

the right for reporting, as this has proven to be a useful lay-
out for users (Subramanian [2014]). These goals drive the
information hierarchy and design of every component in
the contrast interpretation module of BayesianStatsplorer.

4.4.2 Layout and Navigation

As we wanted to avoid overwhelming the user with the in- Main effect contrasts
are shown first, but if
interaction effects
are involved, a
warning is provided.

terpretation of interaction effects at the beginning, the en-
try point of the contrasts view shows the main effects. If
there aren’t any interaction effects, the experimenter can
just analyse these main effects, and does not even need to
check for the existence of potential interaction effects. How-
ever, if there are interaction effects influencing the main ef-
fects, that main effect tile is highlighted with a warning, as
visible in Figure 4.3. This warning acts as an information
scent to the user that there is more underlying information
to investigate. A user familiar with interaction effects will
learn to parse the contrasts view for warning symbols, and
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Figure 4.4: Main and interaction effects are separated in dif-
ferent tabs.

investigate the details of the simple effects.

Now that we’ve established, at least per default, that theA tab-view
separating main

effects from
interaction effects

suffices for experts,
but could be
confusing for

novices.

main effects should be displayed first, we need to decide
on how to provide the link and navigation from main ef-
fects to interaction effects and vice versa. One possibility
would be showing the different contrasts in tab views, as
mocked up in Figure 4.4 This layout would work reason-
ably well for the expert user. He could first evaluate the
interaction effects tab, making a note of which contrasts lev-
els of the independent variables have an interaction effect.
He could then switch to the main effect view, and evalu-
ate the main effects while bearing in mind the higher order
interaction effects. This layout would presumably be un-
derstood by the expert, because he is aware of the fact that
he has to interpret both interaction and main effects. How-
ever, this layout may not be intuitively understood by the
novice user. He might not know what an interaction effect
is, therefore be reluctant to investigate the interaction ef-
fects view, and not necessarily understand the relationship
between the interaction and main effects. In order to alle-Instead, we chose a

drill-down,
hierarchical layout.

viate this problem, we crafted the information hierarchy in
a drill-down, accordion style view, as shown in Figure 4.5.
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Figure 4.5: The user can expand the main effects influenced
by an interaction effect, in order to see the simple effects.

This hierarchical layout allows for the user to first orient his The drill-down layout
allows natural
exploration, links the
meaning of different
contrasts and
reduces cognitive
load.

mindset by the main effects, potentially evaluating these
and then explore the simple effects for the contrasts with
an interaction effect. It also provides a natural way of link-
ing the simple effects with the corresponding main effects,
and reduces cognitive load. By further expanding the de-
tails view, the user gets a textual description of the effects,
together with plots of the individual means and descrip-
tive plots of the underlying data, as shown in Figure 4.6.
The textual description can be fine tuned to contain both
a general description on how to interpret the effects and a
description dynamically adjusted to the context of the cur-
rent analysis. This text together with the descriptive data
plots may aid the user in further confirming the interpreta-
tions he made in the plots above. The text also teaches him
how to interpret the plots directly, so as he becomes more
experienced, he won’t need the text any more, and will be
able to interpret the contrast plots directly. This drill-down
layout allows for incrementally providing the novice with
more detail, while the expert will be able to quickly extract
the desired information from the contrast plots in a stream-
lined work flow. It also has the benefit of providing a clean
and uncluttered user interface which is pleasing to the eye.
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Figure 4.6: The simple effects can be further expanded in
order to see a textual description on how to interpret the
effects, together with descriptive plots of the underlying
data.

Now that a spacial layout for the different contrast types
has been established, the following section discusses the
design decisions related to the ordering of the contrasts.

4.4.3 Contrast Order

In experimental designs with multiple independent vari-Contrasts are
grouped by predictor
variable, and sorted

by effect size.

ables with multiple levels, the Bayesian estimation can eas-
ily generate dozens of contrasts. These contrasts need to be
sorted in some way when they are displayed to the user.
The goal of the user once he reaches the contrasts is to as-
sess how each condition of the independent variables af-
fects the dependent variable. Therefore, we first group the
contrasts by independent variable. This is apparent in Fig-
ure 4.3, where you first see the gender contrast, and then
the keyboard layout contrasts. Additionally, independent
variables that have a strong effect to the dependent variable
will have a stronger causal evidence. Therefore, the con-
trasts are sorted within independent variables according to
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the mean difference estimate, from smallest to largest. A
visual cue for this is given by the location of the HDI plot
within the contrast tile. Across different tiles, they form a
diagonal line, subtly communicating the relation between
the point estimates of different contrasts. While this group- The user could also

select how he wants
to sort the contrasts.

ing and sorting makes sense, the user might prefer to sort
the contrasts by something other than the effect size, for ex-
ample by the certainty of the estimated effects. He might
want to show the most/least certain effects first. Therefore,
BayesianStatsplorer could also include a “Sort by” drop-
down selector, as seen in various commercial software.

4.4.4 Filtering

While sorting can help the user find the results he is look- The contrast filter
reduces the amount
of visible contrasts,
and eases the
process of finding the
contrasts of interest.

ing for, another important feature is filtering. Ideally, the
user should be able to quickly filter the contrasts so that he
only sees the ones he is currently interested in. Therefore
we created a filter sidebar, where the user can filter the con-
trasts by independent variable or levels involved. This can
be achieved by either selecting the independent variables
or levels from a list, or by typing keywords into a search
field, as shown in Figure 4.7.

Additionally to sorting and filtering, we envisioned a
mechanism by which the contrasts could be highlighted
according to the users expectations. Basically, the experi-
menter could formulate his hypotheses in the system, and
then the contrasts which support his hypotheses could be
highlighted in one colour, while contrasts which contradict
his hypotheses could be highlighted in a different colour.
This mechanism could help streamline the process of inter-
pretation, and expedite the discovery of unexpected effects,
and is explained in detail in chapter 4.5 “Semantic Contrast
Layout”.

4.4.5 A Contrast Tile

An individual contrast tile contains the title of the contrast
and a summarised version of the probability density plot
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Figure 4.7: In the sidebar, the user can filter the contrasts
by different variables and levels involved.

Colemak - Dvorak
0.05

0.02

5

0????0.050.0

.022

Colemak
vs

Dvorak

Difference
−0.02 0.02 0.06

mode = 0.0276
3.4% < 0 < 96.6%

95% HDI
−0.00184 0.0534

Figure 4.8: Left: the probability distribution generated by
Kruschke’s R scripts [2015]. Right: simplified contrast plot
as used in BayesianStatsplorer.

of the mean difference estimate. Figure 4.8 shows the prob-
ability density plot as generated from the R scripts by Kr-
uschke [2015] on the left, and the abstracted meaningful in-
formation on the right. We decided to reduce the probabil-
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ity density plot as much as possible, until it contained the
minimal amount of information necessary to interpret that
contrast, while still conforming with the guidelines listed in
chapter 2.4 “Uncertainty Visualisation”. First of all we re- We severely reduced

the complexity of the
probability density
plot.

moved the histogram. While it could be useful to assess the
relative credibility of different mean estimates, it is usually
not required in order to draw conclusions from the plot.
Second, we removed the axis, as the range is already given
by the limits of the HDI. The central tendency and HDI is
key to interpreting a contrast. Often, when interpreting a
difference contrast, the user is attempting to find out sev-
eral things.

• What is the mean estimate of the difference between Our plot makes it
easy for the user to
answer these
questions.

the two groups? All he has to do to answer this ques-
tion is look at the point estimate of the mean, shown
above the HDI.

• How precise is the estimate of the mean difference?
To answer this question, the user can look at the span
of the 95% HDI. We decided to show the size of the
HDI instead of the two limits, because otherwise the
user would have to perform the mental operation of
estimating the HDI’s size. As this is the main in-
terpretation you can make from the HDI, we do not
show the HDI limits. However, if the user hovers
over the plot, the limits of the HDI are also shown.

• Is the difference between the two groups zero or close
to zero? In order emphasize the credibility of zero
difference, a red bar on the HDI hints towards the fact
that zero is included in the HDI. This helps the user
check for inclusion of zero at a glance.

Every element in the plot answers a specific question the
user may be asking. However, the layout of the plots on
the tiles would allow for the histogram and additional in-
formation to be rendered, as a user specified option for ex-
ample.

Every contrast tile has a little menu in the top right corner, Every contrast has a
small menu.as shown in Figure 4.9. This contains operations specific to

the given contrast. The menu contains four entries:



44 4 Interaction Design

Figure 4.9: Every contrast has a menu in the top right cor-
ner, populated with some contrast specific actions.

• Show Details: This option is supposed to help novicesThe user can reveal
more details. discover that they can expand the individual con-

trasts. Once they have expanded a contrast, the an-
imation of the panel opening should make them re-
alise that they can open the panel directly by clicking
on it. When the panel is open, this option changes to
“Hide Details”, and the users can see the expanded
contrast. The underlying simple effects plot shows
multiple HDIs for the given main contrast, separated
by the various levels of the independent variable
causing the interaction effect. Details on this plot are
provided in chapter 4.4.6 “Simple Effect Contrasts”.

• Mark as Important: This option allows the user to markThe user can tag a
contrast as
important.

a contrast as important. When there are many con-
trasts, only some of them may be meaningful to the
experimenter. By marking them as important, the re-
sults of these contrasts could be explicitly listed in
the report. Additionally, the user could later filter
the contrasts to only show the ones he has tagged as
meaningful. When the user clicks “Mark as Impor-
tant”, a little star appears in the top left corner of the
contrast tile, as shown on the right in Figure 4.10. In
order to streamline the process of tagging contrasts
as meaningful, the user can also directly click on the
star to toggle it on and off. When he hovers over the
left corner, an outline of the star appears, to signify
to the user that he can click there directly. Therefore,
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Figure 4.10: Left: The user sees an outline of the star when
he hovers over the left corner of a contrast tile. Right: When
he clicks, the contrast tile is tagged as meaningful.

a novice will perhaps first use the menu, but then he
should discover that he can toggle the star directly.
From then on he can scroll through the list of con-
trasts fluidly while toggling important contrasts.

• How to Interpret: When the user clicks on how to in- The user can enter a
tutorial mode.terpret, he gets taken to a modal view, which teaches

him in a step by step process what a contrast is, how
to interpret the HDI and what to look for. The step by
step guide could either contain fixed examples which
illustrate the meaning of the HDI, or the information
could be given in the context of the current analysis.
The latter would require somewhat smarter text gen-
eration, so that the explanations still make sense re-
gardless of the dataset currently being analysed.

• Save as PDF: This option allows the user to save the
contrast plot as a PDF, so that he can include a plot of
the HDI in his report.

This contrast menu gives the novice user a possibility to
pick operation from a textual, descriptive UI. Once he be-
comes more accustomed to the actions, he can use the less
obvious, but therefore quicker to execute short cuts. In
future iterations of BayesianStatsplorer, this contrast spe-
cific menu could be populated with other operations which
should be applied to a given contrast.

The last component that a contrast tile can contain is a
warning. This warning acts as an information scent to the
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user that this contrast has to be interpreted with caution,
due to the fact that there is an interaction effect at work. ByThe warning acts as

an information scent
for the user to

explore the
interaction effect.

expanding the warning, the user opens the main effect con-
trast panel, which reveals the simple effect contrast caused
by the underlying interaction effect. As the novice becomes
more experienced, he will learn to quickly parse the main
effect contrasts for warnings, in order to assess which main
effects he can interpret directly, and which effects he has to
expand in order to get a realistic picture of the effects.

4.4.6 Simple Effect Contrasts

Once the user expands a main effect contrast, that contrastInterpreting simple
effect contrasts

requires a
comparison of
multiple HDIs.

is grouped by the levels of the independent variable caus-
ing the interaction effect. The relevant HDIs are merged
into one plot, so that the user can easily perform the com-
parisons between the HDIs. When interpreting such a sim-
ple effects contrast plot, there are several things a user
should be looking for. The tasks of looking for these things
are what drive the design of the simple effects plot.

• The user should check whether the individual HDIs
overlap. If there is significant overlap between HDIs,
then there is no interaction effect between these
groups. If the HDIs do not overlap, then the differ-
ences are credibly different. Next the user should find
out how they differ.

• In order to assess the difference between the individ-
ual HDIs, it can be useful to check were zero is. If
zero is between the HDIs, then the difference is pos-
itive for one group, but negative for the other group.
If one of the HDIs includes zero, then the difference is
credibly zero for one group, but not for the other.

Rooted in the tasks listed above, we derived the designThe HDI comparison
tasks drove the

design of our simple
effects plot.

shown in Figure 4.11. The HDIs are stacked vertically. This
allows for verifying overlap at a glance, as can be seen in
the left HDIs in Figure 4.11. Zero is explicitly highlighted
to help orient the user, and the axis is interrupted. Using a
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Figure 4.11: In this plot of simple effect contrasts, the HDIs
are stacked vertically, in order to ease the checking for over-
lap. Zero is explicitly highlighted with a red line. Addition-
ally, the axis is interrupted in order to provide a high res-
olution of the HDIs without having to show a lot of white
space between them.

broken axis allows the plot to show the HDIs in high resolu-
tion, while removing unnecessary space between the HDIs.
This is particularly useful for very precise HDIs, for exam- The broken axis

allows for displaying
high resolution HDIs,
even if they are far
apart.

ple [−10.9,−10.8] and [23.4, 23.5]. If these were plotted on
one continuous axis, they would end up being tiny dots in
the plot. With additional HDIs of that precision, it would
become hard to check for overlap. Our technique allows for
easy comparison and interpretation of both wide and nar-
row HDIs. Technical details on how the plot is created are
provided in 5.2.5 “Contrasts”

4.5 Semantic Contrast Layout

The design of the contrast tiles makes the interpretation of Further optimisation
would require the
system knowing
about the users’
expectations of the
outcome.

contrasts as streamlined and as easy as possible. In order
to optimise this view further, we envisioned adding se-
mantic context into the system, so that the results of the
Bayesian analysis would actually be displayed in the con-
text of the research questions the experimenter has in mind.
To achieve this, two components need to be created:

1. First, the experimenter needs to be given a way to for-
malise his expectations of the experiment’s outcome
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in the system.

2. Second, the system would have to compare the results
of the actual Bayesian analysis and sort them accord-
ing to whether they correspond or conflict with the
experimenters expectations.

As a potential solution to the first necessary component, we
present our hypothesis builder.

4.5.1 Hypothesis Builder

To help the experimenter formalise his hypotheses, weThe experimenter’s
hypotheses need to
be conveyed to the

system.

leverage the fact that most experimenters will have con-
cise textual hypotheses that they have already formulated
as part of the experimental setup. Ideally, the user could
just give the hypotheses to the system in natural language,
and the system would be able to understand and create the
mathematical formalisms out of the provided hypotheses.
However, this requires advanced AI, so we propose an al-
ternative design which is still relatively easy for the user to
use, but also computationally feasible.

A hypothesis statement consists of relationships betweenWe envision a
drag-and-drop

hypothesis builder.
different variables in the experiment. Therefore, we envi-
sion a system were the user can drag individual levels of
the independent variables into different boxes, and select
the relationship he expects to see between them. A pro-
totypical UI approach for this is shown in Figure 4.12. If
the users’ hypotheses involve relationships between more
than two levels, they can expand the “formula” with more
boxes. Figure 4.13 shows some examples of possible hy-
potheses for our exemplary typing speed experiment to-
gether with how one would formulate them in the hypoth-
esis builder UI.

Ideally, we would want the UI for the hypothesis builder
to be complete and correct, i.e. every valid hypothesis can
be specified, and no invalid hypothesis can be specified.
Therefore, once the user has dragged a level into one box,
he would not be able to drag a level into a box which would
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Figure 4.12: The hypothesis builder lets the user drag dif-
ferent levels into different boxes, and then specify the re-
lationship between those levels. In this example, the user
hypothesizes that typing speed is faster with Qwerty than
with Colemak.

Figure 4.13: Some examples of how different hypotheses can be formulated in the
hypothesis builder.

create an invalid hypothesis. This would help avoid the
user specifying invalid hypotheses by mistake.

Now that the hypotheses have been specified, the results Contrasts could be
highlighted
depending on
whether they support
or conflict with the
specified
hypotheses.

of the Bayesian analysis need to be compared with the
hypotheses the experimenter set up. Basically, we envi-
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Figure 4.14: The system can group contrasts according to whether they support or
conflict with the hypotheses specified by the user, and show the relevant hypothe-
ses.

sion that the contrasts which directly affect the specified
hypotheses would be at the top of the contrasts list, and
they would be highlighted in either green or red depend-
ing on whether they support or conflict with the specified
hypotheses, as shown in Figure 4.14.

Unfortunately, in the scope of this thesis, we were not able
to find sufficient literature on what a valid hypothesis is,
and therefore were not able to prove the correctness and
completeness of our approach. As the idea for the hypoth-
esis builder developed fairly late in the time line of this
thesis, we were not able to create a specific implementa-
tion. The verification and implementation of the hypothesis
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Figure 4.15: The report section is composed of different cat-
egories, each of which contains questions relevant to the
data analysis. The answers to the different questions can be
revealed by expanding those questions.

builder remains as one of the goals for future work.

4.6 Report

As Bayesian analyses are not yet standard practice in many A conventional
format for the report
of Bayesian analyses
does not exist yet.

fields of research, a conventional format for reporting
Bayesian analysis results does not really exist yet. There-
fore, our report module is informed by the guidelines pro-
posed by Kruschke [2015], which we summarised in chap-
ter 2.5 “Reporting Bayesian Data Analyses”. The report sec-
tion consists of several categories, each of which contains
questions with corresponding answers (see Figure 4.15. We
chose this design for several reasons:

1. According to Pullenayegum et al. [2012], when exper- Answer both the
“what” and the “why”.imenters report their analyses, they should avoid fol-
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lowing a set of rules unthinkingly. Instead, they need
to focus on thinking critically about what is needed.
That is, they should not just know the “what”, but
also the “why”. The Question-Answer format helps
the experimenter understand both the “what” and the
“why”.

2. The Question-Answer format helps assuring the user
about his interpretation. For example, he may have
concluded from the contrast interpretation that there
were no interaction effects. When he then expands
the “Where there any interaction effects between in-
dependent variables?”, and it corresponds with his
conclusion, he can be reassured that he has inter-
preted the results correctly.

3. This format makes it easy for the user to adjust his
report according to the background knowledge of his
targeted audience, as Kruschke [2015] recommends.
He can glance at the questions, and decide whether
the answers to those questions need to be provided to
the user.

In the following, we expand on the last point. For an ex-A verbosity slider
could make the

explanations in the
report more or less

detailed.

perienced audience, certain questions from the report may
be able to be dropped completely. Other questions may
still have to be answered, however they could be answered
more concisely, possibly with less detail. Therefore, we en-
vision some sort of verbosity slider, which lets the user ad-
just how much descriptive text is in the answers of the ques-
tions. High verbosity would lead to a very elaborate expla-
nations, whereas low verbosity would make the answer as
short and concise as possible. The user would be able to
specify both the overall verbosity of the whole report, and
then potentially the verbosity of individual sections, which
then override the overall verbosity. The report could then
be exported into different formats once it has been adjusted
to the appropriate verbosity level.



53

Chapter 5

Implementation

This chapter provides an overview of the modules in
BayesianStatsplorer together with some details about how
they were implemented. The following sections briefly de-
scribes the technologies involved.

5.1 Technologies and Frameworks

BayesianStatsplorer was built from the ground up with BayesianStatsplorer
uses R for the
statistical
computation,
CoffeeScript and
AngularJS for the
application logic, and
HTML5/CSS for the
UI.

a modular approach in mind, using AngularJS1, Coffee-
Script2 and R3. AngularJS is a framework for building
large-scale, interactive web applications, and lends itself
well to thorough testing. CoffeeScript is a language that
compiles into JavaScript, without any interpretation at run-
time. The language makes certain “everyday” program-
ming tasks a little more convenient than their JavaScript
counterparts. R is a programming environment for sta-
tistical computing. It has an extensive range of packages
for statistics of all kinds. We use the OpenCPU4 API for in-
tegrating CoffeeScript and R. The statistical computations
are performed on the R side by OpenCPU, which returns

1www.angularjs.org
2www.coffeescript.org
3www.r-project.org
4www.opencpu.org

https://angularjs.org
http://coffeescript.org
http://coffeescript.org
http://www.r-project.org
https://www.opencpu.org
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the results to our Angular application. This allows us to
separate the statistical computations from the behaviour,
logic and UI of BayesianStatsplorer. For the graphs and
visualisation, we use both Vega5 and Highcharts6.

The following section describes the modular design of
BayesianStatsplorer, and briefly elaborates the responsibil-
ities of each module.

5.2 BayesianStatsplorer Modules

BayesianStatsplorer is composed of several main modules,
which are shown in a system context diagram in Figure
5.1. Each module is as self-contained as possible, and in-
terface with the other modules through defined APIs. This
allows for easy modification and testing of individual com-
ponents.

5.2.1 Dataset

As a first step the user chooses a .csv file and uploads it
to the system. The Dataset module handles the identifi-
cation of variables and levels. It contains basic heuristics
to identify the type of the variable (Metric, Nominal, Ordi-
nal, Dichotomous) and the role (Independent, Dependent).
Additionally, it could perform sanity checks of the data to
compensate for missing data points, etc. The dataset mod-
ule also exposes UI with which the user can edit the roles
and types of the independent variables, and select/deselect
the variables that should be involved in the analysis.

5.2.2 Boxplot

The boxplot module plots the selected dependent variable
grouped by the selected independent variables. In the box-

5www.github.com/trifacta/vega
6www.highcharts.com

https://github.com/trifacta/vega
http://www.highcharts.com
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Bayesian 
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Dataset MCMC

Contrasts
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Distribution

HistoryHierarchical 
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Report

selected data

uploaded data

samples from simulation

MCMC data

contrast plots

statistical model

performed simulations

statistical report

Figure 5.1: This system context diagram shows the main
modules of BayesianStatsplorer.

plot, the user can choose to select multiple means that he’s
interested in comparing. The boxplot is the first visualisa-
tion of the data the user sees. It gives him some descriptive
information about the tendencies in his data.

5.2.3 Hierarchical Model Picker

Based on the experimental design, a different hierarchical The hierarchical
model picker decides
which model to load
based on the
experimental design.

model is required for Bayesian analysis. The hierarchical
model picker decides which model to load and use in the
analysis process. It receives the selected variables as input,
and chooses the appropriate hierarchical model, with de-
fault priors. This module could also contain UI for the user
to specify a custom prior, and potentially modify the model
to fit his needs.
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5.2.4 MCMC

The MCMC module handles the actual details of theThe MCMC module
runs the sampling

algorithm, and
passes the posterior
distribution on to the

Contrasts module.

Bayesian analysis. It runs the MCMC sampling process in
R, and calculates the posterior distribution of the parame-
ters. When the MCMC process has finished, it evaluates the
chain based on criteria specified in chapter 3.6 “MCMC” If
the criteria are not fulfilled, the MCMC can be run again
with a longer chain length. The MCMC module also pro-
vides UI with the diagnostics of the MCMC chains, so that
the user can evaluate the representativeness and accuracy
of the generated chains. If the MCMC passes the necessary
criteria, the posterior distribution is passed on to the con-
trasts module.

5.2.5 Contrasts

The contrast module is responsible for generating the nec-A contrasts service
holds all the data,

which the contrasts
controller can access

and display.

essary comparisons within the specified dataset. It gen-
erates all the main and interaction effect contrasts, ren-
ders the HDI plots, sorts them and presents them to
the user. The ContrastsController instantiates a
ContrastsService with the posterior distribution, who
then handles the generation of the required contrasts, and
fetches the HDI information for each contrast from the
R side. When it has finished fetching all the contrast
data from R, it passes an array of contrast information
back to the ContrastsController, who then uses the
SimpleHDIFactory and MultipleHDIFactory to cre-
ate the HDI plots as discussed in chapter 4.4.5 “A Contrast
Tile” and 4.4.6 “Simple Effect Contrasts”. This is illustrated
in a sequence diagram in Figure 5.2.

The MultipleHDIFactory instantiates aDifferent factories
exist for our various

plots.
HDIPlotController, who handles the logic behind
creating the HDI plots as shown in Figure 4.11. The
approach to achieve the visualisation in Figure 4.11 is
illustrated in Figure 5.3. First, the HDIs are sorted in as-
cending order by their left limit. Then, the sorted HDIs are
divided into groups. All HDIs which share some common
values are placed into one group. After that, the algorithm
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ContrastController ContrastsService OpenCPU (R)

create()
create()

generate
Contrasts()

getMainEffectContrasts()

getInteractionEffect
Contrasts()

mainEffectContrasts

interactionEffectContrasts

fetchContrastData()

fetchContrastData()

contrastData

contrastData

ref

Render HDI Plots

Synchronous

Asynchronous

Response

Figure 5.2: This sequence diagram shows how the contrasts are generated and pop-
ulated with the real data.

computes the largest scale of all groups, as individual HDIs
can have different ranges. The largest scale is then used The plot with multiple

HDIs is generated
step by step.

to scale the axis. At this point, there may be large areas
of white space between different HDI groups, which is
now removed by breaking the axis up in between groups,
and replacing it with the interrupted canvas visualisation
shown in 4.11. Finally, a vertical line is plotted to show the
user where zero is. Once all these properties have been
calculated, the HDIPlotController loads the Highchart
configuration with the calculated properties. The plot is
then rendered in the ContrastsView.
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sort(HDIs)

removeWhitespace()

showZero()

A BA B

groupByOverlap(HDIs)

createAxisWithScale(scale)

�ndLargestScale(groups)

>
scaleA scaleB

0

Figure 5.3: Illustration of how the multiple HDI plot with a broken axis is gener-
ated.

5.2.6 Report

The report module is responsible for generating the textual
report of the Bayesian analysis. As explained in previousThe report module

was implemented
specifically for easy

modification in the
future.

chapters, there is no established set of conventions for re-
porting Bayesian analyses. Therefore, we wanted to create
a solution which will allow us to update and extend the
contents of the report easily, without having to write too
much code. We came up with the following approach.

The ReportFactory instantiates a ReportController,The report template
is in a human

readable format,
which is loaded by
the report service.

who in turn instantiates the ReportService and acts as
the controller for the ReportView. The ReportService
loads the appropriate ReportTemplate for the given
hierarchical model. The ReportService can parse the
template and replace all the placeholders with the real
values from the analysis. Whenever all the placeholders
in a question/answer have been replaced, i.e. the user has
completed the steps necessary to answer that question,
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the controller is notified and he can update the questions
shown in the view. The ReportController and the
ReportService are designed such that they do not need
any modification, even if the questions and answers are
changed entirely. The only thing which has to be consistent The placeholders in

the template get
replaced with real
data at runtime.

between the ReportTemplate and the ReportService
the names of the placeholders. The ReportTemplate is
a JSON file which contains all the questions and answers.

1 {
2 "title":"Is the MCMC chain representative of the posterior

distribution?",
3 "answers":[
4 {
5 "condition":"true",
6 "value": "The values in the MCMC chain..."
7 },
8 {
9 "condition": "shrinkFactor <= 1.1",

10 "value": "Visual inspection of the trace plot..."
11 },
12 {
13 "condition": "shrinkFactor > 1.1",
14 "value": "The trace plot shows that..."
15 }
16 ],
17 "category": "mcmc"
18 }

Listing 5.1: A JSON question object. It contains the question’s title, category and
an array of answer sentences, each of which can have a condition under which they
should be displayed in the report.

It’s basically just an array of questions, where each All sentences in the
report can have a
condition which must
be fulfilled in order
for it to be shown.

question has a category, a title and an array of answers,
as shown in listing 5.1. Each answer can have a condition
under which it should be shown. For example in listing 5.1,
we can specify an answer for the case that the shrink factor
is larger than 1.1, and an answer for the case that the shrink
factor is smaller than 1.1. We can also provide sentences
which should always be shown, regardless of the analysis
outcome, by specifying the condition as just “true”. These
sentences are usually descriptions which are independent
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of the actual outcome of the experiment.

The design of the report module allows for more questionsThe report template
could easily be

extended to support
the verbosity slider.

and answers to be added easily, without having to rewrite
much code. It also allows for easy implementation of the
“verbosity slider” as suggested in chapter 4.6 “Report”.
Each answer sentence could be given a verbosity level, and
the ReportServicewould only have to add the sentences
to the displayed answer which correspond to the user’s se-
lected verbosity level. Additionally to the easy customis-
ability of the report template, the visual report can also be
generated bit by bit. The ReportService updates the re-
port whenever new data is available, which allows the re-
port to grow gradually as the user progresses through his
analysis, starting with the variable selection, the MCMC di-
agnosis and finally the interpretation of the posterior dis-
tribution. This means the user is not forced to complete his
full analysis before he looks into the report, but can per-
form it step by step if he desires, and consult the report in
parallel, potentially helping him in his interpretations.
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Chapter 6

Evaluation

6.1 Without Users

Once we had developed the interaction design for the con- We simulated
experimental
outcomes to evaluate
the interaction
design.

trast interpretation, we wanted to assure that it was suitable
for interpreting any possible relationship between vari-
ables. We therefore simulated datasets for all possible out-
comes of a two-by-two factorial design as shown in Figure
6.1. For each dataset, we verified that the layout of the con-
trast results still made it easy for the user to find the in-
tended effects. This allowed us to be relatively certain that
there were no blatant flaws in the interaction design regard-
ing the hierarchy of results.

6.2 With Users

During the course of the development cycles of We performed two
brief qualitative
evaluations.

BayesianStatsplorer, we performed think-aloud evalu-
ations in order to gather qualitative feedback. The first one
evaluated the information hierarchy and overall design
of BayesianStatsplorer using a click-through prototype
created in Balsamiq1. The prototype is shown in chapter
A “BayesianStatsplorer Mockup”. We asked the main

1www.balsamiq.com

https://balsamiq.com
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Figure 6.1: All possible outcomes of a two-by-two factorial
design (Cozby and Bates [2012]).

developer of Visistat (Subramanian [2014]) and another
HCI researcher with basic knowledge in experimental
procedures to give us some feedback. In the second eval-
uation, we gathered further qualitative feedback on the
individual components of BayesianStatsplorer with the im-
plemented prototype. We walked three users through two
datasets and evaluated whether their thought processes
were matched with the UI of the system, and whether
they could make the correct interpretations. None of the
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User Background Experience
E HCI Researcher, expert in NHST, developer of Visistat.
U1, U2, U3 HCI Students, solid understanding of NHST.
N CS Student, no experience in statistical analysis.

Table 6.1: Summary of the users’ background and experi-
ence.

users had ever performed a Bayesian analysis, but their
expertise in NHST varied, as shown in Table 6.1. Below is a
summary of the feedback we received in both evaluations.

• Once a contrast with interaction effects was fully ex- U1 suggested that
the detail view
should contain some
bullet points on what
to check the plots for.

panded to the simple effect contrasts, U1 stated that
he was not particularly interested in the descriptive
text being in the context of the current data. It was
more important to him that the text included instruc-
tions on what to check the plot for, so the position of
zero in relation to the HDIs, the overlap of the HDIs
and if any of them include zero. Therefore, we tried
to make the text include both a description of what to
look for, and what these visual properties of the plot
actually mean, as shown in Figure 6.2.

• User E suggested inverting the contrasts were the dif- All difference
contrasts could be
made positive by
inverting the
comparisons when
necessary.

ference of means was negative, so that all the con-
trasts had a positive difference. For example, if a dif-
ference was “Male - Female: −0.3”, then the contrast
should be displayed as “Female - Male: 0.3”. Show-
ing all the differences as a positive number reduces
the cognitive load of interpreting whether a certain
difference between Group A and Group B actually
means Group A or Group B is “better”. In the sim-
ple effects plot however, the user will still be required
to sometimes interpret negative differences.

• When tagging a main effect contrast as meaningful, The users were not
sure whether tagging
a contrast as
meaningful would tag
all underlying
contrasts.

U1 was not certain whether this would mean that
all the lower level plots are tagged as meaningful
too. We decided it was less destructive to include too
much information and have the user filter it out, than
to include too little information and have the user for-
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Figure 6.2: User U1 suggested adding a list of what to check for in the plot. We
integrated this list into the detail view.

get about it. Therefore, when a main effect contrast
is tagged as meaningful, the underlying simple effect
contrasts are tagged as meaningful as well.

• All terms which the user might not understand
should show a question mark on hover, so that they
have a direct link to the meaning (User N).

• At the beginning of the Bayesian analysis procedure,Users wanted a
description of

Bayesian data
analysis at the

beginning.

there should be a description of what a Bayesian anal-
ysis is. We did have that description in the report, but
some users (N, U2) mentioned that they would like to
have that information before even starting to use the
system. This text could easily be added in the dataset
selection step, which is the first screen the user would
see.

• The axis in the contrasts should be annotated with the
dependent variable name, so that the measure is clear
(U3).

• Several users (U1, U3) mentioned a desire for the sys-
tem to highlight and sort contrasts based on whether
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the contrasted groups were credibly non-zero or not.
This desire is rooted in the binary interpretation style
of NHST (significant or not significant). As Bayesian
analysis allows for richer inference, we wanted to
avoid tempting the user to only make such conclu-
sions.

• User U2 initially thought the warning meant the data
was in some way not complete. Therefore rephras-
ing it to “interaction effect found” might be more suit-
able.

All users were able to make the right interpretation from Feedback from the
evaluation indicates
that the design goals
were fulfilled.

the contrasts. They were also able to recognize the interac-
tion effects instantly, without any aid. This indicates that
the chosen visualisation is suitable for communicating the
effects in the data, while not overwhelming the user with
information, even when there are many contrasts. These
were goals we had in mind when we designed the system
in chapter 4.4 “Contrasts”, and the evaluation with users
confirms our confidence in the chosen design. The feed-
back received from the evaluation with users also helped
refine our software, and can be integrated into our existing
design with ease.
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Chapter 7

Summary and Future
Work

In the previous chapter, we discussed the evaluation at var-
ious development stages of BayesianStatsplorer. In this
chapter, we summarise the contributions of this thesis, and
provide an outlook into potential future work and features
that could be added to BayesianStatsplorer.

7.1 Summary

In the first chapter, we discussed some limitations and
problems of NHST, and how they can be alleviated with
a Bayesian analysis approach. We reviewed some related
work which enables Bayesian analysis, and gathered some
reusable UI components from software which tries to sim-
plify statistical analyses, together with some guidelines on
good visualisations and reporting.

The second chapter introduces the theory and workflow of
a Bayesian analysis. It explains each of the fundamental
steps in more detail, and shows how such an analysis could
currently be performed, using R scripts for the statistical
computation and visualisation. The basic tasks the user
needs to be perform become clear, and those tasks are sim-
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plified by the interaction design we proposed in the next
chapter.

The third chapter discusses our interaction design for
BayesianStatsplorer. For each step which requires UI, we
propose a UI solution, with particular focus on the interpre-
tation of the contrasts and reporting. We explain the design
rationales and benefits of our proposed design.

The fourth chapter reveals some implementation details of
our modular framework for a web-based Bayesian analysis
application, and demonstrates some of the approaches we
used to separate the statistical computation, the application
logic, and the UI.

Finally, in the fifth chapter, we discussed the feedback re-
ceived from two qualitative, small scale evaluations with
users.

7.2 Future Work

In the scope of this thesis, we did not integrate all hier-More hierarchical
models need to be

added.
archical models into the system. We used a hierarchical
model for multiple nominal predictors and a metric pre-
dicted variable. The design of the backend however allows
for further hierarchical models to be added relatively easily.
In order to deploy BayesianStatsplorer, the most common
hierarchical models should be included.

Additionally, there are still several modules inOther modules can
still be improved. BayesianStatsplorer which could be severely improved.

An appropriate interaction design for the creation of
custom hierarchical models, prior specification and MCMC
diagnosis could really enhance the ease with which
inexperienced experimenters could perform Bayesian
analyses. An actual version of our hypothesis builder, as
presented in chapter 4.5.1 “Hypothesis Builder”, could be
implemented and tested. We think making a system that
links expectations with results could be crucial to making a
really intuitive statistical analysis tool. These components
could then all be integrated into one web application.
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Once all these components are integrated, various user
studies could be performed. Are HCI researchers with very
little to no experience in Bayesian analysis able to inter-
pret their data correctly? Do they gather more informa-
tion from BayesianStatsplorer than with other commercial
tools? Does the interaction design aid in the understand-
ing of the underlying Bayesian concepts? These are ques-
tions which could be addressed once all components of
BayesianStatsplorer are integrated.

Ultimately, we envision an integration of the original Stat-
splorer and BayesianStatsplorer, where the experimenter
can analyse his data either with the classical NHST ap-
proach, or with the Bayesian approach, compare the results
and gather rich inference from his datasets.
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Appendix A

BayesianStatsplorer
Mockup

The following figures show some screenshots from our final
mockup of BayesianStatsplorer which was used to perform
the first evaluation.
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3-column layout, see Three-column layout
95% HDI, see Highest density interval

Accuracy, see MCMC accuracy
AngularJS, 53
Autocorrelation, 29–30

B-Course, 11
Bayesian data analysis steps, 21
Broken axis, 46–47

CoffeeScript, 53
Contrast, 24–26
Contrast filtering, 41
Contrast menu, 43–45
Contrast order, 40–41
Contrast sorting, 40–41
Contrast tile, 41–46
Contribution, 2

DoodleBUGS, see WinBUGS
Drill-down layout, 38–39

Effective sample size, 30
ESS, see Effective sample size
evaluation, 61–65

future work, 68–69

Gelman-Rubin statistic, 29

HDI, see Highest density interval
HDI overlap, 46
Hierarchical model, 23–24
Hierarchical model picker, 35
Highcharts, 54
Highest density interval, 25–26
Hypothesis builder, 48–51

JSON, 59–60
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Markov chain Monte Carlo, 28–30
MCMC, see Markov chain Monte Carlo
MCMC accuracy, 29–30

OpenCPU, 53–54

Posterior, 24–27
Prior, 24
Probability density plot, 42–43

Question-Answer format, 51–52

R, 53
Report, 15–17, 33–34, 51–52
Report template, 59–60
Representativeness, 28–29

Shrink factor, 29
Simple effect contrast, 46–47
System context diagram, 54

Three-column layout, 31–34

Uncertainty visualisation, 13–15

Variable types, 22
Vega, 54
Verbosity slider, 52, 60

WinBUGS, 11–12
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