
by
Alisa Novosad

Object Selection
and Adaptive

Trajectories
in DRAGON

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bastian Leibe

Registration date: Oct 10th, 2011
Submission date: Feb 6th, 2012

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, February 2012
Alisa Novosad

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 State of the art in video navigation 2

1.2 Problem description 5

1.3 Structure of the thesis 15

2 Related work 17

2.1 Object selection in photos 17

2.2 Overview of existing selection techniques
in direct manipulation video navigation
(DMVN) . 18

2.2.1 Point 19

2.2.2 Area 23

vi Contents

2.2.3 Storyboard 25

2.2.4 Selection using external visualiza-
tions (Trailblazing) 26

2.2.5 Implicit selection techniques 27

2.3 Adaptive trajectories 29

3 Selection techniques for direct manipulation video
navigation 31

3.1 Region selection 33

3.1.1 Selection behavior 33

3.1.2 Implementation 34

3.1.3 Selection visualization 43

3.2 Dragging velocity 43

3.2.1 Selection behavior 44

3.2.2 Implementation 45

3.2.3 Selection visualization 48

3.3 Pressure . 49

3.3.1 Selection behavior 49

3.3.2 Implementation 49

3.3.3 Selection visualization 52

4 Evaluation 53

4.1 Area selection performance analysis 54

4.1.1 Experimental setup 54

Contents vii

4.1.2 Results 56

4.2 Adaptive trajectories evaluation 57

4.2.1 Hypothesis 58

4.2.2 Participants 58

4.2.3 Tasks and methodology 59

4.2.4 Questionnaire 62

4.2.5 Results 63

5 Summary and future work 67

5.1 Summary and contributions 67

5.2 Future work 69

5.2.1 Region selection: advanced clustering 69

5.2.2 Dragging velocity: further imple-
mentation possibilities 69

5.2.3 Further user studies on object selec-
tion techniques in DRAGON 70

A Area selection performance analysis: an additional
Cocoa application 71

B User experiment questionnaire 73

Bibliography 77

Index 81

ix

List of Figures

1.1 GUI of VLC player. 2

1.2 DRAGON: position-time relation. 3

1.3 Different time resolutions in VLC player . . . 4

1.4 GUI of DMVN system. 6

1.5 Example 1: Trajectory of an elementary ob-
ject in the DMVN system 8

1.6 Example 2: Trajectories of a complex object
in a DMVN system 9

1.7 Example 3: Trajectories of a single patterned
object, such as a rolling football. 11

1.8 Seven stages of action. Figure 1 12

1.9 Seven stages of action. Figure 2 12

2.1 Selection techniques in Adobe Photoshop CS5. 18

2.2 Optical flow computed in DRAGON. 20

2.3 Direct manipulation Player (DimP). 21

2.4 DMVN system provided by Dynamic Ven-
tures, Inc. 22

x List of Figures

2.5 Illustration of Region-of-interest. 23

2.6 Pictures from the Wranglerr online shop. . . 23

2.7 Possible selection techniques inside the di-
rect manipulation system of Goldman et al.
[2007]. 25

2.8 A motion arrow, constructed in system of
Goldman et al. [2006]. 26

2.9 GUI of the system, provided by Kimber et al.
[2007] . 27

2.10 Twist Lens Slider by Ramos and Balakrish-
nan [2003] . 28

2.11 Alphaslider by Shneiderman and Ahlberg
[1994]. 29

3.1 Old DRAGON graphic user interface. 32

3.2 New DRAGimation user interface. 32

3.3 Different area selection techniques. 34

3.4 Variance in Gaussian distribution. 35

3.5 Region selection in DRAGimation: the mean
trajectory for the different areas. 37

3.6 The ten randomly via GaussGenerator class
generated points inside selected areas with
different sizes. 38

3.7 DRAGimation: possible selections of an object. 39

3.8 K-means clustering inside DRAGimation:
the distance between each trajectory and a
cluster’s center 40

3.9 DRAGimation: the clustering results. 41

List of Figures xi

3.10 DRAGimation: two stages of the object nav-
igation. 43

3.11 Wacom Cintiq 21UX 54,1 cm (21,3 inch) Tablet. 50

3.12 Cocoa Simple: sample code for pressure-
sensitive drawing on the Wacom tablet. . . . 51

3.13 DRAGimation: Current pressure value is
displayed on the right main window panel
(yellow button). 52

4.1 Two sample videos used during experiments. 56

4.2 Results for the first video (Figure 4.1, left). . . 57

4.3 Results for the second video (Figure 4.1, right). 57

4.4 Field of study of the experiment participants. 59

4.5 DRAGON experience of the users partici-
pated the study. 59

4.6 Sample videos used for navigation via
DRAGON during the user study. 60

4.7 DRAGON: The graphic user interface with
three buttons indicating the chosen selection
technique: default, pressure, or dragging ve-
locity. 61

4.8 The average time of task completion. 64

A.1 DRAGON: An additional software tool
developed for the area selection analysis. . . 72

B.1 Post-session questionnaire (page 1 of 2). . . . 74

B.2 Post-session questionnaire (page 2 of 2). . . . 75

xiii

Abstract

Although the direct manipulation video navigation is a quite young research
area, various independent software products such as DRAGable Object Navigation
(DRAGON) and Direct manipulation Player (DimP) have already been offered for
this purpose. Several reports on the similar approaches have been also published
as a part of a research project (Interactive Video Object Annotation).

Considering the innovative nature of specific solutions and products in this area,
a common weakness has been observed. As a matter of fact, the current direct
manipulation video navigation systems still do not offer the possibility to navigate
a specific part of a certain object present in a video such as a wheel of a car and not
the whole car. Instead, the user was forced to find out on his own, which approach
is appropriate to make a specific item in the video navigate along its movement
trajectory.

The main purpose of this work is to eliminate all possible misunderstandings be-
tween the user and the direct manipulation video navigation system in terms of
object selection and to adapt the system to the user’s mental model as much as
possible by implementing three new selection techniques for this purpose: an area
selection and two realizations of a point selection with adaptive trajectories (pres-
sure and dragging velocity). It is also important to find out whether any of the
mentioned selection techniques has the potential to be used as a multipurpose.

xiv Abstract

xv

Überblick

Obwohl das ”direct manipulation video navigation” (DMVN) ein relativ neues
Forschungsgebiet ist, haben sich mehrere voneinander unabhängige Softwarepro-
gramme, wie DRAGable Object Navigation (DRAGON) und Direct manipulation
Player (DimP) in diesem Gebiet etabliert. Einige Veröffentlichungen bezüglich der
ähnlichen Methoden und Techniken sind im Rahmen des Forschungsprojekts ”In-
teractive Video Object Annotation” erschienen.

Aufgrund der begrenzten Erfahrungen in diesem neuen innovativen Gebiet wur-
den mehrere Schwachstellen in den Softwareprogrammen festgestellt. Dem An-
wender wird im Rahmen der aktuellen DMVN Systemen beispielsweise keine
Möglichkeit eingeräumt, bestimmte Teile bestimmter Objekte in einem Video
auszuwählen und navigieren (z.B. ein Autorad und nicht gleich das ganze Auto).
Bisher war es Aufgabe des Anwenders, sich selbst um die Vorgehensweise zu
kümmern, die die Navigation eines bestimmten Objekts entlang seiner Trajektorie
erlaubt.

Ziel dieser Arbeit ist daher, alle möglichen Fehleinschätzungen der Anwen-
derbedürfnisse im DMVN System im Bezug auf die Objektselektion zu beseiti-
gen und das System den Vorstellungen und Erwartungen des Anwenders dadurch
anzupassen, dass drei neue Selektionstechniken implementiert werden. Es handelt
sich hierbei um die Flächenselektion (Area Selection) und um die zwei Varianten
der Punktselektion (Pressure und Dragging Velocity Point Selection). Es ist auch
wichtig zu untersuchen, welche dieser Selektionstechniken sich unter den Anwen-
dern durchsetzten wird.

xvii

Acknowledgements

This thesis would not have been possible without the help, support and guidance
of my principal supervisor, Prof. Dr. Jan Borches, not to mention his advice
and unsurpassed knowledge of human computer interaction. The good advice,
support and assistance of my second supervisor, Prof. Dr. Bastian Leibe, has been
invaluable on the academic and technical level, for which I am extremely grateful.

I am heartily thankful to my supervisor Thorsten Karrer and to Moritz Wit-
tenhagen, whose encouragement, guidance and support from the initial to the
final level enabled me to develop an understanding of the subject. I am also very
thankful for their excellent examples and suggestions for improvement.

My sincere thanks go to my fellow postgraduate students in the M.Sc. course
“Software system engineering” for their friendship, help and valuable feedbacks
during my stay at Aachen.

The members of the Media Computing Group have contributed immensely
to my professional time at the RWTH Aachen University. The group has always
been a source of not only good advices but also friendships and collaboration.

The user study performed and its results evaluated and discussed in this
work would not have been possible without the participation and support of my
fellow students and my dorm floor neighbors.

Lastly, I would like to thank my family for all their love and encouragement.
For my parents Jurij and Natalija Novosad who raised me with a love of science
and supported me in all my pursuits. And most of all for my loving, supportive,
encouraging, and patient fiancé Salaheddine Rezgui whose faithful support during
all stages of this thesis is very appreciated.

Thank you.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

1

Chapter 1

Introduction

“ Unless you are staying in an underground
cave for more than a year without an internet

connection, there’s a healthy chance that you have at
least watched, if not downloaded, an online video on

Youtube or Google Videos.”

— Amit Agarwal,
creator of Digital Inspiration blog

How many photo manipulation software tools could you
remember at the moment? Adobe Photoshop, Adobe Illus-
trator, GIMP, Paint , etc. – image processing has long be-
come an ordinary task for an average user. In comparison,
video manipulation software is often more difficult to use
and it is only spread among professionals. Simplified ver-
sions of such programs might be easier to use, they have
only limited functionality though.

The amount of video sharing websites such as YouTube1

and Vimeo2 is increasing. Over 140 Million videos have
been counted on Youtube alone in August 2010. According
to an on-line article,3 twenty-four hours of video are up-
loaded every minute. Considering the content, one can
discover that the overwhelming majority of these videos

1http://www.youtube.com/
2http://www.vimeo.com/
3”The Business Side of YouTube” by Barry Silverstein

http://www.youtube.com/
http://www.vimeo.com/
http://www.hotelmarketing.com/index.php/article/the_business_side_of_youtube

2 1 Introduction

are homemade. Thus, users have to handle video naviga-
tion and editing with increasing regularity. The navigation
tools, used in the current video editing programs will be
illustrated in the next section.

1.1 State of the art in video navigation

Digital video navigation Regardless of whether the user
prefers Windows, Linux, or Mac operation system, media-
players are mostly constructed in a quite similar way (Fi-
gure 1.1). Their distinctive element is a horizontal time-
slider.

Figure 1.1: User interface of VLC player.

TIME-SLIDER:
Time-slider is a time-based track bar, every position of
which is mapped to the video timeline. One can start
a playback from a certain moment of time by moving a
slider to the new position.

Definition:
Time-slider

1.1 State of the art in video navigation 3

Although this interface feature is well-known and widely Most difficulties in
using time slider
arise since it is
linearly mapped to
the video timeline.
The objects velocity
however is not linear
and is not in
proportion to the time
slider’s position

used, following arguments have been found along its ap-
plication. The key-disadvantage of the time-slider is asso-
ciated with a non-linear time-position dependency of the
objects in the video. The time-slider is linearly mapped
to the absolute time of the movie. The objects, however,
don’t particularly move with a constant speed: they may
accelerate or decelerate at times. This particular situation is
represented on the figure 1.2. The car’s trajectory is cut in
uniform pieces, whose time values are shown on the time-
slider below. It’s obvious, that the car slows down when
crossing the intersection, because the timeframe between
points three and six is larger, compared to the other inter-
vals on the slider.

Figure 1.2: DRAGON: The image illustrates a non-linear
position-time relation in the video.

Another disadvantage consists in the significant change of The resolution of the
time slider strongly
depends on the
video size

the time-slider’s resolution by navigating through diverse
videos (Figure 1.3). While the slider’s length stays un-
changed, it becomes more difficult to navigate through a
several hours long movie rather then a three minute long
video clip.

4 1 Introduction

Figure 1.3: Play back of two different media files. A better
resolution of the bottom time-slider allows to navigate a file
more precisely.

Finally, despite the overwhelming popularity of the time-
slider, user is constantly concentrated on controlling this
interface feature, not the object’s behavior and the time ob-
ject is visible.

Three decades ago the question about replacement of aAlphaslider invented
in 1994 was
supposed to meet
the notion of direct
manipulation within
the concept of the
usual slider

complex user interface by direct manipulation of the ob-
ject of interest was already arisen. Ben Shneiderman [1983],
an american professor in field of human-computer inter-
action, has first defined the notion of direct manipulation
system4. Alphaslider (Figure 2.11) was one of the first pro-
grams supposed to fulfill this notion for scanning and selec-
tion of large lists in graphical user interfaces [Shneiderman
and Ahlberg [1994]].

It took a while until this issue was investigated for video
navigation as well. This field of direct manipulation will be
discovered in the following paragraph.

4more details in chapter 2.2—“Overview of existing selection tech-
niques in direct manipulation video navigation (DMVN)”

1.2 Problem description 5

Direct manipulation video navigation (DMVN) One of Make use of the
pressure value of the
user’s pointer in
order to navigate
through the video

the first time-slider extensions appeared in 2003. Authors
Ramos and Balakrishnan [2003] improved a standard video
navigation by adapting the local slider resolution to the
value of the pressure, exerted by the user on the attached
touchpad.

The real interaction of the user’s pointer with the video Draw a region over
the video scene and
drag it

frame, however, was introduced by Goldman et al. [2007].
Using the presented system for video annotation, naviga-
tion and editing, the user has to paint over an object’s
silhouette with the mouse in order to track it. Due to the
internal structure, the algorithm only works properly for
big enough objects, that are not occluded while moving.

To get rid of the object occlusion and merging problem, Click on an arbitrary
point in the video and
drag it

Karrer et al. [2008] found an elegant solution and in-
troduced it at CHI’085 . The presented system called
DRAGON (DRAGable Object Navigation)is a software
product, implemented for MAC OS X systems, that per-
forms video navigation by simple pointing at the object in
the video. The pre-processing stage is hereby of crucial im-
portance, because the video is prepared in such a way, that
the motion trajectory of every pixel can be composed at run-
time.

All currently existing DMVN-systems will be presented
in more detail in section 2.2—“Overview of existing se-
lection techniques in direct manipulation video navigation
(DMVN)”. However, the weakness of the DMVN in general
will be investigated in the following section. The point of
the present work is going along with it.

1.2 Problem description

Before starting with a problem description, the notion of
the DMVN-system has to be explained.

5http://www.chi2008.org/

http://www.chi2008.org/

6 1 Introduction

DMVN SYSTEM:
DMVN system (Direct manipulation video navigation
system) is a software product, that enables performing
video navigation by moving objects directly, such as
clicking on them and dragging them as opposed to indi-
rect navigation, such as using time-slider (digital video
navigation, e.g., VLC player) or using menus and but-
tons (analogue video navigation, e.g., VHS).

Definition:
DMVN system

Following software components are supposed to be present
in the usual DMVN system:

– Graphical User Interface (GUI);

– Object Selection Mechanism;

– Selection Visualization (e.g. visualization of the ob-
ject’s trajectories);

– Object Tracking Algorithm.

The GUI looks similar to the usual Media-Player (Figure
1.4), however it’s equipped with an additional interaction
functionality.

Figure 1.4: A typical user interface of the DMVN system.
After clicking on some position the user’s pointer gives a
visual feedback that the dragging mode is turned on.

The Object Selection Mechanism defines how does the user
select the object in the video if he wants to track it. Current
DMVN systems provide a variety of selection patterns:

1.2 Problem description 7

• Point-Selection. User only clicks on the object and
the system starts tracking from the specified position.
This selection pattern is used in DRAGON by Karrer
et al. [2008] and in DimP by Dragicevic et al. [2008];

• Area-Selection. User has to paint over an object’s
shape or draw its simplified contour. This mechanism
was presented by Goldman et al. [2007];

• Growing Bounding Box represents one of the possible
auto-selection techniques. After the user has clicked
on the object, system encloses an object into a boun-
ding box and tracks it. This kind of selection was ap-
plied by Trichet and Merialdo [2006] for object track-
ing in the interactive television.

The DMVN system should provide a feedback to the user
after he selected a region in the video. The bounding box
around the object of interest and its corresponding trajec-
tory might be highlighted for this purpose. Both elements
are composed by the selection visualization algorithm.

The components described above are very important for
DMVN system , however its core is a tracking algorithm.

OBJECT TRACKING ALGORITHM:
Object Tracking Algorithm is a tracking of an object spec-
ified by an initial data structure through the video se-
quence. Every DMVN system described in Section 2.2
has a different tracking algorithm. In fact, the different
data structure used for the tracked entity:

• a single pixel for DRAGON;

• a set of SIFT-features around selected point for
DimP;

• a group of particles inside the selected region for
area-selection by Goldman;

• a positioned bounding box for the fast object selec-
tion by Trichet;

• etc.

Definition:
Object Tracking
Algorithm

8 1 Introduction

Considering different DMVN systems one can realize that
every tracking algorithm has own weak points. To con-
duct an in-depth analysis of the problem, suppose the tra-
cking algorithm is perfect, no matter which DMVN system
is used.

PERFECT OBJECT TRACKING ALGORITHM:
In the scope of this work we define the perfect tracking
algorithm as an algorithm, which fulfills following con-
ditions:

• the tracking is independent of the object intersec-
tion, merge, partial or full occlusion at runtime;

• the tracking results are independent of the light
conditions in the video.

Definition:
Perfect Object
Tracking Algorithm

That means, the perfect tracking algorithm follows the tra-
jectory of the tracked item very precisely and doesn’t crash
from time to time, no matter how do the objects behave in
the video. In the next step of explanation the real world
examples will be manipulated in the described DMVN sys-
tem.

First example is a little indivisible object that is randomlyExample 1: Consider
the navigation of a
simple tiny object
with a complicated
trajectory

moving in the video scene (e.g., a pigeon on the figure 1.5,
left). It doesn’t matter, which tracked entity is used (e.g.,
one point or an area, that covers the whole pigeon), the re-
sulting trajectory will look as shown on the picture in the
middle.

Figure 1.5: Example 1: Trajectory of a pigeon on a sidewalk.

Now imagine, the user only wants to move the pigeon
straight forward along the line, without dragging it along
its curvilinear trajectory. Unfortunately, there has been no
DMVN system until now, that can manage this situation in

1.2 Problem description 9

the way it shown on the picture on the right: simplify the
fine-scaled trajectory and move the object straight forward.

In the next example a DMVN system using area selection Example 2: Consider
a complex object,
that consists of many
parts with different
trajectories

is needed. Consider the situation, when the user wants to
drag a bike with a person sitting on it (Figure 1.6). He is
only interested in moving bike along its motion path. The
problem is solved after the user has applied the area selec-
tion to the whole bike, or an object sitting on it.

Figure 1.6: Example 2: The tracked entity in the video rep-
resents a complex object. Every part of it has its own trajec-
tory: the bunny, the bike’s frame, both wheels and pedals.
Source: ”Nu, pogodi!” (1969), Soviet cartoon.

10 1 Introduction

Then again the next user is going to observe, how is the
bike’s pedal moving in the same video. Using the same
selection type, user only has to draw a region around bike’s
pedal. The problems that arise in this case:

• the bike is moving to fast, drawing a region over the
pedal is difficult;

• the pedal is to small, user has to draw a very small
area.

One can suggest that after the training stage user will be-The area selection
exists only inside the
project of Dan
Goldman and is
unstable, so it won’t
be applied here

come high skilled and can apply the area selection every-
where even when this kind of selection is needed. But be-
fore considering these examples it was assumed, that the
tracking algorithm of the DMVN system is perfect. How-
ever, the only one DMVN system that uses an area selec-
tion is the one developed by Goldman et al. [2007]. And
its tracking algorithm fails for small areas due to the inner
architecture.

Therefore, due to the current state of the object tracking in
DMVN systems, two described cases (bike vs. pedal) stay
unsolved. Even though this problem would have been hard
to solve, if the tracking algorithm wouldn’t fail in reality.

But still, there is one more DMVN approach that uses aThe point selection
can fix the case in
the example 2

point-selection and a single pixel as a tracked item (e.g.,
DRAGON or DimP). As mentioned above, the main advan-
tage of the point-selection consists in the correct tracking of
even very tiny objects. That supposes to fix the problem,
that the area-selection based DMVN system cannot solve.
The moving bike is considered again. Pointing at the pedal
with mouse, the desirable trajectory will be observed (Fi-
gure 1.6, bottom). The task is solved.

In addition to that, a new example is evaluated. The point-Example 3: Consider
a large simple object
with a complex
texture

selection is now applied to the rolling football. The user
clicks on the black field and gets a fine-scaled moving path
of the chosen part of the ball. Unfortunately, things become
more complicated, if the user wants to move a ball along
the line aside. After spending hours with trying to solve
the task one can realize, that every part of the ball moves in

1.2 Problem description 11

different way and the only one point on the ball, that moves
straight forward is its middle point (see Figure 1.7). This
fact has not been obvious to the user before experiment.

Figure 1.7: Example 3: A big rolling football.

In the examples described above user knows, how to inter-
act with the system, and he can easily determine its func-
tions. The question arises: why cannot the user get a de-
sired response from the system then? To resolve the ques-
tion, let’s shift our attention to the theory of HCI (Human-
Computer Interaction). The notion of Seven Stages of Ac-
tion presented by Donald A. Norman [2002] is considered
in order to explain, how do people do things and how do
they interact with a computer system.

Before starting with a task, user has to determine, what Apply the theory of
the seven stages of
action to the
example 3

does he want to achieve (Defining the goal). Next he has to
do something to the system, e.g. click on the object or draw
an area around it in the video frame (Execution). Finally, he
has to perceive an output from the system and compare it
to the goal he made before (Evaluation). This sequence is
illustrated on the Figure 1.8.

Since the real tasks are not that simple, a new extended
scheme was proposed (Figure 1.9). It consists of seven
blocks and represents the seven stages of action mentioned
above. We apply this scheme to the previous example of
the football.

• Goal. Follow the black field on the ball using dmvn
with point selection.

• Intention to act. Navigate a black field by selecting it
with the mouse.

12 1 Introduction

Figure 1.8: Different stages of an arbitrary action

Figure 1.9: Seven stages of action

• Action Sequence. Click on the black field with the
left button and drag it.

• Execution of the action sequence. Do it.

• Perception of the output state of the system. A curve
is shown.

• Interpretation of the received information. A curvi-

1.2 Problem description 13

linear trajectory of the black field is drawn.

• Evaluation of the interpretations. Curvilinear trajec-
tory is equivalent to the desired result.

Consider one more goal: the ball has to be shifted aside.
The execution part of the action won’t change – click on the
ball and drag it. However, the system reacts in a different
way: instead of composing a linear movement trajectory it
outputs a strange curve (e.g., Figure 1.7, right). The action
fails during the evaluation stage, when the user realizes,
that the system’s answer isn’t equal to the desired answer.
This situation is called a gulf of execution in the field of
HCI.

GULF OF EXECUTION:
It is a gap between the psychological language (or mental
model) of the user’s goals and the physical language of
the system.

Definition:
Gulf of Execution

To determine the physical language of the system, the Physical language of
the system is
represented by its
algorithm

DMVN system with the point-selection technique is consi-
dered. Its language is strictly limited. The system becomes
the coordinates of the point and the current frame number
as an input. The result is a movement trajectory of the sin-
gle selected point starting from the input frame number.

The psychological language of the user, however, is not The psychological
language of the user
is his mental model
of the system

hard coded compared to the system. If the user want’s to
follow some part of the ball, he clicks on this part and drag
it. If he want’s to move the whole ball aside, he has to point
at the ball as well. Almost all users try selecting the middle
of the ball in this case, but they cannot always click right
in the middle of the ball. However, the middle point is
the only one point on the ball, that is tracked by the sys-
tem along the straight line. In all other cases users observe
strange trajectories and cannot go any further, because they
think they track the whole ball.

If the action possibilities of the system don’t match the in-
tended actions of the user as in the described example, it
always leads to the gulf of execution. There are different
ways to resolve the arisen gulf [Norman [2002]]:

14 1 Introduction

• Visibility of the system’s state and the action’s alterna-
tives for user;

• A good conceptual model, i.e. consistent image of the
system;

• Good mappings, i.e. clear relationships between ac-
tions and its results and between input parameter and
their effects;

• Full continuous feedback, that the user receives about
the results of his action.

In the scope of this master’s thesis a new mapping space of
the input parameters is proposed. As it was seen in the last
example, the character of the user’s gesture has to be put
into relationship with a level of details of the motion tra-
jectory. After a thorough research on video navigation and
object selection techniques following mappings are consi-
dered:

1. Area. Level of motion details is mapped to the size of
the region in the video, selected by user.

2. Pressure. This mapping supposes to resolve the gulf
for those DMVN systems that use point-based se-
lection. It requires an additional hardware though,
such as a touchpad, which can help measure the pres-
sure of the user’s pointer. Depending on the pressure
value, the motion trajectory of an object will either be-
come more fine-scaled or stay poor-detailed.

3. Dragging velocity of the user’s pointer is adjusted to
the level of motion details. The user will then ob-
tain a very precise trajectories after dragging an ob-
ject slowly. On the other hand a very fast drag of the
object leads to its mere common movement direction.

In addition to that, a new trajectory visualization mecha-
nism will be developed, because the visibility of the DMVN
system suffers one disadvantage in the examples above: the
user doesn’t know before experiment, how do the trajecto-
ries of different objects look like. However, every DMVN
system has an understandable conceptual model and gives

1.3 Structure of the thesis 15

a full feedback after every user’s action. Therefore, two last
criteria will not be considered further.

The implementation will be done for DRAGON, because
this DMVN system is supported in the Media Computing
Group of RWTH Aachen University since 2008.

1.3 Structure of the thesis

Chapter 2—“Related work” Modern DMVN systems
existed at the moment of beginning the thesis are arranged
in the second chapter according to the object selection type.
Additionally, a group of techniques for the implementation
of adaptive trajectories is presented.

Chapter 3—“Selection techniques for direct manipula-
tion video navigation” In this chapter the contributions
of our work to the direct manipulation video navigation
(DMVN) system are described successively. Three selection
techniques are explained: a region selection, a pressure sen-
sitive selection, and a dragging velocity.

Chapter 4—“Evaluation” The results of two experiments
are presented: evaluation of the area selection and adaptive
trajectories applied to DRAGON. First experiment is a pure
performance measurement (conducted automatically, with-
out other users). Second experiment evaluates the addition
of adaptive trajectories to the DRAGON’s default point se-
lection (carried out with help of 15 users).

Chapter 5—“Summary and future work” The last chap-
ter contains a brief review of the work done on the object se-
lection and adaptive trajectories in DRAGON. The second
part provides an outlook on how the implemented algo-
rithms might be improved and how the presented research
area can be investigated further.

17

Chapter 2

Related work

“ I have no special talent.
I’m only passionately curious. ”

— Albert Einstein

2.1 Object selection in photos

Many object selection techniques for direct manipulation
in video navigation have been influenced by similar ap-
proaches in the area of image processing.

Figure 2.1 represents a variety of selection techniques that Same techniques as
for video object
selection are
available in every
image processing
software: point
selection,
rectangular selection,
silhouette, etc.

can be found in the latest version of Adobe Photoshop. One
can use primitive geometric shapes such as rectangles or el-
lipses (Figure 2.1, top left) to select simple convex objects.
Selection masks of more complex shapes can be created us-
ing the Lasso Tool (Figure 2.1, top right). Tracing an ob-
ject’s outline is often time-consuming but one can assure
that no redundant information has been included into the
object silhouette. If faster selection is needed, a number of
semi-automatic methods may be used as well (Figure 2.1,
bottom).

Similar selection tools are available in GIMP, an image
manipulation package for UNIX systems; apart from primi-

18 2 Related work

Figure 2.1: Selection techniques in Adobe Photoshop CS5.

tive selections such as rectangle, ellipse or free contour, one
can apply advanced techniques like bezier and polygonal
selections. Quick selection can be used as well.

Compared to photo manipulation, object selection in video
often is not very precise. It is important to perform a fast
selection and get consistent results. Since direct manipu-
lation video navigation is a task where the video-object se-
lection appears most often we will further discuss papers
published in this research area until now.

2.2 Overview of existing selection tech-
niques in direct manipulation video
navigation (DMVN)

The following section contains an overview of the most sig-
nificant papers published on the object selection in DMVN
systems. Six selection techniques will be presented in this
section: a point, an area, a storyboard, a trailblazing and
two implicit selection techniques: a dragging velocity and
a pressure.

2.2 Overview of existing selection techniques in direct manipulation video
navigation (DMVN) 19

2.2.1 Point

According to the object selection technique, the two sys- Using this technique
the user can select
an object by simply
clicking on it

tems considered in this section are similar. A point that the
user’s pointer is positioned on is considered to be an inter-
action pattern: the navigation takes place after the user has
clicked by mouse on some object in the video and dragged
it to an arbitrary direction. However, there are different im-
plementation algorithms beside the two systems used point
selection.

DRAGON (DRAgable Object Navigation system, intro-
duced by Karrer et al. [2008]) considers the optical flow
through the video frames to compose movement trajecto-
ries for every point in the scene (Figure 2.2).

OPTICAL FLOW:
A common technique used for motion estimation in
Computer Vision, defined by Horn and Schunck [1981]
as an apparent motion distribution of brightness patterns
in an image sequence. In other words, its a set of vectors,
representing an inter-frame movement of every particu-
lar pixel.
This approach has a big advantage, dealing only with
pixel movements not considering the global object trans-
formations. But it might cause an incorrect velocity field,
due to its lighting dependance: a fixed object might be
obtained as a moving structure when being illuminated
by moving light source.

Definition:
Optical flow

Dragicevic et al. [2008] apply a relative feature flow al-
gorithm for the same purpose. Reducing the amount of
tracked points in every frame, the authors attempt to im-
prove video navigation performance. However, the algo-
rithm sometimes fails or doesn’t work properly due to oc-
clusion, splitting, merging or deformations of objects in
video.

Dragicevic et al. [2008] implemented a special video player
called DimP (Direct manipulation Player), that allows to
evaluate the described technique in practice (Figure 2.3).

20 2 Related work

Figure 2.2: Optical flow computed inside DRAGON. Ar-
rows show the pixel’s movement direction between adja-
cent frames, a good opportunity to create a trajectory.

FEATURE FLOW:
An extended version of the optical flow algorithm,
intended for finding correspondences between video
frames. Presented by Liu et al. [2008] it was supposed to
reduce an amount of computations by considering only
most important features in the frame. This algorithm is
often called SIFT-flow, due to usage of SIFT-detector for
feature extraction.

Definition:
Feature flow

Despite of different realizations, both algorithms satisfy
Sheiderman’s concept of direct manipulation interface
[Shneiderman [1983]]:

– usage of physical actions (mouse selection and move-
ment) instead of complex syntax;

– fast feedbacks during interaction (trajectory visuali-
zation, mouse pointer’s shape change);

– fast user’s education (no large explanations needed).

2.2 Overview of existing selection techniques in direct manipulation video
navigation (DMVN) 21

Figure 2.3: Direct manipulation Player (DimP) provided by
Dragicevic et al. [2008].

Karrer et al. [2008] also provided a user study, which re-
vealed that people tend to more natural way of video navi-
gation. Once DRAGON and DimP were presented at the
same conference, many areas of everyday life were found,
where direct video manipulation might be applied success-
fully.

Point selection is now offered as a commercial software de-
veloped by ImageGraphicsVideo1 department of Dynamic
Ventures, Inc. At the first glance it reminds DimP player,
described above (Figure 2.4).

Trichet and Merialdo [2006] present an algorithm for fast Point selection can
be applied to the
concept of the
interactive television

object selection in the interactive television, that uses a
point selection as well. After user selected a point in video,
system starts growing a bounding box around this point.
Frame color and contrast information as well as a motion
field are defining a region-of-interest (Figure 2.5).

1http://imagegraphicsvideo.com/

http://imagegraphicsvideo.com/

22 2 Related work

Figure 2.4: Video manipulation software provided by Dy-
namic Ventures, Inc.

REGION-OF-INTEREST:
Region-of-interest (ROI) is an area of the image. Its size
depends on the factors, that influence user’s attention.
Possible factors are color and contrast information, mo-
tion field and position of the point, selected by user.
Good performance is achieved by computing some of
these factors offline.

Definition:
Region-of-interest

Creators of the Wranglerr online shop 2 believe, that suchThis selection
technique has
already been used in
a commercial video
of a famous jeans
brand

intuitive way of scrubbing video might increase the shop’s
attractivity. Although the interaction space is restricted to
only one character on the screen (Figure 2.6), it is amazing
to play with brand’s commercials. A short video report is
available on YouTube.3 The implementation is done with
ActionScript 3. Initiated in summer 2010 the application is
still in progress and already has prototype for video navi-
gation on iPad.

2http://www.wrangler-europe.com/
3http://www.youtube.com/watch?v=2zuOdJQiljw

http://www.wrangler-europe.com/
http://www.youtube.com/watch?v=2zuOdJQiljw

2.2 Overview of existing selection techniques in direct manipulation video
navigation (DMVN) 23

Figure 2.5: Bounding box selection used for interactive tele-
vision. Source: Trichet and Merialdo [2006].

Figure 2.6: Wranglerr online shop. User can simply drag
an little character in order to scrub a commercial video in
time.

2.2.2 Area

While navigating through the video scene whole objects User can select the
whole object or a
part of it

can be selected, not only one point. In this chapter we will
discuss the next selection pattern called area. According
to object tracking survey of Yilmaz et al. [2006], the fol-

24 2 Related work

lowing shapes are used to represent an area of interest: sets
of points, primitive geometric shapes (rectangle, ellipse) or
object silhouettes.

Goldman et al. [2007] implemented a system that is basedThe particle grouping
approach allows a
stable tracking of
points inside the
selected area

on direct manipulation and allows performing video an-
notation, navigation and composition. A particle grouping
approach is used as an algorithmical background. During
the first stage of the algorithm, the system extracts motion
information from a video and represents it by a set of points
(particles). The points are grouped into sets according to
the objects’ behavior. Selection can be performed in two
ways:

– User selects a point in a video frame. System looks for
a closest group of particles and follows its movement
direction.

– User paints over(or around) some region in a frame
and system combines multiple groups of particles in
the selected area (Figure 2.7).

Beside the common algorithmical background, only theWe will consider five
typical area
selections in the
scope of this work

second technique can be considered as an area selection.
We’ve extended a set of possible selection techniques using
section 2.1—“Object selection in photos”:

1. Generally used mouse selection (rectangle).

2. Drawing a simplified contour (circle, ellipse) over an
object of interest.

3. Drawing an object’s silhouette.

4. Painting over an object.

5. Autoselection.

A good way is to conduct an experiment and to discover,
whether the area selection is more useful then the usual
point selection when considering a DMVN system. In the
scope of this work we will also inspect, whether there is
an another implementation of the area selection technique,

2.2 Overview of existing selection techniques in direct manipulation video
navigation (DMVN) 25

Figure 2.7: Possible selection techniques inside the direct
manipulation system of Goldman et al. [2007].

which is much better than the Goldman’s one. There might
be a selection, that could be applied to almost every object
in a video, so that it can be used as a multipurpose selection
technique.

2.2.3 Storyboard

Another system presented by Goldman et al. [2006] creates This technique
allows to convert a
frame sequence into
an interactive
storyboard with the
corresponding
motion arrows

schematic storyboards for short video files. With a small
user input and a short preprocessing stage the system gene-
rates an informative picture, showing details from a given
video footage. During the preprocessing stage a user has
to look through the frames in order to identify key video
frames and key features appearing in multiple frames. An
output picture is sometimes combined from a couple of

26 2 Related work

frames and consists of a motion information, represented
with a motion arrow (Figure 2.8). This kind of visualization
helps users perceiving and understanding a video content
in a short time.

Based on this mapping a direct video manipulation mecha-
nism was implemented. User selects an object in the story-
board and moves it along its movement arrow, while video
is scrolling in time.

Figure 2.8: A motion arrow, constructed in system of Gold-
man et al. [2006].

2.2.4 Selection using external visualizations (Trail-
blazing)

Unlike Goldman, Kimber et al. [2007] present a direct ma-Trailblazing is
primarily suited for
video surveillance
systems

nipulation system for video navigation, that doesn’t need
any user input during tracking preprocess. The interac-
tion mechanism is similar to the ones from section 2.2.1—
“Point”, but it is better suited for surveillance systems.

The GUI consists of three elements: a floor plan ofThe trajectories of all
objects are mapped
onto a floor plan of a
surveilled location

surveilled location, a timeline, and a video window. The
floor plan is used as an external metadata, defining objects
in the video and their trails (movement trajectories). The
system allows clicking on a random point in the scene due
to 3d reconstruction and this action moves the selected ob-
ject to the closest location. While clicking on the floor plan,
the system shows a list of possible candidates, that can be
navigated at this particular moment (Figure 2.9).

2.2 Overview of existing selection techniques in direct manipulation video
navigation (DMVN) 27

Figure 2.9: A list of objects, which are spatially and tempo-
rally close to each other.

2.2.5 Implicit selection techniques

In this section we will give a short overview of selection
mechanisms, that don’t use a general pointing at the object
by finger or mouse.

First approach was presented by Ramos and Balakrishnan TLSlider allows to
dynamically adapt
the time slider’s
resolution according
to the pressure of the
user’s pointer

[2003] as Twist Lens Slider (TLSlider) and was supposed to
improve a video navigation. The system divides a video
stream into a set of short pieces and creates a slider, by
putting their preview frames in a line together. The inter-
action between the user and the system takes place, how-
ever, over an additional hardware such as a graphics tablet
and a stylus. After user has clicked on the one from pre-
view frames, playback jumps to a corresponding moment
of time. Increasing pressure at the interaction point the user
increases the amplitude of the twist lens too, so that the re-
solution of the time slider is getting higher (Figure 2.10).

Since lots of touchscreen devices are now available for the
private use and many of them can already measure the

28 2 Related work

Figure 2.10: Twist Lens Slider by Ramos and Balakrishnan
[2003]. The figure shows how the amplitude of the lens
changes according to the pen’s pressure, displayed on the
right.

pressure too (e.g., Wacom tablets4), it is possible to navi-However, an
additional hardware,
such as a pressure
sensitive touchpad,
is needed for this
technique

gate through the video without any additional hardware.
Thus, in the scope of the direct manipulation video navi-
gation considered in this master thesis we will combine the
level of video details with the pressure, exerted by user on
the touchscreen. The object navigation in the video pro-
ceeds in such a way that user’s pointer follows a common
movement direction of an object in the video, if the pres-
sure is very low. Otherwise, user has to follow an object
very precisely.

Second implicit selection technique considered in this sec-Another selection
technique uses a
dragging velocity of
the user’s pointer in
order to adapt the
slider’s resolution

tion is about mapping the level of movement details to
the velocity of user’s gestures. In the scope of the docu-
ment navigation Igarashi and Hinckley [2000] invented a
mechanism, that integrates a speed depending automatic
zooming for large documents. If the user scrolls very fast,

4http://www.wacom.eu/

http://www.wacom.eu/

2.3 Adaptive trajectories 29

the view zooms out automatically so that it does not disori-
ent him. This implicit selection technique, where the user
controls only the movement speed and the system adjusts
the level of details, was inspired by Alphaslider, extended
by Shneiderman and Ahlberg [1994] (Figure 2.11). For the
purpose of the direct manipulation video navigation we
will apply the velocity based selection in a similar way as
a pressure based one. Thus, the momentary velocity of the
user’s pointer must be estimated in every video frame. The
level of details in the video should get lower if the user’s
pointer slows down while dragging.

In the scope of this master thesis we will implement both We will implement
and compare both
DMVN techniques,
the pressure and the
dragging velocity

implicit selection techniques and compare them to the
general (explicit) selection techniques such as region selec-
tion, described in the section 2.2.2—“Area”. We are going
to prove, whether the implicit way of selecting objects is
more useful than the explicit one or not. Furthermore, we
will check these selection techniques against each other.

Figure 2.11: Alphaslider by Shneiderman and Ahlberg
[1994]: granularity of the so called acceleration interface is
proportional to the movement speed of the mouse pointer.

2.3 Adaptive trajectories

In this section we will show, how to adjust trajectories to
the performed selection. We consider two main selection
techniques: a point selection (section 2.2.1—“Point”) and
an area selection (section 2.2.2—“Area”), since the other ap-
proaches discussed in section 2.2 use the one of this two.

30 2 Related work

According to Ramos and Balakrishnan [2003], user canDifferent approaches
can be applied to the
motion trajectory in
order adapt it to a
certain level of
motion details

change an additional input parameter of the direct manipu-
lation system in order to get different levels of video details.
Talking about motion trajectories we decided to define a
level of motion details as a level of trajectory smoothness.
Adapting the trajectory to the current state of the system
might be achieved in three ways: trajectory smoothing, us-
age of image pyramid and trajectories clustering.

Yan and Kankanhalli [2002] demonstrate two smoothing
methods, that might be applied to the motion trajectories: a
polyline simplification and a bezier curve based filtering. A
discrete curve evolution from Treetasanatavorn et al. [2004]
might be used as well. The trajectories adaptation looks
now as following:

– Precompute fine-scale trajectories for all objects in the
video.

– Define input levels of details.

– Smooth the trajectory according to the input level
value.

The second adapting approach described by Cheng and Ho
[2009] uses an image pyramid, that consists of a motion at
different resolutions.

IMAGE PYRAMID:
Image pyramid is a hierarchical structure of pictures, that
represent the same image at different resolutions. The
highest resolution picture is on the bottom level.

Definition:
Image pyramid

This mechanism is similar to the previous one: once the
input parameter has been changed - the level of resolution
has to be switched and the trajectory has to be recomputed.

The last method for computing adaptive trajectories uses a
trajectories clustering concept [Buzan et al. [2004]]. In the
context of this method, an input parameter defines a size of
the cluster.

31

Chapter 3

Selection techniques for
direct manipulation
video navigation

“I’d rather live with a good question
than a bad answer.”

—Aryeh Frimer,
professor at Bar Ilan University

In this chapter we will present the contributions of our
work on object selection to the direct manipulation video
navigation (DMVN) system. A gap in the user interaction,
which couldn’t be solved by any DMVN system, has al-
ready been observed. Inspired by the ”seven stages of ac-
tion” theory [Norman [2002]], this gap was called gulf of
execution. After a wide literature review in chapter 2—
“Related work” it was clear that the object selection mech-
anism of DMVN systems should be extended. For further
implementation, three new selection techniques have been
chosen. They are supposed to close the gap between the
user’s mental model and the system model:

• Region selection (explicit selection technique);

• Pressure based selection (implicit);

32 3 Selection techniques for direct manipulation video navigation

• Dragging velocity based selection (implicit).

As mentioned in section 1.2—“Problem description”, the
system DRAGON in its last version (DRAGimation) will
be deployed as a DMVN system. The system DRAGON
[Karrer et al. [2008]] was developed in 2008 at the RWTH
Aachen University and has been maintained by Thorsten
Karrer, Malte Weiss, Moritz Wittenhagen, Jan Borchers and
others ever since. Both the graphic user interface of the old
and the new version after the extension are illustrated in
figures 3.1 and 3.2 respectively.

Figure 3.1: The former graphic user interface (DRAGON).

Figure 3.2: The new graphic user interface (DRAGimation),
which has been extended in the scope of this work.

3.1 Region selection 33

The old version offers only a point-based video navigation,
which allows the user to select a random point of the object
and drag it through the frame sequence. The new version
(DRAGimation) provides three selection techniques on the
whole. These three new techniques were integrated in the
scope of this work and have been discussed in detail in sec-
tion 2.2. The following sections deal with object selection
in DRAGimation and provide a detailed explanation of the
performed program extension.

3.1 Region selection

This section describes the region selection both from the
user’s point of view and the one of a developer. First and
furthermost it is defined, how should the user apply this se-
lection technique in a DMVN system. Afterwards, the main
algorithm of the region selection is explained stepwise, gi-
ving a deep overview of the DRAGON functionality itself.

3.1.1 Selection behavior

In order to define a specific region of the frame, which has
to be processed for navigation purposes, following tech-
niques might be used (Figure 3.3):

– Classic rectangular selection (First picture from the
left);

– Simplified contour (Second picture from the left);

– Drawing a silhouette (Third picture from the left);

– Drawing over an object shape (Technique from Gold-
man et al. [2007], fourth picture from the left).

A user survey has revealed, that the majority prefers the
rectangular selection, as they are used to it from the daily
use of the PC. This kind of selection seems to be a reason-
able approach, and will be therefore implemented in this
work.

34 3 Selection techniques for direct manipulation video navigation

Figure 3.3: Different area selection techniques.

3.1.2 Implementation

The computation workflow in DRAGimation benefits a lotThe last version of
DRAGON is
designed as a
client-server
application

from its architecture. Unlike DRAGON, the latest version
(DRAGimation) is designed as a client-server application,
so that the most CPU demanding operations such as a tra-
jectory computation are now executing on the server’s side.
The data exchange between the server and the client is per-
formed over multiple channels, which allow many trajecto-
ries to be computed in parallel1.

Assuming the intuitive way of implementing area selectionThe simplest way is
to compute the mean
trajectory from the
bundle of trajectories
beginning inside the
selected area

will simply consist of generating random points inside the
selected area and requesting their trajectories. The average
calculated over these trajectories is supposed to represent
the movement of the selected area. Obviously, the size of
the selected area does have a significant influence on the
computation success. If the selected area is much bigger
than the object itself, or does not cover the object properly,
the generated points will belong most probably to the back-
ground and not as planned to the object. This issue will be
illustrated later on in this subsection.

In order to produce 2D random points in our algorithm, a2D coordinates of the
points inside the area
are generated via
gaussian distribution

random number generator based on a gaussian distribution
has been integrated into DRAGON. Two parameters of the
gaussian kernel function should be defined for such a 2D
object as an area: the mean value and the variance. The
mean value is obviously the middle point of an area. The
variance, however, should be computed in a certain way.
To make sure that the majority of the generated points will

1After trying the different numbers we have estimated a most stable
amount of requested trajectories n = 10.

3.1 Region selection 35

be placed inside the defined region, the variance should be
equal to 25% of its edge length (Figure 3.4).

Figure 3.4: The variance σ in the Gaussian distribution. Ac-
cording to the properties of the gaussian distribution, 95.5%
of the random generated points fall into a square with an
edge length 2 × 2σ.

To generate a random point by means of the Gauss distri-
bution inside a region the following approach is used [Press
et al. [1992]]. The coordinates (xi, yi) of the random point
are computed based on two independent gaussian num-
bers (η1, η2) with the mean values µη1 = µη2 = 0 and unit
variances σ2η1 = σ2η2 = 1 as follows:

xi = µ1 + σ1 · η1 (3.1)

yi = µ2 + σ2 · (ρ · η1 +
√

(1 − ρ2) · η2), (3.2)

where

(µ1, µ2) are normalized 2D coordinates of the region
center,

σ1, σ2 are corresponding standard variances for x and
y axis,

ρ is the correlation coefficient.

Once all points have been generated, the client application
requests the trajectories from the server. As mentioned in

36 3 Selection techniques for direct manipulation video navigation

the beginning of this subsection, the resulting mean trajec-
tory strongly depends on the area size. In order to examine
the impact of the area selection on the resulting trajectory,
an experiment has been carried out. In this experiment the
one and the same object is selected by using three different
area sizes. The results are shown in the figure 3.5.

The area selection is supposed to be successful, if the ma-The described
algorithm does not
work if the selected
area is larger then
the object of interest

jority of random points (initial nodes of trajectories) are lo-
cated inside the object’s edge or borders. This condition is
for instance not satisfied in the second and third case (the
blue star) of figure 3.5. Even though the small area selec-
tion of ”bad-shaped” objects, in this case the blue star of
figure 3.5 prevents errors during the trajectory computa-
tion. It is nearly impossible to obtain an acceptable smooth
curve when enclosing the object in a much bigger rectangle.

To illustrate this issue, the random points distribution in-
side the selected region has been shown in figure 3.6. As
a matter of fact, if the area becomes larger, most points are
located beyond the object’s edge. The prepared set of com-
puted trajectories will include by implication many out-
liers, which negatively influence the mean trajectory.

To conclude, it is important to point out, that the area selec-The randomly
distributed initial
points of trajectories
should better not fall
onto the background

tion remains stable as long as the selected area comprises a
good bit of points from the affected object and not from the
background (or at least very few points belonging to the
background) as depicted in figure 3.7 (top row). It is fur-
thermore important to reduce this constraint on the user’s
selection and to keep the algorithm stable even though the
input selection is wrong. This is the case when the se-
lected area comprises too many points from the (white)
background as shown in figure 3.7 (bottom row). To avoid
such an error, the input point sets must be treated within
an additional preprocessing stage.

Inspired by the particle grouping technique [Goldman et al.The trajectory
clustering approach
allows to exclude
faulty trajectories
from the bundle

[2007]] we decided to apply a K-means clustering to the in-
put set of points inside the area. It is an iterative technique
for separating elements into clusters. The initial number
of clusters has been set to two, since there are at least two
groups: points belonging to the object and points lying on
the background. In order to use a trajectory for the clus-

3.1 Region selection 37

Figure 3.5: Region selection in DRAGimation: the mean
trajectory for the different areas.

38 3 Selection techniques for direct manipulation video navigation

Figure 3.6: The ten randomly generated points (by the
Gauss generator) inside selected areas with different sizes:
(a) 62 × 59 px, (b) 193 × 158 px, (c) 267 × 246 px. Refer to
figure 3.5 for the corresponding video frames.

3.1 Region selection 39

tering approach, we have to find a way to represent it as a
cluster element. Every trajectory in the video frame can be
mapped to a 2D translation vector in an affine motion space
by taking the difference between its start and end node co-
ordinates. From now on the corresponding 2D vectors will
be clustered instead of trajectories.

Figure 3.7: DRAGimation: possible selections of an object.

Our algorithm is called every time the new piece of trajec-
tory comes from server, and it consists of following steps:

1. Initialization. Assign two random vectors from the
initial set to the cluster centers a and b.

2. For all trajectories

• compute the distance to every cluster center.
Here the distance between vector endpoints is
meant, since all translation vectors start from ori-
gin (Figure 3.8);

• push the trajectory into a cluster which center is
the closest to it.

40 3 Selection techniques for direct manipulation video navigation

3. Recompute the cluster centers a and b as the centers
of gravity of the corresponding clusters. Start again
from 2. and repeat until convergence.

Figure 3.8: K-means clustering inside DRAGimation: the
distance between each trajectory and a cluster’s center is
computed as a distance between the endpoints of the corre-
sponding translation vectors

The algorithm is supposed to converge as soon as the clus-Consistent results
have been achieved
even after five
iterations of the
described algorithm

ters don’t change their content anymore. But it is still pos-
sible that a certain trajectory will oscillate between two
clusters and keep the algorithm running. To prevent that,
we decided to limit an amount of iterations to some num-
ber. We realized that five iterations are enough to converge
the algorithm inside the given restrictions in all observed
cases (ten trajectories and two clusters).

The described algorithm distinguish trajectories into twoIt is important to
choose the right
cluster for the
estimation of the
mean trajectory

clusters: moving pixels belonging to the real trajectory and
pixels belonging to the background. It is now important to
take the cluster with only ”good” trajectories for the further
processing. As long as the object is moving, the endpoints
of trajectory are further away from origin of the affine mo-
tion space and build therefore an own cluster. Unusable
and unstable trajectories does not move at all (background
pixels) or make just little movements into random direc-
tions (noise). Thus, they fall into the second cluster and
must not be considered in an average trajectory estimation.
An intuitive way to distinguish ”good” trajectories from
”bad” ones is to measure how far are the corresponding
cluster centers from the origin, and choose the furthest one.

3.1 Region selection 41

However, there is a movement type, for which this ap- Additionally, our
algorithm has been
improved and has
become more stable
in processing circular
and spiral
movements

proach will definitely not work. Assuming, the object
moves along a circle or a spiral, consider the way of map-
ping a trajectory into an affine motion space. At the mo-
ment it is represented by a translation vector from its start
to the end node. But if the trajectories bundle follows the
circular path, almost every end point of every trajectory
will be very close to its start. The respective distance will be
small, but according to the logic described above it may not
be considered as a ”good” trajectory. The algorithm will al-
ways take the furthest cluster for the further computations.
It is impossible to predict the algorithm’s behavior in this
situation since one of two clusters might be taken for the
mean trajectory estimation. This can result in a significant
instability of the whole program system (Figure 3.9, bot-
tom).

Figure 3.9: DRAGimation: the clustering results. Left col-
umn represents the average trajectory after a few seconds.
On the right side is shown, how can the final curved trajec-
tory look like after all pieces have come from the server.

42 3 Selection techniques for direct manipulation video navigation

An intuitive and obviously the simplest solution is to split
the whole trajectory into pieces and apply the clustering
to every one of them. Goldman et al. [2007] have used a
similar strategy when applying particle grouping to video
annotation and navigation. Taking empirical data in ac-
count the authors decided to cluster points every ∆t = 3
frames. This slight modification in the algorithm has re-
sulted in much better stability.

Once all ”good” base trajectories have been clustered, theThe estimation of the
mean trajectory
takes place over that
part, which appears
in all trajectories in
the bundle

mean trajectory has to be computed. One must keep in
mind, that the server needs some time to proceed and sends
trajectory pieces as soon as they computation is finished, so
the length of the acquired (base) trajectories may be some-
times different in the client’s side. Thus the estimation of
the mean trajectory in the next step should be done over
that part of the curve, which appears in all other trajecto-
ries in the cluster. This part is defined by the minimum
common length of these trajectories. To compute the mean
trajectory, the algorithm considers base trajectories in pa-
rallel. In every step i only nodes with the index i are taken
into account. The algorithm computes an average node,
appends it to the resulting mean trajectory, and continues
with the next value of i until the minimum common length
is reached. The mean trajectory is updated this way every
time new data is provided on the server and the user’s side.

The algorithm might be finally implemented and a userTo test our algorithm
on many videos,
these have to be
prepared with a
special software
offered by the
i10-chair

study can be conducted afterwards. To run the algo-
rithm on the other videos, certain preparations are neces-
sary. DRAGON considers the optical flow field through the
video frames in order to create a movement trajectory (for
an explanation of the optical flow please refer to the section
2.2.1—“Point”). The preparation phase lasts in some cases a
couple of hours since all the flow fields for all video frames
have to be estimated. The necessary software is therefore
provided by the i10-chair at the RWTH University. The test
video and accompanying flow packages are converted into
a single DRAGON-package.

3.2 Dragging velocity 43

3.1.3 Selection visualization

Visibility is one of the seven principles of design [Norman
[2002]]. It is important to give the user feedback, what is
happening in the system even during an object selection:
whether the selection was successful or not, may the user
already drag an object or should he select a new region.

Thus the area should have been drawn at least. From all re-
gion selection types mentioned on figure 3.3 we chose the
first one as the most users are used to it. The area is high-
lighted by a red rectangle and disappears when the user
starts dragging an object through the frame sequence.

In particular the user has to complete two operations every
time: select an area over an object and drag it. To keep in-
terface simple we haven’t added any features for choosing
between these operations. We simply gave the user only
one try for selection and one for dragging (Figure 3.10). Af-
ter the user selected a region (Figure 3.10, middle), the sys-
tem computes an approximated trajectory of the whole area
(Figure 3.10, right) starting in a circle. User can now drag
an object along its trajectory.

Figure 3.10: DRAGimation: the initial video-frame view
and two stages of the object navigation via region selection.

3.2 Dragging velocity

Unlike using the area selection, with the next technique
user doesn’t select an object explicitly. Therefore, the drag-
ging velocity is considered as an implicit object selection
technique. The following section describes its approach
and the algorithm.

44 3 Selection techniques for direct manipulation video navigation

3.2.1 Selection behavior

The concept of dragging velocity selection differs from theDragging velocity is
an implicit selection
technique

one of area selection. It is not the usual object selection
where the user explicitly defines what do we want to navi-
gate and in what way. This is an implicit selection. A basic
idea is to control the level of motion detail though dragging
speed of a user’s pointer.

Assume the point based video interaction is considered
(more about point selection in paragraph 2.2.1—“Point”).
The video navigation is then separated into two phases:

1. User clicks on the certain point in the video and gets
a corresponding trajectory.

2. He can now drag an object along the trajectory as far
as it is supported by its length.

The trajectory is computed in two directions starting fromThe motion is more
detailed if the
dragging velocity is
small

the object’s location and represents its movement before
and after it came to the selected position. Thus the user can
drag an object only forward or backward along the curve.
There is one more degree of freedom which can be manipu-
lated during the video manipulation. It is a dragging velo-
city of the user’s pointer what we now can map to the level
of motion details. The mapping takes place as follows:

• Don’t change an initial trajectory that came from
server if the dragging is slow;

• Show the less detailed trajectory if the dragging speed
is increasing.

How to define whether the dragging is fast or slow, we will
define in the following paragraph. But obviously the in-
teraction will not make lots of changes to the latest version
of DRAGON. However the system will be sensible to the
dragging speed. We now have defined the interaction rou-
tine from the users point of view and will continue to ex-
plain how can be this idea implemented based on the latest
version of DRAGimation.

3.2 Dragging velocity 45

3.2.2 Implementation

The most important statement, which has been made before The dragging velocity
is computed
based on the signals
(events) produced by
the user’s pointer

any implementation is done, is a definition of the dragging
velocity itself. From now on we will talk about a current
velocity of the user’s pointer (mouse pointer in case the
mouse is used). This value is easy to compute because of
the basic :mouseDown and :mouseDragged events that are
described in the DGNView class of the DRAGimation ap-
plication. After we have initialized the time value and a
distance in the first one, we can simply update them every
time :mouseDragged is called.

The next question that arises: which values does the current Three levels of
motion details have
been defined for the
implementation

point velocity have? Due to a computation routine, we will
save them as n px/sec. Using this unit of measurement
we have got following values on the MacBook Pro with a
1440 × 900 px desktop resolution:

• [0, 200] for slow dragging;

• (200, 800] for the faster dragging;

• (800, ..) for the fastest motion when it is still possible
to control the direction of the object movement .

This measurement is of prime importance for the follow-
ing velocity levels estimation. The level of dragging velo-
city corresponds to the level of motion details that we want
to control. We decided to consider only three levels: high,
middle, and low. It is a preliminary version of the algo-
rithm and we only want to see, whether this feature will
work at all to not. Now we have to correlate the levels of
details with the levels of velocity.

• Don’t change a trajectory, if velocity ≤ x;

• Show the motion at the medium level of details, if ve-
locity value is between x and y;

• Schematically represent a trajectory, if velocity ≥ y.

46 3 Selection techniques for direct manipulation video navigation

The main point of this paragraph however is the implemen-Different approaches
can be used to
change the level of
motion details

tation of the dragging velocity based navigation. Namely
the controlling of level of the motion detail. There are three
main approaches, briefly introduced in paragraph 2.3—
“Adaptive trajectories”:

• Trajectory smoothing. The simplest one according
to the implementation. The level of motion details is
correlated with a level of the trajectory smoothing.

• Trajectories clustering. During initialization a cer-
tain cluster is defined around the interaction point. If
the dragging velocity is increasing, the point’s neigh-
bors have to be investigated and therefore the cluster
should be enlarged. The clustering algorithm men-
tioned in paragraph 3.1—“Region selection” might be
used as well.

• Video pyramid based on the image pyramid. The
video is saved on different resolutions into a packa-
ge of the trajectory levels with corresponding flow
fields. During interaction the algorithm has to switch
the levels of the pyramid according to the dragging
speed.

The first approach is the simplest one regarding the imple-In the scope of this
work only the
trajectory smoothing
will be implemented

mentation. Trajectory clustering is already done for the area
selection and due to a lot of additional computation has
caused a lack of overall performance. The clustering has to
be done very often, namely every time the main trajectory is
updated. However, due to limitations of dragimation by 10
trajectories it may not work correctly for big clusters. Same
is for the trajectory pyramid, which is first complicated by
a long preprocessing stage for every video. Therefore, in
the scope of this master’s thesis we will develop the trajec-
tory smoothing as the simplest one. because we are con-
centrated on the interaction itself not on the algorithmical
background. Others ideas we will keep for the future work.

Fro now on we will concentrate only on the possible curve
smoothing approaches. We already mentioned a couple of
them in 2.3—“Adaptive trajectories”:

3.2 Dragging velocity 47

• Low-pass filtering;

• Polyline simplification (from Yan and Kankanhalli
[2002]);

• Bezier curve based filtering (from Yan and Kankan-
halli [2002]).

Applying a low-pass filtering as the simplest approach to The low-pass filtering
will be implemented
as a trajectory
smoothing approach

the trajectory smoothing we will get preliminary results
much faster and can already conduct a user study. It s more
important to make a statement whether this kind of selec-
tion is useful at all or not. We can take care of the com-
putation stability with advanced methods afterwards. But
if the dragging selection will not work for the users, it is
reasonable to break up without losing time.

We will use a simple finite impulse response (FIR) fil- Varying levels of
motion details are
represented as a
trajectory smoothed
by an FIR filter with
different convolution
masks

ter with different realizations for any level of trajectory
smoothing. It requires a short amount of parameters and
is more suited for trajectory smoothing. The output signal
of the filter is produced as a weighted sum of a finite num-
ber of the input signals (points on the initial trajectory). The
number of points to be taken and their weights make up a
so called convolution mask of the filter. We call it kernel
and keep unchanged during the whole trajectory proces-
sing. Considering trajectory as a set of points we will apply
the filter mask for every point on the curve. Depending on
different convolution masks we will get different level of
motion detail:

• Initial trajectory stays unchanged (high level);

• Mask [16 ,
1
6 ,

2
6 ,

1
6 ,

1
6] (middle level);

• Mask [1
36 ,

3
36 ,

4
36 ,

5
36 ,

5
36 ,

5
36 ,

5
36 ,

4
36 ,

3
36 ,

1
36] (low level).

The FIR filter however should be carefully applied to cir- FIR filter may
negatively impact
curves or surfaces
(shrinkage problem),
but it is easy to
implement

cular trajectories. The circular movement may shrink sig-
nificantly under certain circumstances (depending on the
convolution mask or on how many times it has been ap-
plied to a trajectory). This problem has been described in
Taubin [1995] for curves and surfaces. Nevertheless, the big

48 3 Selection techniques for direct manipulation video navigation

advantage of this filter is its simple implementation. More-
over it is easy to integrate trajectory smoothing in existing
code of DRAGimation: an additional trajectory processor
(DGNTrajectoryProcessor) will take care of an initial trajec-
tory that is piecewise coming from the server. It should
be noted however, that after testing our algorithm with the
convolution masks described above, no material adverse
effects of the filter have been noticed.

The final algorithm for the dragging velocity object selec-
tion is looking as follows:

1. Initialization after user clicked on the object (:mouse-
Down event)

(a) save start position of the user’s pointer,

(b) start timer,

(c) initial smoothing level = 1 (no smoothing);

2. While user is dragging an object through the scene
(:mouseDragged event)

(a) get current position of the user’s pointer,

(b) get current time,

(c) compute a current dragging velocity using pre-
vious value pair (time, position),

(d) update smoothing level according to the result-
ing value.

3.2.3 Selection visualization

The selection behavior didn’t change in general comparingAn additional
element displaying
the dragging velocity
value has been
added to the GUI

to the latest version of DRAGimation. The one more pa-
rameter needed to be shown along with an interaction point
and a trajectory itself. It is a velocity value and its influence
on the resulting trajectory smoothness. Thus we added an
item to the graphic interface that displays a current drag-
ging velocity value. Moreover, because of the fast compu-
tation speed of the smoothing algorithm the trajectory is
smoothed in the real time and changes very time the drag-
ging speeds up or slows down.

3.3 Pressure 49

3.3 Pressure

The pressure based selection is considered as the second
implicit selection in the scope of this work. The following
section contains a detailed explanation of how was this
technique applied to DRAGON as a DMVN system.

3.3.1 Selection behavior

After the dragging velocity was described in the previous Pressure based
selection is an
another implicit
selection technique

section, we will introduce the next implicit selection tech-
nique. The motion detail of the object however is now de-
fined by a pressure value exerted by user on the screen.

The point based interaction is taken as basic interaction pat- Again, three levels of
the motion’s
resolution are
presented

tern again. Assume, the pressure value is announced to the
system every time user interacts with a screen – touches it
or drags a pointer along it. In order to correlate the pressure
values with levels of detail we again define three levels of
the pressure value and their mapping principle to the mo-
tion trajectory smoothness:

• Low pressure - high resolution of movement detail
(trajectory stays unchanged);

• Middle pressure - medium resolution;

• High pressure - schematically represented move-
ment.

The values assigned to each level however depend on the
hardware used for the pressure measurement.

3.3.2 Implementation

Along the modern touchscreen devices we have chosen the A modern pressure
sensitive tablet has
been used for
measurements

one with a pressure-sensitive screen from Wacom. It is a
21.3 inch sized model called Cintiq 21 UX (Figure 3.11),
which is widely used for painting. In this master’s thesis

50 3 Selection techniques for direct manipulation video navigation

however the tablet will be used for the pressure based se-
lection in direct manipulation video navigation.

Figure 3.11: Wacom Cintiq 21UX 54,1 cm (21,3 inch)
tablet chosen for the direct manipulation video navigation.
Source: Amazon online shop2 .

We tested the tablet with a simple Cocoa application offered
on the Wacom developers support page.3 This simple pro-
gram enables a pressure-sensitive painting on the Wacom
tablet (Figure 3.12). We have exerted different pressures on
the screen, measured the corresponding values, and sepa-
rated all pressure values into three following intervals af-
terwards:

• [0, 0.2) for the low pressure;

• [0.2, 0.5) for the medium pressure;

• [0.5, 1] for the high pressure.

The tablet’s pressure measurement functionality isThe pressure value
of the user’s pointer
can be easily
acquired using the
tablet’s API

equipped with useful API functions so that it can be easily
integrated into the DRAGimation code. The core algorithm
that creates adaptive trajectories doesn’t differ from the
one of dragging velocity based selection. It has to smooth
trajectories according to the current level of motion detail.

3http://www.wacomeng.com/mac/index.html

http://www.amazon.de/s/field-keywords=cintiq+21ux
http://www.wacomeng.com/mac/index.html

3.3 Pressure 51

Figure 3.12: Cocoa Simple: sample code for pressure-
sensitive drawing on the Wacom tablet.

If the needed level of motion detail is computed every time
the pressure or dragging velocity is changed, both selection
techniques can use the algorithm for trajectory processing
in common.

The final algorithm for the pressure based object selection
is looking as follows:

1. Initialization after user clicked on the object (:mouse-
Down event)

(a) get an initial pressure value,
(b) compute an initial smoothing level,
(c) ask for trajectories from the server,
(d) process a trajectory with a corresponding

smoothing-mask;

2. While user is dragging an object through the scene
(:mouseDragged event)

52 3 Selection techniques for direct manipulation video navigation

(a) get current pressure value,

(b) update smoothing level according to the resul-
ting value.

3.3.3 Selection visualization

We tried to keep the interface as simple as possible and didAlong many possible
visualizations of the
pressure value, a
simple numerical
indicator has been
chosen for GUI

not want to complicate it with additional components. First
we decided to represent a pressure using a simple circle
around the user pointer, which increases if the user exerts a
greater pressure on the screen and gets smaller otherwise.
However, after implementing this pressure indicator and
testing it with other unexperienced users, we have got feed-
back that the navigation became less enjoyable. The cir-
cle started distracting users while dragging, since the pres-
sure may vary at runtime and the corresponding circle size
should be always up to date. Despite continuous size varia-
tion even at small pressure the circle covered a lot of video
details. So we changed the strategy and placed a simple
text display on the right panel of the main DRAGimation
window (Figure 3.13).

Figure 3.13: DRAGimation: Current pressure value is dis-
played on the right main window panel (yellow button).

We tested the algorithm on the couple of videos and it has
shown trustful stability and high pressure sensitiveness.

53

Chapter 4

Evaluation

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong”

— Richard Feynman,
american theoretical physicist

As it has been mentioned in the thesis topic, two issues In the first
experiment the area
selection will be
compared to the
default point
selection

should be evaluated: object selection and adaptive trajec-
tories applied to DRAGON. First and foremost the new ob-
ject selection technique (area selection) will be compared
to the default one - point selection. This is a pure perfor-
mance measurement and no user will be needed for this
experiment. It is important to conclude, whether the im-
plemented area selection is stable enough to be included
into the standard DRAGON package.

The second experiment handles the second issue and is In the second
experiment both
techniques with
adaptive trajectories
will be evaluated

supposed to evaluate the addition of adaptive trajectories
to the DRAGON’s default point selection. Unlike the area
selection analysis, this experiment will be carried out with
help of a group of users.

54 4 Evaluation

4.1 Area selection performance analysis

The goal of the experiment is analyze the quality of the area
selection algorithm implemented in the scope of this thesis.
Another aim is to compare this algorithm with the point
selection used in DRAGON by default.

4.1.1 Experimental setup

Before starting the first experiment, we agreed on an outputBoth selection
techniques has been
compared based on
their output
trajectories

value, which is present in both selection techniques, area
and point selection: a trajectory. It is therefore reasonable
to evaluate the selection technique by comparing the tra-
jectory with a certain standard trajectory: the best possible
trajectory of an object, which mostly represents its real ob-
ject movement, is referred to as ”ground truth”.

The deviation between the ground truth and any trajectoryThe deviation
between the output
trajectory and the
ground truth has
been chosen a
comparison criterion

computed by means of the point selection algorithm might
be considered as reference for its quality. Obviously, the
average distance of the particular trajectory to the ground
truth is inversely proportional to its quality in terms of se-
lection technique. This approach for quality evaluation of
computed trajectories might be also used in terms of area
selection.

After applying the point selection to many test videos, itThe object selection
has been executed
many times in order
to imitate the user’s
input error

was notice that the object’s trajectory varies widely depend-
ing on the selected position in the object itself. Thus, the
selection should be executed many times to achieve con-
vincing statistics. The random point distribution on the ob-
ject’s surface provides a wide variety of object trajectories.
For the generation of random points the gaussian generator
class, as used in the area selection, has been implemented
(refer to section 3.1).

During the experiment five different values of a standard
deviation (variance σ) were used. This includes both cases:

• the random points are concentrated around the initial
position of the ground truth trajectory;

4.1 Area selection performance analysis 55

• the random points are spread out over the object’s
surface (or even outside the object’s edge).

To reproduce different area selections, not the position of
the area, but its size has been computed as a random value.

The experiment was conducted on 15” MacBook Pro with
Intel Core 2 Duo processor and 3GB SDRAM. In order to
carry out the experiment in the shortest time possible and
as automatically as possible, an additional tool was develo-
ped for DRAGON (refer to appendix A—“Area selection
performance analysis: an additional Cocoa application”).
The steps of the following algorithm were performed for
this purpose:

1. Initialize experiment:

(a) compose a set of five different values for the
standard deviation σ for the gaussian generator;

(b) take initial standard deviation value for the
point distribution;

2. Request from server and save internally the standard
trajectory used as ground truth.

3. Save the initial position of the ground truth trajectory
as a mean value for the gaussian function of the gene-
rator.

4. Generate ten randomly distributed points using the
current standard deviation value and the mean
value. Request the corresponding trajectories from
the server.

5. Process the received trajectories and compute their
average distance to the standard trajectory (ground
truth).

6. Generate ten different sized areas using the appro-
priate variance σ. Request the corresponding trajec-
tories.

7. Compute the average distance to the standard trajec-
tory.

8. Take the next value for σ and start again with step 4.

56 4 Evaluation

4.1.2 Results

Generally speaking the area selection showed more stabi-The area selection
showed more
stability than the
point selection

lity than the point selection. This fact is mostly obvious
in the case of widely distributed initial points (large va-
lues of σ). To compare both selection techniques a two-
dimensional graphic was composed. The values of the stan-
dard deviation used by the gaussian generator are shown
by the x-axis. The y-axis on the other hand represents the
average distance of a trajectory produced by a particular
selection technique to the ground truth.

The experiment has been performed by means of two dif-
ferent videos (Figure 4.1). The corresponding graphs are
shown on figures 4.2 and 4.3.

Figure 4.1: Two sample videos used during experiments.
The depicted curve represents the ground truth trajectory.

Evaluating the graph, one can conclude that the area selec-Unlike the point
selection, the area
selection did not
show a strong
dependency on the
input error σ

tion technique slightly depends on the standard deviation
σ, whereas the point selection shows a very strong depen-
dence on σ. It means that no matter how proper the ob-
ject has been selected and which area size has been used,
as long as it is not much bigger than the object itself – our
algorithm will produce an acceptable trajectory.

Quite the opposite happens to the point selection at large
deviances (σ ≥ 0.06). If the input error σ is getting larger,
in other words, if the user acts in a hurry and accidentally
hits the points on the object’s border or even outside it, he
might obtain an unpredictable trajectory which may belong
to some other object present in the background.

4.2 Adaptive trajectories evaluation 57

Figure 4.2: The graphical representation of the experiment
results (first video, figure 4.1, left).

Figure 4.3: The graphical representation of the experiment
results (second video, figure 4.1, right).

4.2 Adaptive trajectories evaluation

In this experiment only two selection techniques with in- A user study has
been conducted with
a group of users

cluded adaptive trajectories (pressure and dragging ve-
locity) will be compared with a default point selection. Un-
like the evaluation of the area selection, this experiment
will be executed on a group of users.

58 4 Evaluation

4.2.1 Hypothesis

The user study has been conducted on 15 participants. The
final goal of the user study consisted in verifying two fol-
lowing hypotheses:

H1 Using adaptive trajectories in a DMVN system, any
video navigation task can be solved in a shorter time
than using a default point selection.

H2 The usage of pressure based selection leads to a
faster task completion compared to dragging velo-
city.

In the following paragraphs the methodology and the re-
sults of the experiment will be presented.

4.2.2 Participants

In order to evaluate adaptive trajectories performance, 15
test persons with different backgrounds have been invited
to the user study.

The participants identified their demographic and educa-
tional characteristics. The average age of respondents is ap-
prox. 22.2 years old. 8 respondents are female; 7 are male.

When asked to identify their field of expertise, the majori-The majority of the
participants has
been studied
Computer Science

ty of the participants indicated that they are Students of
(or have studied) Software Systems Engineering (33.33%),
followed by those who identify as Computer Sciences
(26.66%), Economics (20%), Electrical Engineering (13.33%)
and Physics (6.66%) (Figure 4.4).

It is important to point out that only 20% of the participantsMost participants of
the user study did not
have any experience
in DRAGON

were graduate students. Eleven respondents indicated that
they are not familiar at all with DRAGON. Other two per-
sons are in an intermediate command of it (used DRAGON
approximately 3-5 times). Only two persons reported an
expertise on DRAGON. They have already used DRAGON
more than 10 times and extended its source code (Figure
4.5).

4.2 Adaptive trajectories evaluation 59

Figure 4.4: Field of study of the experiment participants.
The overall majority belongs to M.Sc. Computer Science or
M.Sc. Software Systems Engineering.

Figure 4.5: Experience level of the users participated the
study related to DRAGON usage.

4.2.3 Tasks and methodology

For the user study we prepared a set of four videos (Figure
4.6). A simple object was presented in each video, which
has to be navigated along its movement trajectory:

• a red ball;

• a yellow sport car;

• a white fish;

• a black cat.

60 4 Evaluation

Figure 4.6: Sample videos used for navigation via
DRAGON during the user study.

Each navigation task should be completed three times,
using the one of three selection techniques each time (Fi-
gure 4.7):

1. Default point selection.

2. Pressure based selection.

3. Dragging velocity based selection.

To avoid the learning effect, we asked users to apply the
selection techniques each time in a diverse order. The per-
formance of each selection technique was evaluated on the
basis of the task completion time. The task is considered
successfully accomplished if the following conditions are
satisfied:

• Video 1: The red and the blue ball touch each other;

• Video 2: The yellow sport car passed the blue ”RBS”-
billboard;

• Video 3: The white fish achieves the left pane of the
aquarium and returns to its start position;

• Video 4: The black cat throws the white ball and the
ball touches the left side of the parked white car.

4.2 Adaptive trajectories evaluation 61

Figure 4.7: DRAGON: The graphic user interface with three
buttons indicating the chosen selection technique: default,
pressure, or dragging velocity.

Also short introduction of DRAGON functionality was
made, since most users did not have any experience work-
ing with it. Users could also navigate a training video for
a couple of minutes in order to get used to the three selec-
tion techniques. A screen recording was made during the
interaction.

Following hardware has been used for the experiment:

• 15” MacBook Pro with Intel Core 2 Duo processor and
3GB SDRAM;

• 21.3” Wacom tablet (model Cintiq 21UX).

62 4 Evaluation

4.2.4 Questionnaire

Beside a pure performance evaluation using the time of theA short post-session
questionnaire has
been used in order to
evaluate the users’
perception of the
new techniques

task completion, both new selection techniques with adap-
tive trajectories must undergo a qualitative analysis. This
analysis should take into account a user acceptance and a
personal opinion of the participants regarding adaptive tra-
jectories.

In accordance with principles introduced by Converse and
Presser [1986], a set of seven multiple-choice questions has
been prepared for this purpose. Further questions, inspired
the System Usability Scale (SUS) [Brooke [1996]], have also
been included into the questionnaire. The complete post-
study questionnaire is enclosed in appendix B—“User ex-
periment questionnaire”.

After finishing all tasks, a short post-session interview face-
to-face is held. During this post-session users were asked
to fill out the questionnaire and express their personal opi-
nion. All user comments were then gathered for the later
analysis.

Since most people would prefer anonymity, all question-
naires do not contain any personal data except the elements
listed below:

• gender;

• age;

• field of study;

• experience working with DRAGON.

Every participant as given a personal ID to simplify the
data analysis in accordance with the provisions of protec-
tion of personal data.

4.2 Adaptive trajectories evaluation 63

4.2.5 Results

Completion times A one-way ANOVA has been con- The users completed
the tasks 3 and 4
significantly faster
using adaptive
trajectories

ducted to evaluate the task completion times, which have
been minuted during the user study. Tasks one and two
did not show any significant differences while comparing
the task completion time of every single technique (Figure
4.8). A significant difference however was observed for the
third task: F (2, 42) = 5.889, p = 0.00557. A pairwise t-test
conducted afterwards revealed that users could accomplish
the task much faster using the dragging velocity based se-
lection:

1. Dragging velocity: M = 17.95, SD = 4.94;

2. Pressure: M = 23.31, SD = 6.88 (p = 0.0315);

3. Default: M = 24.94, SD = 5.51 (p = 0.0063).

The fourth task showed also significant differences:
F (2, 42) = 8.415, p = 0.000845. Post analysis with a pair-
wise t-test revealed that both techniques, dragging velocity
(p = 0.0017) and the pressure based selection (p = 0.0035),
are significantly faster than the default point selection:

1. Dragging velocity: M = 13.62, SD = 3.80;

2. Pressure: M = 14.26, SD = 3.53;

3. Default: M = 19.75, SD = 5.81.

The significant difference was observed only in two cases
for the dragging velocity and in a single case for the pres-
sure. Therefore, the hypothesis H1 cannot be confirmed.

To prove the second hypothesis, both selection techniques No significant
differences between
the pressure based
selection and the
dragging velocity
have been observed

with adaptive trajectories were compared using a pairwise
t-test. The significant deference between the dragging ve-
locity and the pressure was observed only in the third case
(p = 0.0315). But on the other hand the participants were
faster when using dragging velocity. Tasks 1, 3 and 4, how-
ever, did not show significant differences in completion

64 4 Evaluation

time between both selection techniques. Thus, the hypo-
thesis H2 was rejected as well.

We also have analyzed the screen recordings, which have
been made during the user study in order to understand
why these techniques did not bring significant effort.

We observed that the users often became disoriented in theA new set of levels of
motion details is
needed to improve
the overall effort of
adaptive trajectories

video, if they increased the exerted pressure or the drag-
ging velocity. Since there are only three levels of motion
detail (low, medium, high), the object’s trajectory changed
quite abruptly during video navigation. To prevent this ef-
fect, a bigger amount of these levels is needed. Further ex-
periments are needed to reevaluate the adaptive trajecto-
ries with the new levels of motion detail.

Figure 4.8: Graphic representation of the evaluated task
completion time: the chart shows the average time of the
corresponding task completion in seconds. The measure-
ments were carried out over 15 participants with and with-
out DRAGON experience.

Quality analysis Apart from the qualitative analysis of
the DRAGON performance, we also analyzed the user’s
perception of the new selection techniques integrated in
DRAGON by means of adaptive trajectories.

4.2 Adaptive trajectories evaluation 65

The users were asked to fill out a post session questionnaire The users concluded
that DRAGON
benefits from
adaptive trajectories

after the experiment (refer to appendix B—“User experi-
ment questionnaire”). All the participants were confirmed
in fact, that DRAGON benefits from adaptive trajectories
(Appendix B, question 1). Test persons felt comfortable us-
ing proposed selection techniques and did not think they
were overwhelmed while executing video navigation tasks.
All 15 users did not find these techniques excessively com-
plex (Appendix B, question 2).

Answering the third question 13 participants were con- Both new selection
techniques, the
pressure and the
dragging velocity, are
easy to understand

fident about the success of these techniques on their es-
tablishment in the everyday’s life of average users (in re-
gards to the familiarity with computer sciences) and did
not think they would require any training. However, two
users claimed, they needed some more time to understand
and keep going with pressure and dragging velocity.

The majority of the users (10 persons) identified the pres- According to the
users’ answers, the
dragging velocity
might be used as a
multipurpose
selection technique
for DMVN systems
since it does not
require any
additional hardware

sure sensitive point selection as more enjoyable and usable
selection technique when compared to the dragging veloc-
ity in question 6. However, answering the last question
three participants thought, dragging velocity has the po-
tential to become a multipurpose selection technique, and
other five were fairly confident, that an appropriate selec-
tion technique has to be chosen depending on a task def-
inition (default selection for simple trajectories, dragging
velocity otherwise). Other seven persons have chosen the
pressure selection, but even they believed that the dragging
velocity might evolve into a global technique since it can be
implemented on every portable device. Further users’ com-
ments are presented in the next paragraph.

Users’ comments To avoid ambiguity while analyzing Some users found it
easier to reproduce a
certain level of detail
using pressure

the post-session questionnaire, all users’ comments were
acquired. Answering the last question, seven participants
has chosen the pressure selection. They found much easi-
er to reproduce a particular pressure level than a dragging
speed. Only three users mentioned, however, that it has
been uncomfortable for them to press one the screen and to
move a pointer simultaneously.

66 4 Evaluation

Other five users concluded, the dragging velocity can beFive users
mentioned that the
dragging velocity is
better suited for
simple straight
trajectories

successfully applied to simple straight trajectories (such as
in task 2, or 3), whenever only the pressure based selec-
tion can help while navigating along complicated trajecto-
ries such as in task 4. There is no need to apply the adaptive
trajectories for simple straight movements such as in task 1.

To conclude, there is one important aspect all participantsAll users concluded
that the dragging
velocity should be
included in DRAGON
as an additional
selection technique

did agree on (even those, who liked and chose the pres-
sure selection at the end of the experiment): there are not
many devices with pressure sensitiveness, so if DRAGON
should be popularized, it has to contain the dragging ve-
locity. Not to mention the area selection, this kind of point
selection with adaptive trajectories is definitely supported
by all portable devices and desktop computers.

67

Chapter 5

Summary and future
work

“Big results require big ambitions.”

—Heraclitus,
greek philosopher

Finally, a brief review is given in the first part of this chapter
to summarize the work done within this thesis. The second
part provides an outlook on how the implemented algo-
rithms, which might be further improved to provide more
functionality.

5.1 Summary and contributions

The aim of this work was to close the gap existing in the The goal of this work
was to eliminate all
possible
misunderstandings
between the user
and the DMVN
system in terms of
object selection

interaction between the user and the direct manipulation
video navigation (DMVN) system. During the initial re-
search phase we investigated all direct manipulation video
navigation systems existing at that moment. As a result, the
gap, referred to as ”gulf of execution”, has been found in
every system, not to mention an instability of their tracking
algorithm under certain conditions. For further investiga-
tions DRAGON has been chosen as an example of a DMVN
system.

68 5 Summary and future work

To achieve the aimed goal, an area selection has been im-First and foremost
the area selection
has been
implemented

plemented first. A DMVN system for video annotation pre-
sented by Goldman et al. [2007] provides an area selection
as well. Its tracking algorithm, however, fails for small or
occluded objects. On the other hand, DRAGON considers
movements of every pixel and is therefore resistant to oc-
clusions and small moving objects. Analogous to the parti-
cle grouping approach of Goldman et al. [2007], a K-means
trajectories clustering is implemented to prevent unstable
trajectories inside the selected area.

Our algorithm allows the user to always keep navigationThe object selection
in the DMVN system
became more
transparent and
predictable after
extending it by the
area selection

under control and gives him a choice on which part of an
object will be tracked by a DMVN system. As a result, the
DMVN system became more transparent and predictable.
An experiment, conducted to compare the area with the
default point selection, showed more stability of the area
selection. In case of the example with the rolling football
in chapter 1—“Introduction” (Figure 1.7) one can say, that
using the new algorithm, the user is always able to move
the ball along the straight line by selecting the entire ball,
not the point only.

Another way to provide users with more freedom of ac-Afterwards,
DRAGON has been
extended by two
point selection
techniques with
adaptive trajectories

tion, was to extend the default point selection by means of
adaptive trajectories. Two approaches has been integrated
into DRAGON for this purpose: the pressure sensitive na-
vigation and the dragging velocity based navigation. Both
methods allow the user to control the level of motion de-
tails. To reproduce a certain level of motion details, the ob-
ject’s trajectory has been smoothed via low-pass IIR filter.

The user study conducted afterwards revealed that itThe user study
revealed that
DRAGON benefits
from the pressure
based selection and
the dragging velocity

makes perfect sense to attach adaptive trajectories to the
default point selection. A great deal of important feedbacks
has been gathered and analyzed in section 4.2.5—“Results”.
The participants of the user study claimed, that the naviga-
tion using adaptive trajectories is more predictable and en-
joyable than a usual point selection. The participants were
convinced that these techniques, especially the dragging
velocity, can be successfully integrated into every DMVN
system.

5.2 Future work 69

5.2 Future work

Even though the intended tasks have been successfully ac-
complished, there is still a high need for improvement, es-
pecially when it comes to the object selection techniques in
a DMVN system, such as DRAGON. Potential and feasible
improvement possibilities are thoroughly presented below.

5.2.1 Region selection: advanced clustering

Regarding the implementation of area selection in sec- To achieve a better
stability, another
trajectory clustering
approach is needed

tion 3.1.2—“Implementation”, the trajectory clustering al-
gorithm is considered again. For the sake of a simple im-
plementation and creating a first prototype in a shortest pe-
riod of time, the K-means clustering has been implemented.
However, the overall functionality might have been im-
proved by an another clustering approach, e.g., a mean
shift clustering.

5.2.2 Dragging velocity: further implementation
possibilities

In the second part of the thesis the implementation of the Other
implementations,
such as a trajectory
pyramid or a
trajectory clustering,
have to be compared
with the one we
presented in this
thesis

adaptive trajectories in DRAGON was treated. The user
study revealed, that the dragging velocity unlike pressure
sensitive dragging, has a big potential to evolve into a mul-
tipurpose selection technique for DMVN systems. Thus, it
makes sense to investigate this technique deeper. Along
with the trajectory smoothing via low-pass filtering other
approaches can be applied to distinguish between levels of
motion details, such as a trajectory pyramid, or trajectory
clustering. Both techniques are briefly described in section
3.2.2—“Implementation”.

In case of the trajectory pyramid, a sample video should
undergo an additional preprocessing stage. Before using
the video in DRAGON, all pixel trajectories should be pre-
pared in several copies. Each copy of the motion trajectory
is smoothed according to the level of the video pyramid.

70 5 Summary and future work

It is quite important to investigate, whether this technique
will result in a faster real-time navigation.

On the other hand, the trajectory clustering does not re-
quire any additional preprocessing steps. The entire com-
putation, however, takes place at runtime. It would be
a good idea to compare both described approaches with
the first implementation of the dragging velocity that was
made in the scope of this work.

5.2.3 Further user studies on object selection tech-
niques in DRAGON

The first experiment (refer to 4.1—“Area selection perfor-Further evaluations
are needed to
investigate the
implemented
selection techniques

mance analysis”) has already shown that the implemented
area selection provides more stability over the default point
selection in DRAGON. The experiment, however, aimed to
prove the robustness of an algorithm, not the users’ per-
ception. The question of, whether users’ would prefer this
technique over the point selection, or a clever combination
is needed, must be answered.

71

Appendix A

Area selection
performance analysis: an
additional Cocoa
application

An additional software tool has been developed within this
work (Figure A.1). It is supposed to assist the authors while
executing the area selection performance analysis.

Once all input parameters have been set, a new point (or
area) selection can be generated. The buttons ”Next Point”
(or ”Next Area”) are used for this purpose. The average
distance is calculated automatically after the button ”Avg
Distance” has been pushed.

The field ”Error” represents a current value of a variance
used within the random numbers generator. The new value
can be set after ”Update” has been pushed.

72 A Area selection performance analysis: an additional Cocoa application

Figure A.1: DRAGON: An additional software tool deve-
loped for the area selection analysis.

73

Appendix B

User experiment
questionnaire

After the user executed four navigation tasks, he was
asked to fill out the following questionnaire. While filling
out the questionnaire users were allowed to think aloud.
Their comments were analyzed and presented in para-
graph 4.2.5—“Results”.

74 B User experiment questionnaire

I hereby agree that my data can be evaluated anonymously for research purposes at
RWTH Aachen University. I have been informed that I may refuse to answer certain

questions. I am also allowed to quit the user study at any time and without any penalty.

(signature)

Personal informationPersonal informationPersonal information

Sex ☐ Male ☐Female

Age

Field of study

DRAGON Experience ☐ None ☐ Intermediate ☐ Expert ☐ None ☐ Intermediate ☐ Expert

Post session questionnaire

1. I do not think DRAGON benefits from adaptive trajectories.

! ☐ Yes! ! ☐ No

2. I found the new selection techniques (pressure and dragging velocity) unnecessarily
complex.

! ☐ Yes! ! ☐ No

3. I would imagine that most people would learn to use these new selection techniques
very quickly.

! ☐ Yes* ! ! ☐ No
 * If you have chosen “Yes”, please continue with 6.

4. I needed to train a lot before I could get going with the pressure based selection.

! ☐ Yes! ! ☐ No

5. I needed to train a lot before I could get going with the dragging velocity based
selection.

! ☐ Yes! ! ☐ No

6. I think the pressure based selection was easier to use than the dragging velocity.

! ☐ Yes! ! ☐ No

User test Adaptive Trajectories in DRAGON
Participant ID: __________

Date: ___.___.___

1 of 2

Figure B.1: Post-session questionnaire (page 1 of 2).

75

7. I think that
!

☐ pressure based selection has the potential to evolve into a global technique,
which might be used in every selection case.

☐ dragging velocity based selection has the potential to evolve into a global
technique, which might be used in every selection case.

☐ the choice of the appropriate technique must be made depending on the
case at hand:

☐ Default point selection
☐ Pressure
☐ Dragging velocity

☐ Default point selection
☐ Pressure
☐ Dragging velocity

☐ Default point selection
☐ Pressure
☐ Dragging velocity

☐ Default point selection
☐ Pressure
☐ Dragging velocity

User test Adaptive Trajectories in DRAGON
Participant ID: __________

Date: ___.___.___

2 of 2

Figure B.2: Post-session questionnaire (page 2 of 2).

77

Bibliography

J. Brooke. SUS: A quick and dirty usability scale. Taylor and
Francis, London, 1996.

Dan Buzan, Stan Sclaroff, and George Kollios. Extraction
and Clustering of Motion Trajectories in Video. In Science,
2004.

Chi-Cheng Cheng and Chung-Hsing Ho. Improved Visual
Tracking Using the Technique of Image Pyramid. In 2009
IEEE International Conference on Robotics and Biomimetics,
pages 659 – 664, Guilin, China, 2009.

Jean Converse and Stanley Presser. Survey Questions: Hand-
crafting the Standardized Questionnaire. Sage University
Paper series onQuantitative applications in the Social Sci-
ences, Beverly Hills, CA, 1986.

Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz,
Derek Nowrouzezahrai, Ravin Balakrishnan, and Karan
Singh. Video browsing by direct manipulation. Proceed-
ing of the twenty-sixth annual CHI conference on Human fac-
tors in computing systems - CHI ’08, pages 237 – 246, 2008.

Dan B Goldman, Brian Curless, David Salesin, and
Steven M. Seitz. Schematic storyboarding for video vi-
sualization and editing. ACM Transactions on Graphics, 25
(3):862, July 2006.

Dan B Goldman, Brian Curless, David Salesin, and
Steven M Seitz. Interactive Video Object Annotation.
ACM Computing Surveys, pages 1–7, 2007.

Berthold K.P. Horn and Brian G. Schunck. Determining op-
tical flow. Artificial Intelligence, 17(1-3):185–203, August
1981.

78 Bibliography

Takeo Igarashi and Ken Hinckley. Speed-dependent auto-
matic zooming for browsing large documents. Proceed-
ings of the 13th annual ACM symposium on User interface
software and technology - UIST ’00, pages 139–148, 2000.

Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers.
DRAGON: A Direct Manipulation Interface for Frame-
Accurate In-Scene Video Navigation. Direct, pages 247–
250, 2008.

Don Kimber, Tony Dunnigan, Andreas Girgensohn, Frank
Shipman, Thea Turner, and Tao Yang. Trailblazing: Video
Playback Control by Direct Object Manipulation. In Mul-
timedia and Expo, 2007 IEEE International Conference on,
pages 1015–1018. Ieee, July 2007.

Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and
William T Freeman. SIFT Flow: Dense Correspondence
across Different Scenes. Proceedings of the 10th European
Conference on Computer Vision: Part III, pages 28–42, 2008.

Donald A Norman. The Design of Everyday Things, vol-
ume 16. Basic Books, 2002.

William H Press, Saul A Teukolsky, William T Vetterling,
and Brian P Flannery. Numerical Recipes in C, volume 29.
Cambridge University Press, 1992.

Gonzalo Ramos and Ravin Balakrishnan. Fluid interac-
tion techniques for the control and annotation of digital
video. In Proceedings of the 16th annual ACM symposium on
User interface software and technology - UIST ’03, volume 5,
pages 105–114, New York, New York, USA, 2003. ACM
Press.

Ben Shneiderman. Direct Manipulation: A Step Beyond
Programming Languages. Human-Computer Interaction,
08:461–467, 1983.

Ben Shneiderman and Christopher Ahlberg. The Al-
phaslider: A Compact and Rapid Selector. Human Factors
in Computing Systems, pages 365–371, 1994.

Gabriel Taubin. Curve and surface smoothing without
shrinkage. IEEE International Conference on Computer Vi-
sion, page 852, 1995.

Bibliography 79

Siripong Treetasanatavorn, Jörg Heuer, Uwe Rauschen-
bach, Klaus Illgner, and Andre Kaup. Temporal video
segmentation using global motion estimation and dicrete
curve evolution. In 2004 IEEE International Conference on
Image Processing, pages 385–388, 2004.

Remi Trichet and Bernard Merialdo. Fast Video Object Se-
lection for Interactive Television. In 2006 IEEE Interna-
tional Conference on Multimedia and Expo, pages 989–992.
Ieee, 2006.

Wei-Qi Yan and Mohan S Kankanhalli. Detection and re-
moval of lighting & shaking artifacts in home videos.
In Proceedings of the tenth ACM international conference
on Multimedia - MULTIMEDIA ’02, page 107, New York,
New York, USA, 2002. ACM Press.

Alper Yilmaz, Omar Javed, and Mubarak Shah. Object
tracking. ACM Computing Surveys, 38(4):13–es, Decem-
ber 2006.

81

Index

adaptive trajectories, 29–30
Alphaslider, 4, 29
area selection, 9, 14, 23–25, 33–44, 46, 68

completion times, 63
convolution mask, 47

digital video navigation, 2
DimP (Direct manipulation Player), 19–20
direct manipulation video navigation, 4–5
DMVN, see direct manipulation video navigation
DMVN system, 5–8, 10, 13–15, 18, 24, 31–33, 49, 58, 67–68
DRAGable Object Navigation, 5, 19, 32
dragging velocity, 14, 28–29, 43–48
DRAGimation, 32
DRAGON, see DRAGable Object Navigation

evaluation, 53

feature flow, 19–20
FIR filter, 47–48
future work, 69

gaussian distribution, 34–35
graphical user interface, 6
ground truth, 54
GUI, see graphical user interface
gulf of execution, 13

HCI, see Human-Computer Interaction
Human-Computer Interaction, 11
hypothesis, 58

implicit selection techniques, 27–29

K-means clustering, 36–40

mapping, 14
mean trajectory, 42
mean value, 35

82 Index

object selection, 6–7
object tracking algorithm, 7
optical flow, 19

particle grouping, 24
perfect object tracking algorithm, 7–8
point selection, 18–22
pressure, 14, 27–28, 49–52

quality analysis, 64
questionnaire, 62

region selection, see area selection
ROI (region-of-interest), 21–22

Seven Stages of Action, 11
shrinkage problem, 47–48
sigma, see variance
storyboard, 25–26

time-slider, 2
TLSlider (Twist Lens Slider), 27
trailblazing, 26
trajectories clustering, 30, 46

user’s mental model, 13

variance, 35
video pyramid, 30, 46

Wacom tablet, 49–50

YouTube, 1

Typeset February 9, 2012

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	State of the art in video navigation
	Problem description
	Structure of the thesis

	Related work
	Object selection in photos
	Overview of existing selection techniques in direct manipulation video navigation (DMVN)
	Point
	Area
	Storyboard
	Selection using external visualizations (Trailblazing)
	Implicit selection techniques

	Adaptive trajectories

	Selection techniques for direct manipulation video navigation
	Region selection
	Selection behavior
	Implementation
	Selection visualization

	Dragging velocity
	Selection behavior
	Implementation
	Selection visualization

	Pressure
	Selection behavior
	Implementation
	Selection visualization

	Evaluation
	Area selection performance analysis
	Experimental setup
	Results

	Adaptive trajectories evaluation
	Hypothesis
	Participants
	Tasks and methodology
	Questionnaire
	Results

	Summary and future work
	Summary and contributions
	Future work
	Region selection: advanced clustering
	Dragging velocity: further implementation possibilities
	Further user studies on object selection techniques in DRAGON

	Area selection performance analysis: an additional Cocoa application
	User experiment questionnaire
	Bibliography
	Index

