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Abstract

Human-Computer-Interaction always tries to reduce user input to a very small amount of in-
formation (here touch to 2D point). This allows for easy input processing and easy systems
development because the state machine has fewer transitions. It can also help the user, because
a simpler UI can be easier to learn. However, we are missing out on a lot of expressiveness in
the input from the user, and we will show how we could capture this expressiveness and how we
could use it to give more precise input and more natural interfaces.
Touch is a means of communicating user intent, and we will show throughout this thesis that a
simplification to a 2D point is a significant bottleneck for the interaction between a human and
a computer, both on a micro and a macro level, and what we should do instead to grasp the
user’s intent and support more natural interactions.
As an introduction, we take a close look at what happens before a touch is performed and how
this touch is then typically interpreted. Our first project shows a technical solution to get very
precise touch information even on large tabletops, necessary for any deeper analysis of touches.
We then show how in touch sequences one touch is a↵ected by its predecessor, and that we can
exploit this systematic error to improve touch accuracy. We also show extensions of current
touch models to take into account body posture, relative location, etc. when interacting with
larger tabletops. User location also plays an important role if we extend our direct manipulation
surface to a 3D display. We show that the direct manipulation conflicts with the perspectively
correct 3D rendering and how we can solve this conflict to have error-free direct manipulation.
So far, we have only covered flat, horizontal surfaces, but touches can be performed on any
surface, and actually, people have more non-flat and/or mobile input devices at their disposal
than tabletops: keyboards, mice, smartphones, remote controls, etc. Similar to our tabletop
section, we start out with a technical solution to detect touches on arbitrary objects in 3D
space. This raw touch data, however, contains a lot of misguided information because contact
with the user’s palm or fingers that are only holding a mobile device create the same input as
the actual touch input. To reduce this problem, we propose an algorithm that infers the hand
posture from touch data on an arbitrary object, making it easier to understand the user’s intent.
As a closure for this thesis, we extend the existing touch-based GUI metaphor to support ad hoc
interactions with arbitrary objects. We show how we can repurpose everyday objects as input
controllers and remove the necessity of dedicated input devices to control our computers.



xviii Abstract



xix

Überblick

Beim Erstellen neuer Nutzerschnittstellen versucht das Forschungsfeld der Mensch-Computer-
Interaktion die Nutzereingabe auf einen wesentlichen Kern zu reduzieren— bei Toucheingaben
typischerweise ein 2D-Punkt. Dies erleichtert die Erkennung der Nutzereingabe und vereinfacht
auch die Entwicklung von interaktiven Systemen, da die Eingaben weniger unterschiedlich sein
können. Des Weiteren kann es den Nutzern helfen, das System besser zu verstehen, da es auf
wenige und simple Eingaben reagiert. Auch wenn dies gute Gründe für die bisherige Entwicklung
sind, sollten wir nicht die Gelegenheit verschenken und viele Aspekte der Ausdrucksvielfalt des
Menschen ignorieren. In dieser Arbeit zeigen wir wie man diese Ausdrucksvielfalt besser erkennen
kann und dass dies zu präziseren Eingaben und natürlicheren Schnittstellen fḧurt.
In der Einführung zeigen wir zunächst, was eigentlich eine Toucheingabe ist: Was passiert bevor
ein Mensch einen Touch ausführt, und wie wird die Eingabe von einem interaktiven System
erkannt und interpretiert. Danach zeigen wir im ersten Projekt, wie wir auf einem Tabletop
extrem präzise Toucheingaben ermöglichen können. Auf diesem System bauen einige der folgen-
den Kapitel auf: Im zweiten Kapitel zeigen wir, dass die vorherige Fingerposition einen Einfluss
auf die darauf folgende Toucheingabe hat. Wir verdeutlichen auch, dass man diese Kontextin-
formation nutzen kann, um Fehler bei Toucheingaben zu vermeiden. Zuletzt zeigen wir in dem
Kapitel, dass sogar die gesamte Körperhaltung Einfluss auf das Touchverhalten hat. Im dritten
Kapitel erweitern wir unser System um einen weiteren Eingabekanal—die Position des Kopf des
Nutzers. Das ermöglicht uns, unser 2D-Display zu einem 3D-Display zu erweitern. Wir zeigen
dass die Metapher der direkten Manipulation, die typisch für Touchsysteme ist, im Konflikt mit
einer perspektivisch korrekten 3D-Darstellung steht. Wir stellen Lösungsvorschläge vor, die zu
einer fehlerfreien Interaktion führen.
Nachdem wir uns mit der Erweiterung des Touches um kontextuelle Informationen (z.B.
Vorgängerposition) und weitere Eingabakanäle (z.B. die Kopfposition) auf planaren Oberflächen
beschäftigt haben, werden wir in den folgenden drei Kapiteln dieselbe Fragestellungen schließlich
auf beliebig geformten Oberflächen betrachten. Zunächst stellen wir auch hier eine technische
Möglichkeit vor, die es erlaubt, beliebige Objekte im Raum zu erkennen und Touches darauf
festzustellen. Diese Touchdaten sind jedoch nur der Anfang, da z.B. das Festhalten des Objek-
tes selbst schon als Toucheingabe interpretiert würde. Wir stellen vor, wie wir aus den Touch-
daten ermitteln können, wie das Objekt gehalten wurde. Diese Information ermöglicht uns, die
Berührungen zu filtern, die nur Teil der Haltegeste sind. Im letzten Kapitel erweitern wir den
Touch um die semantischen Informationen des Objektes. Wir erscha↵en damit eine neue Inter-
aktionsmetapher für ad-hoc Zweckentfremdung von Alltagsgegenständen. Wir zeigen, wie diese
Gegenstände als Eingabekontroller genutzt werden können und somit dedizierte Eingabegeräte
überflüssig machen.
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The following conventions will be used throughout this thesis:

Technical terms or jargon that appear for the first time will be set in italics.

The plural “we” will be used throughout this thesis instead of the singular
“I”, even when referring to work that was primarily or solely done by the
author.

Some of the material in this thesis has also been previously published in
conferences or journals, and this will be noted in the text.

This thesis is written in American English.
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Chapter 1

Introduction

Over the last years, touch has become the dominant input modality in end- Touches are

considered to be

just 2D points

leading to

erroneous touch

detection,

imprecise touch

location, and

missing out

opportunities for

other interaction

style.

user devices such as tablets, smartphones, in-car entertainment, etc. due
to the benefits of direct manipulation and physical metaphors that ease
learning how to use such a device. Research extended the touch-capable
device landscape to vertical and horizontal surfaces and continues to ex-
plore other form factors. What all those systems have in common is that in
their first iterations they interpreted a touch as a simple 2D point similar
to a mouse cursor due to the ease of development and a lack of better un-
derstanding of what a touch means. This simplification of the user’s intent
to a 2D point significantly narrows the communication channel between
Human and Computer. It causes erroneous touch detection and impre-
cise touch locations. To deal with those problems, current mobile phones
have a deeper understanding of how people interact with them and can
thus provide more precise input. Although more precise input (on mobile
phones) is a significant step forward, it is only an improvement on a rather
low communication level, leaving out improvements that are based on more
abstract levels, such as user intent and application context.

Thus, the overall goal of the thesis is to improve the communication between The thesis

improves and

extends the use of

touches.

humans and computers in the context of touch interfaces. We will show
how the computer can get a better understanding of the user’s input to
provide more reliable input processing and enable the aforementioned new
interaction techniques. We will also show new interaction techniques and
metaphors that allow for a more natural input that requires less knowledge
on the user’s side but more on the side of the system.

To be more specific, we will show how we can not only extend the improve- Create new

interaction

techniques based

on object

a↵ordances.

ments from the small form factors to larger surfaces, but also how we can
capture the user’s intent based not only on the touch position but on its
body posture and the task and context. This deeper understanding then
allows us to leave behind dedicated input devices and, instead, repurpose
everyday objects to convey our intentions to a computer. This ad hoc in-
teraction opens up a new design space, and we will show first results on
how to apply this new interaction metaphor to create more flexible user
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interfaces. This metaphor leaves behind the traditional cursor-based desk-
top interactions and replaces them with interaction artifacts that react to
touches as expected from the existing object a↵ordances.

We will now state what the current understanding of a touch is and raise
our overarching question for the thesis.

1.1 What is a Touch?

We first take a look at what happens before a touch is performed and see
how the touch is typically captured in current systems.

1.1.1 Mental Models

In general, touch is a means of communicating intent to a (computer) in-
terface. But how does one know where to touch, what to touch, or whether
to touch at all? Don Norman presented in his seminal work The Psychol-
ogy of Everyday Things (Norman [1988]) a way to understand how humans
shape their actions based on their targeted outcome. He calls his model
The Seven Stages of Action (c.f. Figure 1.1).

At first, the person has a specific goal in mind, e.g., he wants to know theSeven Stages of

Action explain

how users interact

with the world.

stock price for his IBM shares. He then needs to form an intention for an
action that will help him reach his goal. In our example, he could look
up the stock price on an app on his smartphone. This intention is then
translated to sequence of actions : pick up the phone, open the app, and
take a look at the price. The person then executes this action sequence.
The world, here his smartphone, responds to the input by displaying the
appropriate data. The user now first needs to perceive this change in the
world by looking at it. He then interprets what he sees, in our case the
IBM stock price. He then evaluates and compares the outcome with his
goal: knowing the IBM stock price. In our example, the user was able to
successfully achieve his goal, but there were di↵erent gaps to cross through-
out the seven stages. As this thesis strongly focusses on input, we will now
take a closer look at how the user ended up with the action sequence he
executed.

Starting at the top, the user needs to have a general understanding of howUsers can have

problems finding

the correct action

sequence.

he can change the world to end up in his desired state. If he does not know
that his smartphone can tell him the stock price, he would need to find
another solution by asking a friend, calling his favorite broker, or going to
Wall Street. But if the user is stuck at this stage, we as a designer of a
user interface cannot do much more than creating an all-knowing artificial
intelligence that can point him into the right direction—using google with
“How do you do X?” comes quite close in this regard.
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Goal

Intention

Action Sequence

Execution Perception

Interpretation

Evaluation

Interactive System

Figure 1.1: The Seven Stages of Action. Left column: The user wants
to achieve his goal and has to prepare his actions. Right column: The
interactive system responds, and the user now has to decide whether he
achieved his goal.

However, if the user knows that a given system should be able to support A↵ordances can

ease this.him in achieving his goals, the developer of the system can design it in such
a way that the system’s visual and tactile appearance suggests the correct
usage. Norman calls this a↵ordances of a system:”The term a↵ordance
refers to the perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing could possibly be
used. [...] A↵ordances provide strong clues to the operations of things.
Plates are for pushing. Knobs are for turning. Slots are for inserting
things into. Balls are for throwing or bouncing. When a↵ordances are
taken advantage of, the user knows what to do just by looking: no picture,
label, or instruction needed.” (Norman [1988]).

Although Norman introduced a↵ordances as properties of physical “things”,
they are easily applied to digital components of a graphical user inter-
face, such as buttons, sliders, etc., that typically rely heavily on physical
metaphors. We will revisit the concept of a↵ordances in Chapter 7, where
we take a look at how we can repurpose everyday objects as input con-
trollers. This idea is based on the fact that people already know how to use
an everyday object, so there is no need to explain them the user interface;
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the challenge is to find a meaningful interpretation of the user’s input.

Another term that needs to be mentioned is direct manipulation, which wasDirect

manipulation via

touch instead of

indirect

manipulation via

pointing device.

coined by Shneiderman [1983]. He introduced it for graphical user interface
to di↵erentiate between editors that allow you to change text directly at
the cursor and editors that you need to tell “delete third word in line 5”.
Today it can be applied to di↵erentiate between indirect input methods,
such as the mouse (where you move the mouse on your desk and a cursor
on the screen gets moved), and a direct method such as panning a website
on a smartphone where you are directly interacting with the digital content
based on some physical metaphor. Other examples are rotating objects with
two fingers and zooming in and out. Again, interaction methods based on
these kind of physical metaphors can help to convey the behavior of the user
interface to the user, making it easier for him to come up with successful
action sequences based on these intentions.

After action sequences are found, their execution is performed in Norman’s
Model. For our later analysis, however, we need to take a closer look at
how an action sequence such as “grab phone and touch the app button”
is transformed into a series of muscle movements which in turn are then
executed. There exists a vast body of psychology research that gives a lot
of insight—the interested reader might want to start with the book from
Heuer and Keele [1996]— but here we want to highlight two important
findings. Fitts [1954] found out that there is a rather strict connection
between time to acquire, i.e, touch, a target and its distance from our
current hand position and the width of target w.r.t. the distance vector.
His model can be used to predict targeting times and thus can supportFitts’ Law predicts

targeting times. interface design. For example, the corners of a screen have an “infinite”
width and are thus the fastest targets to point at. This is the reason why
operating systems use them for frequently used commands: start button in
Windows, close window button, the “magic corners” from Mac OS X, etc.

There is also research that not only tells us about how fast we are but howLarger and more

complex body

parts target less

accurate than

smaller ones.

accurate we can perform touches. For example, Hammerton and Tickner
[1966] showed that the larger the body part that we use to perform input,
the worse the accuracy: Thumb only is more accurate than using only
the wrist joint which is more accurate than using the elbow joint. This
can directly be applied to our current touch interfaces (see Figure 1.2):
Mobile phones are primarily used with one thumb or one finger, tablets
are used primarily with one finger that is controlled via finger, wrist and
small elbow joint movements, and our biggest form factor—tabletops— can
sometimes require movement of the whole body when touching a far away
spot. Thus we can expect that larger form factors result in less accurate
input, and Chapter 3 will tell us how accurate people actually do perform
on a tabletop.

Interestingly, our body is “aware”of these inaccuracies and tries to optimizePeople use the

most convenient

way to perform

successive actions.

our movement. Rosenbaum et al. [1990] showed that people tend to plan
actions ahead and use the most convenient way from a motoric and muscular
perspective to perform successive actions. We will revisit this concept in
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Figure 1.2: Di↵erent form factors of touch-capable devices. The larger
the device, the more body parts are involved in the interaction and the less
precise is the interaction with the device.

the second part of Chapter 3, where we show how one touch depends on its
predecessor and successor.

After this detailed look at the human side of how a touch is performed, we
now describe how current systems detect a touch.

1.1.2 Touch Detection

There exists a variety of ways to detect touch input, the two most prominent Touch detection is

mostly done with

vision-based or

capacitive

systems.

being capacitive and vision-based. Capacitive detection uses a 2D grid of
thin wires that act as antennas and sense the change in capacitance on and
above the grid. If a finger (or another object with a high capacitance) comes
close to the grid, a touch is detected. In vision-based systems, the surface is
watched by a camera, e.g., in an interactive tabletop the camera is usually
beneath the surface and looking to the top. Vision-based systems typically
illuminate the scene with infrared light as it is strongly reflected by the
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hands and less so from the background and makes it easier to distinguish
the hand from the background.

We will go into the technical details in the next chapter, but what capacitiveBoth need to

analyze a 2D

image.

and vision-based methods have in common is that they both return a 2D
image that contains contact information for each pixel. In the case of the
vision-based approach, it is an intensity value of the infrared signal for each
pixel (Figure 1.3), in the case of capacitive tracking, it is the capacitance
at each grid point.

Figure 1.3: A camera image from a vision-based touch detection system.
The finger tips are brightest because they are closest to the light source
and the camera.

We now can use standard computer vision methods to detect the touchesStandard

computer vision

methods give us

touch ellipses.

(c.f. Figure 1.4): subtract the background, threshold the intensity values
to a binary image to remove noise, retrieve connected components, filter
out components based on criteria such as size or shape, and compute the
principal axes (e.g. by using Principal Component Analysis, Bishop [2007]).
This way we end up with a contact ellipses for each touch. The next steps
are highly hardware and software dependent, not only regarding how it
is processed but also which part, i.e., onboard hardware controller, input
driver, a multi-touch frame work, or the application itself, perform them.
Typical steps include the detection of multi-touch gestures and tracking
one touch point from frame to frame.

Table 1.1 shows an overview of what properties we could use to captureDi↵erent

properties of a

touch can be

used. Not only

the center point.

the user’s intent. Interestingly, on an application level, the touch is often
only considered as a 2D point and, other properties such as orientation and
contact area size are ignored. Given robust ellipse detection, the orientation
can be used to, e.g., select an entry from a pie menu (c.f. Figure 1.5), as was
done first by Wang and Ren [2009]. Also, if we were taking into account
the orientation, we could perform object rotation with one finger. Instead,
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Figure 1.4: A typical image processing pipeline. We store the background image without any
hands (1) during setup. We get a new frame from the camera (2), delete the background (3),
retrieve connected components (4), and fit ellipses (5).

Input Aspect Finger Property

Position Coordinate Value (x, y)
Motion Velocity

Acceleration
Contact Size of Contact Area

Shape of Contact Area
Orientation
Pressure

Event Tap
Flick

Table 1.1: Di↵erent properties of a touch. Taken from Wang and Ren
[2009].

current systems ask us to use two fingers: one for the rotation anchor, the
other for the rotation angle. This is one simple example where we can see
that current systems are not fully exploiting the expressiveness that a touch
provides.

There are good reasons why touch system have evolved this way, i.e., use Good reasons

exist for this

reduction.

only the (x, y) of the touch as a concept for the user, indicated by the
cursor. Current (desktop) applications still need to be used with a standard
2-button mouse that does not have a rotation input. (i) It is easy to build
hardware to reliably detect the (x, y) input. (ii) It is easy to interpret this
input by the software. (iii) This also means that the applications is built
upon a simpler state machine because the transitions are limited more.
(iv) A simpler state machine can make it easier for the user to learn how to
operate the applications. No matter how comprehensible this development Better reasons

exist for an

extension

over the last decade is, it should not hinder us to explore more fitting uses
of touch input that do not restrict themselves to the 2D point and take into
account more contextual and additional information apart from the touch
itself. This will be the focus of this thesis and will guide us from a very
technologically-minded interaction model to a more natural interaction.

1.1.3 Summary

Concluding this fundamentals section, we have introduced the seven stages
of action that are one model to understand how a person changes the world
around him. We highlighted a↵ordances which are system properties that
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Figure 1.5: Finger orientation selects entries from a pie menu. Taken
from Wang and Ren [2009].

suggest a specific system usage to the user to guide him in the right di-
rection. We also presented some work from psychology that describe the
planning of the actual movement and showed some examples for single
touch interactions with di↵erent form factors. We also presented a typical
touch detection pipeline and raised the overarching question of our thesis:
“What is a touch?”.

1.2 Contributions

The main contributions of this thesis are as follow:

• Tracking hardware for very precise touch detection on large tabletops
as well as a system for tracking arbitrary objects in 3D space without
markers while detecting touches on them.

• A method to infer the hand posture from touch data on arbitrary
objects.

• A deeper understanding of how people interact with a tabletop and
how we can exploit this behavior to improve touch accuracy.

• An interaction technique that exploits the deeper understanding of
touch on a 3D enhanced tabletop.
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• A new interaction metaphor based on repurposing everyday objects
as input controllers with a series of evaluations.

By studying this thesis, the reader will not only gain a considerable amount
of knowledge on how humans perform touch and how it is currently pro-
cessed and used in various contexts, but also find inspiration for future
interaction techniques and applications, opening up interesting research
venues and allowing him to better understand the user’s (touch) input.

1.3 Structure

The thesis is structured in three di↵erent chapter categories: “detect, im-
prove, and extend”. In “detect” chapters, we propose novel tracking and
touch detection methods to capture the raw touch data. In “improve”
chapters, we take into account contextual data, such as body posture or the
location of the previous touch, to get a better understanding of the users
input gesture and increase touch accuracy. In the “extend” chapters, we
add semantic information, such as the object the user is interacting with,
to create more sophisticated applications based on touch interfaces.

We will first focus on touches on tabletops and afterwards extend our work
to arbitrary objects.

Chapter 2 shows a technical solution to get very precise touch information
even on large tabletops, necessary for any deeper analysis of touches.

Chapter 3 takes a closer look at touch sequences on tabletops and how
one touch is a↵ected by its predecessor and how we can exploit this syste-
matic error to improve touch accuracy. Here, we also extend current touch
prediction models to take into account the full body posture and show how
large tabletops di↵er from smaller surfaces.

Chapter 4 gives insight into how the direct manipulation metaphor needs
to be adapted if we not only consider the user’s touch as input but also take
part of the user’s body, i.e., its head position, into account when creating
a 3D display.

The following chapters then extend our focus from interactive tabletops to
arbitrary interactive objects.

Chapter 5 shows a technical solution to detect touches on arbitrary objects
in 3D space.

Chapter 6 shows how we can filter the raw touch data coming from an
arbitrary object by inferring the hand posture.

Chapter 7 as the final chapter gives an outlook into the future and presents
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a metaphor to interact with an arbitrary object in an ad hoc fashion. It
shows findings on what objects are actually apparent in the user surround-
ing, how the objects’ shapes a↵ord the (touch) interaction, and gives insight
into the di↵erent ways to design an application in this context.

Chapter 8 summarizes the work presented and provides an outlook to
future extensions of our ideas.

Having laid out this basic knowledge, the next chapter will show a way to
combine high-precision touch detection with large tabletops, necessary for
deeper analysis and understanding of how people perform touches.
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Chapter 2

Detecting Touch on
Tabletops

In the previous chapter, we have laid out the basics of detecting a touch.
However, the typical solutions for detecting touch on larger interactive
tabletops do not provide us with a high input resolution and have prob-
lems robustly detecting the orientation of the finger. We will now present
our approach in detail. This work has been carried out with the Diploma
student Norbert Dumont. More information can be found in his thesis,
Dumont [2012].

2.1 Related Work

There are several options to create a multi-touch capable display: (i) ca- Opted for

vision-based touch

detection.

pacitive sensing, where the proximity of fingers change the capacity of thin
metal threads made from, e.g., copper, (ii) resistive, where pressure con-
nects two conductive layers, (iii) sound-based, where fingers block sound
waves, and (iv) vision-based, where one or more (infrared) images are taken
from the side of or behind the screen. As (i) and (ii) require industrial pro-
duction capabilities and are not available in large table sizes, and (iii) is
less flexible for multi-touch input, we decided to employ a vision-based
approach. Schöning et al. [2010] presented a detailed overview of all the
detection techniques.

In vision-based systems, the main challenge is to di↵erentiate the fingertips Use Di↵use

Illumination to

di↵erentiate

background from

foreground.

from the background. To make this easier, infrared light is used as (am-
bient) lighting which increases the contrast between both because infrared
light is strongly reflected from the hands and less so from the background.
This technique was named Di↵use Illumination (DI) by Matsushita and
Rekimoto [1997].

Instead of flooding the scene, we can also flood the transparent surface of FTIR gives higher

contrast images,

but do not

provide hover.
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Figure 2.1: Touch detection setups. Left: Frustrated Total Internal Reflection, Right: Di↵use
Ilumination. Taken from Weiss [2012].

the tabletop with infrared light and employ the e↵ect of Frustrated Total
Internal Reflection (FTIR) as introduced by Han [2005]. In FTIR, an
acrylic plate is flooded with infrared light from the side. The light is totally
reflected inside the plate (Figure 2.1). As soon as a finger touches the
surface the light is no longer totally reflected at the acrylic-air passage but
frustrated by the acrylic-skin combination. This way, the infrared light is
shining downwards, where an infrared camera would see a bright spot on
an otherwise dark image. Both techniques are shown in Figure 2.1, and the
resulting raw camera images are shown in Figure 2.2. The typical contact
area of a finger can be approximated with an ellipse, and its main axis is
the (undirected) finger orientation.

Figure 2.2: Camera images. Left: With FTIR only the finger tips touch-
ing the surface are visible. Right: With DI we can also see the hovering
rest of the hand but have a lower contrast on the finger tips themselves.

Before showing our approach to get the directed orientation, we want toAnalyze multiple

height levels of

the touch to get

the finger posture.

mention other solutions to a more detailed finger tracking. FTIR provides
contact information on one height level, a natural extension thus is to take
a look at di↵erent height levels. Z-Touch by Takeoka et al. [2010] uses
multiple lasers on di↵erent height levels that detect intersecting fingers,
similar to a light curtain in an elevator( c.f. Figure 2.3). From this data,
it can not only infer the orientation but even the posture of the touch and
take it into account when designing interaction techniques.
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Figure 2.3: Setup for the Z-Touch system. Multiple lasers scan for touch
on di↵erent height levels and can infer the finger posture. Taken from
Takeoka et al. [2010]

Another vision-based option is to use depth-sensing to get more than just Depth-cameras

can detect

touches but are

not yet available

with high

resolutions.

the center point of a touch as, e.g., was done by Wilson [2010] . An over-
head 3D camera, e.g., MS Kinect provides us with depth information for
each pixel (c.f. Figure 2.4), and simple thresholding based on the touch
surface and the thickness of the finger will return touch information. Other
approaches use more sophisticated models, such as Wang et al. [2011], and
are able to detect position, orientation, and gestures of the whole hand
in real-time. Current depth-cameras, however, only provide low resolution
images and thus does not give high precision.

2.2 Implementation

For our research goal of understanding touch on interactive tabletops, we Our method uses

di↵use

illumination and

steerable high-res

cameras.

need a high precision touch detection as well as a robust detection of the
finger orientation. None of the aforementioned support both at the same
time, so we came up with our own method. It is based on a) Di↵use
Illumination tracking to get the finger orientation and b) uses steerable
high-res cameras with a narrow focus that we can point at the area of
the touchpoint. We will explain both parts in detail after introducing our
general tabletop setup.

A wireframe rendering can be seen in Figure 2.5. The table is constructed
from aluminum frames and uses three FullHD DLP projectors to provide
a resolution of 3240⇥ 1920 px on our 140x80 cm display, yielding a 60 dpi
display, which is su�cient for reading text in a font of at least 10 pt—
common desktop displays have 80–100 dpi.

We use foil mirrors that allow an a↵ordable, yet very planar reflection of the
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Figure 2.4: (a) Setup for a depth-camera, (b) Raw data from the camera,
(c) Touch image after depth thresholding, (d) Final image after low pass
filter. Taken from Wilson [2010].

Figure 2.5: Wireframe sketch of our multi-touch enabled desk. The three
projectors are aimed at the mirrors in the bottom. The two cameras (not
shown here) are placed between the mirrors and look upwards.

image upwards onto the surface of the table. We decided for this mirror
setup to decrease the height of the table because the projectors have a
minimum projection distance.
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Diffusor

Silicone

Figure 2.6: Closeup of the acrylic di↵usor covering the tabletop. The
small texture of silicone emulates touches of the user.

The surface is a 1.2 cm thick sheet of Plexi Glass. This acrylic sheet is
framed by aluminum panels containing high powered infrared LED strips
providing the lighting necessary for FTIR tracking. The frames also serve
as a passive cooler for the 5.7 ampere that flow through the LEDs.

Directly touching the acrylic would refract the light and scatter it down- The silicon

emulates a touch

and creates the

FTIR e↵ect.

wards to the cameras. But we need a di↵usor to project on. This scratch
resistant di↵usor is placed on the acrylic but prevents the FTIR e↵ect to
happen because the skin is no longer touching the acrylic. Therefore, we
roll a 1 mm layer of textured silicone onto the downside of the di↵usor
(Figure 2.6).

This way, pushing the di↵usor will make the silicon ”push” the acrylic,
thus resulting in the FTIR e↵ect because silicone and human skin share
similar refraction properties. The silicone needs to be textured in order to
not stick to the acrylic where it would then permanently create the FTIR
e↵ect, making it impossible to detect actual touches in that area. The
texture is a byproduct of rolling the silicon and not, e.g., casting it on to
the di↵usor.

We also added 24 plates with infrared LED arrays to the backside of the 24 LED arrays are

placed on the

backside and

beneath of the

table for di↵use

illumination.

bottom of the table (Figure 2.7). These LEDs provide the lighting for the
DI system. However, a careful placing of the LEDs and the cameras is
necessary in order not to have specular reflections from the acrylic sheet
visible in the camera image. That would make it impossible to see touches
in this area. That is why we chose to put the LEDs to the backside, close
to the cameras, so their reflections show up only close to the backside of
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Figure 2.7: Left: Strip of infrared LEDs that emit directly into the side of the acrylic. Right
Array of infrared LEDs that provide a di↵use illumination from beneath the table.

the table (c.f. Figure 2.8).

Figure 2.8: The view from the camera beneath our multi-touch tables.
This image is background subtracted, thresholded, and then processed using
a connected component analysis. This gives us the five bright spots—the
fingers touching the surface.

Thus, our table supports DI and FTIR tracking and we can switch between
according to the needs of the study, i.e., higher contrast finger tracking or
information about the hovering hand.

This multi-touch table provides a surface large enough for our study andHigher input

resolution

necessary for our

studies.

is a typical setup that can be found in other research labs over the world.
However, the two cameras only give an input resolution of 23 dpi. This
is su�cient for standard touch tracking, but we doubted it would net us
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significant study result (as it was three times less than the output resolution
of 60 dpi, i.e., every touch point is hitting three display pixels).

In the upcoming studies in Chapter 3, we are only interested in a small Narrow lenses and

servomotors are

used to aim the

camera at small

parts of the table.

region of the display at a time, i.e., the area around the currently displayed
target that the user needed to touch. We can exploit that by making the
camera only look at this location, which would then give us its full resolution
at the rather small area. We used narrower lenses and put the camera on
a self-built mount that can rotate the camera along two axes (Figure 2.9).
The system uses stepping motors and hall sensors for accurate tilting. The
motors are controlled via arduino micro controllers. More implementation
details can be found in the master thesis of Dumont [2012].

Figure 2.9: A camera on a custom mount. It allows for rotation along
two axes and can thus be pointed at arbitrary regions of the table.

Using two of these cameras with automated aiming, we were able to cover Multiple cameras

are supported by

the MultiCamera-

Tracking

framework.

the whole table but have an input resolution of 160 dpi for each of the
targets. Pointing the camera at a new touch area takes only a fraction of
a second. The merging of camera images, the system calibration, as well
as perspective correct unwarping of the images is performed by the chair’s
own MultiCameraTracking framework. More details about it can be found
in Voelker [2010].

We employed Di↵use Illumination (DI) to detect the finger orientation with The hovering

hand tells us

where the finger is

pointing.

minimal e↵ort: DI gives us the shadow of the full finger hovering the table,
and we can use this information to detect the direction (c.f. Figure 2.10)
by comparing the average brightness in front of the ellipse and behind it.



18 2 Detecting Touch on Tabletops

Figure 2.10: Spot as seen by the camera. Main and minor axis can be
seen, and the area in front of the finger is darker than the one behind it,
thus we can detect the direction.

2.3 Limitations & Future Work

Our current system is a great setup for the studies ahead, yet there mightCurrently, we

need to know the

general touch

region beforehand.

be usage scenarios where the system falls short. Pointing the camera at
a touch area takes up less than half a second, but this makes our system
not usable for a real application scenario where user input is not restricted
or at least known ahead. One solution would be to use a lot of cameras
that are fixed to one area, for our setup this would mean 112 cameras
instead of two to achieve the same resolution. This could be compensated
by higher resolution cameras, but both options would be expensive and
require significant processing power to look for touches in all the spots at
the same time.

Another option that we would like to pursue in a future work is to haveCombine high-

and low-res

cameras to track

the whole screen

while being able

to focus on the

touches after a

short time.

a small amount of standard resolution cameras that are fixed and can to-
gether see the whole table. Additionally, we would have another set of
high resolution cameras that can be pointed at a fraction of the screen. If
the standard resolution cameras would detect a touch, the high-res camera
dedicated for this part of the screen would be pointed at the touch area
and would return more accurate touch data over time.
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2.4 Chapter Summary

In this chapter, we presented an overview of current touch detection tech-
niques and showed our solution that provides us with high precision touch
input on a large input surface while preserving orientation information. In
the next chapter, we will use this system to take a closer look at how people
perform touches in general and as part of touch sequences. We will use this
contextual information to improve the touch accuracy of the system.
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Chapter 3

Improving Touch on
Tabletops

In the last chapter, we presented our study platform that we will now use Find out how

contextual

information of a

touch relates to

targeting and use

it to improve

touch accuracy.

to explore how people interact with touch devices. Wang and Ren [2009]
found out that people can aim for targets as small as 11mm diameter in
a lab setting. If we take a closer look at finger orientation (pitch, roll)
and individual aiming behavior, we can get as low as 5mm diameter on
small devices (Holz and Baudisch [2010]). But these studies focussed on
small devices where only few parameters, such as finger orientation, change
in typical use-cases. On a large-scale tabletop, however, other variables
could be important, such as body posture and touch gesture. We therefore
wanted to see how the location of the target (and thus implicitly the body
posture) influences touch accuracy. While observing users, we also found
out that the targeting behavior is di↵erent for single touches and touches
that are part of a touch sequence. We will also show our results on how
to exploit this in order to increase the overall input accuracy in the second
part of this chapter and thus improve touch on tabletops.

3.1 E↵ect of Body Posture on Touch Position

We will first reflect on existing research, then present our study hardware
and design, and closeup with our results that show how the body posture
induces targeting errors.

3.1.1 Related Work

A lot of work has been done to understand and predict human targeting Targeting error

and times have

been extensively

studied in the

psychologies.

performance. Performance can be measured in error rate, accuracy, or
speed, but these are all related as pointed out, e.g., by Zhai et al. [2004]:
More error means less accurate input, and vice versa. Also, if a person tries
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to aim very accurately, he needs to take more time on the task, so there
is a trade-o↵ between the two. This relation between the di�culty of the
targeting task and its completion time was made prominent by Fitts [1954]
who created a prediction model for the targeting time given distance to
the target and its size. His study design was limited to a 1D-tapping task,
and he used real pen and paper. Numerous papers followed that analyzed
it in di↵erent contexts such as by MacKenzie and Buxton [1992] for a 2D
tapping task, the work from Murata and Iwase [2001] on a 3D tapping task,
and also for di↵erent hardware, e.g., the PC mouse by Murata [1996].

Interestingly, after about 60 years this is is still a very active research topic.Insight about

e↵ects of the

body posture on

targeting are

missing.

We think this is due to the fact that the results help us to get a better
understanding of human behavior, which in turn can be used to inform our
interaction design. Another reason is that it is quite a complex topic as
numerous factors are likely to have an impact on the targeting behavior
and thus speed and accuracy. Examples include orientation and position of
various body parts and how they change over the course of the interaction.

3.1.2 Study Setup

Our research goal challenges us to find a good mapping between touch
inaccuracies and input context, which we considered to be the upper body
posture and relative location of a person to the touch target.

The general study design was to display randomly ordered targets on theUsers touch

random targets on

a display.

display, let the user touch them, and look for systematic touch behavior
w.r.t. the targets. More specifically we wanted to find out whether di↵erent
targets have an e↵ect on the direction and margin of touch o↵set.

Additionally, we wanted to find out how people would turn their limbs to
touch the targets. We were especially interested in the finger pitch because
previous research indicates that it can be used for correcting touch o↵set
(Holz and Baudisch [2010]).

To infer the body posture, we made use of the VICON tracking system (Fig-Body posture was

captured with

marker-based

tracking.

ure 3.1). We placed eight cameras around the table so that it could track
a large volume and users were not restricted in their movement. Marker
pairs were placed on several joints: both shoulders, the waist, the elbow,
the wrist, the back of the hand, the knuckle of the index finger, and the tip
of the index finger itself.

3.1.3 Task & Procedure

The task was rather simple: We showed touch targets in a random order onTouch targets

were located on a

uniform grid.

a uniformly spaced grid (5x9) one target at a time, and participants had to
touch this target. After the touch, they had to move their hand to a resting
position. To make sure that the hand was moved back, the investigator
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Figure 3.1: This is the full construction including the table and the VI-
CON setup.

waited until the participant had done so and only then activated the next
touch target. This was done for every of the 45 touch targets, and repeated
a total of 10 times, taking about 20 minutes per participant. We finished
with a survey regarding their prior touch experience using 5-point Likert
scales.

After each user, we recalibrated the system to compensate any unexpected
flaw in the camera mount. In addition to the touch o↵set, we also stored
the body posture of the user as 3D coordinates of the marker positions.

3.1.4 Analysis

Based on the VICON marker positions, we calculated the curvatures of the Measured

position,

orientation, and

curvature of the

right arm.

following joints as the inner angle of a triangle spanned by the two adjacent
VICON markers and the joint itself: shoulder joint (waist, shoulder, elbow),
elbow joint (shoulder, elbow, wrist), wrist joint (elbow, wrist, knuckle), and
knuckle joint (wrist, knuckle, finger tip), and lastly the pitch angle of the
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Figure 3.2: Top view on the tabletop. The squares represent the means of the o↵set in x (left)
and y (right) direction for each target.

finger (knuckle, index finger, projection of knuckle onto the surface), i.e.,
how steep the finger is touching the surface.

3.1.5 Participants & Results

We performed our study with 10 participants (1 female), age 21–32 (M =
26.6, SD = 3.4), height 159–185 cm (M = 178, SD = 7.9). They were all
students from computer science or related fields and had all experienced
touch on smartphones or other handhelds. Six of them also had prior
experience with table-sized touch displays.

We had concerns how the participant’s height would impact the body pos-Height of the

participants was

not an issue.

ture which might lead to di↵erent touch angles and thus might impact touch
o↵sets. However, arm length scales with height and seemed to counterbal-
ance this e↵ect: we could not see any e↵ect of height in the data.

To see the impact of di↵erent targets, we ran a repeated measures ANOVAThe target has a

significant impact

on the o↵set.

and saw a significant main e↵ect of the choice of the target on x-o↵set
(F(1,44) = 12.36, p < 0.0001) and on y-o↵set (F(1,44) = 9.61, p < 0.0001).
Figure 3.2 provides a visualization of the o↵set means. The first suggests
that in the (top) left area people are slightly drifting to the middle (red),
i.e, they are undershooting. In the second (y-o↵set), we can see that in the
second and fourth row of targets people often undershoot.

For a target-to-target comparison, we used Tukey’s HSD. We were able toTop left and top

middle targets are

touched

significantly

di↵erent than the

bottom targets.

identify 14 power levels for the x-o↵set and 12 for the y-o↵set (Figure 3.3).
Targets on the same power level have a similar mean, targets who are not
on the same level are significantly di↵erent. Figures 3.4 and 3.5 validate
the impressions from the previous figures: top left and top middle targets
being touched significantly di↵erently than the bottom targets (regarding
x) and middle row being touched di↵erently than the others (regarding y).
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Figure 3.3: These are the power levels of the o↵sets in x and y direction.
Levels not connected by the same letter are significantly di↵erent.

Joint Curvature

To better understand why people are over- and under-shooting, we took a
look at the recorded body postures.

We can see that people aimed at far away targets as expected: a small
elbow curvature and a rather closed shoulder joint (Figure 3.6). When
we took a look at closer targets, however, we were surprised: people were Some targets were

touched in

surprising

postures.

opening their shoulder joint wide, and bent their elbow in order to reach
spots directly in front of them. This led to quite unnatural wrist curvatures,
especially when touching target 29 at (1900, 550) (Figure 3.7). As expected,
this is resembled in its rather large o↵set (Figure 3.3).

The knuckle joint was more dependent on the participant (R2 = Knuckle joint

curvature depends

on the user rather

than the target.
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Figure 3.4: These are the power levels of the o↵sets in x direction sorted descending. Each
rectangle represents the view from the top of the table. The left column shows power levels
A through G, the right column shows H through N. If two targets are encircled on an image,
they have a similar mean. If two targets are never connected on any of the images they are
significantly di↵erent. The top left and top middle area has a big x o↵set. The bottom area has
a rather low x o↵set.
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Figure 3.5: These are the power levels of the o↵sets in y direction sorted descending. Each
rectangle represents the view from the top of the table. The left column shows power levels
A through F, the right column shows G through L. If two targets are encircled on an image,
they have a similar mean. If two targets are never connected on any of the images they are
significantly di↵erent. The top left and middle area has a big y o↵set. The bottom right area
has a rather low y o↵set.
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Figure 3.6: Top view on the tabletop. Left: Shoulder joint curvature. Right: Elbow joint
curvature.
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Figure 3.7: Top view on the tabletop. Left: Wrist joint curvature. Right: Knuckle joint
curvature.

.775, F (1, 9) = 793.7327, p < .0001) than the target (R2 = 0.043, F (1, 44) =
2.08, p < .0001) and thus seems to be more of a personal preference. The
latter can also be seen in Figure 3.7.

Lastly, we did take a look at the finger’s pitch, i.e., how steep people werePeople touch

farther away

targets with a

more steep finger

pitch.

holding their hands (Figure 3.8). We did expect the asymmetric distribu-
tion, but we were quite surprised to see people increase the pitch angle
when touching targets that were farther away. Also, the range of the pitch
angle (M = 59.862, SD = 17.06) was surprising.

Previous work by Holz and Baudisch [2010] suggested that we can useFinger posture

cannot be used to

correct touch

o↵set.

pitch, yaw, and roll to correct for systemic touch errors. However, in our
data, finger pitch does not correlate with either x or y o↵set, r

x

(2078) =
�0.00611, p = .7808 and r

y

(2078) = �0.0336, p = 0.1255. Hence, we think
that their findings are restricted to their setup which consisted of a single
target on a small surface that drastically limited the likely body postures.
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Figure 3.8: Finger pitch.

Predictors R

2

target, participant, body posture 0.326
target, participant 0.297
participant, body posture 0.186
target, body posture 0.1611
body posture 0.118
participant 0.1129
target 0.0961

Table 3.1: Adjusted r-square values for di↵erent models based on the
listed predictors. Higher value means that a larger ratio of the variance in
the data can be explained.

Conclusively, we do not think that the finger posture is su�cient to correct
touch o↵sets on larger surfaces.

To find out which variable has the biggest impact on the o↵set, we tried Target and

participant have

the strongest

impact.

di↵erent linear regression models to fit our data to the predictors. We
used a stepwise forward addition and stopped when reaching the mini-
mum Bayesian Information Criterion to avoid over fitting as suggested by
Schwarz [1978]. The results (Table 3.1) show that the target and partici-
pant need to be known and that the body posture (as it depends on the
target) only adds limited information. Further simplification of the target
by, e.g., only taking a look at relative distance or direction from the per-
son to the target misses out a lot of information:R2 = 0.026 for distance,
R

2 = 0.005 for angle, and R

2 = 0.049 for both together.
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As future work, we would like to use the impact of target, user, and body
posture to the touch o↵set in order to correct those systematic errors and
improve touch accuracy.

3.1.6 Summary

By analyzing touch o↵set and body posture of people aiming at randomTouch o↵set on

large tabletops

depend on users

and target, not on

finger posture.

targets on a large-scale surface we did not only learn how people aim at
targets, we also found out that restricting posture analysis to the finger’s
pitch (as recommended by previous work) is not su�cient for predicting
touch error on large surfaces. However, we saw that the error significantly
depends on the target (and the user). We interpret this connection to be
partly caused by the di↵erent body postures resulting from the di↵erent
targets and also likely to be influenced by di↵erent occlusion of the touch
target by the user’s hand.

To rephrase our findings: People touch with systematic error when theyNow take a look

at predecessor of

the touch.

have a variable target and a fixed origin, i.e., hand resting position. The
next step is to find out whether a fixed target would be touched di↵erently
depending on di↵erent origins. It could be that, e.g., movement inertia
results in systematic over- or undershooting of the target. It could also
be that succeeding touches impact the o↵set because people tend to plan
movements ahead. Thus we could expect systematic errors throughout
touch sequences.

3.2 Touches in Touch Sequences

Existing research and our previous work tell us about accuracy for a single
touch. However, while observing actual user behavior, we saw people rather
perform short sequences of touches with a mix of accuracy and speed as
goals. We therefore wanted to look how people perform touch in these
scenarios and whether, e.g., the location of the previous touch has an impact
on the orientation of the finger at the next touch. The following section will
present work that has been carried out with the Master student Norbert
Dumont. Parts of it have been published at CHI 2013 (Möllers et al. [2013]),
and more detail can be found in the master thesis of Norbert Dumont [2012].

Bad touch recognition often leaves users with frustration because long dis-
tances and small targets make touching hard (Fitts [1954]). One can in-
crease the target size to compensate for this e↵ect. Another option which
even preserves the scarce interaction area, is to correct the user’s input
for errors. Existing research already tells us that we can do this for single
touches on small surfaces (Holz and Baudisch [2010]), yet the correction of
touch (sequences) on large-scale surfaces has not been investigated.

In this section, we will first take a look at the related work, present our
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Figure 3.9: A person hitting the same (green) button, coming from dif-
ferent directions. Although the same target, the person hits it di↵erently.
Taken from Möllers et al. [2013].

study design for our own tabletop hardware, and show that the predecessor
has an impact on the touch o↵set. We will then move to an o↵-the shelf
tabletop and show that the e↵ect can be exploited to improve accuracy of
touch input.

3.2.1 Related Work

A lot of work has been done to improve the accuracy of input and deal Indirect

manipulation to

reduce problems

due to occlusion.

with occlusions by the finger. One option is to use indirect manipulation
by having an input area act as a proxy for the area which is manipulated.
This proxy can be located close to the actual input area, c.f. cross-lever,
precision handle (Albinsson and Zhai [2003]), and shift (Vogel and Baudisch
[2007]) or farther away, e.g., back-of-device interactions (Baudisch and Chu
[2009]).

Another option is to use contextual information of the touch besides the Use finger posture

as contextual

information.

center of the touch: Wang and Ren [2009] also use the contact ellipsis, i.e.,
its orientation and axis size. TapSense by Harrison et al. [2011] used the
sound of the impact of an object to identify the touch. Marquardt et al.
[2011] used gloves with fiducial markers on the finger tips, knuckles, etc. to
thoroughly identify fingers and their posture in his TouchID toolkit. The
Ridge Pad by Holz and Baudisch [2010] is able to track yaw, roll, and pitch
from the fingerprint and uses this information about the finger posture to
increase accuracy.

Surprisingly, we did not find systems that take touch sequences into ac- No research about

touch sequences.count. This makes sense for the more dominate small touch surfaces: We
can expect only minimal movement inertia, and the limb postures are very
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similar. On larger surfaces, however, limb postures can vary a lot, and
movement inertia comes into play. This means, di↵erent predecessors (of
the current touch) could have an impact on the targeting behavior. Sim-
ilarly, Rosenbaum et al. [1990] analyzed target acquisitions in action se-
quences, and his results suggested that subjects plan their actions beyond
the first grip, anticipating future states. This means, di↵erent successors
could also have an impact on the targeting behavior.

We will analyze these two e↵ects and show how they can be used to increase
touch accuracy.

3.2.2 Study Design

People who work frequently with the same application know which input
is required for achieving a goal. They turn this into a sequence of actions,
which on a touch device usually consists of a sequence of touches. We
assume that individuals plan these sequences of touches by predicting com-
fortable final limb postures similar to the participants in the study from
Rosenbaum et al. [1990].

1

2

3

4

5

6

0
α3 1

2

Figure 3.10: Left: Layout of the buttons in our study. Most touch
sequences started on the ring, went to its center, and back to the ring.
Right: A participant needs to touch the buttons labeled with “1” to “3”:
After touching the outer button, he aims at the center button but over-
shoots (red ellipsis). We record the location and orientation ↵ w.r.t. the
y-axis. Taken from Möllers et al. [2013].

Thus, given a touch sequence [. . . , t
i�1, t, ti+1, . . .], our hypotheses are:

H1 Coming from di↵erent touch points t

i�1 changes the angle and o↵set
of the touch at t

i

. Predecessor E↵ect (PE).

H2 Going to di↵erent touch points t
i+1 changes the angle and o↵set of the

touch at t
i

. Successor E↵ect (SE).

In these two hypotheses, we do not only consider the touch o↵set but alsoConsider angle

and o↵set of

touch.
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the angle of the touch ellipses (Figure 3.10, right) because we were interested
to see how those relate due to the fact that related work showed a significant
e↵ect of this angle on the touch o↵set.

To evaluate our hypotheses, we let people perform touch sequences on the
tabletop in a controlled setting and analyzed our data regarding the PE
and the SE. We used the tabletop that we introduced in Section 2.2.

We used a 6-ring plus middle button layout for the touch targets (Figure
3.10, left), and participants had to press up to three of them in a sequence.
More details about the study can be found in the paper (Möllers et al.
[2013]).

The experiment used the following four conditions:

A first, middle, and last button are displayed simultaneously, i.e., PE
and SE should occur.

B first and second are displayed directly at the beginning, then third
after the second has been touched, i.e., PE should occur, but SE not
because the participant does not know the successor when touching.

C first is not displayed at all, middle and last are displayed directly at
the beginning, i.e., PE does not occur because there are no di↵erent
predecessors (the resting spot is always the same), but SE should
happen.

D first is not displayed at all, middle is displayed directly at the be-
ginning, the last after the middle has been touched, i.e., PE and SE
should not happen.

Figure 3.11: O↵set of the touches. Di↵erent clusters represent di↵erent
predecessors. Although the clusters overlap, there is a significant di↵erence
between their center.
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3.2.3 Results & Discussion

As can be seen in Figure 3.11, there exists a predecessor e↵ect, i.e., thePredecessor e↵ect

exists, successor

probably not.

location of a previous touch in a sequence has an impact on future touches.
But we did not see an e↵ect of succeeding touches (c.f. Figure 3.12). This
might be due to the fact that this e↵ect is very small or does not exist. In
both cases, we actually welcome this result: We do not need to predict user
behavior to get very accurate touches.

Figure 3.12: O↵set of the touches. Di↵erent clusters represent di↵erent
successors. The clusters overlap and do not have significant di↵erences.

We also measured the angle of the o↵set. Contrary to Holz’s work, we sawWe cannot use

yaw angle of the

finger.

a very low correlation between angle and touch o↵set (|r| < 0.1). Thus, we
cannot use the yaw angle of the finger to correct o↵set, but instead need to
use the predecessor in this setting.

3.2.4 Application of the Predecessor E↵ect

We showed that the predecessor e↵ect exists. We now apply it to improve
the touch accuracy using a simple machine learning approach.

As additional validation of the predecessor e↵ect and proof of its appli-Used an

o↵-the-shelf

interactive

surface.

cability to hardware setups besides our own, we ran the next study on
a di↵erent interactive surface. We used a 27” Perceptive Pixel horizontal
display with sub pixel accurate tracking on a 110dpi screen.

Similar to the previous study, we used a 6-ring plus middle button layout,Users had to

touch the center

button coming

from di↵erent

predecessors.

and users touched a button on the ring first and then touched the middle
button. After this, they needed to move their hand to a resting position
in front of them in the air. We measured the touch o↵set. This data was
split randomly and used in two ways: Two thirds were used to generate a
model, the other third was used for evaluation, similar to other machine
learning approaches.
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The error prediction model works as follows. We correct touches according Touch correction

model subtracts

the o↵set typical

for the

predecessor

direction.

to which direction they come from because we know that the predecessor
has an e↵ect on the touch o↵set: We take all the touches ~t and put them
into 6 buckets according to their predecessor j (cf. Algorithm 1). For each
bucket BUCK

j

, we then take the median x and median y value of the
o↵sets of the touches, resulting in touch correction vectors ~t

BUCKj . They
indicate how people typically over- or under-shoot.

Algorithm 1 Correcting for the current predecessor

for all predecessor locations j do . Training
~

t

BUCKj  median(~t
i

), 8~t
i

2 BUCK

j

end for
for new touch ~

t coming from pred j do . Application
~

t

0 = ~

t� ~

t

BUCKj

end for

While using the system, we subtract the correction term according to the
model and get ~

t

0. The correction term can also be based only on per
participant data to account for individual behavior.

We had several people perform numerous touch sequences resulting in two Compare size of

minimal

rectangular

button.

datasets: corrected for the predecessor as well as corrected for predecessor
and user. To compare how well the correction work, we calculate the size
of a minimal rectangular button that covers at least 95% of the touches,
i.e., its width and height is equal to about 1.96 standard deviations of the
mean of the x and y data.

Results

Only using the predecessor has no e↵ect on the button size (Figure 3.13). Predecessor model

per user can

predict error

o↵set.

Our explanation is that individual di↵erences in touch behavior overshadow
the predecessor e↵ect. However, taking individual behavior into account,
we can shrink the button by 7%— and we only need to capture five minutes
of user interaction. We are quite confident that capturing more interaction
data will increase this value significantly.

Per Predecessor

Per Predecessor & User

-1.00% 1.00% 3.00% 5.00% 7.00%

Button Area Decrease

Figure 3.13: Decrease of minimum button size to allow for 95% touch
accuracy. The baseline was the size of a button using raw touch data.
Taken from Möllers et al. [2013].
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In a real application, we would have to extend the 6-ring to a model thatReal model would

learn during

usage.

stores o↵set per relative direction (in degrees) and relative distance to every
predecessor. This model would require significant data to be collected. We
would like to explore ways to learn this model during the system usage.
This is similar to the way current smartphones, which are very personal
devices, improve their touch accuracy.

3.3 Chapter Summary

In the first part, we saw how people perform touches on large tabletops andContextual

information can

improve touch.

how the body posture a↵ects it and that, contrary to the small surfaces, the
finger posture is not significantly a↵ecting the targeting behavior. We then
evaluated how touch sequences have an e↵ect on the accuracy of their single
touches. We saw that the location of the previous touch a↵ects the location
and orientation of the following touch. We then applied our knowledge to
improve targeting accuracy by taking into account the predecessor of a
touch.

We thus saw we can use contextual information of a touch to improveCan we extend it?

touch. This means, using more than the traditional touch data, i.e., its
center has a benefit. In the next chapter, we will create a new interaction
technique by taking into account the head position and thus extending
touch. The di↵erence here is that the additional information is not only
contextual, but adds its own input channel that even can conflict with the
touch information. We will show how to handle those conflicts.
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Chapter 4

Extending Touch on
Tabletops

The last chapter told us about how people perform touches and how we Use head position

as additional

input channel.

can use this systematic targeting behavior to improve touch. After these
low-level improvements, this chapter will focus on higher level touch inter-
pretation on the application layer and how we can use the additional input
we observed in the previous chapter: We will incorporate more than just
the touch point into an interface by using the body posture, more specifi-
cally the head position, as an additional input channel. This way we can
enhance our interactive 2D tabletop to a 3D display based on a perspective-
correct rendering. This gives us a more powerful interface, but also rises
some design challenges.

4.1 Using Head Position as Additional Input
Channel

Until now, our tabletop was used as a horizontal 2D display. If we track Motion parallax

adds a third

dimension.

the position of the user’s head and add motion parallax, people will get
the impression that they are looking at a real 3D scene. Moving their head
will then update the scene, keeping its perspective sound. Depending on
orientation and shape of the surface, metaphors such as a window (vertical
display) or a fish tank (horizontal display) come to mind.

Interestingly, mimicking physical behavior when manipulating digital Conflicting input.

objects—the direct manipulation metaphor—does not work too well in such
a 3D scene: Direct manipulation means that dragging an object makes the
object stick to the finger: However, moving the head in front of such a
3D display results in a change of the object’s projection on the display to
account for changes in head position. But this means that the projection
of the object moves although the finger does not move, and, e.g., might
make the object slip o↵ the finger, contradicting the direct manipulation
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Figure 4.1: Co-planar dragging in a näıve fish tank VR implementation. The colored lines
show the gaze direction of the viewer, and the bars are the projections of the boxes. Bright blue
is before, and dark red after the movement; dotted green shows where the object would look to
be “below” the finger from the user’s point of view. Left: Moving the head does not change the
3D position of the object. Right: Moving the finger to the side moves the object equally. In
both cases, the projections behave di↵erently than the objects. Thus, the object is no longer
below the finger, breaking the direct-manipulation metaphor. Taken from Möllers et al. [2012].

paradigm (Figure 4.1). This means by adding the head position as addi-
tional input channel, we now have conflicting input and need to find ways
to deal with those problems.

To find solutions for this problem, we analyzed it, created a design spaceSpan design space

and analze several

of the methods

within.

for possible methods, picked several interaction methods from the design
space, and compared them regarding accuracy, number of regrabs during
interactions, and speed. The following section will present this work and
has been carried out with the Diploma student Patrick Zimmer. Parts of
it were published at ITS 2012 (Möllers et al. [2012]).

Although previous work has spent considerable time analyzing how theExisting work

often comes from

VR.

human hand can control 3D objects, it had a di↵erent focus. Most of this
work comes from the domain of virtual reality where people did not restrict
themselves to a 2D input plane (in our case a table or a wall) but allowed
the full scale of 6 DOF input: 3 translatory and 3 rotational degrees of
freedom for hand input. For example, the Responsive Workbench Agrawala
et al. [1997] is a tabletop enhanced with head-tracked stereo rendering using
shutter glasses for display and cyber gloves for the interaction. Generally
speaking, those 3D enhanced tabletops are called Fish Tank VR systems
(Ware et al. [1993]) and usually employ stereoscopy in addition to motion
parallax. Others, such as Valkov et al. analyzed how people interact with
stereoscopically rendered content Valkov et al. [2011]. Instead, we focus
on a viewer-centered projection and omit stereoscopy to isolate us from
the e↵ects they found in their studies. More related work can be found in
Möllers et al. [2012].



4.1 Using Head Position as Additional Input Channel 39

4.1.1 Interactions on a Fish Tank

Direct manipulation has proven to be an intuitive metaphor for manipulat- Touch input and

head position

both change the

projections of the

objects on the

display.

ing content on a touch capable surface displaying in 2D, even if we only take
the success of tablet PCs as evidence. However, if we have a system that
incorporates the user’s head position to render the image on the 2D plane
in such a way that the image is perceived to be 3D, we run into problems.
This is mainly due to the fact that in this setting, we are not interacting
with the object itself any longer but only with its projection on the display.
However, the projection can change its size and position although the ob-
ject itself remains fixed. This means that interactions can create an o↵set
between a finger holding on to the projection and the projection itself.

Figure 4.2: O↵set created by dragging an object in a head-tracked en-
vironment. Total o↵set can be split into a touch-induced o↵set ~a and a
head-induced o↵set ~b. Taken from Möllers et al. [2012].

If we take a closer look, this o↵set can occur due to dragging or head
movement (Figure 4.2). The viewer is looking from a specific point v1,
touches the surface at t1, and the virtual object resides at h1. Dragging the
object by ~m should move the object by ~m as well. In a 2D setting, we would
now be done. However, due the depth of the object, we need to additionally
move the object by ~a to keep the object beneath the user’s finger. If the
head is then moved to v2, we need to move the object again, this time by ~b.
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Unfortunately, it also means that looking around an object will move the
object, and it is questionable whether this is always the expected behavior.
We need other methods for those cases.

As a more structured approach, we created a design space that di↵erentiatesNine methods

from the design

space.

interaction methods by how to deal with o↵set created by dragging, and
o↵set created by head movement (Figure 4.3). To compensate for o↵set, we
can either move the object, or we can change the viewport by shearing the
scene, or do nothing. Theoretically, one could also do both compensations,
but we decided against it to not confuse the user. This leaves us with
3⇥ 3 = 9 di↵erent spots in the design space, and we will now present these
methods shortly. The full implementation details can be found in Zimmer
[2011].

{0,1} {0,1}

{0,1} {0,1}

Move Head Drag Finger
Trigger

Move Object

Shear Scene

Correction

Figure 4.3: Design space for perspectively-adjusted direct manipulation.
Taken from Möllers et al. [2012].

Their naming is loosely based on the following scheme:

• Correction if they move the object to compensate for o↵set,

• Shift if they shear the scene to compensate for o↵set,

• Team if they do both,

• Adaptive if o↵set is mitigated over time,

• Cross if the compensations are switched, e.g., head-induced o↵set is
corrected by object movement.

[ 0 0
0 0 ] Uncorrected

No correction is applied, and the resulting o↵set is tolerated.

[ 1 1
0 0 ] ObjectCorrection
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This method is also known as Sticky Finger, coined by Bowman [2005]. The
object position is determined by the head and the touch position, thus, the
object stays exactly under the touch.

[ 0 1
0 0 ] AdaptiveCorrection

With AdaptiveCorrection, head movement is ignored and thus does not
interfere with object positioning. Dragging the box keeps it precisely be-
neath the finger. While dragging, we also slowly remove any o↵set caused
by previous head movement.

[ 0 0
1 1 ] SceneShift

This is the first method to shear the scene to maintain alignment, i.e., we
move the virtual viewpoint of the scene to avoid the touch slipping o↵ the
object. Once an object is released, the scene snaps back. When holding an
object in one place, looking around it is impossible because the viewpoint
stays fixed in an aligned state.

[ 0 0
1 0 ] AdaptiveShift

In an adaptive version of SceneShift, head movement locks the view and
aligns the touch. Moving the box detaches the alignment and permits o↵set
keeping the scene perspective sound. The upside is when releasing an object
the scene is unlikely to snap back. When the head is moved, existing o↵set
is slowly diminished into a state of alignment.

[ 0 1
1 0 ] TagTeam

In TagTeam dragging, we combine two di↵erent correction methods. The
o↵set caused by moving the finger is corrected by object repositioning,
which makes the box stick to the finger. Head movement shears the scene,
thus looking around a still object is not possible as the viewpoint is locked
to alignment.

[ 1 0
0 1 ] CrossTeam

In the three cross modes, we switch assignments between trigger and cor-
rection method. Here, in CrossTeam dragging, head movement is compen-
sated by repositioning the box, and dragging o↵set is avoided by shearing
the scene.

[ 1 0
0 0 ] CrossCorrection

The CrossCorrection method allows o↵set when an object is dragged but
reduces o↵set whenever the head is moved. When the user moves her head,
it repositions the object based on the head and touch position.

[ 0 0
0 1 ] CrossShift

The CrossShift method shears the scene automatically to maintain touch
alignment while the object is dragged. When the object is held still, the
user can look around.
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4.1.2 Comparison of Methods

To analyze our methods, we created a test application and ran a study.
The test application consisted of a maze where the user had to drag a box
on several floors.

During the pre-study, the three cross methods consistently received badSorted out the

”cross methods” in

a pre-study.

feedback. The users were unhappy with ”head movement causing col-
lisions”, ”need to release the object to safely look around”, and ”unex-
pected jumping of the box after releasing it”. This led to confusion
and frustration. Consequently, we ran the study with the remaining
six methods: Uncorrected, ObjectCorrection, AdaptiveCorrec-
tion, SceneShift, AdaptiveShift, and TagTeam.

As our test apparatus we used the touch capable tabletop known from the
previous chapter and added a head tracking solution (Figure 4.4). Head
position is converted to the coordinate system of the table and the projec-
tion updated accordingly. This way, we can create the impression of the
table being a 3D fish tank.

Figure 4.4: Infrared cameras track the four markers on the circlet on the
user’s head. Taken from Möllers et al. [2012].

Task

Before the study, participants had to drag a box around for two minutes inMove a box

through a maze.



4.1 Using Head Position as Additional Input Channel 43

a 2D dragging setting. Then, a method was activated, and the participants
could test it in a single 3D level as long as they liked. For the test itself, the
participants needed to drag a cuboid through a three floor maze (Figure
4.5). This box can be controlled via two handles at the front and the back
(Figure 4.5), using single touch interaction. The movement of the box is
subject to a physical engine, taking into account occlusions with the wall.
This allowed the user to pivot the box around the corners. Still, we did not
add inertia to no make the task (unnecessarily) hard, so the box stopped
as soon as the user lifted his finger.

Figure 4.5: Upper Right: Participants had to drag the box through the
maze, starting from the far left corner on top level to the green field on the
bottom level. Lower Left: The box had two handles to control it. Taken
from Möllers et al. [2012].

Participants started on the top level and moved to a marked area, thereby
proceeding to the next floor. The upper levels did not disappear, and thus
participants had to additionally deal with occlusion.

We used a between-subject design with three repetitions and measured Between-subject

designcompletion time, number of occlusions, and number of re-grabs. We also
collected qualitative data based on our observations and a post-test ques-
tionnaire. More details about the setup, task, and procedure can be found
in our ITS paper Möllers et al. [2012].

Results

The results of our study, i.e., means and confidence intervals of our three
metrics, can be seen in Figures 4.6, 4.7, and 4.8. All the results we present
here are significant (p < 0.05), and most of them even highly significant
(p < 0.0001). The full statistical details can be found in Möllers et al.
[2012].

First of all, we can see that completion time and the number of re-grabs Time and number

of re-grabs

correlate.
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Figure 4.6: Mean completion time in seconds. Mean bars are subdivided
into single levels. 95% Confidence intervals are shown for the sum over all
levels. Taken from Möllers et al. [2012].
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Figure 4.7: Number of re-grabs. Mean bars are subdivided into single
levels. 95% Confidence intervals are shown for the sum over all levels.
Taken from Möllers et al. [2012].

are connected. Clearly, a re-grab takes time. Still, after a re-grab occurred,
the o↵set is removed, thus users can control the box more precisely. This
might speed up the time. As we saw a strong correlation between re-grabs
and time (r(89) = .79), we think the former e↵ect is the stronger, yet one
should not deem any interaction method that requires re-grabs useless.
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For the remainder of this chapter, we will refer to Uncorrected as our
baseline because it is the simplest of all the methods, and others build upon
it. Also, no clear“standard” interaction method currently exists in the field.

Compared to the baseline, ObjectCorrection was 27% faster and led to AdaptiveShift was

the slowest

method.

56% fewer re-grabs (Figure 4.6,4.7). However, many users stated confusion
and frustration with ObjectCorrection due to (a) their head move-
ment causing collisions, (b) the need to release the object to safely look
around, and (c) the unexpected jumping of the box shortly after releasing
it. AdaptiveShift performed worst and thus should be avoided. Using
the baseline method resulted in many re-grabs, but users did complete with
average times. It might be that the re-grabs that occurred in this method
did not take too long to perform.
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Figure 4.8: Number of collisions. Mean bars are subdivided into single
levels. 95% Confidence intervals are shown for the sum over all levels.
Taken from Möllers et al. [2012].

The number of collisions increased with the depth and vary greatly with Number of

collisions

increased with the

depth and vary

greatly with the

level.

the level due to the amount of occlusion and interaction-depth. It also
primarily occurred at bottlenecks and curves (Figure 4.9). SceneShift
and Uncorrected performed badly overall (Figure 4.8). ObjectCor-
rection had few collisions on the first level but did have problems with
lower levels due to the aforementioned implicit box movement. Interest-
ingly, AdaptiveShift method rose from the worst on the first level to
best on the last level. Yet, participants criticized the view snapping back,
classifying the method as precise but weird. AdaptiveCorrection per-
formed great among all levels (32% fewer collisions), closely followed by
TagTeam. Both methods o↵er direct control. While TagTeam is restric-
tive about object-finger alignment, AdaptiveCorrection allows to break
it in case the user just wants to look around a bit.

We suggest to use AdaptiveCorrection: Users were rarely confused or We suggest to use

AdaptiveCorrec-

tion.
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Floor 1 Floor 2 Floor 3

Figure 4.9: Collisions for each level across all methods. They primarily occurred at bottlenecks
and in curves.

surprised, and it was accurate in the studies. Only one method was faster,
ObjectCorrection, but not even with a significant di↵erence. Addition-
ally, AdaptiveCorrection requires few re-grabs, which might be helpful
in certain domains, e.g., for handicapped users. AdaptiveCorrection
works well because it takes care of two main problems we identified: the
perceived o↵set between touch and object projection, and head movement
inferring object translation.

4.1.3 Future Work

This work led to some first insight into the design space of interactionTake a look at

multiple fingers or

stereoscopy.

methods for dragging in 3D environments but could be extended by using
multiple fingers for single object control, using other tasks that shine more
light on the impact of occlusion, or add stereoscopy to our system setup.
Another option would be to switch methods based on the depth or occlusion
levels. This would raise the question how one would easily move from one
to the other method: implicitly or explicitly.

4.2 Chapter Summary

In this chapter, we used the head position in addition to the touch dataExtended touch

provides a more

natural input.

and were able to create a 3D display, but ran into design challenges as
direct manipulation and head-coupled projection both interact with the
projection of the 3D content at the same time, and we needed to find good
ways to prioritize one over the other. In other words, extending the touch
so that the touch itself is only one part of the input creates new interaction
metaphors. These new interaction metaphors feel more natural to the user,
but require a little afterthought to handle this concurrent input so that the
user gets the best benefit out of it.

With this example applications for a more holistic use of touch data and
its context, we now move from interactive tabletops to interactive objects
that can have any shape or form, thereby leaving the desktop behind even
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more. Similar to the first three chapters, we will split the following three
in a “detect, improved, and extend” manner.
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Chapter 5

Detecting Touch on
Arbitrary Objects

To understand how people touch arbitrary objects and how we can build
new interaction techniques, we first need to have a system to detect touches
on an arbitrary object. This chapter will present our solution to this prob-
lem. This work has been carried out with the Master student Ignacio
Avellino. More implementation details can be found in his thesis (Avellino
[2013]). Part of this work has also been presented at ITS 2013 (Corsten
et al. [2013]).

5.1 Requirements & Related Work

Since we want to detect touches on arbitrary objects, we need to have sensor Focus on

non-planar

surfaces.

hardware that can be used for any shape of object and then interpret the
data to find the touches. Smartphones, tablets, and interactive tabletops
of varying sizes already cover most of the design space for planar surfaces,
so we will focus on non-planar objects for our system. As another simplifi-
cation we are only considering objects that are portable by a human being.
Based on this subset, we now define requirements for the process of turning
an object into an interactive surface:

1. It should not take too long to prepare one object to allow for studying
several objects.

2. It should be a↵ordable.

3. If it is vision-based, it should not require some kind of markers because
markers can be occluded by the user interacting with the object.
Markers can also change how people interact with an object, thus
results about targeting behavior would be questionable.
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A desired solution would be to have some kind of “magic” tape that youCurrent solutions

are not flexible

enough.

can glue onto any object and that is receptive to touch. In May 2013, Wu
et al. [2013] presented very promising research of a flexible foil that can
detected touches, but this technology is still in an early stage. Most mobile
phones nowadays use capacitive sensing to track touches, but commercially
available solutions are not flexible and cannot be cut to size. Instead,
Wimmer and Baudisch [2011] used capacitive coupling to detect where a
single wire is touched. This wire can be glued to an object and laid out
in patterns to cover the whole surface. Yet it only supports single touch
and, more importantly, must be calibrated in a rather lengthy process for
each object and user (because the capacitive coupling di↵ers from person
to person).

Instead of modifying the object to be touch receptive, we can sense theUse

depth-cameras for

remote sensing.

touches remotely. Remote sensing can be done using di↵erent approaches:
In our review, we will focus on vision-based systems because they provide
superior spatial resolution compared with other, e.g., sound-based systems.
All the latest research in the field of remote sensing uses depth-capable
video cameras, typically Microsoft Kinect, because they provide depth in-
formation per pixel in addition to color.

This additional information makes it easier to separate objects from theUse depth

thresholding to

detect occluded

touches.

background and recognize them. More importantly, it also enables touch
detection on surfaces that are occluded by the object by depth thresholding.
This technique was first introduced by Wilson [2010]: If we know that the
surface of the object is x cm away from the camera, and we see a finger
occluding the surface at distance x + 2 cm, we can (assuming that the
finger is about two centimeters thick) detect the touch without actually
seeing it.

One way to work with the incoming data is to turn the depth plus colorPoint cloud

representation

limits interactions

to object-agnostic

metaphors.

images into a 3D point clouds. This means we do not try to understand
which point belongs to which object, but just have a large amount of ”par-
ticles” in 3D space. This is already enough to mimic physical behavior,
and we can make the real objects interact with virtual objects as, e.g.,
KinectFusion by Izadi et al. [2011] does. However, without understanding
which points comprise an object, we are limited to those object-agnostic
metaphors. This means, even a simple UI, such as a shirt with interac-
tive buttons that make the system react di↵erently depending on where
it is touched, is not possible. For those object-specific interpretations of
user input, we need to recognize an object and thus turn the point cloud
representation into an object representation. This will allow us to react
di↵erently to touches depending on which object is touched.

Having collected our requirements and shown that current related work
does not fulfill them, we will now describe our approach. It consists of
three steps. Object recognition, object tracking, and touch detection on
the object.
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5.2 Object Recognition, Tracking, and Touch De-
tection

Before going into detail, we want to mention one design decision: Our Single camera

leads to occlusion

problems.

system gets data from a single camera. This has two inevitable implications
which could be removed in future work by supporting multiple cameras: (i)
We will be unable to detect the orientation of objects that appear rotation-
invariant from the current point of view, e.g., if the handle of the cup
is behind the object, we cannot figure out its exact orientation. (ii) We
will be unable to detect touches behind the object. Apart from those two
limitations, the system works reliable, and we will now describe how it
achieves it.

The first task when creating an object recognition algorithm is to decide Mesh as object

representation.on the digital representation of the object. We decided on a 3D mesh: It
can be created digitally—most physical objects that surround us start out
as a CAD model—, it can come from laser scans of an actual object, or
we can use a depth-camera to create the model similar to the work by Liu
et al. [2012]. We chose to laser scan the physical objects because it gives
the highest accuracy while being applicable to any object.

For the remainder of this section, we will focus on the concept of the al- For setup, define

background plane

and scan object.

gorithm and less on its software implementation. The reader may refer
to Avellino [2013] for those details. As a preparation, we create meshes
for the objects that we want to track, setup the camera, and then select
three points on the background. This defines a plane, and we can remove
points in the vicinity to the plane. Less points means significantly faster
processing times.

Before going into the specifics, we first sketch the overall algorithm (c.f. Fig-
ure 5.1):

1. Raw data is acquired from the depth-camera.

2. We created a point cloud from the depth data by unprojecting the
pixel-based information into 3D space.

3. We (optionally) remove the background plane to reduce the number
of points to process.

4. We use our object recognition algorithm to get an initial pose esti-
mation.

5. The object is tracked from one frame to the other and its position
and orientation updated.

6. If a finger is in front of the object, we perform a way of depth-
thresholding to detect a touch on the object.



52 5 Detecting Touch on Arbitrary Objects

Figure 5.1: The whole object recognition, tracking, and touch detection
algorithm. Step 4 is done only once at startup. Image adapted from Avel-
lino [2013].

5.2.1 Initial Pose Estimation

In order to track an object, we first need to recognize it from the imagesUse local features

to counter

occlusion

problems.

that our camera delivers. As we already mentioned, we only have one
camera, so the object will only be partially visible. It can also be occluded
by the user. Therefore, the object recognition needs to be robust against
occlusions. This means, our object recognition should not rely on global
features such as size of the object and instead should focus on local features
such as curvature along its surface.

Fortunately, object recognition is widely studied, and we can modify an
existing method to our application domain. We chose an object recogni-
tion algorithm that is tailored to noisy single view scan data, similar to
our problem domain. It is capable of finding existing 3D-models in an un-
segmented point cloud. The standard recognition algorithm works roughly
as follows, more details can be found in Papazov and Burschka [2010]. In
an o✏ine phase, for each model, it takes every pair of oriented points that
have a specific distance d ± � to each other and calculates the following
features: angle between the orientation of the points, angle between one ori-
entation and the connecting line, and the angle between the other point’s
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orientation and the connecting line. For future lookup, the points, their
feature descriptor, and the model they belong to are stored in a three di-
mensional hash table. In the online phase, the point cloud from the depth
camera is converted to an octree for faster neighborhood search in future
steps. To create a hypotheses, i.e., a guess which object could be at which
point with which orientation, we first take one sample point from the point
cloud. Then we take some neighboring points, and calculate the features
from these pairs. Using these features, we can take a look into the hash
table to find point pairs from the models that have similar features, i.e.,
look similar. We then compute a rigid transform that best aligns the mod-
els to the oriented point pair and add this to our list of hypotheses. After
a su�cient amount of hypotheses has been created, we start filtering based
on how well the hypothesized model locations fit the rest of the point cloud.

The initial pose estimation is quite robust, yet slow. On our MacPro with
2.26 GHz and 6GB ram it takes up to 10 seconds to find the object. Based
on this robust recognition, we perform the tracking with a more light-weight
algorithm that is capable of running in real-time.

5.2.2 Object Tracking

In our application scenario, it is very unlikely for objects to disappear or to Use ICP to track

object from to

frame.

be moved very far from one frame to the other. This gives two advantages:
(i) We can limit the search volume for the object in the next frame by
creating a bounding box around the last know position, and (ii) instead of
running the full object recognition every frame, we just track the object
using Iterative Closest Point (ICP) by Besl and McKay [1992]. Iterative
Closest Point (c.f. Figure 5.2, Step 5) is an algorithm that maps two point
clouds (a model and a template) to each other while minimizing point
distances in each step until a convergence criteria (here distance) is reached.
It then returns the mapping that moves and rotates the template on to the
model.

As the ICP works best for similar point clouds, we need to prepare our data
before applying ICP (c.f. Figure 5.2):

1. We start out with knowledge where the object was in the last frame,
i.e., a rotation and translation that maps our stored model into the
3D world coordinates of the camera system. For the first frame, we
use the object recognition mentioned beforehand.

2. The object moves.

3. We now get new input from the camera and transform it into a point
cloud and create a bounding box around the previous location and
assume that the object did not move too far from it.

4. (a) We remove the background plane, use color filtering to remove
hands that might occlude the object, and crop the points outside
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Figure 5.2: Preparation of the input data for the ICP. Image adapted
from Avellino [2013].

of the bounding box. We now have one of the two point clouds
for the ICP: the model.

(b) As we know where the object was in the last frame, we can
place our model in the 3D space and take the points that face
towards the camera. This point cloud is our expected input: the
template. Without movement of the object (and noise in the
data), the template would be exactly the same as the model.
We only use the front-facing points for the template because the
model is also only seen from one side and the ICP will not give
good results if we ask him to map the front side of an object to
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a full object.

5. We now apply the ICP, and it returns a mapping from the template
to the model.

6. We can now store this information and update our pose estimation.

Now we know where the object is and how it is oriented. This enables us
to look for fingers and see whether they are touching the object.

5.2.3 Touch Input & Touch Occlusion

The problem of detecting touch for us is the same as detecting an intersec- Intersection

detection takes

long.

tion of object model with the finger. Currently, the finger is only known as
a point cloud, more specifically, the points facing the camera. If we had a
mesh representation of the fingers and would map it on to the point cloud,
we could check for intersections. Unfortunately, the finger cannot easily
be modeled by a (solid) model, and especially the computations required
to check for intersections would take considerable time: We would need to
intersect the triangles of the two meshes.

Another problem is that the finger occludes the object. Although our object Depth

thresholding

requires expensive

ray-casting.

recognition gives us the pose of the object, allowing us to restore which
points of the model are occluded by the finger, we do not know whether
the finger is touching the object or is just in front of it. However, if we
assume a static finger thickness, we can check for the touch by comparing
depth of the front-side of the finger plus finger thickness to the depth value
of the object’s front side. To be more specific, we need to check this for
every point of the finger with the point lying “behind” it. Calculating the
point behind another, however, requires us to cast a ray (parallel to the
camera axis) through that point and intersect it with every triangle of the
model, which would also require a lot of computation.

Instead, we simplify the 3D calculations to 2D image comparisons. This Map object to 2D

and compare

there.

works well in our use case and is very fast because it exploits the capabilities
of modern graphics cards: Instead of casting rays, we render the object as it
would be seen from the perspective of the camera. Theoretically, this is also
quite an expensive computation, but modern graphics are highly optimized
for this task so that they can deliver this in only a few ms, making it a very
feasible approach. We also project the points of the finger into a 2D image
with the same viewport as the other image. This means that we can now
compare pixel by pixel whether the finger is in front of the object. As we
store the depth data of the model and finger as well, we can thus use depth
thresholding to do our hit detection.

The resulting touch detection process is explained in Figure 5.3:

1. We start out with the point cloud data and the current pose estima-
tion of the object.
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Figure 5.3: Touch detection algorithm. We reduce the 3D problem to a
2D image problem. Image adapted from Avellino [2013].

2. We segment the points of the finger by color filtering.

3. We now treat the data as a 2D image as seen from the camera.

4. We compute the contour by calculating the convex hull of the finger
points.

5. We now take the point farthest away from the center of the hull as
the fingertip.

6. We render the model and project the fingerprints from the same view-
port.

7. We now look up fingertip coordinate in the model image, take the
points from the vanity (3 pixel neighborhood), and perform depth
thresholding to decide whether there is a touch or a hover.

Now we know whether the finger intersects with model, i.e., whether we hitColor touch zones

on the object. an object, and we can create a touch event and send it to an application.
However, we do not yet know where we hit the object. For this, we need
to extend the last step to react di↵erently depending on where it hits the
object. We color the object di↵erently for each touch zone. The color
can then be checked in the last step of Figure 5.3 and will tell us which
touch-zone we hit.
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5.2.4 Evaluation

Our system has two main parts, the tracking of the object and the detection Focus on accuracy

and lag.of touches on it, and we will evaluate them separately. The primary criteria
for evaluating any input device or tracking system are its reliability (or
accuracy) and how long it takes to react to a given input.

The whole evaluation is done on a MacPro with 2.26 GHz, 6GB ram, and
a Nvidia GTX 580 graphics card. As a camera, we used a first genera-
tion Microsoft Kinect that returns VGA resolution RGB and depth data.
The latter is 11bit and has a base accuracy of 2 mm at 50 cm depth and
gets worse farther away. The full details on the evaluation can be found
in Avellino [2013], we will just describe the general setup and the main
takeaways.

Figure 5.4: Our test setup with the toy train tracks and the VICON
cameras. Image adapted from Avellino [2013].

Object Tracking

In order to evaluate the accuracy of the system, we need to have a baseline. Compare with

VICON.We decided to compare it with a sub millimeter accurate tracking system
from VICON. We looked at position and orientation error, i.e., the di↵er-
ence between the values our system reported and what the VICON Bonita
reported. For a more controlled environment, we decided to put the objects
on a Lego toy train with a circular track layout (c.f. Figure 5.4). We de-
cided to use two objects: one with few features (a cup) and one with a lot
(a toy duck). We put them on the toy train in varying starting rotations
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Figure 5.5: Rotation error (y-axis) of the cup in norm of quaternion di↵erence. X-axis is
the distance from the camera. 1-4 Asymmetric feature disappearing from sight. 5-8 incorrectly
estimated rotations. 9-12 Asymmetric feature reappears. 13-15 Correctly estimated rotations.
Image adapted from Avellino [2013].

and let them do several circles in both directions. Data from about 8500
timestamps was collected and analyzed.

Position error is reported in Table 5.1 and mm. As we can see, the biggestEven depth error

is acceptable. error is in the depth dimension, partly due to the limited depth resolution
of the Kinect. Error in the width and height dimension are very small.
Altogether, this makes the system very usable for our use case.

Position Error in mm: Avg, SD
width 16.27,12.51

Cup depth 24.04,15,65
height 4.32,3.06

width 15.22,13.57
Duck depth 28.73,17.70

height 4.11,3.8

Table 5.1: Tracking error of the position. Even the depth error is consid-
erably small

We measured the rotation error as the norm of the di↵erence of rotationRotation error in

norm of

quaternion

di↵erences.

quaternions. The norm is in the range [0,
p
(2)], where 0 equals identity

and
p

(2) equals an rotation in the exact opposite direction. We chose to
use (the norm of ) quaternions because they are a good representation for
rotations and especially to compare them.

Before taking a closer look at the data, we need to think about what weAccurate tracking

requires

asymmetric

features.

can expect from the system: For example, if the handle of the cup is not
visible, any marker-less tracking system can only report that the cup is
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in no state where the handle would be visible, but the exact orientation
cannot be calculated. We see the same results in our system: As soon as
an asymmetric feature is occluded, the error gets bigger. In most cases,
fortunately, the system is able to catch up as soon as the feature is visible
again, i.e., we see the handle again and the system reports the correct
orientation (c.f. Figure 5.5). We will suggest some options in the future
work section to reduce such errors. Apart from those general limitations due
to self-occlusions, the system estimated the pose well: Selecting only parts
where the handle was visible, we see an average of 0.0634 with standard
deviation of 0.0201. This value is similar to a rotation of 7.23� along a
single axis.

On our test system, it took 100-140 ms to process the incoming frame and Close to real-time

performance.update the pose of the object, i.e., we had 7-10 frames per seconds in our
test setup. There are several factors that influence this runtime, and they
all relate to how many points need to go throughout our processing pipeline:
a) the number of points of the model and b) the number of points of the
template. We already did a sub-sampling, i.e., only take every 16th point
after calculating the front-facing points of the model, but we did not do this
for the point cloud from the Kinect in order camera to not lose accuracy.
In our tests, the sub-sampled model consisted of about 600 points, and the
points extracted from the Kinect image where about 3500. This also means
that objects closer to the object camera generate larger point clouds than
objects farther away, leading to di↵erences in performance. Future work
will take a look at ways to adapt to those factors and get a more flexible
trade-o↵ of processing time to accuracy.

Touch Detection

After having seen that our system provides reliable tracking, we will now Users pushed the

top of a pen.see how good it can detect touches on the tracked objects. Initial testing
showed us that we cannot expect a precision similar to our high-precision
touch detection on tabletops. This is due to several di↵erences between the
system: the surface is non-planar, the object is not static, and the camera
has a significantly worse resolution that is also spread over the whole room
instead of a very small area. We therefore opted to focus on a task where
a person wants to hit one small area on an object.

We asked 12 people to participate in our experiment and let them hold 23% of

false-positives and

false-negatives.

a pen in their hand and asked them to push the upper part of the pen to
forward a slide on a screen. We time-threshold the touches to filter out noise
by only accepting touches that were on the object for longer than 400 ms.
We recorded 511 touches as well as video data of the users interacting with
the pen. Comparison of video data and captured touch information gave
us good results: 76% of the touches performed by the user were correctly
recorded by the system. Similarly, 77% of the touches generated by the
system were caused by the user (and not due to noise).
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5.2.5 Limitations & Future Work

We were very pleased with the results of this work, especially its objectRestart object

recognition if we

lose the object.

tracking part, and would like to continue on it. Currently, if the system
loses track of an object due to full occlusions or very fast movement, it can
only recover if the object is moved back into the region of its last position.
Instead, we would then start the full recognition process over again to find
it.

One problem in tracking the object is that the system sometimes loses trackCounter occlusion

problems with

color data or

motion prediction.

of the orientation of the object because it only sees rotation invariant parts
of it, e.g., a cup without a handle. We could try to predict rotation and
add constraints based on the previous object position and orientation, e.g.,
the object will not turn upside down from one frame to the other. Another
option would be to use the color of the object in addition to the currently
used depth data. There could be features only visible on some sides of the
object, helping us to detect its orientation.

As of now, the system supports a full database of objects for the recognition,Extend to

multiple objects. yet the tracking part is implemented for one object at a time. However,
apart from performance considerations, there is no real issue with track-
ing multiple objects. As the current code does not exploit parallelization,
tracking of a maximum of objects similar to the number of CPU cores in
the systems should be possible with similar performance.

A current trend in a lot of computationally expensive tasks is to move theExtend to GPU.

computations from the CPU to GPU. This works great in theory (e.g. near-
est neighbor search can be optimized well for the GPU and is a large part
of the ICP), but two reasons made us consider a CPU solution first: Every
frame coming from the camera needs to be transferred to the GPU mem-
ory, processed there, and the results then transferred back to the system’s
memory, which still takes a significant amount of time, vastly reducing the
benefits of the faster GPU computation. Also, to minimize CPU <-> GPU
transfer, you need to perform large parts of the computation on the GPU.
This requires reimplementing a lot of existing code in a rather restricted
computing environment for optimal performance. Still, now that we know
that the algorithm works, we can see which parts are worth reimplementing.

The system is based on a database of models with a static point cloudSupport

deformable

models.

or mesh. It would be interesting to see how we could support deformable
shapes. The question how to define and store the “deformability” of an
object is a challenge by itself. It could lead to insight on how to recognize
those shapes as the standard features used to recognize objects that are
based on a fixed shape: We, e.g., use point-pair relations such as distance
and curvature in the neighborhood.
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5.3 Chapter Summary

In order to capture the expressiveness of touch on arbitrary objects, we need
to first detect the touches. In this chapter, we presented a novel approach
to track objects and detect touches on them. We were able to build a
system that can track arbitrary objects in close to real time using low-cost
hardware. We also showed an approach that is able to detect touches on
those objects.

Having detected a touch, we will now take the next step and see which
properties of a touch should be taken into account when interacting with
arbitrary objects.
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Chapter 6

Improving Touch on
Arbitrary Objects

In the last chapter, we presented a system that can track arbitrary objects
and detect touches on them. Following our“detect, improve, extend”theme,
we now want to get a better understanding of how people touch and how
we can use this information to create better user interfaces.

As a first step for a better understanding, we need to know how the user is Add the hand

posture as

contextual

information.

touching or holding on to the object. For example, consider a smartphone
was our object of interest. Currently, it only supports touches on its front
side. We could enhance the touch detection to the whole surface by using
our remote sensing approach or by adding capacitive sensing to its whole
outer sides (given industrial production capabilities). But what would that
enable?

For one, people could perform their touch input on the backside of the Use touch info

di↵erently

depending on the

di↵erent region of

the device.

smartphone (c.f. Figure 6.2), removing the typical occlusion problems on
small displays. Another option would be to use the sides of the smartphone
as a scroll bar (Figure 6.1). As we can see, these added touch surfaces
vastly increase the input capabilities of the device and support interesting
interactions. However, the more of the object’s surface reacts to touches,
the less room we have to actually hold the device without triggering false
touches. We could exploit device specific sensors such as gyroscopes to
di↵erentiate between di↵erent ways to hold the device and then only take
into account specific parts of the object’s surface. But this does not seem
like a generalizable approach.

What would be good instead, is to know which finger is generating which An algorithm to

infer the hand

posture from the

touch data.

touch, or even better, the full hand posture that is generating the current
finger (or palm) prints on the device. This is exactly what we will be
presenting in this chapter: an algorithm to infer the hand posture based
on the finger prints taken from arbitrary objects. This will allow us to do
an informed selection on which touch to respond to. We will also report
the result of an evaluation of the algorithm on a set of five di↵erent objects
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Figure 6.1: A person touching the sides of the smartphone with his thumb.
This input could be used to navigate the scroll bar.

and several users.

Before trying to solve it, we first need to define the problem: A personAlgorithm needs

to work on 2D

image input.

holds an object, e.g., a cube (c.f. Figure 6.3), and we want to infer the
hand posture from the finger prints. The finger prints will look something
like Figure 6.4, a set of surfaces with 2D information on them, independent
of the way we acquire them: For this example, we used water color. If we
use depth-camera-based solutions, we will not have colors but at least a
binary map. Capacitive sensing would also provide per pixel information
on the touch state.

Taking a look at the finger prints, you, as a human, should be able to haveHow to automate

hand posture

calculation?

a general idea of how the user held the cube and maybe come up with a
solution like Figure 6.3, which is how the user actually held the cube. But
how did you end up at that solution? What kind of heuristics did you
apply? And how can we do this automatized on a computer?

Before showing our approach, we first take a look at how others have tried
to tackle this and similar problems.



6.1 Related Work 65

Figure 6.2: Using the back of the device to create touch input. Solves
problems with occlusion from the fingers. Taken from Baudisch and Chu
[2009].

6.1 Related Work

The problem of inferring the hand posture has been tackled using di↵erent Very large

solution space.approaches. The di�culty is that the human hand is an articulated object
with about 27 degrees of freedom (DOF) (c.f. Lee and Kunii [1995]). This
is due to the high number of joints that can be rotated each in up to 3
dimensions as well as the 6 DOF for position and orientation. To make this
more clear: If we only take a look at 10 di↵erent rotation levels per joint,
we have a space of 1,000,000,000,000,000,000,000,000,000 possible solutions,
and the goal is to find the single correct one. Since not all joints can be
rotated independently, however, a variety of models exists that reduces
the DOF below 20, especially if you only take into account a subset of all
postures. For example Cobos et al. [2008] reduced it to circular grasping
and only needed 6 DOFs to reproduce more than 80% of the possible hand
postures.

Finding the right model is just one task, one also needs to process the input Mature algorithms

could be used if

we had input from

several cameras.

to find the right assignments of the model’s variables. There are a lot of
mature vision-based approaches which infer the hand pose from camera im-
ages, see Erol et al. [2007] for a recent overview. Although those approaches
nowadays provide reliable recognition and support a large number of pos-
tures, they all have in common that they need input from a camera with
full view on the hand and its grasp, whereas in our case we only have
information about hand contacts from inside of the grasp.

Another option, more similar to our goal, is to use di↵erent sensors on the Simplify it by

using external

sensors.

object itself as, e.g., GripSense by Goel et al. [2012] did. They use the
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Figure 6.3: A person holding a cube.

gyroscope, touch, and accelerometer data and were able to di↵erentiate
between a limited amount of discrete holding postures, e.g., one-hand vs
two-hand.

Lastly, we want to mention the work from Vatavu and Zaiţi [2013] who
solved the inverse problem: They inferred object properties such as shape
and size from the hand grasp. This could be useful for sanity checking
solutions for the original problem.

Conclusively, we did not find any work that was able to infer hand posture
from finger prints on arbitrary objects and will now present our approach.

6.2 Inferring the Hand Posture from Finger
Prints

Although the basic idea behind our algorithm is rather simple, the final
algorithm is not. Thus, we will first give a simple example in 2D to explain
the general concept. We will then show how to apply this to our 3D objects
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Figure 6.4: Fingerprints on paper cube (unfolded). In this example,
the fingerprints can be identified easily, and we can infer the rough hand
posture.

and give a step by step description of the algorithm on a higher level. Lastly,
details of each step will be explained.

Our general idea is based on the fact that the reach of each finger describes Each finger can

only reach a

distinct volume.

a distinct volume. For example, take a look at the big turquoise point cloud
in Figure 6.5. These are all the points that the tip of the thumb can reach
in 3D space. These points have been created by our hand model, which we
will explain in Subsection 6.2.1. The di↵erently colored clusters of points
resemble the reach of the other fingers (blue index, middle bright green,
etc.) As we can see, they only overlap partly.
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Figure 6.5: A visualization of the reach of the fingertips. Left: View from above. Middle:
View from front side. Right: View from the left side.

Now consider input from our touch sensors that looks similar to the left sideMap fingerprints

to fingers with a

maximum-

likelihood.

of Figure 6.6 after preprocessing and compare it to the right point cloud.
Taking a closer at the bottom left part with the “1” in the one image, we
see in the other image only turquoise points from the thumb. Thus it seems
reasonable that the touch on “1” came from the thumb because only those
points are in the vicinity. Similarly, “2” came from the index finger, “3”
came from the middle finger, etc. This means we found a solution for our
input (which in this case is also correct).

But we only got to this assignment of touch input to finger labels because
the touch data and our point cloud were nicely aligned. So the challengeHow to find the

coordinate

transformation?

is to find this “alignment” , i.e., a mapping of the 2D image points into the
3D point cloud of our model and then look in the local neighborhood for
likely points.

Our approach finds this alignment by “guesstimating” the position and ori-Guesstimate the

transformation to

hand coordinates.

entation of the object w.r.t. to hand origin, i.e., the hand wrist, and then
return a hypothesis, i.e., finger to touch point assignment. We iterate this
process to generate a lot of hypotheses and use several criteria to filter out
the wrong hypotheses and come up with the right solution. This method
works really well as long as we can find good (object dependent) criteria to
filter.

Here is the full rundown of our algorithm (c.f. Figure 6.7), we will explain
each step in detail afterwards:

1. Get touches from the sensor. Map them to single 3D points.

2. For every subset of five touches:

(a) Guess several hand origins o close to the center of gravity c of
the touches.

(b) For each origin:

i. Get �!co (input) and ���!
cmom (model).
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1

2

3
4

5

Figure 6.6: Left: Processed input from our touch sensors. Right: Point
cloud of our hand model, where each color represent the volume of another
finger. Select finger nearest to a touch.

ii. Find transformation T from �!
co to ���!

cmom.

iii. For each rotation ↵ 2 [0, 30, ..., 330]

A. Map touch points into the model and rotate around
���!
cmom by ↵.

B. Assign fingers to the touch points.

C. Evaluate assignment.

3. Return the assignments that fulfill our selection criteria.

6.2.1 An Anatomical Hand Model

Before starting the actual algorithm, we need to calculate where our fingers
can reach and store this for comparison with the input. For this, we created We create our

own kinematic

hand model.

a kinematic model based on the work of Cobos et al. [2008] and took the
actual bone measures and joint flexibility from the classic anatomy hand
book by Schmidt and Lanz [2004]. The exact numerical values can be
found in Appendix A. As can be seen in Figure 6.8, each finger has its own
kinematic chain and is not influenced by the movement of the others. In
an actual hand, this is slightly di↵erent because some of the fingers can
be tied to the same set of tendons, limiting their movement by each other.
This e↵ect can be approximated by reducing the overall flexibility of each
finger.

There are three reasons we decided for this approximation: (i) For a first Model each finger

independently.model, we do not need to model every hand posture, especially not the
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1 2 3 4

5 6

Figure 6.7: The algorithm to infer the hand posture. Rotation around the connection line is
omitted in this sketch: 1: Detect ellipses on touch sensor input. 2: Select five touches and map
to 3D coordinates. 3: Calculate center of gravity, guess hand origin. 4: Get transformation
from input space to model space. 5: Apply transformation to touch points. 6: Assign finger
labels to touch points.

Figure 6.8: Left: Labels for the hand model and in which direction the joints can rotate.
Right: Distances w.r.t. the wrist reference. Taken from Cobos et al. [2008].
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extreme hand positions because these are typically uncomfortable and thus
unlikely to be applied at all. (ii) Although well studied over decades, the
interactions between the fingers are still hard to model and additionally
depend strongly on each user because there is a great variation in which
tendons exist in the first place for one person and also how they are tied
together. (iii) Lastly, modeling of each finger separately greatly reduces the
solution space because we do not need to consider cross-combinations. In
other words, instead of 24 degrees of freedom for the whole hand, we have
four separate finger models with 5 DOF each (abduction and adduction
only on the “knuckle” joint) and one model for the thumb with 4 DOF.

If we now sample each DOF, i.e., the rotation angle of one joint, into Discretize rotation

angles in 5�bins.10 discrete steps, we can capture the reach of the whole hand with 4 ⇥
105 + 104 = 410, 000 points—a manageable amount. Additionally, we
can exploit the fact that for active flexion, the joint close to the finger tip
is always rotated two thirds to the joint next to it (Fahn and Sun [2005]),
thereby removing another DOF. We also sample not into 10 discrete steps,
but sample every 5�, resulting in varying number of samples per DOF.
These modifications result in a hand model consisting of 97323 points,
each point representing one possible position of the finger tip as dictated
by the kinematic model. At each point, we store (i) which finger belongs to
it, (ii) the transformed normal of the finger tip, i.e., which direction “down”
would be, and (iii) how the finger was held to create this position. This
data is stored in a kd-tree (Bentley [1979]) for fast neighborhood search.
Three views of this model were already shown in Figure 6.5.

6.2.2 From Touches to 3D Points

We start out with input from our touch sensors, which are a 2D image for Get touch ellipses

from sensor data.each face of the object (Figure 6.7 Step 1). We use standard computer
vision methods to process the input: removing noise of the image using
morphological operators, connected component analysis to identify di↵erent
blobs on each face, and ellipse fitting on those blobs to estimate the location
of the touch. This gives us the center, main-axis, and o↵-axis of the ellipse.
These are all in 2D image coordinates.

Since we know the shape of the object, we can transform this 2D data into Map to 3D

coordinates and

merge neighboring

touches.

the 3D object coordinate system (Figure 6.7 Step 2). Additionally, we also
store the normals of each face for later use. Ellipses that are very close to
each other, e.g., two that are on the same corner of a cube but on di↵erent
faces, are considered the same touch and merged together. In this phase,
we also filter out ellipses that are too big to come from a single finger and
are thus more likely to come from the palm of the hand.

6.2.3 Touch Subsets, Hand Origin, and Transformations

The previous step can give us more than five touches because, for example, Take any subset

of five from all

the touches.
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Figure 6.9: Calculating the center of gravity of the finger tips. Although the poses are di↵erent,
the center is in a similar spot. Especially, the line between it and the hand origin is very similar.

not only the finger tip but also the rest of the finger can create touch
ellipses. However, our algorithm can only map five touches to five finger
tips, so we need to reduce this number. For now, we did not find good
filtering heuristics that work for a variety objects, which is why we just
take any subset of five touches from the set of all the touches. Although
this can greatly increase the number of iterations, we will show in the
evaluation section that the inner loop is e�cient enough to be performed
very often.

As mentioned in the initial sketch of our algorithm, the major problem isCenter of gravity

is quite stable. that we do not know where the hand is relative to the object, i.e., we do
not know how to map our input into the point cloud of the hand model.
Instead of just guessing position and orientation of the hand (6 DOF) and
then iterating until we find suitable solutions, we exploit the fact that the
relation between the finger tips and the wrist (which we will refer to as
hand origin from now on) is constrained to a degree. Take a look at Figure
6.9: Although the finger tips can be at quite di↵erent positions, their center
of gravity is quite stable. Especially the line between it and the origin does
not really change even for drastically di↵erent hand postures. We will refer
to this lines as the hand orientation line because it constrains the overall
hand orientation to one degree of freedom: the rotation around the axis of
this line.

Additionally, the distance between the center of gravity and the origin is
also constrained. In an informal study we only saw distances between 4
and 15 cm.

Taking this altogether, we calculate the center of gravity of our input,Map input space

to model space

and try di↵erent

rotations along

the hand

orientation.

guess a hand origin around it in a constrained distance, and draw the hand
orientation line between the two (Figure 6.7 Step 3). We then do the same
for our model data (actually, we do this only once when creating the model)
and map the input into our model (Figure 6.7 Step 4,5). Lastly, we rotate
the points around the axis of the hand orientation line. We use a discrete
sampling of all possible rotation angles to remove this degree of freedom.
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6.2.4 Find Assignment and Evaluate

We finally have our input data mapped to our model and can now look How to assign

finger labels to

the touches?

which finger caused this touch. As mentioned in the first example, we are
mapping the five input touches to the five fingers of our hand model by
taking a look at the points in the vicinity (Figure 6.7 Step 6). These points
from the model are labeled with which finger they belong to. However,
contrary to the first example, the mapping between input and model is
not always straight forward because fingertips from the input can have
di↵erently labeled points in their vicinity. So, which tip gets to be labeled
as the thumb, which tip is the index finger, etc.? It would make sense
for each finger tip to pick the “label” that occurs the most in its vicinity.
However, labeling the first tip as, say “thumb”, removes this choice from
the other finger tips, and it could be that one of the other finger tip only
had “thumb” labels in the vicinity.

Instead of trying di↵erent heuristics, let us take a more formal look at the
problem. We have a set of five points (from the input), and we need to map
them to five labels (the fingers of the model). This mapping is bijective
because we need exactly one label for each point, and vice versa. This is
exactly the definition of a (perfect) matching (West [2008]) and thus easy
to compute. However, we are not only looking for any matching, but the
one that makes most sense. As mentioned above, we prefer assignments
where each finger gets the label that occurred the most.

Fortunately, this can be modeled as follows: For every finger tip, we have a Assignment

problem can be

reduced to a

matching.

node on one side of our bipartite graph. For every label, we have a node on
the other side of the graph. We now connect every label with every finger
and assign weights to these edges as follows: An edge connecting node left
with node right has the weight equal to the number of points labeled with
right in the vicinity of finger tip left. Solving this graph for a Maximum-
Weighted-Perfect-Matching returns the best possible assignment. We store
this assignment in our solution set.

Additionally, we calculate two values to see how good our solutions is. A Two metrics to

compare our

solutions.

histogram fit and an angle fit. The first measures how unambiguous the
matching was and is calculated as the product of the histogram fit of each
finger tip, which in turn is the ratio between the number of neighboring
points from the label we selected to the number of all neighboring points.
A value of 1 would mean that the vicinity of each finger tip only consisted
of points from one finger, i.e., labeled with the same number.

The second criteria, the angle fit, measures how aligned the touch was with
the surface. If you touch a surface with your finger tip with zero pitch or
roll of the finger, we consider this as a 1. If you touch the surface with your
finger turned 180�, i.e., with the nail lying down, this is a 0. To get to this
value, we compare two direction vectors, the one of the surface (looking out
of the surface) and the one of the finger pointing down. For the surface, we
take the value which we stored in the beginning of the image recognition
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and transformed similar to the finger tip itself along the whole pipeline. For
the finger tip direction, we use the tip direction that is in our model: Let’s
say we have touch “1”, and the matching told us that this finger tip came
from the “thumb”. We take the average direction of all the points from the
thumb that were in the vicinity of this tip and use this to compare against
the surface normal. Similar to the histogram fit, we calculate the product
of all the finger angle fits.

6.2.5 Final Filtering

All of the above steps are iterated as described in Listing 6.2 and generateFilter solutions by

angle fit,

histogram fit, and

occurrence.

a large amount of hypotheses. We filter them based on the two criteria by a
simple thresholding. Additionally, as similar touches-to-finger assignments
can occur, we can also consider only solutions that occur very often, thus
filtering in a maximum likelihood approach.

6.3 Implementation

Before talking about how well the whole algorithm works on real dataImplemented in

C,C++, and

Objective-C.

in Section 6.4, we want to point at some implementation details. The
algorithm itself was done in C/C++ and was less than 3000 lines of code,
whereas for visualizing the point cloud, the GUI and importing, exporting
data we used existing code in Objective-C. The connection between both
parts was realized with a C bridge. Overall, the implementation of the
algorithm is straightforward because each step consists of control loops,
generating point sets, and basic linear algebra, but some parts warrant
detailed explanations.

As mentioned before, the points of the hand model were stored in a kd-tree.We recommend

fast kd-tree and

matrix

multiplication

libraries.

As a significant amount of time is spent in performing nearest-neighbor
search, we would definitely recommend to use that or a similar data struc-
ture that supports this kind of access. We used the PCL library for this.
Another major part of the algorithm consists of vector and point transfor-
mations, which are done via matrix multiplications. We decided to use the
highly optimized uBLAS Library for these operations. In one of the later
steps, we want to find a weighted matching between input points and the
hand model based on the cardinality of the neighborhoods. There are a
lot of di↵erent libraries, but we used the lemon library that allowed the
calculation including data type conversion to be done in less than 20 lines
of code.

Throughout the algorithm, we used several constants and will now explainSome parameters

need to be

adapted to the

input.

how those were set. The first part that turns the scans of the object surfaces
into 3D points used several filters and thresholds. We first used a gaussian
smoothing filter with a kernel size of 15, then dilated 1 pixel. We then
filtered for orange color between (80, 50, 100)–(120, 255, 255) in HSV
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space. After ellipse fitting, we only considered ellipses with more than 200
pixels. In the last step of creating the touches, we merged neighboring
ellipses. We considered ellipses that are no farther apart than 90% of the
sum of their average axis to be neighbors. All of these above values would
need to be adapted for the specific sensor “hardware” in other projects.

As part of the actual algorithm, we generate a fixed amount of hand ori-
gins. Throughout our test we used 1000 origins. Here is a trade-o↵ between
accuracy and run-time speed. Similarly, we are looking in the 1 cm neigh-
borhood of a point when comparing input and hand model. The last trade-
o↵ parameter is how dense we create the initial hand model. We opted to
calculate one finger tip for every 5 degree of joint flexion or abduction.

6.4 Evaluation

As our approach should be applicable to arbitrary objects, we needed to Use water color

and cardboard as

touch sensors.

evaluate it on di↵erent objects. Although we introduced a tracking and
touch detection algorithm for those objects in the previous chapter, we
will pick another solution because our algorithm has one drawback here: It
currently supports only one camera and thus cannot capture touch contacts
on all sides of the object. Instead, we will pick a much simpler solution that
makes data acquisition more tedious but allows for great accuracy: We paint
the user’s finger with water color, let them touch the one-way object made
out of cardboard, cut and unfold the object, and scan its surface for further
processing (see Figure 6.10).

We selected five di↵erent objects: a cube, a laser pointer, a tissue box, a Users perform one

task with each

object.

can, and an iPhone. For those objects, we created cardboard versions with
the same shape and size (Figure 6.11). Throughout the study, users were
instructed to solve a simple task with the object, e.g., carry the box from
spot A to spot B, while using all five fingers. However, as not only the
shape and size a↵ord a specific posture, they always started with a real
object and solved the task with their left hand. Then they had to repeat
this very gesture with their water-colored right hand and the cardboard
version for capturing the touch.

We collected ethnographic data of the users (gender, age, length and width Manually labelled

the scanned finger

prints.

of the hand, physical impairments) and videotaped the interaction of the
users with the objects. After the study, we cut the objects open at prede-
fined edges and unfolded the objects. We scanned the surfaces and manu-
ally labeled all fingerprints to which finger (or the palm) and which finger
segment they belong. This gives us ground truth for comparison with the
output of our algorithm.

For the user study, we recruited eleven users, all right-handed, aged 18–36 Study was

performed with 11

computer science

people.

(M = 26.7, SD = 5.9), with 8 males and 3 females, all with a computer
science background. Their hands were similarly sized (Width: M = 10.4,
SD = 1; Height: M = 18.2, SD = 1.5), and the participants had no
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1

2 3

Figure 6.10: The process to acquire touch data for the evaluation. (1)
Paint the hand, (2) Let them touch the object, (3) Unfold and cut the
cardboard, then scan.

Figure 6.11: Five di↵erent object types used in our study: pen, smart-
phone, tissue box, can, cube.

physical impairments.

Results

The study gave us 11 ⇥ 5 = 55 di↵erent test cases, of which ten casesRemoved some

cases due to

missing

fingerprints.

needed to be removed from further analysis because the posture could not
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Cube Pen Box Can Phone

Figure 6.12: Results of the posture recognition algorithm. The columns are the di↵erent ob-
jects, the rows are the 11 di↵erent users. Red (light or saturated) represents incorrect solutions,
black represents correct solutions. Inside the rectangles, the X-axis is the histogram fit, y-axis
is the angle fit. Circle size represents number of occurrences of this solution. In most cases, the
algorithm finds at least one correct solution (among the wrong ones). We can also see that the
objects perform di↵erently.

be reconstructed manually, e.g., due to missing fingerprints on the object.
This leaves us with 45 cases to evaluate.

Performing the algorithm on the data from the user study with the afore- Taking any subset

of touches only

increases the

amount of

solutions by a

factor of 5.

mentioned parameters results in about 7 million suggested solutions. Merg-
ing duplicate solutions, we have 60, 833 suggested unique solutions, which
can be seen in Figure 6.12. The reason for those many suggestions is the
high number of finger prints that some objects had. The can, especially,
sometimes had 20 distinct contacts with the palm and di↵erent finger seg-
ments.

The merging reduces this number, but we still need to test any five subset
of all those touches. However, this is way less problematic than we feared
because selecting the wrong subset does rarely lead to a solution: Final data
shows that of all the 60 thousand solution sets, 12 thousand are based on
a set of fingerprints that belong to di↵erent fingers (fingertip or the finger
itself) and only four times more are using parts of the palm or one finger
multiple times.
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Cube Pointer Box Can iPhone

Figure 6.13: Scans of the objects from one user. The algorithm found correct solutions for all
objects but the phone.

In 27 of the 45 case (60%), the algorithm suggested a correct solutionBetter ellipse

detection should

lead to correct

solutions for the

failed cases.

among other wrong solutions. After taking a look at the individual scans
of the objects (c.f. Figure 6.13), we think that a more sophisticated ellipse
detection would have allowed us to generate correct solutions for a lot more
test cases.

For the cases where the algorithm did give a correct solution, the question isCriteria

thresholding often

returns good

results.

how good can it di↵erentiate the correct from realistic, yet wrong solutions.
We suggest a filtering based on the three thresholding criteria as mentioned
in the algorithm description: the histogram fit, the angle fit, and how often
the single solution occurred. Although there are about a thousand times
more wrong than correct solutions, the filtering can remove 87% of those
wrong ones while removing less than 10% of the correct solutions. We can
tailor a filter to one specific object. This works best for the box because
72% of the filtered solutions are correct, the other objects go as low as 5%
accuracy. Our interpretation is that it works so good for this object because
a) it has very few fingerprints (and especially only few palm contacts), so
we do not base our calculations on the wrong selection of fingerprints and
b) it has a rather natural holding gesture, making our histogram fit and
angle fit work very well.

As we envision our algorithm to become part of a standard touch detectionWith a real-time

constraint,

detection

accuracy is only

halved.

pipeline, not only accuracy but also run-time is of interest. For objects such
as the can that can have a large number of touch contacts, the algorithm
takes hours to complete, making it not usable. However, if we have an
object wit typically few touches, e.g., the box with less than ten touches,
the algorithm is really fast: It takes only 75 seconds to analyze the touches
of the 11 users. If we now reduce the number of guessed origins from 1000 to
50, it only takes 3.5 seconds for 11 users, i.e., 310ms for the touch detection
of a single set of finger prints. However, this change halves the detection
accuracy to 35%.

Having seen that the algorithm is able to produce valid solutions for a



6.5 Limitations & Future Work 79

variety of objects, we will now take a look at how we can improve it further
to give reliable detection for any kind of object given real-time settings.

6.5 Limitations & Future Work

We will sort our future steps by following along the current processing
pipeline of the algorithm.

When generating the model, we used a sampling stride of 5� along each
joint. This was based on initial testing, but other values could give a better
trade-o↵ of detection vs. run-time. The current model itself only takes into Physics-based

model could

detect collisions.

account the reach of each finger, but does not check whether a bone of one
finger would cross a bone of another finger to achieve a specific gesture.
We could add this as part of a physics simulation that would also consider
the object as solid and rigid. This would mean we could check whether the
fingers were able to hold this posture without “intersecting” the model.

During the initial recognition of ellipses, we could use more sophisticated Better ellipse

detection could

reduce run-time

drastically and

increase accuracy.

methods, such as 2D template matching, to ensure that we are not consider-
ing prints of the palm as prints of the finger. This would reduce the number
of touches to be tested, giving us a lot less invalid solutions and especially
reduce the run-time significantly: We take any subset of five touches from
all touches, which means that we have

�n
5

�
iterations, a term that grows (or

shrinks) exponentially with the number of touches n.

In the evaluation, we guessed 1000 origins for each set of touches and Explore other

filtering criteriasearched in the 1 cm neighborhood of the model. This worked well but
were set arbitrarily. A smarter solution that maybe adapts to the model
could lead to better results. Lastly, we could explore di↵erent filtering cri-
teria in addition to our angle and histogram fit. They worked well but were
not sharp enough to always distinguish correct solutions from bad ones.

6.6 Chapter Summary

In this chapter, we showed that interaction with arbitrary objects requires
a generalized touch detection pipeline. We suggested an approach to infer
the hand posture from the finger prints on the surface of the object that
was based on an anatomical hand model describing the reach of each fin-
ger. Our evaluation showed that the algorithm always returns the correct
finger assignments, yet it depends on the object whether the algorithm can
distinguish between correct and invalid assignments.

We now can rely on the framework from Chapter 5 and know that we could
infer the hand posture from the touches. This contextual information helps
us to improve the touch: Depending on the hand pose, we only react to
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specific fingers and ignore the others. In the final chapter, we can now
add another piece of information: the object itself. This creates a new
interaction metaphor—Instant UIs—and truly extends the touch far beyond
its current usage.
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Chapter 7

Extending Touch on
Arbitrary Objects

Following our overall theme of “detect, improve, extend”, we managed to
detect touches on arbitrary objects in Chapter 5 and got a better under-
standing in Chapter 6 on how di↵erent people touch objects and how those
hand postures could be inferred. We will now apply this knowledge to en-
hance interactions with arbitrary objects by taking into account the object
themselves and not only considering them as a multi-faceted interactive
surface. Part of this work has been done in collaboration with the mas-
ter student Christian Corsten and presented at ITS 2013 (Corsten et al.
[2013]).

Although our framework is capable of detecting touches on arbitrary ob- Take into account

the object itself.jects, we wanted to focus the set of objects a little bit to have a more
manageable variety of sizes, shapes, and object materials. Thus, we take
a closer look at objects that exist in our vicinity: everyday objects such
as pen, paper, staplers, and rulers. This has the added benefit that we
can rely on the design knowledge that was used to create those objects for
similar or di↵erent tasks.

First, we will take a look at this design knowledge and how it shapes ob-
jects around us. Then, we will give a more profound definition of Instant
UIs, present a diary study that shows which objects actually are in our
vicinity, present results from two initial studies that showed us how people
envisioned to use such a system, and finally present our final study based
on our framework in Chapter 5 that shows how well people could repurpose
everyday objects as input devices.
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7.1 History, Current State, and Future of Inter-
action Design

Norman wrote in 1988 that ”..the term a↵ordance refers to the perceived
and actual properties of the thing, primarily those fundamental properties
that determine just how the thing could possibly be used. [...] A↵ordances
provide strong clues to the operations of things. Plates are for pushing.
Knobs are for turning. Slots are for inserting things into. Balls are for
throwing or bouncing. When a↵ordances are taken advantage of, the user
knows what to do just by looking: no picture, label, or instruction needed.”
Norman [1988].

These a↵ordances have been exploited for product design for decades. InA↵ordances have

been exploited for

product design.

HCI, we closely try to resemble the look and feel of real world objects to
ease the learning of a UI: Buttons are plate-shaped, and when clicked, they
are pushed in, rotary controls look and work like knobs, etc. Although this
has been proven to ease the learning of a UI, the question arises why the
user needs to deal with “bad copies” of real world objects instead of just
using the original. We think that from an interaction point of view, there
is no reason.

Taking a closer look a the hot topics of HCI research over the last 50 years,A design contract

was established

over time.

we can see: command line input, GUI (using mouse keyboard), GUI using
touch, and gestural input. All have in common that HCI constrains itself
to one single I/O metaphor or even device, making it easy for the designer
to expect input and prepare the application logic accordingly. The user,
however, had a rough start, the command line expected him to know the
commands, i.e., the input, beforehand and also what they did. This im-
proves with GUIs because they provide visual hints about application state
and how you can manipulate it, e.g., press a button. Over time, a design
contract was established between user and designer, so that the former
knew what will happen, e.g., when he clicks on a button with a disk on it.
Then, to support mobile and smaller form-factors, it was necessary to mix
input and output space: the touch era began. Here, the application could
display content or provide buttons. Additionally, physical manipulation of
the content was possible: pan, rotate, and zoom. This time, the input was
constrained to touch, but most of the input options were known from the
GUI world or relied on input metaphors similar to the physical behavior of
a sheet of (stretchable) paper. This ends the history of the single “device”
input history (while considering mouse+keyboard as one device).

Nowadays, (3D) camera-based in-air gesturing removes the device at all.Gesture interfaces

do not a↵ord

anything.

The designer, yet again, defines a “good” set of input gestures, but the user
is back in the area of the command line and does not even have a keyboard.
He does not know what commands he can enter and not even how he can
enter it. Visual feedback can give hints on how the user should perform
the input, yet still the mapping between a “Z” gesture and the resulting
command might feel arbitrary.
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Instead, we suggest to take a di↵erent route—not a single device, and not Use everyday

objects as input

controllers.

no device—pick any device! Even a two year old knows how to interact with
a cube, so instead of making it easy for the designer to know the input,
make it easy for the user to create the input; let the designer take care of
input interpretation for the trivial cases and give easy means for the user to
program a device. Our existing framework already supports object tracking
and touch detection, and so we only need to think of how to interpret the
input.

Figure 7.1: A presenter forgot to bring the presentation remote. Left:
She repurposes a pen as clicker and pairs the keyboard shortcut for ad-
vancing the slides with the pen by pushing both key and pen button simul-
taneously. Right: The presenter advances the slides by pushing the pen
— an almost identical substitute for the presentation remote. Taken from
Corsten et al. [2013].

Let us give an example of how this repurposing of everyday objects as Example: Use pen

tip as a remote

control.

substitute for an existing dedicated controller could look like: Imagine a
presenter who forgot to bring her presentation remote. Without the remote,
she would be rooted to the computer to control the presentation, thereby
limiting her freedom from using expressive body language. To improvise,
she grabs a pen, pushes its button while hitting the “next”-key on the
keyboard to pair the control. From now on she can press the pen button to
advance the slides remotely (Figure 7.1). This “clicker” is unobtrusive and
can be used eyes-free. We call such improvised and ubiquitous controllers
Instant User Interfaces.

7.2 Instant User Interfaces

We define an Instant UI as: “a user interface that lets a user select a physical
object within reach to control a technical system by establishing mappings
in an ad hoc manner from object to system based on end-user programming.
Instant UIs map a↵ordances of physical objects to their digital counterparts
such as buttons, knobs, or sliders.” (Corsten et al. [2013], Figure 7.2).

The general idea of combining real world and computing has been explored UbiComp,

tangible and

organic user

interfaces are

closely related.

for a long time in HCI:
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Figure 7.2: Everyday objects, such as a juice carton, a pen, or a hole
puncher, provide controls with physical a↵ordances (rotary knob, push but-
ton, slider) as used in dedicated input devices, such as a mixer. Taken from
Corsten et al. [2013].

1. Ubiquitous Computing suggests that computing devices should
“weave themselves into the fabric of everyday life” (Weiser [1995]).
Similarly, Instant UIs use everyday objects but do not need fabri-
cated objects.

2. Tangible User Interfaces (TUIs) “couple digital information to ev-
eryday physical objects” (Ishii and Ullmer [1997]). TUIs are similar
in the fact that they rely on real world objects rather than digital
artifacts, but they also require specially fabricated objects.

3. Organic User Interfaces, as suggested by Holman and Vertegaal
[2008], consider objects with non-planar displays and inputs as do
Instant UIs, but focus on a built-to-purpose approach.

7.2.1 Scenarios

Our initial example with the pen during the presentation is just one scenarioSeveral scenarios

can benefit from

InstantUIs.

where the ad hoc nature of Instant UIs can be beneficial:

Improvisation. When a controller is missing, the user can pick up a
nearby object and repurpose it like the missing control.

Convenience. Even if the controller exists, it might be out of close reach.
Instant UIs can replace them for a more mobile or remote use and can be
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placed anywhere. Imagine lying in your bed at home, but you forgot to
turn o↵ the lights, and the switch is at the door. You could repurpose a
stapler once and put it next to the bed, such that you can operate the light
whenever desired even in the dark by pushing the stapler lever.

Simplification. Controllers such as a TV remote often provide a plethora
of input options, although only a small subset of controls might be required
for most users. Instant UIs can be used to select this subset and only copy
those controls to one or multiple objects. This allows us to use objects with
better ergonomics and clearer a↵ordances.

Duplication. Instant UIs can also be used to create physical copies of
existing controllers, such as creating additional joysticks for a multiplayer
game console.

7.2.2 Alternatives to Instant UIs

All of the above scenarios could be supported by alternative technologies,
and we will present some of them now.

Touchscreens, e.g., used in smartphones, combine direct manipulation with Other options can

only partly

support our

scenarios.

a dynamic UI, allowing us to flexibly adapt to di↵erent use cases. Since
smartphones are carried around by the user, the controller substitute is in
direct reach. However, due to their flat screen, smartphones lack physical
a↵ordances and tactile feedback.

Speech interfaces are an obvious option for an ad hoc interaction; however,
using spoken commands may not always be appropriate in some situations
due to background noises or social awkwardness. Another option is to use
hand gesturing in mid-air. However, this faces similar social awkwardness
and, more importantly, problems of accidental triggering of events.

7.3 Related Work

Instant UIs want to make the user independent of a dedicated physical Become

independent of a

dedicated physical

controller.

controller and there are two ways to achieve this. You can simply eliminate
the physical controller and perform input via other modes, or you can
repurpose any object as a physical controller.

As a hybrid of the two options, people can perform interactions on their Perform touch

input on arbitrary

surfaces without

considering

a↵ordances.

body, such as touches in the systems Skinput by Harrison and Tan [2010]
and Imaginary Phone by Gustafson et al. [2011]. In WorldKit by Xiao et al.
[2013], the user also uses his hands to perform input, but is not restricted
to its own body but can define any surface in the vicinity as an interactive
touch area. Another object is to perform those gestural input in the air,
as, e.g., Gustafson et al. [2010] did. The general problem here is that
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the interactive areas are not built on physical a↵ordances of the objects
and lack tactile feedback (especially with mid-air gesturing). Skinput and
Imaginary Phone are independent of the user’s visual attention but require
her to recall the spatial layout of the invisible interface from memory during
interaction and may therefore increase cognitive load.

Opportunistic Controls by Henderson and Feiner [2008], Smarter ObjectsMarker-based

tracking cannot

deal with

occlusion.

by Heun et al. [2013], and iCon by Cheng et al. [2010] exploit existing phy-
sical controls or objects in the vicinity that are repurposed as input devices.
For example, Opportunistic Controls exploit unused a↵ordances of physical
items in a mechanic’s work space, such as ripped pipes or screws. However,
they strongly rely on the use of markers which cannot be recognized when
they are occluded. More related work can be found in our paper (Corsten
et al. [2013]).

Although the idea of repurposing objects has been explored by a few
projects in the past, the projects relied on markers which significantly hin-
dered its actual use and the evaluation of systems.

7.4 Everyday Objects

As a first step in exploring appropriation of everyday objects, one needsDiary study to

find out about

everyday objects.

to know what common objects people will carry around or find in their
surroundings. Therefore, we conducted a diary study.

7.4.1 Procedure

In this study, participants were asked to take pictures of everyday objectsParticipants were

asked to take

pictures of

everyday objects.

in their reach during a regular work day and during a day while not being
at work. They were asked to take multiple photos at di↵erent times of the
day, which could result in di↵erent locations or events. Each participant
was o↵ered a text message notification service that reminded them to take
pictures six times a day.

7.4.2 Analysis

For each participant, the photos were analyzed and categorized regardingPhotos were

analyzed and

categorized.

objects that were in reach in the user’s work environment in contrast to
objects that were in reach while not being at work (e.g., while being in the
bathroom, doing sports, having a drink, etc.). The photos were stitched
into related scenes, and all object shapes were traced. Subsequently, we
created a list of identified objects for each participant regarding photos
taken during work hours vs. pictures taken during leisure hours. Multiple
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occurrences of the same object, e.g., stack of hand towels, pile of paper,
etc. were counted as one occurrence for a user.

7.4.3 Participants

A total of 19 users, two females, took part in the diary study (aged 20-62, 19 Participants

with di↵erent

background.

M = 29.26, SD = 8.93). The users had various professional backgrounds
represented by a mayor, an architect, a project manager, a student of arts, a
student of business administration, participants involved in media, and one
person from the automobile industry. All other participants were computer
science students or research assistants. Seven participants made use of the
notification service.

7.4.4 Results

All but four participants took photos on both days. A total of 360 pictures
were analyzed, and 144 di↵erent objects were identified, which were merged
into a set of 98 distinct object categories. Hazardous objects, such as a
razor, were removed from the result set.

Of all 19 participants, 16 (18) participants took photos in the working
(leisure) environment. This led to 67 (88) di↵erent object categories. An
overview of the most frequent objects can be found in Table 7.1.

Considering all counted objects, we have 57 matches of occurrence (of at Results confirm

our initial

expectations.

least once) between working environment and leisure environment items.
Objects in the work environment were mostly desktop items typical for
o�ce jobs. Objects in the leisure environment were typically found in the
living room, bathroom, or kitchen. In addition, among these objects, seven
items were things participants usually carry with them: clothes, phone, pen,
key, wallet, bag, watch. Interestingly, participants tended to photograph
carried items more often while being in their leisure environment compared
to working environment (seven vs. three items on average) although these
objects are completely independent of the environment. Our guess is that
participants were more busy during work times and that they felt that their
personal (and mobile) objects did not belong to the work environment. The
low number of phones was probably due to the fact that most participants
(16) used a mobile phone with an included camera for taking the pictures,
which consequently cannot appear in the photos.

7.5 Appropriations

While developing the tracking system in Chapter 5, we ran a Wizard-of-Oz
study to see how people would use objects to control devices. This could
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Object Occurrences and Scenario
Object Name Leisure Work Overall

Table 16 12 28
Container (◆, �) 15 10 25
Paper (◆, �) 10 13 23
Bottle (◆, �) 12 10 22

Drinking Vessel (◆, �) 11 9 20
Pen (◆, µ, �) 8 10 18

Underlay (◆, �) 11 7 18
Cable (◆, �) 7 10 17
Book (◆, �) 7 9 16
Laptop (�) 5 10 15

Phone (◆, µ, �) 9 6 15
Cloth (◆) 12 2 14
Cutlery (◆) 11 3 14

Clothes (◆, �) 10 3 13
Plate (◆) 11 1 12
Chair 5 6 11

Keyboard (�) 2 9 11
Bag (◆, µ, �) 6 4 10
Desk Lamp (◆) 7 3 10
Wallet (◆, �) 7 3 10
Key (◆, µ) 8 1 9
Mouse (�) 2 7 9

Spray Can (◆) 7 2 9
Cushion (◆) 7 1 8
Display (�) 3 5 8

Door 6 2 8
Puncher (�) 2 6 8

Remote Control (◆) 8 0 8
Stapler (�) 0 8 8
Watch (◆, µ) 6 1 7
Stick (�) 0 6 6

White Board (�) 0 5 5

Table 7.1: This table shows how often an object category occurred
throughout the first study and is restricted to occurrences greater than
4. The greek characters show in which scenario of the second study the
objects were used: � for standard desktop GUIs, µ for mobile, and ◆ for
indoor scenarios.
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allow us to find out how everyday objects are used for appropriation and
which gestures people apply to them. We will present its setup and the
main results, full details can be found in Corsten [2012].

7.5.1 Setup

This user study covered qualitative aspects only. It was a combination
of think-aloud, recorded observations, and a post-study questionnaire. In
order to avoid blind angles, cameras were set up from two perspectives.

The study dealt with scenarios consisting of a sequence of simple tasks, such
as “Go to next slide” or “Go back one slide”, the participant was asked to
solve using everyday objects. The scenarios were sorted in groups: Desktop
for standard desktop GUIs, Mobile, and Indoor.

The objects that were used in this study were identified beforehand from a Objects used as

identified

previously.

set of 360 pictures taken by people in two locations: at work and at home
(Fig. 7.3). Due to variation in physical a↵ordances, we included di↵erent
objects variants in this study, e.g., for a drinking vessel we included a
drinking glass, a porcelain cup, and a paper cup.

The scenarios were presented using sketched slide sets. Although our
Wizard-of-Oz system did not feature realtime feedback, the slides were
updated after the user performed a task.

7.5.2 Scenarios

Desktop scenarios consisted of simple GUIs with: (i) three buttons, (ii) Scenarios were

presented on

slides.

three radio buttons, (iii) two check boxes, (iv) two rotary buttons, (v)
three horizontal color sliders, and (vi) a spreadsheet with two columns, ten
rows, and a horizontal and a vertical scroll bar. Users had to switch focus,
activate buttons, change states, and navigate. The single mobile scenario
asked the user to manipulate a 3D rendering of glasses. Finally, the indoor
scenarios asked the user to (i) navigate presentation slides, (ii) control a
TV, (iii) play a 2D jump’n’run game, and (iv) operate lights.

7.5.3 Procedure

First, the participant was given the chance to inspect all everyday objects Initial warm-up

phase.used in this study. All objects were placed on tables and on a window sill
in a random layout. The participants had a good overview of all objects
from a sitting or standing position. Having explained that our Wizard-of-
Oz system is capable of recognizing any interaction with the objects, the
first block of scenarios was presented to the participant. Tasks were faded
in one after another such that the participant was unable to see which
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Figure 7.3: Everyday objects used in the a↵ordance study for the
(D)esktop-, (I)ndoor-, or (M)obile scenario. Red arrows show the actual
manipulation behavior: The object was used at least once in this way.
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tasks were to follow. The user was asked to pick one or more objects and
to demonstrate which gesture she would apply to the items. New objects
could be picked at any time.

After each scenario, all objects were put back in order to refresh the setting. Counter-balanced

scenario order.The order of the scenario blocks was counter-balanced. Also, the sequence
of scenarios within a block was randomized. All participants evaluated all
scenarios and filled out a post study questionnaire. The whole process took
about 40 minutes per person.

7.5.4 Analysis

For reasons of spontaneity, only the first solution presented by a user was Only consider first

solutions.regarded. Incomplete solutions were filtered out in case the user also pre-
sented a complete set of mappings for the scenario. For each scenario, we
identified the most frequent object-gesture-action mappings, also referred
to as patterns: Whenever the same task solution was observed in three or
more users, it was denoted by a pattern.

Pattern Example: The user is about to hold a presentation but forgot to
bring the remote control. Tasks: 1. Go to the next slide, 2. Go one slide
back. Patterns: (a) ball pen: 1. Push the pen button once, 2. Push the pen
button twice (b) mobile phone: 1. Push the right button on the directional
pad, 2. Push the left button on the directional pad, (c) hardcover book : 1.
Flip one page forward, 2. Flip one page backward.

7.5.5 Results

18 participants, aged 20–28 (M = 24.39, SD = 2.15), 16 male, participated
in this study. Besides a teacher, only students participated in the study, 15
from computer science.

Most users were able to find task solutions without experimenting with Most users were

able to find task

solutions.

several objects. Ten out of 18 users handled the tasks by using just one
object per task. Using multiple objects simultaneously was rare.

In the desktop scenarios, participants principally tried to imitate the miss- They often used

physical

instantiation.

ing input device through button-equipped everyday objects (Fig. 7.4).
However, one third of the testers tried to rebuild a GUI with objects by
looking for similar shapes and by adopting the layout of the UI widgets.
For instance, in the presentation scenario, three testers appropriated the
pages of a book as physical instances of the virtual slides. We define this as
Physical Instantiation: It is the act of using a physical object as repre-
sentative substitute of either a physical or virtual target for remotely directly
controlling it. Manipulation of the substitute is supposed to identically e↵ect
on the remote original.



92 7 Extending Touch on Arbitrary Objects

This behavior was most prominent for the rotary buttons and sliders, theContinuous

controls were

often instantiated

with one object.

only continuous controls. As regards the rotary buttons, 15 users needed
two objects to solve the tasks; for the slides, seven used three objects for
controlling the widgets. Thus, these two scenarios forced most participants
to physically instantiate each UI widget with a single object. Moreover,
selecting the right widget for manipulation felt much easier by applying
Physical Instantiation: “Selection [of each rotary button] is di�cult. I can
solve that by picking two distinct items and turn each of them individually.”
said one of the participants.

In case Physical Instantiation was not applied, participants used either a
special object or a special gesture to sequentially switch the focus from one
UI widget to another.

Figure 7.4: Focus change usage patterns for desktop scenarios. Many par-
ticipants rebuilt the UI by applying Physical Instantiation. Others pointed
or turned to change the focus. Rotary button and slider were perceived as
continuous controls. This resulted in a higher tendency to rebuild the UI.

In the desktop and indoor scenario, shape was probably the most importantShape was an

important object

property.

object property for deciding which object to pick. Participants imitated ei-
ther the shape of the input controller or the target that was to be controlled.
Besides, some participants looked for colors on objects that could be asso-
ciated with a certain action: some looked specifically for the red button to
shoot flames in the jump’n’run game.
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Pointing was a natural way of activating an object. It was used to indicate
that object manipulation should have an e↵ect on the system that was
being pointed at. Physical Instantiation was more likely to be applied in
case continuous input was expected, such as slider navigation or rotation.

After the study, we asked participants to assess the ease of (a) finding
objects for a given scenario and (b) subsequently finding gestures to be
applied to them for solving the tasks. Users easily found object-gesture-
action mappings for all but one task: manipulating a spreadsheet, which
seems to be the ceiling for this kind of interface. We do not see Instant UIs
applicable to even more complex tasks.

7.6 Live Interactions

We performed another pre-study using a very limited depth-tracking ap- Instant UIs span a

vast design space.proach that did not allow object movement. Despite the limitations, we
got very interesting results. The patterns which objects people used and
how they used them varied a lot between application context, task, and
each user. This means Instant UIs span a vast design space, and a single
exploratory study will not result in facts that can be applied to any set of
objects or context.

Still the system must know how to interpret the input of the user. Artificial End-user

programming for

mapping input to

the interface.

intelligence approaches using context information might be possible, but
we think that end-user programming is a good solution here. Thus, we
performed a comparison of three di↵erent ways of end-user programming
for everyday objects, i.e., using speech, by demonstration, and with a GUI.
This will also show us how users experience the new interaction metaphor
of Instant UIs. The full details of the study can be found in our paper
(Corsten et al. [2013]).

7.6.1 Setup

As a first step in the study, the user had to program the system by telling Speech,

Demonstration, or

dedicated GUI.

the system how to establish mappings from object to target interface, or
by performing gesture on the object while simultaneously performing input
on the dedicated control, or by using a dedicated GUI (Figure 7.5).

During the study, users had to participate in two scenarios and perform Navigate slides

and operate a

light.

a task: (A) navigate a slide-based presentation using a clickable pen, (b)
operate a dimmable light using a mug (Figure 7.6). For the pen, the user
could choose from a push (touch object for 400-1200ms) and a push-and-
hold (touch longer than 1200ms) gesture and map those to the commands
“next slide” and “previous slide”. For the mug, the user could choose be-
tween the handle facing the user and it facing away from the user, and map
these positions to“light is at maximum brightness”and“light is turned o↵”.
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Figure 7.5: GUI for programming the pen as remote. Pointing with the
object at the GUI controls a red cursor with which the user selects a pen
gesture visualized on the left side of the GUI (push, push-and-hold) and
maps it to an action from the target interface (right side: next slide, previ-
ous slide). Established mappings are indicated with a line. Programming
was finished by selecting the “start” button at the bottom. Taken from
Corsten et al. [2013].

7.6.2 Results

All participants were able to complete the task in the expected time andAll participants

could program the

objects and finish

the task.

were intrigued by the Instant UI concept. The post-study questionnaires
also revealed that participants had diverse preferences for the di↵erent pro-
gramming methods. Programming the pen in all three conditions was con-
sidered a simple approach by participants: “It was simple—no complica-
tions.”. Programming the mug, however, was considered more di�cult for
demonstration and the GUI because the participants had to rotate the
mug on a traverse plane while rotating the rotary knob on a frontal plane.
Synchronized pushes (pen and keyboard), however, did not cause any dif-
ficulties for the users.Discrete controls

were easier to

program than

continuous

controls.

Hence, programming by demonstration for continuous controls is more dif-
ficult than for discrete controls. Another di↵erence became obvious during
the testing: the mug was heavier, and thus it felt more tedious to control
the demonstration GUI with it by pointing.
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Figure 7.6: Setup of the system for the light scenario (left to right):
Kinect, display, mug, rotary knob. The user is programming the mug by
demonstration: mug and rotary knob used to control the light are rotated
at the same time. From now on, the user can rotate the mug to dim the
light visualized on the screen. Taken from Corsten et al. [2013].

7.7 Future Vision and Challenges of Instant UIs

Our system shows one way to implement Instant UIs: a depth-based cam- Add projectors to

provide feedback

on the repurposed

object.

era installed in a room. We could easily extend this by adding directed
projectors, microphones, and speakers similar to the work by Zerroug et al.
[2011]. This system could assist users with visual and audible feedback dur-
ing object programming mode, e.g., to confirm that a mapping has been
established. Interaction with the remote system using the repurposed ob-
ject does not need additional feedback, as long as the remote system (e.g.,
a light) already provides feedback (light is on/o↵).

Currently, the end-user programming “framework” is strongly tailored to Object descriptor

baked into the

object.

our objects and devices, and the question is how we should support the
plethora of objects and devices that exists. Sterling [2005], e.g., envisions
that within the next 30 years, each physical object, be it a bottle, a light
switch, or a TV, will have a digital object descriptor or “aura”, that can be
stored on an RFID chip attached to the object. We could store a 3D model
of the object shape as well as a↵orded controls, such as knobs, buttons
etc. If the object is a technical device, we could add an API descriptor for
functions that can be accessed or called from outside.

Considering the current limitations, the main challenge is to di↵erentiate Di↵erentiate

between

repurposed and

regular use.

between repurposed and regular use of an object. In general, this can be
solved by setting the device into a mode by using a specific gesture. How-
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ever, this is not always necessary because there can be significant di↵erences
how people use the object. Consider a stapler: For stapling paper, you will
smash the stapler with your full fist. Instead, for appropriated use, we only
saw people touching the top part gently in our studies. Here, the system
can easily distinguish the two.

In the study we saw that particularly demonstrating the continuous input“Beautify”

end-programming

input.

was challenging for some users. Smoothing this input could be one option
to ease the task for the user. Another question is how the user can enter the
enter programming mode? Similarly to repurposing the object, this could
be done either explicitly by using a dedicated gesture or implicitly when
the system detects that the user manipulates the object in an untypical
way.

7.8 Chapter Summary

In this chapter, we wanted to capture the expressiveness of touch on ar-
bitrary objects. We did so by introducing a new interaction metaphor—
Instant UIs—that makes use of the object specific a↵ordances to more easily
align the user’s expectations with the object’s reactions to touch input. We
found out that in this context of mobile objects (in contrast to the immo-
bile tabletops of the earlier chapters), the position and orientation of the
object can and should also be taken into account because this was actually
expected and preferred by the users. Additionally, we saw that in this very
general interaction space, we can make use of end-user programming, e.g.,
by demonstration, to allow for quick setup of the objects.

Having seen how far we can and should extend the concept of a touch, we
will now combine the results from the previous chapters and answer the
question “What is a Touch?”.
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Chapter 8

The Expressiveness of
Touch: A Conclusion

The overall goal of this thesis was to widen the communication channel Widen the

communication

channel.

between humans and computers in the context of touch interfaces in or-
der to reduce erroneous touch detection and allow for more natural input
metaphors. We achieved this by improving current knowledge and touch
systems on three levels—Detect, Improve, and Extend—while continuously
reevaluating what should be taken into account for touch interactions.

We started out in the domain of interactive tabletops and realized that Capture

expressiveness on

tabletops.

we have a rather poor understanding of how people perform touches and
that we do not know whether we can apply sophisticated touch models
from smaller form factors. After building a high-precision touch detection
system, we were able to find out how the body posture a↵ects the touch
behavior and how touch sequences are di↵erent from single touches. Us-
ing our interactive tabletop as a 3D display shows another problem with
the current use of touch because the direct manipulation metaphor con-
flicts with a perspective correct rendering. We did a thorough selection of
alternatives and evaluated them.

In the second half of the thesis, we no longer restricted ourselves to touch on Capture

expressiveness on

everyday objects.

interactive tabletops but considered arbitrary objects as touch surfaces. For
this, we developed a more general touch detection approach and suggested
an algorithm to infer the hand posture from the raw touch data. As closure
of the thesis and outlook of what the future could hold for interactive
surfaces, we introduced the concept of repurposing everyday objects as
input controllers.



98 8 The Expressiveness of Touch: A Conclusion

8.1 What is a Touch?

In the introduction, we posed the overarching question of this thesis: “What
is a touch?”. We came to conclusion that current applications interpret this
input as a (x, y) coordinate. However, throughout the thesis, it became
clear that this simple model is not able to capture the expressiveness of the
touch and that we should extend it.

In “Improving Touch on Tabletops”, we also took into account the previousContextual

information can

improve touch

accuracy.

touch location. This allowed us to improve touch accuracy. Similarly, we
saw that di↵erent body postures result in systematic errors which could be
used to predict errors, i.e., also increase touch accuracy.

We can not only use contextual information to improve the input but alsoUse head position

as input channel. as an additional input channel. We did this in “Extending Touch on Table-
tops” by tying the display rendering to the head position, resulting in a 3D
rendering. However, there we saw that both touch input and head position
have an impact on the position of the object rendering. This concurrent
input led to interaction errors. We solved this concurrency problem by al-
lowing parallel input, yet slowly reducing the o↵set created by the one that
is currently changing less.

In Chapter 3, we added the finger ID as an additional property of the touchInfer hand posture

from touch

information.

and provided means to infer the hand posture. This allows application to
cater to the fact that the thumb and the other fingers have a di↵erent reach.
Additionally, the hand posture combined with head position allows us to
know which parts are occluded of the object and display information on
the visible parts. Also, we can di↵erentiate to which fingers to react at all
because some can be just part of the holding gesture.

So far we, only added attributes to our initial (x, y) touch model: moreFrom a focus on

2D touch to

touch as one

input channel to

touch as context.

information about the finger contact surface, the hand posture, and the full
body posture. However, in Chapter 7, we are no longer interested in the
exact (x, y) and can replace it with the information which part of which
object was touched. Obviously, we need the (x, y) for calculating the touch
region, but the user does not care for this: The a↵ordances of the object
influence which areas are considered as one area by the user and thus frame
his mental model of the interaction.

With this new interpretation of “What is a touch?”, we can divide the
history of input into three stages: We came from the desktop GUI world,
where mouse and keyboard provided ways to manipulate a cursor residing
at a position (x, y). Then, HCI moved to GUIs on touch, or pen-based
surfaces, removed the cursor, and switched to a direct manipulation at a
specific (x, y) position. And now we are slowly leaving this coordinate-
based input behind and are focussing on the touched objects and which
parts of which object were manipulated.
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8.2 Future Work

We presented two touch detection frameworks, one for tabletops and one Extend detection

to deformable

objects.

for arbitrary objects, and although both worked well enough for our studies,
we can definitely see improvements. One (standard) option is to improve
accuracy and frame rate of the detection. Better recognition of rigid ob-
jects, adding recognition of material deformation as an input, or a less
static camera setup could be future extensions. Additionally, we think that
more visual feedback on the objects themselves could help perceiving the
application’s state, help to know which parts of the objects can be used for
input, or even show what the input will result in.

We used the predecessor to correct touch errors on a tabletop. We also Extend prediction

models and

improve data sets.

saw systematic o↵set w.r.t. the body posture, and thus we should be able
to use that as well to increase touch accuracy. The final goal would be to
have an exact mathematical model that predicts the error based on touch
location, predecessor touch, target size, distance between predecessor and
current touch, and the relative angle.

When comparing di↵erent methods to control objects on a 3D display, we Mixed methods

for 3D interaction.saw that some performed better at specific occlusion or depths levels. We
would like to di↵erentiate between the two e↵ects and then find ways to
move from one to the other methods, creating mixed methods.

In Chapter 6, we showed an algorithm to infer the hand posture. We would Add physics

support to hand

posture

recognition.

like to vary the various parameters we (arbitrarily) chose for the algorithm
and see how they impact run-time and accuracy. It would also be very
interesting to extend our hand model to support physical simulation, e.g.,
check for collisions of the object with hand, or whether bones “intersect”
for a given gesture.

We introduced a new interaction metaphor—Instant UIs— and got great Di↵erentiate

between

repurposed and

regular use.

feedback from our user studies. However, to apply this in an actual con-
text, we need to take a closer look at how one can di↵erentiate between
the repurposed use and the original use of the everyday object. When pro-
gramming the input mapping by demonstration, how much filtering should
the system perform to generate the right gestures? For example, mapping
the mug turning to jog wheel turning challenged the user’s dexterity.

As most of the objects that surround us are industrially produced, a 3D Create an

information aura

for objects.

model of most everyday object already exists. But this means, that based
on traditional tagging schemes, e.g., barcodes or RFID, we can imagine
that this model could be looked up. Additionally, information about how
this object can be used and also how it should be used, can be integrated,
creating an “interaction aura”. This information could either be provided
by the original manufacturer as an added benefit or by a community of
people interested in appropriating objects.

Throughout this thesis, we extended and replaced the attributes that are Apply“detect,

improve, extend”

to other input

channels.
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considered as a touch. It would be interesting to see whether di↵erent
kinds of input can benefit from a similar treatment. For example, in mid-
air gesturing, the user’s input is typically mapped to a 2D or 3D cursor
that then acts as an input channel for a GUI. Instead, we could take into
account the user’s viewport, i.e., its eye position, and directly detect which
(virtual) object he is looking at and trying to interact without a need for a
cursor.

8.3 Closing Remark

Providing the right input channels is crucial for a widespread adoption ofThe interface is

the product. computing devices in our society—as can be seen by the success of direct
manipulation devices such as the iPhone and the iPad. We as interface
designers and application developers should therefore always ask ourselves
whether we are reducing the human output to the right set of information:
it is intriguing to only pick aspects that are easy to track by our hardware
or easy to write software for.

We showed several examples where additional, contextual information pro-
vided great benefit for the user, and we are excited to see how other input,
such as gestural or voice-based, will be extended in the future.
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Appendix A

Details of the Hand Model

The hand model was adapted from Cobos et al. [2008]. Exact measures
were extracted from the anatomy handbook by Schmidt and Lanz [2004].
Measures are given in centimeters and use right-handed X-Y-Z coordinate
system.

We are modeling the right hand, and the palm is lying flat on the table.

TMC/CMC (flex) TMC/CMC (adduct) MCP (flex) MCP (adduct) PIP (flex)
thumb (-15,60) (-30,30) (0,80) (0,0) (-10,80)
index (0,5) (0,0) (-30,90) (-10,10) (0,110)
middle (0,5) (0,0) (-30,90) (-10,10) (0,110)
ring (0,10) (0,0) (-30,90) (-10,10) (0,120)
little (0,15) (0,0) (-30,90) (-15,15) (0,135)

Table A.1: Range of possible curvatures for each joint as flex or adduction
rotation angles. TMC = trapeziometacarpal, CMC = carpometacarpal,
MCP = metacarpophalangeal, PIP = proximal interphalangeal joint. The
distal interphalangeal joint flexion was always set to two thirds of the pip
joint flexion.

palm metacarpal proximal middle/distal distal
thumb (2.5, 1.5, 1.5) (3, 4, 0) (1.5, 2.5, 0) (1.5, 2, 0) (0, 0, 0)
index (2, 2, 0) (1, 7, 0) (0, 4.2, 0) (0, 2.6, 0) (0, 1.9, 0)
middle (0.5, 2, 0) (0, 6.9, 0) (0, 4.7, 0) (0, 3.2, 0) (0, 1.9, 0)
ring (�0.5, 2, 0) (�1, 6.2, 0) (0, 4.5, 0) (0, 3, 0) (0, 2, 0)
little (�2, 2, 0.5) (�2, 5.5, 0) (0, 3.5, 0) (0, 2.5, 0) (0, 1.8, 0)

Table A.2: Bone length and directions. The Palm is considered as one
bone for each finger.
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3D display, 37

accelerometer, 66
action sequence, 2
a↵ordance, 82
a↵ordances, 2
angle fit, 73
appropriation, 95

back-of-device interaction, 31
background subtraction, 6, 12, 51, 54
body posture, 4, 22, 29

capacitive tracking, 11, 49
center of gravity, 72
contextual information, 21, 36
continuous control, 92

deformable meshes, 60
degrees of freedom, 38
depth-camera, 12, 50
depth-thresholding, 12, 51, 55, 93
design space, 38, 40
di↵use illumination, 11, 17
direct manipulation, 4, 37

end-user programming, 93, 94
everyday objects, 86

feature descriptor, 52
filtering, 74
finger

- ellipse, 76
- flexion, 69
- matching, 73, 74
- orientation, 17
- posture, 12, 28
- prints, 66, 75
- reach, 67
- tips, 67

fish tank, 39, 42
Frustrated Total Internal Reflection, 11, 15
FTIR, see Frustrated Total Internal Reflection

general purpose GPU programming, 60
gestures, 82



110 Index

hand
- model, 65, 69, 71
- origin, 71
- pose estimation, 65
- posture, 63, 64, 68, 71

heuristics, 64
high precision, 17
histogram fit, 73
human hand targeting, 22

ICP, see iterative closest point
input space, 72
Instant User Interfaces, 81, 83
interaction depth, 45
interaction descriptor, 95
interaction patterns, 91
interactive surface, 42
iterative closest point, 53
IUI, see Instant User Interfaces

joint curvature, 23

kd-tree, 71, 74
kinect, 12, 50

latency, 57, 58, 78

marker-based tracking, 22, 86
maximum-likelihood, 67
mesh representation, 51
metrics, 73
mobile devices, 30
model space, 72

non-planar surfaces, 49, 85

object
- appropriations, 87
- detection, 51
- pose estimation, 52
- recognition, 51, 52, 60
- shape, 92
- tracking, 53, 57

occlusion, 50, 51, 55, 60

physical instant ion, 91
point cloud, 50, 53
predecessor e↵ect, 32–34
product design, 82
projection, 37

ray-casting, 55
remote control, 83
resistive tracking, 11

servomotors, 17
Seven Stages of Action, 2
stereoscopy, 46
successor e↵ect, 32, 33
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surfaces, 31

tabletop, 11, 13, 42
touch

- accuracy, 4, 30, 57, 59
- attributes, 6
- correction, 35
- detection, 5, 11, 51, 55, 59, 76, 85, 93
- extension, 36, 37, 46, 81
- o↵set, 24, 30, 32, 39
- orientation, 32
- sequences, 31–34
- zones, 56, 63

tracking error, 58

virtual reality, 38
vision-based tracking, 11, 49
visual feedback, 95

Z-Touch, 12
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