
by
Maximilian Möllers

Calibration-Free
Gaze Tracking

an experimental analysis

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. Roel Vertegaal

Registration date: March 12th, 2007
Submission date: November 6th, 2007

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Aachen November 5, 2007

iii

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Overview . 3

2 Fundamentals 5

2.1 The Human Visual System 5

2.1.1 The Lense System 6

2.1.2 The Pupil and the Iris 7

2.2 A Simple Eye Tracking System 7

3 Related Work 11

3.1 Eye Tracker . 12

iv Contents

3.1.1 Head-mounted 13

3.1.2 Remote 15

3.2 Interaction-techniques and Applications . . . 28

4 System Design and Implementation 37

4.1 Hardware Setup 39

4.1.1 POV-Ray Model 43

4.2 Gaze Model 44

4.2.1 Cornea Center 45

4.2.2 Gaze Direction 50

4.2.3 Combining Gaze 52

4.2.4 Gaze on Screen 53

4.2.5 Adaptive Calibration 54

4.3 Image Processing 56

4.3.1 Detecting the Pupil 56

4.3.2 Finding the Glints 59

4.4 Software Implementation 60

4.4.1 Algebra.cpp 62

4.4.2 GazeTop.cpp 64

4.4.3 GTCamera.cpp 65

4.4.4 Image processing.cpp 65

4.4.5 Table.cpp 66

Contents v

5 Evaluation 67

5.1 Test Setup . 68

5.1.1 Independent Variables 69

5.1.2 Dependent Variables 70

5.2 Results . 70

5.3 Adaptive Calibration 75

6 Summary and Future Work 77

6.1 Summary and Contributions 77

6.2 Future Work 79

A The Pinhole Camera Model 81

B CD Contents 83

Bibliography 85

Index 89

vii

List of Figures

1.1 GazeTop system 2

2.1 Human eye, from Editure [2007] 6

3.1 ViewPointer headset, from Smith et al. [2005] 14

3.2 ViewPointer tag, from Smith et al. [2005] . . . 14

3.3 Starburst feature detection, from Li et al. [2005] 15

3.4 Starburst ellipse fit, from Li et al. [2005] . . . 16

3.5 Attentive TV, from Shell et al. [2003] 17

3.6 Tracked image, from Stiefelhagen et al. [1997] 17

3.7 Pupil gradients, from Kothari and Mitchell
[1996] . 19

3.8 Dark pupil . 20

3.9 Generating the difference image, from Ebi-
sawa [1995] . 20

3.10 Multi-person pupil tracking, from Morimoto
et al. [2000] . 21

3.11 Wide and narrow angle camera setup, from
Beymer and Flickner [2003] 24

viii List of Figures

3.12 Checkerboard 2D dot code, from Beymer
and Flickner [2003] 24

3.13 Guestrin’s eye model, from Guestrin and
Eizenman [2006] 26

3.14 Objects in the virtual environment, from
Tanriverdi and Jacob [2000] 30

3.15 Speech activation, from Oh et al. [2002] . . . 31

3.16 Look-to-talk system setup, from Oh et al. [2002] 32

3.17 MAJIC videoconferencing, from Okada et al.
[1994] . 33

3.18 Virtual meeting room of the GAZE system,
from Vertegaal [1999] 34

3.19 A video-mediated system, from Vertegaal
et al. [2000] . 35

4.1 Hardware Setup 40

4.2 Image-cutout with off-axis illumination . . . 41

4.3 Image-cutout with on-axis illumination . . . 41

4.4 Coordinate system 41

4.5 Calibration pattern 42

4.6 Simple POV-Ray model 43

4.7 Complex POV-Ray model 44

4.8 Cornea center 46

4.9 virtual pupil image 50

4.10 Line-plane intersection 54

4.11 Adaptive calibration 55

List of Figures ix

4.12 Image processing 57

4.13 Additional reflections 60

5.1 Nine views and three different cameras . . . 71

5.2 Comparison of POV-Ray to real setup 73

5.3 Pixel unprojection 75

A.1 Pinhole camera model 82

xi

List of Tables

3.1 Gaze tracking system comparison 28

5.1 Parameter variations using gaussian dis-
tributed random numbers 69

5.2 Ratio of error increase per parameter variation 72

5.3 Comparison of performance with and with-
out the adaptive calibration for the simple
POV-Ray model 76

5.4 Comparison of performance with and with-
out the adaptive calibration for the real setup 76

xiii

Abstract

Gaze tracking systems are widely used for research in psychology, neurology, and
human-computer interactions. A calibration-free system with sufficient accuracy
for post-desktop interactions has not yet been built. To explore interactions beyond
“pointing through gaze” or “gaze-enhanced video conferencing” the system must
meet the following requirements:

• allow free head movement

• accurate tracking

• real time processing of input images

• free of user calibration

To explore why current systems do not fulfill these requirements, we developed
our own gaze tracking system and thoroughly evaluated its performance.
We based our work on the proposal by Shih et al. [2000] and enhanced their ap-
proach using least square error methods and multiple cameras. We implemented
this approach and built our own gaze tracking system to reflect the state of current
gaze tracking research. To evaluate the system’s behavior we fed synthetical errors
(e.g., add noise to the images) into the system and measured its fault-tolerancy.
We calculated the ratio between each error input and its resulting error. This way
we were able to quantitatively predict the influence of an error and to sort the er-
ror sources by their damage potential. We discovered that especially the extrinsic
parameters of the cameras (i.e., position and rotation) have to be measured very
precisely or the system will always produce errors, like every gaze tracking system
does up to now — even after being calibrated to the user.
To compensate for errors resulting from imperfect system calibration, we designed
and implemented an adaptive online calibration algorithm. This approach was
tested and it was shown to be a promising way forward. Although it was not able
to protect the system from all error sources, it was able to vastly reduce the impact
of intrinsic calibration errors and imprecise camera positions.

xiv Abstract

xv

Überblick

Gazetracker werden in der Psychologie, Neurologie und im Bereich der Mensch-
Maschine-Interaktion zur Forschung eingesetzt. Heutige Systeme erfordern
eine Anpassung des Systems an den Nutzer um zufriedenstellende Genauigkeit
liefern zu können. Bei vielen Einsatzgebieten ist es jedoch nicht möglich
oder zumutbar, erst eine Benutzeranpassung durchzuführen (z.B. bei spontanen
Geschäftsmeetings). Ein System, das die Blickrichtung des Benutzers nicht nur als
Ersatz für Eingabegeräte oder zur Verbesserung von Videokonferenzen nutzt, muss
folgende Anforderungen erfüllen:

• Der Kopf darf sich frei bewegen.

• Die Blickrichtung wird exakt ermittelt.

• Das System arbeitet in Echtzeit.

• Das System benötigt keine Anpassung an den Benutzer.

Um herauszufinden warum die aktuellen Systeme diese Anforderung nicht
erfüllen, haben wir unseren eigenen Gazetracker entwickelt und dessen Leis-
tungsverhalten genau analysisert.
Der Vorschlag von Shih et al. [2000] wurde mittels der Methode der kleinsten
Fehlerquadrate verbessert und unterstützt jetzt beliebig viele Kameras. Das
Verfahren wurde implementiert und ein eigener Gazetracker entwickelt, welcher
aufgrund der verwendeten Bildverarbeitungsroutinen und mathematischen
Modelle ähnlich zu gängigen Systemen ist. Unsere Resultate sollten sich somit
auf andere Systeme übertragen lassen. Um das Verhalten unseres Trackers
zu analysieren, wurden die Rahmenparamter variiert, Eingabedaten künstlich
verfälscht (z.B. Verrauschen der Kamerabilder) und die Abweichungen in der
Blickrichtugn des Benutzers gemessen.

xvi Überblick

Das Verhältnis zwischen synthetischem Eingabe- und daraus resultierendem Aus-
gabefehler wurde als Kennzahl ermittelt. Wir waren somit in der Lage die
Auswirkung einer Fehlerquelle quantitativ vorherzusagen und die Fehlerquellen
nach ihrem Schadenspotential zu sortieren. Die Resultate ergaben, dass insbeson-
dere die extrinsischen Kameraparameter (d.h. Position und Orientierung) sehr
genau gemessen werden müssen. Dies erklärt, warum bei allen bisherigen Sys-
temen die berechnete Blickrichtung nicht fehlerfrei war.
Um diese Fehler auszugleichen, haben wir einen adaptiven Kalibrierungsalgorith-
mus entworfen und implementiert. Unsere Tests wurden erneut durchgeführt, und
es wurde gezeigt, dass dies ein Schritt in die richtige Richtung ist. Auch wenn
nicht alle Fehler eliminiert werden konnten, war der Algorithmus in der Lage
die Einflüsse von intrinsischen Kamerakalibrierungsfehler und falsch gemessenen
Kamerapositionen deutlich zu reduzieren.

xvii

Acknowledgements

First of all, I want to thank Prof. Dr. Jan Borchers for his great lectures, which were a
fresh breeze in the otherwise dry computer science studies. Working on this thesis
was made especially enjoyable by the encouraging and friendly atmosphere and
people at the Media Computing Group.
I especially want to thank David Holman and Thorsten Karrer for encouraging
me to pursue this topic. They both provided valueable feedback and helped me
throughout the development of the system and its evaluation. Fresh Canadian
thoughts and German thoroughness are a good combination after all.
I want to thank Dr. Roel Vertegaal for supplying us with the latest Xuuk cameras
and inspiring David and me to research gaze-based systems.
I want to thank all of the numerous reviewers of my thesis including René Boul-
nois, Christian Brüffer, Jonathan Diehl, Andreas Ganser, Christian Mattar, and once
again David Holman and Thorsten Karrer. A special thank goes to Sarah Men-
nicken as my graphics expert and as an amusing roommate. Speaking of the room,
I want to thank Milton Waddams for leaving his room to me and moving his desk
one more time to another floor.
Aside from study-related help, I want to thank my family and friends. They were
there to pick me up when things went wrong, and made the last five challenging
years a great time.
Thank you all!

xix

Conventions

Throughout this thesis we use the following conventions.

Definitions are set off in orange boxes and have a marginal
note attached.

2:
The cardinal number equal to the sum of 1 and 1. Definition:

2

Theorems are set off in blue boxes,

Theorem 0.0.1. The equation xn + yn = zn has no solutions
in positive integers for n greater than 2.

and are followed by a proof.

Proof. For this, I have found a truly wonderful proof, but
the margin is too small to contain it.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

Computer science has been around for several decades and
most research focused on theoretical models, efficent algo-
rithms, and effective ways to develop software products.
Based on these results computers became faster, usable by
non experts, and are, today, part of everyone’s life.
Since the 90’s another field of research has become more
popular: human-computer interaction. It is concerned with
the design, evaluation, and implementation of interactive
systems for human use and studies the major phenomena
surrounding them. It simplifies computer systems for
everyday use.

An important information for human interaction is the
user’s viewing direction, or “gaze”. Prior to most interac-
tions, humans tend to look at things of interest. Especially
in multiparty human-human interaction, the interaction
partners will look at each other to show their attentiveness,
and thereby simplifying the communication. Although
gaze tracking is an easy task for a human being, it is not
easy for a machine.

Current research uses the viewing direction of the user to
enhance human-computer interaction. Typical uses of gaze
are: as substitute for other pointing devices like a mouse,
to give gaze cues in video conference systems, or to de-

2 1 Introduction

tect eye contact towards real world objects (see Chapter 3—
“Related Work”).
Since most of the gaze tracking systems need to be cali-
brated for each specific user, the application of gaze track-
ing to other interesting research fields is hampered. These
research fields include gaze-enhanced systems, which
could support community and social activities at public
places.
Even with user calibration, systems are still not able to re-
place the mouse for interaction tasks like text selection.

Another example of a gaze-enhanced system is a gaze aug-
mented tabletop PC or conference room (see Figure 1.1).

Figure 1.1: The system is aware of the user’s gaze direction
and can react on it

Possible use of this information includes:

• Text Orientation
Tabletops are researched as a frequent meeting point
for group collaboration. However, in a multi-
user tabletop scenario, displaying information that
is properly oriented for each user is challenging.

1.1 Overview 3

Rotation-sensitive components, such as menus and
text, are problematic for horizontal displays. To ad-
dress this, text can be automatically oriented on the
angle that is most readable to the user [Rekimoto and
Saitoh, 1999]. In the case of multiple users looking at
the same document a “best” angle for the whole set
can be found.

• Generating Video Metadata
If the system knows that user A’s gaze is directed to
user B’s eyes, it is clear that when he is speaking he
addresses his talk to user B. Knowing who is talking
to whom makes it easy to add this information to a
video take of this scene, enhancing the browseability
for later review.

For such a system, the need to calibrate the system to each
user definitively reduces its application range.

We are interested in user calibration-free gaze tracking
systems that are able to support these kinds of interactions.
The system must also have a good accuracy to reliably
differentiate between real world objects. We attempt to
find the reasons for the absence of such a system. Knowing
the factors that degrade the performance of a gaze tracking
system and being able to minimize their influences, future
researchers will be able to explore new interactions.

1.1 Overview

In Chapter 2—“Fundamentals”, we will show how the eye
works and see its similarities to the camera model we use
in our calculations. We also show a simple tracking system
to present typical problems.
In the first part of Chapter 3—“Related Work”, we show
severalsystems that have been developed in the last 30 The engineering

problem has been
researched
intensively, but is not
solved yet

years to track the user’s viewing direction and use this
information to control a computer system in particular
ways. The second part is used to present the interactions

4 1 Introduction

they were able to support.

We then present our own gaze tracking system which is an
extension to the work of Shih et al. [2000]. The theoreti-
cal model and the hardware setup is shown in Chapter 4—
“System Design and Implementation”.
In Chapter 5—“Evaluation” we thoroughly analyze the
performance of the system. Synthetical errors are fed into
the system (e.g., by adding noise to the images) and its
fault-tolerance is measured.
This way we can quantitatively predict what kind of input
error influences the system most. We will attempt to en-
hance our system to cope with these error sources.
Chapter 6—“Summary and Future Work” closes this the-
sis with a summary of our work and an outlook on future
research that will be possible based on our contributions.

5

Chapter 2

Fundamentals

For visual contact, each of our eyes has to properly focus
at an object of interest. The light travels from the object
through the eye’s lens-system into the eye. Since the
human’s field of sharp view is very narrow (6◦ [Rayner,
2000]), people are able to recognize where other people are
looking.

2.1 The Human Visual System

In order to track the user’s viewing direction, it is neces- Only people with
healthy eyes are
well-trackable

sary to have working knowledge of the human eye. Since
we will often refer to parts of the human eye, we now
introduce its most relevant parts and their processing steps
to generate an image in our mind. Afterwards we present a
very simple eye tracking system, to demonstrate how this
information can be used.
For our work we (as every other researcher) focus on
humans with two healthy eyes, because even a human
cannot find out the viewing direction, e.g., of a squint-eyed
test subject. For people with strong cornea curvature,
gaze tracking systems usually perform badly, although the
system should be able to at least give a good hint on the
viewing direction.

6 2 Fundamentals

The human eye functions very similar to a camera (see Fig-
ure 2.1). The light is bundled by the cornea and the lens
onto the retina. Photoreactive cells on the retina generate
an electric signal which is transported along the optic nerve
to the brain where an image is generated.

Figure 2.1: Structure of the human eye, ©Editure 2007

2.1.1 The Lense System

The refraction of the incoming light is done in two steps:Cornea and lens
bend the light the major refraction comes from the cornea, a transparent

refractive layer that covers the front of the eye.
Together with the crystalline lens, the cornea works to focus
incoming light onto the retina. The cornea performs most
of the refraction of incoming light, but has no means of ad-
justing its curvature, so the amount of refraction performed
by the cornea is fixed.
The crystalline lens resides behind the pupil and refractsThe lens sharpens

the image light onto the retina. The crystalline lens is flexible and its
curvature is controlled by ciliary muscles. By changing the
curvature of the lens, the eye can change its focus among
objects at different distances. In this way, the cornea can be
thought of as the “coarse” lens and the crystalline lens can

2.2 A Simple Eye Tracking System 7

be thought of as “fine”. To see an object clearly, the eyeball
has to be rotated so that the incoming light is refracted onto
the fovea spot — the most sensitive area of the retina.

2.1.2 The Pupil and the Iris

To compensate for different lighting situations, the amount
of light that reaches the retina can be controlled. The trans-
parent opening of the eye is called “pupil” and can usu-
ally be seen as a black circle. The iris is the set of muscles
around the pupil. By flexing und relaxing the iris, the size
of the pupil and therefore the amount of light that reaches
the retina, is changed.

2.2 A Simple Eye Tracking System

Fur further discussion, we define gaze as follows.

GAZE:
The line from the cornea center through the pupil center
onto an object of interest.

Definition:
Gaze

This is similar to the optic axis.
We show a simple eye tracking system to demonstrate typ-
ical challenges and solutions. Although it is able to recon-
struct the point where the user is looking on the screen, this
is not a gaze tracking system — it does not calculate the
gaze direction at all.
The system setup consists of a user sitting in front of a dis- Images are taken

from a camera,
typically mounted on
top of the user’s
display

play and letting a camera take images of his eyes. The cam-
era is mounted on top of the display and takes images like
Figure 2.2 or 2.3.
As we can see in the first image, the user is looking straight
onto the middle of the display. In the second one, he is look-
ing to the left, so he must be gazing at some point in the left
area of the display.
To track the user’s gaze one could take five images of the
eye, with a user looking at each corner and the middle of

8 2 Fundamentals

Figure 2.2: User looking straight onto the middle of the dis-
play

Figure 2.3: User looking straight onto the left side of the
display

the display. With this calibration, we can input arbitrary
images of the user and compare the input with our five
sample images. The best fitting image is chosen and the
position is returned (i.e., one of the corners or the middle).
We now have a simple eye tracking system that can differ-
entiate between five different regions of the display.

Unfortunately, this is not accurate enough to, e.g., substi-Sophisticated
image-processing
allows more detailed
output

tute a pointing device like the mouse with eye-based in-
put. For higher accuracy, more intelligent and complex
hardware setups and methods are required. A possible ex-
tension of our simple idea would be to use sophisticated
image-processing to not only find one best fitting image,
but to get statements like:
“The current image looks 50 percent like the image with the
user looking at top-left corner and 50 percent like the image
with the user looking at lower-left corner.”
This statement suggests that the user is looking at a spot
in the left half and middle height of the display. This ex-
tension would significantly improve the system, since it is
now possible to return an arbitrary point on the display for

2.2 A Simple Eye Tracking System 9

a given camera image — the actual accuracy of such an ap-
proach is another topic. A drawback, which is common to
other systems is that the system depends on a calibration
step (i.e., the five images) before usage, which has to be
done for each user.

11

Chapter 3

Related Work

“The common fly has eight legs.”
–Aristotle

Eye tracking has been studied from two points of view. The
first is a more psychologically and physiologically focused
view:
How is our eye working? How is information recorded by
the eye and then processed by the brain?
Here eye tracking was the technology to help find results
like the discovery of saccades — very fast and quick move-
ments of both eyes which “step” through information like
text. The second view is more interaction oriented:
How can we use the eyes as an input device for some kind
of computer system?
To give a broad overview of the recent studies in the in-
teraction area, we will differentiate the systems the re-
searchers used by their capabilities and the necessary
preparations for eye tracking. More information about psy-
chological, physiological, and other aspects can be found in
the extensive survey by Duchowski [2002a].

12 3 Related Work

3.1 Eye Tracker

During the general research of eye tracking, the term has
come to mean several different things:

• 2D eye tracking systems, that map 2D images of the
pupil via heavily user- and system-dependent map-
ping to the 2D screen position, the user is looking at.

• Eye contact sensors, that are only able to detect,
whether a user is looking at them.

• 3D eye tracking systems, that use monocular informa-
tion to calculate the eye’s position at first, and then
the 2D pixel position.

• 3D gaze tracking systems, that are able to calculate
the 3D point both eyes are focusing on.

The items are ordered by increasing difficulty and decreas-
ing age.
Fur further discussion, every system that tracks the user’s
eye is an eye tracker. If an eye tracker calculates the view-
ing direction of the user, we will call it gaze tracker or gaze
tracking system.
Duchowski [2002b] gives a good overview of the olderEarly eye trackers

used invasive
techniques

eye tracking systems. A major design-decision for an eye
tracker is the invasiveness of the system. The first eye
trackers were simple electrodes underneath the skin next
to the eye. They detected the muscles’ movement and the
attached system could calculate the gaze of the eye relative
to the user’s head.
Another invasive technique is to place a contact lens with
a magnetic coil on the user’s cornea. As soon as the user
moves the eye, the magnetic coil will induce a current into
the magnetic field which is produced around the eye by
other coils. Measuring the current will yield the desired
eye movement.

Most of the newer eye tracking systems are much less inva-Current eye trackers
use vision-based
techniques

sive. They use vision-based techniques to track the user’s
eye, and are mounted to either the user’s head, the desk-
top, or somewhere else in the room. They typically use two

3.1 Eye Tracker 13

pieces of information. The reflection of a static light (e.g., a
LED) on the cornea and the position of the pupil. Because
the surface of the cornea is a more or less sphere-shaped
object the movement of the eye will not alter the reflection
spot of the light source. This way the system can determine
the position of the eye. With this information the system
can then use the position of the pupil to find the direction
in which the user is looking.
The ultimate goal of eye tracking is to pinpoint in real-
time the three-dimensional point at which both eyes are
focussing, using a calibration-free non-invasive system.
This goal has not yet been reached under realistic circum-
stances, but the research community is making step-by-step
progress. We discuss common systems and the trade-offs
they chose to give good results for the proposed interaction
task.

3.1.1 Head-mounted

Although we are focussing our research in the area of gaze
tracking, there are some revelant papers in peripheral ar-
eas.
ViewPointer, introduced by Smith et al. [2005], is a wear-
able eye contact sensor that detects the orientation of the
head towards small embedded devices attached to real
world objects. The system consists of a headset with a small
camera that monitors the eye, see Figure 3.1.
The real world objects have IR emitters attached, that send ViewPointer detects

eye contact to real
word objects

uniquely identifiable binary encoded tags through blinks
into the scene (see Figure 3.2). As soon as the camera de-
tects these blinks as reflections on the eye it can calculate
the tag’s ID. If these reflections appear on the center of the
cornea (i.e., the pupil), the user must be looking at that spe-
cific tag. Another benefit of the IR tags is that they are inex-
pensive and easy to attach to everyday objects and thereby
augmenting the world with contextual information. It is
also possible to send meta data in addition to the ID, but
due to prototypical bandwidth limitations (the framerate
of the camera limits the number of blink identifications per
second) even small chunks take several seconds.

Another head-mounted eye tracker was built by Li et al. Starburst accurately
detects the pupil’s
position

14 3 Related Work

Figure 3.1: The ViewPointer headset, ©ACM 2005

Figure 3.2: A ViewPointer tag compared to an US penny,
©ACM 2005

[2005]. It consists of two cheap CCD cameras that are
mounted on a pair of safety glasses. The underlying al-
gorithm achieves a good trade-off between run-time per-
formance and accuracy. This means an approximately 1◦

error of visual angle and real-time performance using gen-
eral purpose hardware affordable at that time. The algo-
rithm attempts to find the corneal reflection by adaptive
thresholding and removes it from the image. It then de-
tects the center of the pupil by starting with an initial guess
of the pupil center (Figure 3.3). It shoots rays in every direc-

3.1 Eye Tracker 15

tion and searches for the pupil’s edges (clearly identifiable
as black-to-gray gradients) — hence the algorithm’s name
“Starburst”.

Figure 3.3: Feature detection using an initial guess with the
Starburst algorithm, ©IEEE 2005

Iteratively fitting an ellipse to the detected edge points fi-
nally yields the exact shape of the pupil and its center (Fig-
ure 3.4. The point of gaze can than be calculated using a
linear mapping from the exact 2D position of the pupil to
the screen coordinate the point of gaze is calculatead. This
mapping has to be calculated before system use and this
relationship is measured with a 3 × 3 grid of calibration
points.

3.1.2 Remote

There also exist eye contact sensors for remote eye tracking.
One example is the EyePliance system by Shell et al. [2003].
It is a set of appliances and devices that detect and respond The EyePliance’s

awareness of the
user’s eye contact
reduces explicit user
input

to human visual attention. Knowing whether the user is
focusing on the device or not can reduce the explicit user
input. They proposed an attentive TV that detects when
the user is standing up from the couch to get something to
drink from the refrigerator. As soon as he turns his face
away from the TV, the movie stops and will resume as soon

16 3 Related Work

Figure 3.4: Model-based ellipse after fitting, ©IEEE 2005

as the user is back on the couch (Figure 3.5).
With the EyePliance system there is less much context
needed for specific speech recognition tasks. For example,
looking at a device and saying “on” or “off” is sufficient
enough to activate the correct device, whereas with tradi-
tional speech recognition the user would have to name the
device first, and then give the order to switch it on or off1.

A system that is capable of tracking the 3D pose of theMapping the camera
image to a complex
3D model of the
head yields the
head’s 3D pose

user’s head was developed by Stiefelhagen et al. [1997].
The colored input image is searched for pixels with face
color, and the largest connected region of face-colored pix-
els is considered as the face region. Afterwards, the search
for the facial features begins with an iterative thresholding
(starting with a low threshold) for the pupils, which are the
darkest spots in the image. As a first filter, geometrical con-
straints are applied: valid candidate pairs must be in prox-
imity to each other at approximately the same height in the
picture. Using geometric constraints, (minimum and max-
imum distance of the dark spots, etc.) the candidate spots
in the thresholded image are mapped to the pupils.
The next facial feature are the lip corners. Using a model of
the head and the just acquired positions of the eye, a region-
of-interest is defined for the corner search. A row-wise his-

1More research on “Look-to-interact” in Section 3.2—“Interaction-
techniques and Applications”

3.1 Eye Tracker 17

Figure 3.5: Attentive TV reacting to the user facing away,
©ACM 2003

Figure 3.6: Input image after tracking of the facial features,
©ACM 1997

18 3 Related Work

togram is built to find the location of the lips, which resem-
ble a dark line. Afterwards, an edge operator is applied to a
smaller area around the estimated line position to find the
left and right boundaries of the lips. Similar to detecting the
eyes, the nostrils can be found by the iterative thresholding
algorithm already used for the pupils. An additional geo-
metric constraint is their expected position below the eyes
and above the lips.
To track the user’s head position, the system uses small
search windows around the last feature position. These
search windows are predicted using linear extrapolation
over the two last frames. If the tracking fails, the system
resets to search mode and detects the features again.
The system was capable to calculate a correct head orienta-
tion with a negligible error of 1◦ rotation around the z-axis
(which goes from top to bottom) and an error of 5◦ along
the other two axis at 15 frames per second. However, it did
not calculate the actual gaze direction of the eyes at all.

The latest gaze tracking systems use feature-based meth-
ods to avoid complex models of the user, but just search for
simple features in the image.
A simple eye location detection algorithm for uncon-
strained greyscale images is the work of Kothari and
Mitchell [1996]. Figure 3.7 shows the gradients of theGaze can be tracked

exploiting the
different brightness
of sclera and iris

grayscale image. The gradients point from dark regions to
bright regions. As can be seen in the figure the gradients
point outwards to the edges of the iris’ ellipsoid shape. The
algorithm extrapolates the field in a direction opposite to
the gradient (the gradient points in the direction of increase
of a function, hence it points outwards — from the darker
iris to the lighter sclera). A 2D array of bins serves as an
accumulator. A line is drawn at each point along the direc-
tion opposite to the gradient. This line passes several bins
and if a bin is hit its accumulator is increased by one. Bins
with high accumulators have lots of lines passing them, so
the center of the iris will have a very high amount of hits.
The algorithm uses these bins as candidates for the iris. As
a first filter, geometrical constraints are applied: valid can-
didate pairs must be in proximity to each other at approx-
imately the same height in the picture. The final step uses
temporal information by adding a (less than 1) weighted ar-
ray of the last frame(s) to the current array. This results in a

3.1 Eye Tracker 19

Figure 3.7: Gradient directions around the pupil, ©IEEE
1996

robust detection of (2D) eye locations over a wide range of
subjects.

Another trackable feature is a specular reflection on the Current gaze
tracking systems use
reflections of light
sources to
triangulate the eye

cornea from a light source, typically a LED (Figure 3.8).
Because of the spherical shape of the cornea, the position
of the reflections, or “glints”, stay the same even if the user
moves his eye. Common algorithms use triangulation on
this static glint position to calculate the 3D position of the
eye.

An idea, that uses an alternating lighting scheme was de- The “red-eye” effect
is an outstanding
feature to track the
pupil

veloped by Ebisawa [1995]. If a human pupil is lit with a
near-infrared light source coaxial to the camera, then the
light is reflected off the retina and escapes back through
the pupil — an effect known to most photographers as the
“red-eye” effect. By switching between an uncoaxial and
coaxial light source the camera sees two images except, that
only differ in a red pupil in the odd and a dark pupil in the

20 3 Related Work

Figure 3.8: Cornea illuminated by three LEDs

even frame. Subtracting these images yields a black image
with a white spot — the pupil (Figure 3.9). Using simple
thresholding, the system can filter out the noise in the im-
ages to find the pupil area.

Figure 3.9: Coaxial and uncoaxial illumination and the re-
sulting difference image, ©WIT Press 1995

3.1 Eye Tracker 21

Based on this differencing technique, Morimoto et al. [2000] The system is able to
track multiple pupils
at the same time
using the “red-eye”
effect

built a pupil detection and tracking system. One major
improvement was the placement of the two LEDs as rings
around the camera. This way the glint generated from the
outer ring (for the dark pupil image) is at the very same
position as the glint generated from the inner ring (for the
bright pupil image), thus increasing the quality of the dif-
ference image.
To compensate for motion artifacts due to users moving
their heads, the pupils are detected from the differences be-
tween all consecutive pairs of dark and bright images and
not only from one pair. Most motion artifacts only appear
between some of the frames and will vanish in the overall
average difference frame.
As soon as the pupils are reliably detected, they are tracked
by applying thresholding and blob detection to the dark
and bright image. This leads to better results than track-
ing with the difference image, because the difference image
can include motion artifacts that blur the appearance of the
pupil. The system was able to reliably track several pupils

Figure 3.10: Multiple pupil tracking, including people
wearing glasses, ©IEEE 2000

at once at 15 frames per second using a Pentium with 200
Mhz (Figure 3.10).

22 3 Related Work

The first real gaze tracking algorithm that does not need aTwo cameras and
two light sources are
needed for the first
calibration-free gaze
tracking algorithm

user-specific calibration was proposed by Shih et al. [2000].
The method employs multiple cameras and light sources
to determine cornea center and gaze direction. The authors
concluded that two light sources and two cameras are
needed for their model. They ran a computer simulation
on this model (by generating computer images and adding
noise to them) and yielded good results regarding the
position of the cornea. The gaze direction itself was quite
sensitive to noise. This algorithm formed the basis of
our own work. For a detailed description, see Section
4—“System Design and Implementation”.

Next in the evolution of gaze tracking systems was theA new eyeball model
leads to less than 1◦

average error angle
FreeGaze system by Ohno et al. [2002]. The physical setup
consists of a narrow angle camera mounted below the
user’s desktop at roughly 60 cm distance to the user and an
infrared light source to generate a glint, which is invariant
to rotation of the eye.
They introduced a new eyeball-model and sophisticated
image processing to get quite accurate data after per-user
calibration has been done. The common performance mea-
surement for gaze tracking systems is the angle between
the actual gaze direction and the calculated gaze direction.
It is usually given in degree or radian — for this system it
was less than 1◦ on average.
The system searches for the eye in the camera image with a
connected component analysis. For each region, its bound-
ary shape is calculated to detect pupil candidates. The
neighboring pixel values are used to distinguish between
pupil and other circular objects. If a good candidate is
found, the system does a model-based ellipse fitting to
perfectly match the shape of the pupil.
This ellipse is mapped onto the eyeball model, whichUser calibration is

required includes the user-specific radius of cornea curvature and
the user-specific distance between the pupil and the center
of cornea curvature. This allows to compensate for the
refraction of the pupil image due to the curvature of the
cornea, which lies between the camera and the pupil.
Fortunately, the system only needs the user to look at twoNarrow angle

cameras do not allow
much head
movement

points before he can start using it, which is an acceptable
trade-off for the suggested interaction task of a user sitting
in front of a desktop. The initial system did not allow the

3.1 Eye Tracker 23

user to move their heads more than in a 4 cm2 area or they
would be out of sight of the narrow angle camera.

This was improved with the follow-up system two years Free head movement
possible, but still per
user calibration
required

later [Ohno and Mukawa, 2004]. The researchers combined
the old system with wide angle stereo cameras, which were
mounted on top of the user’s monitor, tracking the user’s
face. The gaze tracking camera was mounted on a pan-tilt
stand. When the stereo camera finds the user’s pupil the
gaze tracking camera is directed to the eye. They showed
that the system was still accurate enough for operation (less
than 1◦ of error angle) but now had a wider application
range, because the user is allowed to freely move his head.
However, for interactions like selection of text accuracy is
still lacking. In addition, the need for user calibration is
a problem in various situations (gaze tracking at public
places, spontaneous meetings in gaze-enhanced conference
rooms, etc.).

Beymer and Flickner [2003] developed a similar system Replacing the pan-tilt
stands with rotating
mirrors in front of the
narrow cameras
results in a more
accurate gaze
tracking system

which also uses a pair of wide angle stereo cameras to
track the face and two narrow angle cameras for the gaze
tracking (Figure 3.11). They also have a complex 3D model
of the eye, but they use a (more realistic) ellipsoid for the
corneal ball. Due to the narrow field of view, quick head
motions would outpace the pan-tilt heads. For this reason,
pan and tilt of the narrow angle cameras are controlled
using rotating mirrors on high performance galvos, that
can rotate and settle in 2 ms. The motion of the mirrors
is synchronized to the frame rate of the camera, so their
motion does not cause image blur.
Due to the multitude of cameras with their own coordinate First mention of the

need for good
system calibration

systems, there is a need for a good calibration algorithm.
The system uses multiple views of a planar calibration
target with a checkerboard pattern on it. Because of the
narrow field of view, the checkerboard is not fully visible,
leading to a correspondence problem. To address this
issue, the authors added a 2D dot code to map each square
in the image to its 3D equivalent (Figure 3.12).
Like the camera calibration algorithm of Zhang [2000],
their systems takes several images from different view-
points of the scene. It then minimizes the reprojection

24 3 Related Work

Figure 3.11: Combination of wide angle stereo for head
detection and narrow angle stereo for high resolution eye
tracking, ©IEEE 2003

Figure 3.12: Example checkerboard image acquired by one
of the narrow FOV cameras and the 2D dot code, ©IEEE
2003

3.1 Eye Tracker 25

error to find a well-suited projection matrix to map the 3D
targets to 2D positions.
Although the system was calibrated to each user’s eye, the
estimated foveal angle — the angle between the optic and
the visual axis of the eye — could not be stabilized. “The
other angle seems to be less stable with higher variance on
its estimation; stabilizing this parameter is the subject of
future work.”[Beymer and Flickner, 2003]
Since the foveal angle is key component in their eyeball
model, the system was not able to achieve perfect gaze
tracking (even with the user specific calibration). They
were able track the gaze with an error angle of 0.6◦. To
our knowledge this is the most accurate gaze tracking
system. Unfortunately, the small looking error angle of
0.6◦ results in several mm deviation on the screen in a
typical desktop scenario. This is enough for selection of
big objects, but even standard desktop tasks like selection
of text are impossible to realize accurately.

An alternative approach for the gaze tracking problem was Zhu’s neural
network-based gaze
tracking system is
calibration-free, but
inaccurate

pursued by Zhu and Ji [2004]. Instead of using a com-
plex 3D model to map the input data to screen coordinates,
the authors use a neural network. Sufficient 2D input data
(pupil, glint, reference gaze point) was used to train the net-
work. Performance was measured with a 4 × 2 grid. The
system was able to detect the right region 90 percent of the
time, which translates to roughly 5◦ of maximum error an-
gle. Although the gaze tracker was not as accurate as oth-
ers, it achieved sufficient accuracy under head movement
and — more importantly — without any user specific cali-
bration.

As a summary of vision-based eye trackers Guestrin and Generalized theory
for gaze tracking
systems summarizes
the previous models

Eizenman [2006] developed a “General Theory of Remote
Gaze Estimation Using the Pupil Center and Corneal Re-
flections” (see Figure 3.13). Their theory covers the full
range of combinations (one or more cameras and one or
more light source). They showed that as system complex-
ity (i.e., the number of cameras and light sources) increases,
the number of user-specific parameters, that have to be es-
timated through calibration, can be reduced and the con-

26 3 Related Work

Fi
gu

re
3.

13
:R

ay
-t

ra
ci

ng
di

ag
ra

m
,s

ho
w

in
g

sc
he

m
at

ic
re

pr
es

en
ta

ti
on

s
of

th
e

ey
e,

a
ca

m
er

a,
an

d
a

lig
ht

so
ur

ce
,©

IE
EE

20
06

3.1 Eye Tracker 27

straints on head movement can be lifted.
Using only one camera and one light source, the head must
be stationary or its distance be measured to detect the gaze
point.
To allow free head movement, at least one camera and
two light sources are needed. To find the gaze point in
this setup, estimation or calibration of user-specific data
is needed, typically including corneal radius, distance be-
tween pupil center and corneal center, refraction index of
the cornea, and the angle between optic and visual axis.
The authors implemented this setup and could achieve the Noise in the image

has quite an impact
on the accuracy of
the system

usual accuracy of less than 1◦ error angle. More interesting
was their analysis on the cause of this error. They added
noise to the detected 2D pupil and glint positions (gaus-
sian distribution with standard deviation of 0.1 pixel) and
found out that it had quite an impact on the quality of the
output (roughly 6 mm error in the gaze point). No addi-
tional analysis concerning sensitivity of the gaze point to
other calibration or measuring errors was performed.
If at least two cameras and two light sources are used, it
is possible to calculate the optic (!) axis of the eye with-
out user-specific calibration — a calibration-free system. To
find the gaze point, only the difference angle between the
optic and the visual axis needs to be estimated and added
to the optic axis. Our system is based on a similar approach
with the same advantages and drawbacks.

An overview of the latest gaze tracking systems can be
found in Table 3.1. Except for the system by Zhu and Ji
[2004], all implemented systems need user-specific calibra-
tion. As we mentioned in the introduction, user calibration
reduces the application range of gaze tracking. We there-
fore specifically built our system to not require user calibra-
tion and investigated what hampers a good accuracy with
such a system.

28 3 Related Work

Paper Glasses Head movement Accuracy Calibration
[Shih et al., 2000] no big n/a no
[Ohno et al., 2002] yes small < 1◦ yes
[Beymer and Flickner, 2003] no big 0.6◦ yes
[Ohno and Mukawa, 2004] yes big < 1◦ yes
[Zhu and Ji, 2004] no small 5◦ no
[Guestrin and Eizenman, 2006] yes big < 1◦ yes

Table 3.1: Gaze tracking system comparison

3.2 Interaction-techniques and Applica-
tions

One goal of engineering a gaze tracking system is to sup-
port further interaction research. One of the pioneers who
dealt with gaze interaction techniques was Jacob [1991].
He investigated the utility of eye movements as a mode
for human-computer communication. The first idea was
to use the user’s gaze as a substitute for a pointing device
like the mouse. Jacob concluded that this is an infeasible
approach, because users are accustomed to look at items
without having the look “mean” something. He coined the
term “Midas Touch”.
The system cannot discern whether actually someoneOnly using gaze as

input modality is
insufficient for
desktop-based
interactions

wants to activate an object when glancing at it. Therefore
an activation input is needed; this can be, e.g., an eye blink
or a special key. Jacob suggested a short dwell-time to se-
lect the object of interest. Although time-based interactions
can be problematic, this worked well in user trials.
He also analyzed a dragging trask. The best performance
was achieved when using the eye to select and move the
object. A pushbutton was used to pickup and drop the
object. After applying smoothing filters on raw gaze point
data, this worked well as the test subjects agreed.
Another task was selecting an item in a menu. Here again
pointing with the eye was a good choice for opening the
menu and selecting an item, but the final activation should
be done with a pushbutton. He concluded that the overall
approach for designing interaction techniques based on
gaze tracking should be to obtain information from a
user’s natural eye movement, rather than forcing him to do
specific and unnatural eye movements. The system should

3.2 Interaction-techniques and Applications 29

be designed to be able to cope with artifacts like fixation
jitter.

Based on this work, Zhai et al. [1999] presented a new Reduce cursor
movement by
warping the cursor to
the user’s point of
gaze

pointing technique called “Manual and Gaze Input Cas-
caded (MAGIC) Pointing”. The idea is to eliminate a large
portion of the cursor movement by warping the cursor to
the eye gaze area and then clicking with a classical pointing
device like a mouse on the desired target. Although some
prototypical problems arose, the MAGIC pointing tech-
nique was slightly faster in user studies than conventional
mouse pointing.
Overall, the subjects liked the MAGIC pointing technique
for its responsiveness and less fatigue, when compared to
conventional mouse pointing.

Another work that follows the approach of basing com- Tracking the user’s
gaze in a virtual
environment can
support pointing
tasks

mand input on the natural behavior of the user and not
artificial command sequences was presented by Tanriverdi
and Jacob [2000].
Their belief was that navigating through a virtual envi-
ronment already exploits the user’s existing “navigational
commands”, such as positioning his head, turning his body,
or walking to some point of interest. Therefore enrich-
ing this VR interface with an eye movement based inter-
face would obviously be the next step. They developed
a new interaction technique for eye movement interaction
in a virtual environment and compared it to more conven-
tional 3D pointing in the form of a Polhemus 3Space FAS-
TRAK magnetic tracker [Polhemus, 2007]. One of the Pol-
hemus receivers was mounted on the user’s head to iden-
tify VR camera positioning and one was on a cardboard
ring around the subject’s finger to detect the pointing. For
eye tracking they added a head-mounted gaze tracker to
the head-mounted VR display.
The test task was to point at specific objects in a complex
virtual environment with lots of objects like cans, spheres,
vases, etc. (see Figure 3.14). As soon as the user looks or
points at the object, the program enlarges the object, fades
its surface color out, and exposes its internals. When the
user looks or points away from the object, the program
gradually zooms out and restores the initial color of the ob-

30 3 Related Work

Figure 3.14: The purple object in the top-left corner is se-
lected, and its internal details are shown, ©ACM 2000

ject — the object gets deselected.
The results are similar to Zhai’s experiment for his MAGIC
pointing technique. Eye movement was faster than in-
teracting with pointing, especially when distant objects
should be selected. As a trade-off to this gain, it was found
out that the second task which included spatial memory of
the scene was not in favor of the eye movement based tech-
nique. In this second task the users had to recall objects
by their internal data they already had interacted with —
similar to a pairs game. Using traditional pointing the user
had to spend extra physical effort to reach out to the objects
and interact with them instead of just looking at the object
of interest. This way they spent more time with the virtual
environment and built a more detailed model compared to
traditional pointing. Hence the performance, measured as
the number of right pairs, was better.

Switching from virtual reality to augmented reality, we findGaze in attentive
user interfaces can
improve the usability
of the whole system

the work of Maglio et al. [2000] about “Gaze and Speech in
Attentive User Interfaces”. An attentive user interface pays
attention to what users do so that they can attend to what
users need. They observed users with test tasks in an “of-
fice of the future”, where information is accessed on dis-

3.2 Interaction-techniques and Applications 31

plays via verbal commands. The office consisted of sev-
eral flat screens, labeled as “Calendar”, “Map/Direction”,
“Address”, a printer, and a futuristic looking orb labeled
“Dictation”. To compensate for technological shortcom-
ings, Wizard-of-Oz techniques were used to timely react on
user input.
Maglio et al. found out that the human-computer com- Results suggest that

gaze is a robust
source to find out
which device the
user wants to interact
with

munication was very similar to human-human communi-
cation in his tests. This correspondence is also known as
the “Media Equation”, a term coined by Nass et al. [1995].
The majority of requests were issued directly to the device,
i.e., looking at the printer and then saying “give me a copy”
and only less than two percent specified the device like in
“Printer, give me a copy”.

Figure 3.15: How to activate and deactivate the speech
interface using push-to-talk, look-to-talk, and talk-to-talk,
©ACM 2002

Based on these results, Oh et al. [2002] evaluated the use- Comparison of
look-to-talk,
talk-to-talk,
push-to-talk
interactions

fulness of a gaze-aware speech interface in a collaborative
environment. Their hypothesis was that using gaze as an
interface to activate the speech recognition would enable
a natural human-computer interaction in the collaborative
entertainment. To test the hypothesis they compared three
methods to activate the speech recognition; gaze-driven
“look-to-talk”, spoken keyword-driven “talk-to-talk”, and
a classical key press-driven “push-to-talk” (Figure 3.15).
They ran the first series of experiments with then state-
of-the-art eye tracking and speech recognition software
and the second series with a Wizard-of-Oz setup. The

32 3 Related Work

Figure 3.16: Subject A (left) can read the questions from the
wall. Subject b (right) discusses the task with subject A and
acts as a collaborator. In the background one can see the
quiz master Sam, who changes his expression depending
on whether he is listening or not, ©ACM 2002

experiment was set up with two subjects and a software
agent (Sam) — (see Figure 3.16). During the experiment,
Sam reads quiz questions through a text-to-speech module.
Each pair of subjects was confronted with three sets of
six trivia questions, each set using a different mode of
interaction.
Test results show that under ideal conditions (i.e., WizardUsers preferred LTT

and TTT over PTT of Oz), users preferred LTT and TTT over PTT. A remark-
able answer of one the subjects, whether he preferred LTT,
was “I just turned my head to answer and noticed that Sam
was already in listening mode”.

A more realistic collaborative environment was built byEnhancing video
conferencing with
gaze cues of the
users to make it feel
more realistic

Okada et al. [1994]. They constructed a multi-party video
conferencing system that supports multiple eye contact
among the participants and includes gaze awareness.
This “Multi-Attendant Joint Interface for Collaboration”
(MAJIC) works in a multi-site and multi-user environment.
It projects life-size video images of conference participants
onto a large curved screen with boundaries between them
in an effort to give the users the look and feel of a meeting
at a real table with all persons sitting next to each other.

3.2 Interaction-techniques and Applications 33

Figure 3.17 shows an example three-way setup of the

Figure 3.17: Three-way videoconferencing using MAJIC,
©ACM 1994

MAJIC system.
Sellen [1992] estimated that 60 percent of conversation
involves gaze and at least 30 percent includes mutual gaze.
For that reason MAJIC users can make eye contact with
an individual participant and be aware of the direction of
each others gaze. When user A turns his head to the right
to look straight at user B, user B sees user A full face and
user C sees the left profile of user A. This means that user
C becomes aware of user A gazing toward user B and so
on. In adittion to the video stream modifications the audio
was changed. The users hear the voices more from the left
or the right, depending on where the others are facing.
To evaluate whether this gaze-aware system enriches
the user’s experience, a sample system was set up at a
collaboration fair in Tokyo. 20 visitors participated in the
three-way conferencing system. They were asked to play
a modified version of poker. Everyone was able to make
multiple eye contacts and to become aware of the gazes of
each other.
Many of them provided positive answers concerning a User tests show that

the system was able
to deliver a more
realistic conference
experience

feeling of togetherness. Although the images on the screen
had a low resolution and the users were not allowed
to move their head, they were impressed by the overall
experience.

Another videoconferencing system was presented by Minimizing turntaking
problems by giving
cues of the users’s
gaze

Vertegaal [1999]. They based their research on the idea that
“designing mediated systems is a problem of conveying the
least redundant cues first” [Vertegaal, 1999]. Their GAZE

34 3 Related Work

groupware system also is aware of the user’s gaze and
thereby tries to convey this important cue for multiparty
communication in order to minimize turntaking problems.
The GAZE system simulates a four-man round-table meet-
ing room. As can be seen in Figure 3.18, the camera images

Figure 3.18: Screens rotate according to where users look,
©ACM 1999

of the users are mapped onto virtual screens. They rotate
according to the user’s gaze. A virtual light is attached to
the top of each virtual screen to visualize the spot the user
is looking at — the so called lightspot. It even allows the
users to see where other participants gaze at in a shared
document.
Evaluation of the system took place at ACM Expo’97 with
informal sessions of several hundred novice users. Most
users did not even seem to notice the gaze tracking and
just sat in front of the system to talk to other participants
and enjoyed the system.

A more thorough study on the “Effects of Gaze on Multi-More formal study of
their system party Mediated Communication” was done one year later

by Vertegaal et al. [2000]. Groups of two actors and one
test subject solved language puzzles in three different au-
diovisual communication conditions. They first presented
a frontal motion video of the actors to the subject, then
the second included motion video with gaze direction cues

3.2 Interaction-techniques and Applications 35

Figure 3.19: The video-mediated system used by the sub-
jects, ©ACM 2000

(i.e., the actors were facing the computer, the subject, or
the other actor). The third one had still images of the three
aforementioned head poses, but also gaze direction cues.
The results show that gaze is an important factor for suc- Gaze-awareness

supports efficient
turntaking

cessful collaborative work — even more important than
moving from still images to video as there were no sig-
nificant differences between setup 2 and 3. Subjects used
twice as many references to persons when gaze cues were
present. When gaze was lacking, the turn-taking efficiency
decreased by 25 percent.

But even in non-collaborative environments gaze can be a Gaze-aware level of
detail rendering
improves
performance

useful input modality. One can reduce the level of ren-
dering detail in the area off the gaze spot. Parkhurst and
Niebur [2004] developed a system that needed users to
search for a named object in several different complex home
interiors. Results indicated that using a medium degree of
level of detail reduction off the gaze spot resulted in a de-
crease of overall search time. Because of the reduced num-
ber of polygons the system would even run faster and pro-
vide a much more realistic experience due to smoother ren-
dering.

To conclude the related work section we present a spe-
cial use for an eye tracker — as a control device for video
games. Smith and Graham [2006] evaluated gaze as substi-

36 3 Related Work

tute for the mouse in three games from different genres:
A first-person shooter where the user controls orientation, a
role-playing game in which an avatar is moved through an
interactive environment through pointing, and an arcade
game in which moving objects are targeted through point-
ing.
A large majority of the users felt more immersed to the
gaming experience. Therefore they preferred the look-to-
walk interface of the role-play game over the standard
mouse interface. In the first-person shooter the “midas
touch” was a large problem. If a player was walking throug
a long plain hallway and an interesting object appeared the
use would turn to that object, although most of the time
he still wanted to move on straight. Therefore those play-
ers favored the mouse for such an input. Conclusively, the
users voted for future use of gaze tracking in games where
it supports the input metaphor, but not as a general point-
ing substitute.

37

Chapter 4

System Design and
Implementation

“When solving problems, dig at the roots instead of just hacking
at the leaves.”

–Anthony J. D’Angelo

In the previous chapter, we presented a selection of
research on the engineering problem of gaze tracking
systems. The main focus was to achieve accurate gaze
tracking for single-user desktop or multi-user videocon-
ferencing applications, which have the same requirements
from the engineering perspective. They usually focused on
persons with two healthy eyes, i.e., no squint-eyed people,
no abnormal curvature of the corneal surface, and so will
we. A more severe problem for most (and our) systems,
that are based on reflections of specific light sources, are
people wearing glasses. For the current implementation,
we only considered people without glasses.
Considering the interactions, most of the papers focussed
on gaze as substitute for pointing devices. More current
ones dealt with using the visual cues gaze tracking can
give for interacting with users, but they were very focused
on multi-site video-conferencing.

Unfortunately, current gaze tracking systems are not Most gaze tracking
systems require user
calibration

capable of tracking users’ gaze (with acceptable accuracy)

38 4 System Design and Implementation

without a cumbersome precalibration step.

Current research argues that a precalibration step is neces-Current research
thinks that the main
reason for inaccurate
tracking is due to
differences in the
user’s eyes

sary due to the difference between the optic and the visual
axis, which is different from user to user. But even with
precalibration, systems still have an error of more than 0.5◦

(e.g. [Guestrin and Eizenman, 2006]). This accumulates
to roughly 1 cm deviation on a 1 m distant screen — not
accurate enough for tasks like text selection.

We are confident that these errors have another source —System calibration is
at least as important
as user calibration

the calibration of the system. By this we mean the location
and orientation of the hardware components (camera, light
source).
Every system that wants to track the 3D point that both
eyes are focusing on — the focal point — has to calculate
the gaze of each eye. Using vision-based methods, the
cameras have to extract features from the images and
then calculate some intermediate points, lines, or planes
for further use in a mathematical model. Due to spatial
proximity of the tracked features, even slight errors in the
complex mapping from the 2D to the 3D position will have
an impact on the accuracy of the gaze.
One could in some way calculate cornea center and pupil
center and then use these anchorpoints for the focal point
calculation. These two points are not more than 1 cm
distant, so if the cornea center position is wrong by 1 mm,
the gaze will be rotateted around the pupil center and the
focal point will be off by 10 cm.

As we mentioned in Chapter 1—“Introduction”, the goalOur gaze tracking
system is thoroughly
evaluated

of our work is to explore what kind of calibration errors
have the biggest impact on the system’s accuracy. To
analyze these dependencies, we start with building a user
calibration-free gaze tracking system. We add noise to
several of the system calibration variables (rotation of the
cameras, position of LEDs, etc.) and will show in Chapter
5—“Evaluation” how unstable a gaze tracking system can
react to minor variations of some of the variables.
To make sure that our results are not flawed by unde-A POV-Ray based

setup was tested termined measuring errors or other deficiencies in the

4.1 Hardware Setup 39

hardware setup, we used POV-Ray to design a computer
model of the human eye. Our gaze calculation algorithm
was slightly modified to work on these computer-
generated images and the same tests as on the real setup
were performed.
We calculate an output error per input error ratio and can
then order the parameters by their impact. We think that We focus on the

main reasons for
inaccuracies

the types of error that “move” the key components (like the
cornea center) of the gaze direction calculation the most
will lead to the biggest errors in the accuracy of the system.

Other researchers [Shih et al., 2000], [Guestrin and Eizen- Noisy images can
reduce the accuracyman, 2006] have shown that adding noise to the 2D posi-

tions of the detected features has an influence on the gaze
direction. A zero-mean gaussian distributed position error
with 0.1 pixel standard deviation yielded a 0.3◦ and 0.26◦

respectively error angle.
Although the numbers are quite high we think that in the
days of high resolution cameras and more than sub-pixel
accurate calibration systems the intrinsic camera parame-
ters are not that important anymore.
Instead, initial tests showed that especially the extrinsic
camera parameters have a high impact. We design an adap-
tive calibration algorithm that attempts to reduce the im-
pact of these error sources and increase the robustness of
the system.

We first present the hardware setup. We then describe the
underlying theoretical model and after that we will talk
about the implementation details.

4.1 Hardware Setup

Based on Shih et al. [2000] we built our own gaze track-
ing system. We use three narrow angle cameras from Xuuk
[2007], which are mounted on a table using video stands
and six near infra-red light sources. They are connected to
an Apple MacBook Pro (Intel Dual Core 2 2.3 GHz Proces-
sor with 2 GB of RAM).
As is shown in Figure 4.1, each video camera has a ring

40 4 System Design and Implementation

Figure 4.1: The hardware setup consisting of three cameras
and three additional off-axis LEDs

of on-axis LEDs and a set of off-axis LEDs connected to it
to generate the dark and bright pupil images. Using a tri-
angular lighting pattern makes it very easy to distinguish
between the different corneal reflections. The lighting alter-
nates between all off-axis LEDs illuminated and the on-axis
LEDs not illuminated and vice versa.
Although the algorithm itself is capable of tracking a mov-
ing user, the current prototype limits his movement. The
user bites on a spoon, so head movement is minimized
and cannot handicap the tracking process, due to too much
noise in the difference images. The main reason for this de-
cision is that the cameras have a low framerate due to high
resolution images. Another problem is that these high res-
olution images are connected by a shared USB and have to
be processed on the same pc.

Our system does not require a user-specific calibration, but
it is necessary to measure the position of the LEDs, the dis-
play, and the cameras. For the cameras also the rotation
w.r.t. an anchor coordinate system is required.
For calibration, we use a rigid checkerboard pattern (see
Figure 4.5). The lower left corner of the pattern is then de-

4.1 Hardware Setup 41

Figure 4.2: Image-cutout with off-axis illumination

Figure 4.3: Image-cutout with on-axis illumination

Figure 4.4: The coordinate system

fined as the origin of our coordinate system.
To calculate the position we define a global coordinate sys-
tem. As can be seen in Figure 4.4 the x-axis represents hor-
izontal shifts, the y-axis represents vertical shifts, and the
z-axis resembles the depth. 1 mm in a direction equals 1 in
the coordinate system.

42 4 System Design and Implementation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Figure 4.5: Calibration pattern used for setup of the coordi-
nate system

We use PHIDIAS1 for the camera calibration. This is a soft-
ware toolkit for close range photogrammetry and was de-
veloped by a spin-off of the RWTH Institute for Geodesy.
It returns intrinsic parameters and extrinsic parameters
w.r.t. the calibration pattern. The average reprojection er-
ror of the determined parameters is lower than 0.4µm.

1More information at http://www.phocad.de/Produkte/PHIDIAS Info en.pdf

4.1 Hardware Setup 43

4.1.1 POV-Ray Model

To make sure that our results are not falsified by flaws in Two POV-Ray
models are designed
to evaluate with
perfect data

the calibration of the hardware, image requisition, or simi-
lar external factors, we decided to also build two computer
models of the human eye. One consisting of only an eyeball

Figure 4.6: The simple eye model rendered by POV-Ray

and a pupil (Figure 4.6) and another one also modeling the
anterior chamber of the eye before it (Figure 4.7). The mod-
els use appropriate sizes for cornea radius, refraction index,
and eye radius. Both eyes are rotated to a focal point which
is specified in the POV-Ray data file. The whole hardware
setup was remodeled, i.e., every calibration parameter (po-
sition of cameras, LEDs, etc.) was the same for the com-
puter generated model.
The same parameters were also used for when performing
eye tracking on real-world eyes.

44 4 System Design and Implementation

Figure 4.7: The more complex eye model rendered by POV-
Ray

4.2 Gaze Model

As we have shown in Chapter 3—“Related Work”, mostResearch has
brought up different
eye models

gaze tracking systems internally remodel the human eye.
Each system has a different abstraction of the very complex
human visual system. Therefore they all behave slightly
different when confronted with (synthetic) input errors.
Analysing each of these models is beyond the scope of this
work.
To be able to apply our research and our results to these
systems we compared their eye models and chose a gen-
eralized model. The eye is modeled as a sphere with a
little bulge on it, representing the aqueous humor with the
cornea on top of it.

Although our results will primarily be applicable to ourSimilar systems
should behave
similar

system, we are confident that other gaze tracking systems,
which are based on more detailed models, behave similar.
Since most systems use comparable feature tracking, image
processing, and mathematical models, the absolute num-

4.2 Gaze Model 45

bers (output error per input error) will be different, but the
magnitude and especially the ordering between different
types of error should stay the same.
To determine the gaze of the user, we need to find the
cornea center and the pupil position (see Definiton 2.2—
“A Simple Eye Tracking System”, starting with the cornea
center.

4.2.1 Cornea Center

In every odd frame the on-axis LEDs are lit and in every LED reflections are
used for calculation
of the cornea

even frame the off-axis LEDs are lit. Some of the emitted
rays hit the cornea of the user’s eye. They are reflected
and are eventually recognized as small bright spots by the
video camera.

Theorem 4.2.1. Let V be the video camera center, L the LED
position, and R the spot on the cornea where the light gets
reflected. Then the cornea center C is also on the plane defined
by (V,L,R) (see Figure 4.8).

Proof. According to the law of reflection the incident ray
−→
LR, the reflected ray

−−→
RV , and the cornea’s normal n, which

stands on the reflection spot R, are all in the same plane.
If we assume a healthy eye, −n will point from the reflec-
tion spot R to the cornea center C.

−−→
OC =

−−→
OR− αn

for some scalar α. Multiplying by the normal np of the
(V,L,R) plane yields

nt
p

−−→
OC = nt

p

−−→
OR− α nt

pn︸︷︷︸
=0

This means that R and C lie on the same plane. Therefore
C also lies on the plane defined by (V,L,R)

46 4 System Design and Implementation

Figure 4.8: Center of the cornea

If we use more than one video camera and more than one
LED, we get multiple planes defined by (Vi, Lj , Ri,j), for
i ∈ 1, .., k video cameras and j ∈ 1, .., l LEDs.
If we assume perfect data, the intersection of at least three
non-coplanar planes yields one point. This is the cornea
center C.
By precise measuring of our hardware setup, we get the
video camera centers Vi, and the positions of the LEDs Lj .

The reflection spots at the cornea Ri,j are more difficult to
calculate. We know that they lie on the ray that goes from
Vi to Ri,j intersecting the image plane at (ui,j , vi,j), where
u ∈ [0, w − 1], v ∈ [0, h − 1], w is the image width and h is

4.2 Gaze Model 47

the image height.
By unprojecting the image pixel (ui,j , vi,j):

xi,j =
(ui,j − cx)zi,j

fx

yi,j =
(vi,j − cy)zi,j

fy

we get the direction of the ray
[−−−→
ViRi,j

]
L

:


(ui,j−cx)

fx
(vi,j−cy)

fy

1


w.r.t. the local coordinate system L of the video cam-
era, where (cx, cy) is a principal point and fx, fy are focal
lengths of the camera expressed in pixel-related units (see
the appendix for more information about the pinhole cam-
era model).
These video camera-specific parameters were precalculated
using the PHIDAS software. The vector

[−−−→
ViRi,j

]
L

then has
to be converted from the video camera coordinate system L
to the global coordinate system G. The necessary rotation
matrix and the translation vector can also be precomputed
for each video camera. Because vectors are not affected by
a translation we can invert the rotation matrix R:

[−−−→
ViRi,j

]
G

= R−1
[−−−→
ViRi,j

]
L

= R−1


(ui,j−cx)

fx
(vi,j−cy)

fy

1



We have all vectors and points given w.r.t. the global coor-
dinate system. As aforementioned, the cornea center C is
at the intersection of the planes (Vi, Lj , Ri,j). Every point P
on a plane with normal n has to satisfy:

ntP = d

with d being the distance from the plane to the origin (of
our global coordinate system). We get n via the cross-
product of

−−−→
ViRi,j and

−−→
ViLj , and d = ntVi.

That means for one pair of video cameras and LEDs we get Linear constraint for
the cornea center is
found

an equation of the form:

(
−−−→
ViRi,j ×

−−→
ViLj)tC = (

−−−→
ViRi,j ×

−−→
ViLj)tVi (4.1)

48 4 System Design and Implementation

In this LES (linear equation system) onlyC is unknown, but
can be calculated as soon as we have at least three linear
independent equations i.e. different pairs of video cameras
and LEDs.

If we have more than three pairs of video cameras and
LEDs, the LES is overdetermined. In theory the three or
more planes should still intersect at one point, but because
of noise in the real data they do not. Therefore, we attempt
to find a point which is as near (in a least square error sense)
as possible to all of the planes.
The distance of a point p = (px, py, pz, 1) to a plane N ,The least square

error approach
returns the cornea
center

defined by its normal n = (nx, ny, nz, 0) and one point
q = (qx, qy, qz, 1) on it, is ntp − ntq. By summing up the
distances to each plane we get the distance to all planes
Φ = {N : N = (nx, ny, nz,−ntq)}. Thus∑

N∈Φ

(ntp− ntq)2 → min (4.2)

should be minimized. Calculating the partial derivatives of
this function for all three varying dimensions (x, y, z) and
setting them to 0 gives a new LES with three equations. As
long as we have at least three non coplanar planes we only
need to solve the system and then have the cornea center.
This least square error approach will give a more robust
cornea center than the naive three plane intersection ap-
proach.

Because we always have the same kind of function we can
even optimize the minimization [Horn, 1987].
The distance from the point p to the planes Φ can be written
as:

distance(p,Φ) =
∑
N∈Φ

(NT p)2

=
∑
N∈Φ

pt(NN t)p

= pt(
∑
N∈Φ

NN t)p

= pt(
∑
N∈Φ

QN)p

4.2 Gaze Model 49

where QN is the error quadric of the plane N . For a plane
N = (nx, ny, nz, d), with d = −ntq the symmetric quadric is:

QN =


n2

x nxny nxnz nxd
nxny n2

y nynz nyd

nxnz nynz n2
z nzd

nxd nyd nzd d2


For a set of planes we just have to add each quadric:

QΦ =
∑
N∈Φ

QN

We now can reformulate our optimization problem:

ptQΦp→ min

For a general symmetric quadric

Q =


a b c d
b e f g
c f h i
d g i j

 =:
(
A l
lt m

)

with A ∈ R3x3, l ∈ R3,m ∈ R
we calculate the partial derivatives of F = (px, py, pz, 1) Q
(px, py, pz, 1)t.

∂F

∂px
= 2(apx + bpy + cpz + d) != 0

∂F

∂py
= 2(bpx + epy + fpz + g) != 0

∂F

∂pz
= 2(cpx + fpy + hpz + i) != 0

Back to matrix notation this can be written as:
a b c d
b e f g
c f h i
0 0 0 1



px

py

pz

1

 =


0
0
0
1

↔
a b c
b e f
c f h

px

py

pz

 =

−d−g
−i

↔ Ae = −l

Solving this 3× 4 LES yields the point nearest to all planes
without computing any derivatives at all.

50 4 System Design and Implementation

4.2.2 Gaze Direction

The calculation of the gaze direction is done similar to the
cornea center calculation. To find the gaze, we need the lo-
cation of the pupil center Pr (Figure 4.9). Because of the
convex appearance of the cornea, our video cameras see,
not the real pupil, but a refracted image it.
The video camera sees the projection of the virtual pupil
center (u, v) in an image. By unprojecting this pixel (as seen
in Section 4.2.1) we get the ray

−−−→
ViPvi from the video camera

to the virtual pupil.
If we had only one camera we would need user-specific in-
formation (like the refraction index of the cornea, the dis-
tance between pupil and cornea center, etc.) to calculate the
real pupil center [Guestrin and Eizenman, 2006]. But with
the help of two cameras and theorem 4.2.2 we can find it
without this data — hence our system does not need user-
specific calibration.

Figure 4.9: Virtual pupil image

4.2 Gaze Model 51

Theorem 4.2.2. Let Pr be the real pupil center and Pvi the
virtual pupil center seen by video camera Vi. Then the cornea
center C lies on the plane defined by (Pr, Pvi , Vi) (see Figure
4.9).

Proof. The proof works analog to the one for theorem 4.2.1.
The light travels through the cornea and eventually hits
the real pupil center. It is reflected outwards and w.l.o.g.
ends up at video camera V2. According to the law of
refraction the incoming ray

−−−→
PrPv2 the perpendicular n, and

the refracted ray
−−−→
Pv2V2 are on the same plane. Assuming

a healthy eye and therefore a sphere-shaped cornea, the
perpendicular −n points from the virtual pupil center to
the cornea center:

−−→
OC =

−−−→
OPv2 − αn

for some scalar α. Multiplying by the normal np of the
(Pr, Pvi , Vi) plane yields

nt
p

−−→
OC = nt

p

−−−→
OPv2 − α nt

pn︸︷︷︸
=0

Because (C,Pr, Pvi , Vi) all lie on the same plane we get a Linear constraint for
the gaze direction is
found

linear constraint for the gaze direction i.e.
−−→
CPr.

(
−−−→
ViPvi ×

−−→
ViC)tPr = (

−−−→
ViPvi ×

−−→
ViC)tVi (4.3)

Only the position of the real pupil center Pr is unknown,
but if we have at least two video cameras (and therefore
two equations) the LES yields a ray which is the desired
gaze direction.

For the case of exactly two video cameras, we can even find
an easier solution. Taking a closer look at (4.3), we see that

52 4 System Design and Implementation

we are trying to find the intersection of two planes.
Let n1, n2 be the two normals of the planes. All lines within
one plane have to be orthogonal to the plane’s normal, thus
the intersection line has to be orthogonal to both. Therefore
l = n1 × n2 is parallel to the intersection line. Because we
know that C is on the intersection, we have a parametric
representation of the gaze direction of one eye:

gaze(α) =
−−→
OC + α(n1 × n2)

=
−−→
OC + α((

−−−→
V1Pv1 ×

−−→
V1C)× (

−−−→
V2Pv2 ×

−−→
V2C))

4.2.3 Combining Gaze

Using the above algorithm we get a gaze direction for eachGaze direction of
each eye is unstable eye. The gaze direction is the intersection of the planes

that are constructed using the cornea center, the video
camera position, and the unprojection of the virtual pupil
center (as seen by each video camera). This unprojection
passes close to the cornea center. This means that even
slight errors in the calculation of the cornea center, or
the unprojection will have an impact on the plane and
therefore the gaze direction.

To compensate for this, we expand the algorithm to takeExtension of the
calculations uses
both eyes

into account that both eyes are looking at the same point in
space. This means the focus point F is on the gaze ray of
the left and the right eye.
If we remember the calculation of the gaze direction, which
was the intersection of two planes, we see that the focus
point F is on all of these planes P . They are defined by the
triplet:

(Vi, Pvi , Cj), i ∈ {1 . . . v}, j ∈ {1, 2}

where Vi is the video camera position, v the number of
video cameras, Pvi the virtual pupil center and Cj the
center of the cornea.
Using the least square error approach that we also use for
the cornea center calculation, we find the point which is

4.2 Gaze Model 53

closest to all of these planes — the focal point of the eyes.
The gaze direction (from the eye to the focal point) is now
based on not just an unstable two plane intersection but by
an “intersection” of all 2v planes. Using the more stable
calculated point F , we can now define the two eye gaze
direction.

COMBINED GAZE:
The combined gaze vector is the vector from the center
of gravity of the cornea centers (C1 + C2)/2 to the focal
point F .

Definition:
Combined Gaze

4.2.4 Gaze on Screen

We now have the combined gaze ray and need to find out
where it hits our display. Let C + λv be the gaze ray where
v is the gaze direction and C the center of gravity of the
cornea centers C1, C2. The rectangular display is given by
three points P1, P2, P3 (that is top-left, top-right, bottom-
left), thus the normal of the display-plane is:

n = (P2 − P1)× (P3 − P1)

To get the point I , where gaze ray and display-plane inter-
sect (see Figure 4.10), we insert the equation of the ray into
the normal form of the display plane:

ntx− ntP1 =0
nt(C + λv)− ntP1 =0

λ =
ntP1 − ntC

ntv

I =a+
ntP1 − ntC

ntv
v

We now have the 3D intersection point and the only thing
left to do is to map it to the 2D coordinate system of
the display. Therefore we use P1 + α(P2 − P1) as the
X direction and P1 + β(P3 − P1) as the Y direction. By
projecting the intersection point I on each direction vector

54 4 System Design and Implementation

Figure 4.10: Calculation of the line-plane intersection

we get values for α and β which lie between 0 and 1. These
virtual screen coordinates can then be transformed into
real screen coordinates.

4.2.5 Adaptive Calibration

When we did our first tests, we observed that accuracy of
the system was heavily influenced by even small errors
in the camera calibration. To be able to further research
this problem, we developed an algorithm that tries to
compensate for camera calibration errors.

The algorithm adds an adaptive calibration step to the stan-If it does not fit, make
it fit dard algorithm. The idea is simple: To make sure that

the cameras’ viewing rays for a specific point intersect at
a point, we just update the cameras’ rotation matrices ac-
cordingly — thereby postcalibrating the camera (see Figure
4.11).
We calculate the cornea center as described previously, but

4.2 Gaze Model 55

Figure 4.11: Postcalibration of the cameras by rotating onto
the LES solution

then start our adaptive calibration. The specific point we
want to rotate to is the cornea center. We know its position
using the common knowledge of the cameras and our least
square error approach.

We now calculate the cornea center as seen from every
camera using only the knowledge of this camera. Each The least square

error approach does
not work

camera i has three planes (Vi, Lj , Ri,j), which are con-
structed from the reflections Ri,j of the LEDs j on the
cornea (see Section 4.2.1—“Cornea Center”).
If we use the least square error approach on only the three
planes of one camera, we would not get the cornea center.
This is because they all share the camera position Vi and
(theoretically) also each point on the line from Vi to the
common cornea center. The least square error approach
searches for the point which is closest to all planes, which
is in this case the camera position Vi.

Instead of the least square error approach we construct the
intersection of each plane pair and then average these rays.
Because each plane passes next to the cornea center, so does
the pair’s intersection. The average of these rays is very
similar to the ray from Vi to the camera’s own cornea cen-

56 4 System Design and Implementation

ter.
We now have a good guess for the desired ray and construct
a rotation matrix that rotates the guessed ray onto the ray
from the camera to the common cornea center. This matrix
gets applied to the camera’s rotation matrix and now that
all cameras “agreed” on a point the following gaze calcula-
tions have a more stable ground.

4.3 Image Processing

The cameras do not deliver 2D coordinates of the glints and
the pupil, but just 1280 × 1024 grayscale images. To de-
termine the 2D coordinate, the grayscale images are pro-
cessed by a pipeline of image processing methods (see Fig-
ure 4.12).

4.3.1 Detecting the Pupil

The video cameras have a set of LEDs around them. WhenWe use the
differencing
technique to acquire
the pupil

these LEDs are lit the frames taken by the video camera
have the “red-eye” effect.
Because the LEDs are around the optical axis, we call
these on-axis frames. If the LEDs are not lit they are called
off-axis frames. Due to the “red-eye” effect, the on-axis
frames are also called bright frames. The off-axis frames
are called dark frames.
Because the major difference between the on- and off-axis
frames are the red eyes, the subtraction of an off-axis from
an on-axis frame yields the pupils.

Due to the noise in the difference image, simple tracking of
the biggest conncted pixel components (from now on called
blobs) on this image leads to many false-positives. Since for
each detected blob an object is created by the blob detection
library, the system runs slow on noisy difference images.
To compensate for these problems, we do the following for
each on- and off-axis frame pair :

4.3 Image Processing 57

D
ar

k
Br

ig
ht

D
iff

er
en

ce

A
fte

r C
an

ny

Re
gi

on
 o

f I
nt

er
es

t

-

Fi
gu

re
4.

12
:T

he
im

ag
e

pr
oc

es
si

ng
pi

pe
lin

e

58 4 System Design and Implementation

1. Scale down the average brightness of the bright frame
to the average brightness of the dark frame.

2. Subtract the dark frame from the bright frame.

3. Use an adaptive thresholding technique to filter out
the noise:
A histogram of the brightness is calculated and every
pixel which is among the lower 95 percent is set to
black, i.e., only the brightest 5 percent of the pixels
remain in the image.

This way we get a black frame with only the brightest spotsThresholding, blob
detection, and
filtering distinguishes
between noise and
pupils

left — the pupils. The frame is fed into the blob detection
routine from the cvBlobsLib (see Section 4.4—“Software
Implementation”) and we get a set of blobs. To prevent
false-positives due to head movement, etc. we filter the
blobs as follows:

1. Discard blobs which are smaller than 25 pixel or big-
ger than 1000 pixel.

2. Make a list of all blob pairs (i.e. pupil pair candidates)

3. For each blob pair

(a) Discard all pairs with distance from blob a to b
smaller than 120 pixel

(b) Discard all pairs who are not on the same height,
i.e., the line between the blob centers has an an-
gle of more than 20◦

4. Now select the brightest blob pair; the brightness of a
pair is the brightness of each blob normalized over its
size

Although the second step takes O(n2) time, where n is
the number of blobs, this is not a problem because the
image usually has less than ten blobs after thresholding
and filtering.

We now draw a region of interest (ROI) in the form of aA ROI rectangle
includes the eye

4.3 Image Processing 59

rectangle around each pupil so that it contains the whole
eye and can afterwards search for the glints, which have
to be somewhere on the eye (i.e., next to the pupil center).
The ROI is six times as wide as the pupil and three times as
high.

As Li et al. [2005] showed, an exact pupil position is neces- Exact pupil position
improves accuracysary for good tracking results. The current pupil position

is based on the difference image and therefore can contain
errors due to small head movement. We therefore use a
cutout (in the size of the ROI) from the dark frame to im-
prove the pupil detection accuracy (see Figure 4.12).
The image is inverted and thresholded, so the (once) dark
pupil remains as a bright spot. Blob detection yields the po-
sition and a new region of interest, which can be used for
the glint detection. The algorithm yielded good results —
we were not able to find better pupil centers manually in
our sample images.

4.3.2 Finding the Glints

Because of the reflective nature of the cornea, the specular
reflections of the LEDs on the cornea are very bright spots
in the images we get from the video camera.
Our initial idea was plain thresholding for the glints, but
that had two drawbacks. Reflections on the moist area
of the eye next to the lacrimal glands were confused with
the real reflections (see Figure 4.13). Therefore we priori-
tize glints next to the (2D) pupil center. Furthermore, the
glints can be in front of the black pupil or in front of the
iris, which is similiar grayish like the glints. There was no
perfect thresholding value to guarantee glint detection.

The most distinctive feature of a glint is its brightness com- Canny Edge
detection gives
reliable glint
detection

pared to its surroundings. Using an edge detection filter
[Canny, 1986] we get a black and white image containing
the glint edges (see Figure 4.12). A subsequent blob detec-
tion yields two blobs for each glint (one for the edge and
one for the hole). We remove the interior blobs and yield
the glints.

60 4 System Design and Implementation

Figure 4.13: Additional reflections next to the lacrimal
glands

After we found the centers of the glints in the images,
we need to know from which light source they originated.
Thanks to our triangular LED setup (see Figure 4.2 and 4.3
) this is easily done by sorting the glints by their x-value.
We then input the 2D values to our mathematical model
and calculate the gaze direction.

4.4 Software Implementation

The software resembles the image processing pipeline
(see Figure 4.12) and is therefore based on procedural
programming. C++ was used as a programming language
mainly due to the fact that the video cameras from xuuk
have an API that is based on C. To accelerate the develop-
ment process, we used OpenCV2 for the basic components
of our image processing.
The only three (real) classes in the software are GTCamera,
CBlobResult and CBlob. The latter two are part of the
cvBlobsLib which is a blob detection Library based on

2Intel Open Source Computer Vision Library opencv.org

4.4 Software Implementation 61

OpenCV. Inputting an grayscale image to CBlobResult
does a connected component analysis on the image with an
user-specified thresholding level. One can filter out blobs
according to pre- or self-defined constraints (e.g. size of the
blob) or sort the result set (e.g. distance to a specific pixel).
The result set is a vector of CBlob which can be queried
for the center of the blobs.

Our self written class is GTCamera. For each camera an
instance is generated to store the camera-specific values.
These include:

• the intrinsic parameters (focal length, principal
point),

• the extrinsic parameters (rotation matrix w.r.t. the cal-
ibration pattern),

• a hardware handle to the camera,

• the current bright and dark frame,

• the glint and pupil positions (2D and 3D) as seen from
the camera,

• and the planes we construct for the least square error
calculations.

To store data that is equal for all cameras (like cal-
culated cornea center) static variables are used, e.g.
GTCamera::right eye gaze.

We will now present the important files of the software
project and explain how the gaze direction is calculated. We
will skip over insignificant code which is only there for ini-
tialisation of variables, exception handling in case of NULL
pointers, etc. The same goes for all blob* files which are
part of cvBlobsLib, and the lucam* files which are required
to connect to the cameras.
The naming convention is as follows:

• foo for global variables

62 4 System Design and Implementation

• foo for local variables

• foo for function parameters

The program can read precaptured images from files and
work with computer generated images in 8 bit grayscale
format.
To change the mode modify the preprocessor definitons
POVRAYIMG and STATICIMG in stdafx.h accordingly. For
further explanation, we will assume STATICIMG == 0
and POVRAYIMG == 0.
There also exist a DEBUG flag, that when activated adds
several output windows to the image processing, where,
e.g., the difference image is shown.
There is a lot of code in order to do the evaluation, that
mainly pertuberates parameters like camera rotation angle
before calculation of the gaze and compares the resulting
gaze with a reference gaze, see Chapter 5—“Evaluation”.

4.4.1 Algebra.cpp

This file includes many routines to create and manipulate
matrices and vectors. A linear equation system (LES) solver
is also included. Matrices are specified as 2D arrays of dou-
bles and sorted row wise.

void adaptive calibration(std::vector<GTCamera>
& cams,std::vector<plane> & left eye planes)
A runtime postcalibration algorithm for the cameras
& cams. It compensates for initial calibration errors (see
Section 4.2.5—“Adaptive Calibration”).

void add plane(GTCamera & cam,
CvPoint2D64f & glint, CvPoint3D64f & light,
std::vector<plane> & planes, int store at)
Calculates the plane from the given points (camera posi-
tion, unprojection of the glint, LED position) on it and adds
it to & planes, See Section 4.2.1—“Cornea Center”.

double angle between(CvPoint3D64f & veca,
CvPoint3D64f & vecb)
Returns the angle between & veca and & vecb.

4.4 Software Implementation 63

void calc gaze(std::vector<GTCamera>
& cams,Table& table)
Calculates the gaze direction for each eye and the result-
ing gaze point on the display, see Section 4.2.2—“Gaze
Direction”.

double finddet(double a1, double a2,
double a3, double b1, double b2, double
b3, double c1, double c2, double c3)
Returns determinant of the matrix specified in row order.

bool linsolve(double **A,double *l)
Uses Cramer’s rule to get the solution of a 3× 3 LES.

void matrix mul(double ** A, double ** B,
double ** out)
Calculates A ∗ B = out.

bool point nearest to planes(plane

* planes,int numplanes, CvPoint3D64f
& point)
Calculates the & point which is nearest (in a least square
error sense) to all of the planes in * planes. It implements
the algorithm from Section 4.2.1—“Cornea Center”.

double random flat(double a, double b)
Returns a uniformly distributed random number ∈ { a, b}.

double random gaussian(double mean, double
dev)

Returns a random number of a gaussian distribution.3

void RotationMatrix(CvPoint3D64f
& rotate around, double angle, double

** matrix)
Calculates rotation matrix for a rotation around a given
vector with angle.

void RotationMatrix(double x angle,
double y angle, double z angle, bool
invert rotation, double** matrix)

Calculates right-hand-sided rotation matrix for successive

3http://www.taygeta.com/random/gaussian.html

64 4 System Design and Implementation

rotations around the origin, i.e. R z ∗ R y ∗ R x(∗p). If
invert rotation is true, then the matrix is initialized

with a z flip.POV-Ray uses a left-hand-side coordinate
system so we have to flip in the case of POV-Ray-generated
images.

void unproject(GTCamera & cam,
CvPoint2D64f & glint, CvPoint3D64f
& cam to glint)
Unprojects the & glint. This viewing ray from the
camera center through the image plane is stored in
& cam to glint.

4.4.2 GazeTop.cpp

This is the main file, where the main function resides, the
image processing is started and the results from the com-
putations are visualized.

void tmain(int argc, TCHAR* argv[])

• connect to the cameras, read the scene from the .pov
file, and start the main loop

– set the right lighting scheme

– acquire images from each camera

– create a thread for each camera, and start the im-
age processing for each one

– wait till the threads are finished

– call cornea center calculation for both eyes

– call gaze calculation, then display the images
with additional information (like a rectangle for
the region of interest, a cross at the pupil center,
and a circle around glints)

void process image(IplImage * image,const
int camnumber)
This function implements the algorithm discussed in
Section 4.3—“Image Processing”:

4.4 Software Implementation 65

• calculate difference image from current and last frame

• detect the pupils (adaptive thresholding + blob detec-
tion)

• draw a region of interest (ROI) around them

• find the glints inside this ROI (cvCanny from
OpenCV)

• for each glint store a plane for the cornea center cal-
culation

OpenCV is used for the image manipulation, e.g. the
cvCanny routine gets called. CvBlobsLib is used for the
blob detection.

4.4.3 GTCamera.cpp

The main purpose of this class is to store camera-specific
data. Apart from the usual constructors and destructors it
contains the following routine:

void GTCamera::calculate focal dist(double
angle)

Calculate focal distance for a given horizontal opening
angle of the (POV-Ray) camera. Assumes 1280 × 1024

picture.

4.4.4 Image processing.cpp

This files includes some self-written image processing func-
tions.

void adaptiveThreshold(IplImage * src,
IplImage * dst, double percentage)
A histogram is calculated and every pixel darker than the
top (percentage) brightest pixels is set to 0.

int find pupil pos(IplImage * image,
CvBox2D & pupil)

66 4 System Design and Implementation

The function gets an image cutout that contains the eye.
The images is inverted and thresholded, so the (once) dark
pupil remains as a bright spot. Blob detection yields the
position. The function draws a region of interest (& pupil)
around the pupil.

void invertImage(const IplImage * src,
IplImage * dst)
Inverts the image: dst[x][y]=255- dst[x][y];

void subtract(const IplImage * src1, const
IplImage * src2, IplImage * dst)
Calculates pixel-wise difference : dst= src1- src2;

4.4.5 Table.cpp

Stores real world coordinates of the display’s corners p1 =
top left, p2 = top right, p3 = bottom left. A rectangular dis-
play is assumed.

void Table::calc gaze points(CvPoint3D64f
& gaze, CvPoint3D64f & origin)
The intersection between the gaze vector and the dis-
play is calculated — it implements algorithm 4.2.4—
“Gaze on Screen”. Stores the screen coordinate in
Table::impactpoint.

void Table::load position data(char

* filename)
Loads the 3D position of the display.

67

Chapter 5

Evaluation

“Statistics will prove anything, even the truth.”
–Noel Moynihan

Although gaze tracking has been researched for over 50 Discrepancy
between optic and
visual axis raises
problems

years now, there is no calibration-free system that can
accurately track several users who are, e.g., having a
meeting in some gaze-enabled room. Even tracking the
gaze of a single person is unreliable.
Current research argues that the main reason for this is
that the optic axis of the eye (which goes through the pupil
center and the cornea center) and the visual axis (which
goes from the fovea through the cornea center) are slightly
different, see Figure 3.13. Unfortunately, the former is the
only thing one can find with image-based methods, and
the latter is where the user is focusing at.
Even systems that measure user-specific parameters to
calculate this difference angle are flawed. It is not possible
to get an accuracy that is sufficient to replace the mouse
as a pointing device. Therefore, the difference angle can
not be the only reason for inaccurate gaze tracking systems.

We believe that an important and overlooked source of
error is the calibration of the system, e.g., positioning of
the cameras. We developed our own gaze tracking system
to explore what impact calibration errors can have on the
accuracy of the system.

68 5 Evaluation

5.1 Test Setup

To test the performance of our algorithm on the computerFirst performance
measure is not
applicable to both
test setups

model, we compared the calculated focal point, as a result
of our gaze tracking algorithm, with the one defined in our
model.
The accuracy on the simple eye model was less than 0.5 cm
average error in the focal point and slightly more (< 1 cm)
for the more complex eye model.
To apply this performance measure to the real setup, we
would need the precise position of an object the user
is looking at. Unfortunately, we had no access to a 3D
tracking system that is able to accurately measure the
position of a fixation object.

For that reason, we decided to use another performanceDeviation angle is
used as performance
measure

measure, which, in addition, is common in the gaze track-
ing community. We use the angle between two gaze points
— the first being an initial reference value, calculated
with no measuring errors, and the second being the one
calculated with synthetic measuring errors.
This angle can be calculated for the computer model and
the real setup. To make sure no problems arise with
different lighting conditions, head movement, or other
factors, still images were taken for the real setup.

We took images of nine different viewing directions (top-
left, top-middle, top-right,. . . , to bottom-right gazing user).
This was also done for the two computer models by modi-
fying the focal point in the .pov file.
This way we ended up with three models: simple POV-Ray,
complex POV-Ray, and real setup.

5.1 Test Setup 69

5.1.1 Independent Variables

We ran the program with the measured system calibration
and stored the resulting gazepoint as a reference. We then
changed a parameter every second frame and compared
the resulting gazepoint to the reference value. The param-
eters in Table 5.1—“Independent Variables” were modified
using gaussian distributed random numbers.

Parameter Variation Mean Std. Deviation
camera (1..3) position add vector (x,y,z) 0 mm 1 mm
off-axis LED (1..3) position add vector (x,y,z) 0 mm 10 mm
camera (1..3) rotation rotate around x-axis 0 ◦ 0.5 ◦

camera (1..3) rotation rotate around y-axis 0 ◦ 0.5 ◦

camera (1..3) rotation rotate around z-axis 0 ◦ 0.5 ◦

camera (1..3) center point scale by factor 1 0.01
camera (1..3) focal distance scale by factor 1 0.01

Table 5.1: Parameter variations using gaussian distributed random numbers

To recall the coordinate system:

• The x-axis represents horizontal shifts,

• the y-axis represents vertical shifts,

• and the z-axis resembles the depth.

We also tested the dependency of the system on resolution.
To simulate different resolutions, the image from the video
camera was blurred using a gaussian smoothing filter. The
size of the smoothing kernel was varied from 1 to 15, using
a gaussian distribution.

The magnitude of the standard deviations was chosen ac-
cording to what is possible to measure and what still gave
reasonable results.
For each parameter, 100 random modifications were in-
serted and the result was measured.

70 5 Evaluation

5.1.2 Dependent Variables

For each parameter variation we got another gaze direction.
We calculated the angle between this gaze direction and
the reference gaze direction, which was calculated without
synthetical errors. The bigger this angle is the greater is the
impact of this parameter’s variation.

5.2 Results

We did not focus on the influence of different resolutionsChange of resolution
had the expected
influence

to the accuracy because the results met our expectations.
As long as all glints are detected the impact is very low
(less than 0.001◦).
If some glints are not visible, or the system is unable to
detect them correctly, the gaze direction is far from accurate
(more than 50◦).

To better interpret the results of the 21×100×9×3 = 56700Graphs are
smoothed for better
readability

parameter variations we cluster them and remove outliers
(i.e. results which are more then three times the standard
deviation distant to the mean).
As a first test, we changed the parameter “camera (1..3)
rotation” using still camera images from the real setup we
get Graph 5.1. As we can see the impact of a wrong camera
rotation matrix is quite huge.
Because scatter plots tend to get confusing with more and
more scatters we will stick to line plots with a moving
average filter (over five points).
As a first step, we compare whether the two computer
models behave like the real setup. As we can see in Figure
5.2, our models resemble the real setup well — for rotation,
camera translation, and several other parameters the
figures look similar.

We further investigated what parameter variation hadThe slope of the
error graph relates
output to input error

greatest impact.
If we take a look at Figure 5.2 we can see that the data can

5.2 Results 71

Fi
gu

re
5.

1:
C

am
er

a
ro

ta
ti

on
ar

ou
nd

x-
A

xi
s

(◦
)v

s.
Er

ro
r

(◦
).

Te
st

re
su

lt
s

fo
r

ni
ne

vi
ew

s
an

d
th

re
e

di
ff

er
en

tc
am

er
as

72 5 Evaluation

be approximated with a straight line y = m ∗ x + b (using
linear least square error methods) quite well. Because the
line has to go through the origin, b equals 0 and therefore
the slope m is the ratio of error increase per parameter
variation.
We calculated this ratio for each of the testbeds. The results
can be found in Table 5.2.

Parameter Unit Pov1 Pov2 Real
camera (1..3) position ◦ error / mm translation 0.5802 1.696 0.4562
off-axis LED (1..3) position ◦ error / mm translation 0.01059 0.0193 0.03357
camera (1..3) center point ◦ error /� increase 0.09926 0.3385 0.08600
camera (1..3) focal distance ◦ error /� increase 0.02113 0.06496 0.03284
camera (1..3) x-rotation ◦ error / ◦ rotation 16.48 55.42 11.23
camera (1..3) y-rotation ◦ error / ◦ rotation 10.03 47.68 10.17
camera (1..3) z-rotation ◦ error / ◦ rotation 0.6025 2.053 0.2592

Table 5.2: Ratio of error increase per parameter variation

Our hypothesis was that the types of error that “move” theResults indicate that
our initial hypothesis
is right

key components of the gaze direction calculation the most
will lead to the biggest errors in the accuracy of the system.
The correct position of the LEDs is considerable less impor-
tant than the correct measuring of the camera’s position.
Introducing a 1 cm error in our POV-Ray model gives 5.8◦

for the cameras and only 0.1◦ error for the LEDs.
The absolute value indicates that LED position accuracy is
not the reason for a faulty system, whereas the correct cam-
era position is crucial for high system accuracy.
The position of the LEDs is only used for the cornea cen-
ter calculation, whereas the camera’s position is used for
cornea center and gaze calculation. A (real) translation of a
LED by 1 cm would move its glint by some pixel at most,
but a camera translation of 1 cm would translate the whole
picture by a far greater value, due to the narrow angle of
the camera.

Although center point and focal distance accuracy differ in
their impact, they are both not sensitive enough to really
affect the system’s performance, supporting our initial
hypothesis that intrinsic camera parameters are not the
main problem.

5.2 Results 73

Fi
gu

re
5.

2:
O

ff
-a

xi
s

LE
D

tr
an

sl
at

io
n

(m
m

)v
s.

Er
ro

r
(◦

).
Th

e
co

m
pu

te
r

m
od

el
s

(b
la

ck
=

si
m

pl
e

PO
V

-R
ay

,b
ri

gh
t=

co
m

pl
ex

PO
V

-R
ay

)b
eh

av
e

lik
e

th
e

re
al

se
tu

p
(i

n
gr

ey
).

74 5 Evaluation

For a serious error of more than 0.1◦ one would have to
measure the focal distance or the center point wrong by
several � of the initial value. For our setup, this would
mean several pixel for the center point and several mm for
the focal distance. However, both values can be calculated
quite exactly.

We already saw that the correct position of the camera, asExtrinsic camera
parameters vastly
influence the
system’s accuracy

part of the extrinsic parameters, is crucial for the system’s
performance. Our results indicate, that the rotation matri-
ces are even more important.
Even the slightest rotation around the x or y axis has a
huge impact on the accuracy. Rotation around the z axis n
is more fault-tolerant.

According to our eye model, two points played an impor-
tant role when calculating the gaze — cornea center and
pupil center. Both points where calculated with the data
from all three cameras.
If an error exists in the extrinsic parameters the cameras do
not see the same point at the same place (w.r.t. the global
coordinate system). Obviously, the calculation of the gaze
point based on this deviating position has to be wrong.

For further discussion we take a look at two cameras V1, V2

looking at the same glint. Unprojecting the 2D position
of the glint yields two viewing rays r1, r2. Ideally they
intersect at the real 3D position of the glint.
In practice they will not intersect at all in 3D. We see the 2D
case of this problem in Figure 5.3. The higher the distance d
from the real position to the intersection G of the cameras’
viewing rays, the worse each calculation based on G must
get. It should be clear that rotation and translation of the
camera has a great impact on the distance d, and therefore
on the overall calculation. This also explains that a rotation
around the camera’s z-axis, which is nearly parallel to the
unprojections r1 and r2 respectively, does not have such a
high impact as a rotation around one of the other axis.

5.3 Adaptive Calibration 75

Figure 5.3: Unprojection of pixel positions does not always
hit the object’s spatial position due to imperfect calibration

5.3 Adaptive Calibration

To further explore this problem, we developed an algo- Online calibration is
added to the systemrithm that tries to compensate for extrinsic parameter cal-

ibration errors, implemented it in our gaze tracking soft-
ware, and compared it to our standard algorithm.
We reran all tests using the adaptive calibration and got en-
couraging results. Because the data is quite consistent (i.e.,
both computer models behave the same, the rotation vari-
ations (x,y,z) behave the same, etc.) we only present some
typical results:

As we can see in Table 5.3 the adaptive calibration works Adaptive calibration
vastly reduces errors
from some sources

well for compensating camera translation errors and center

76 5 Evaluation

Variation Unit No Adapt Adapt
camera (1..3) position ◦ error / translation in mm 0.5802 0.02617
center point scale ◦ error /� increase 0.09926 0.003371
camera (1..3) x-axis rotation ◦ error / ◦ rotation 16.48 19.66

Table 5.3: Comparison of performance with and without the adaptive calibration
for the simple POV-Ray model

Variation Unit No Adapt Adapt
camera (1..3) position ◦ error / translation in mm 0.4562 1.244
center point scale ◦ error /� increase 0.086 0.2147
camera (1..3) x-axis rotation ◦ error / ◦ rotation 11.23 95.32

Table 5.4: Comparison of performance with and without the adaptive calibration
for the real setup

point errors on the computer models. Unfortunately it can-
not help with rotation errors.
Taking a look at Table 5.4, that shows the perfomance of theAdaptive calibration

does not always help system on the real setup, we see another trend: the calibra-
tion is not helping at all. The authors believe that although
the calibration of the real setup has been done very accu-
rately, it still has some errors in it that prevent the adaptive
calibration to work like it should (and as it does in the case
of perfect calibration data). Further discussion of this point
is subject of future work.

77

Chapter 6

Summary and Future
Work

In this final chapter we will summarize our research, state
the contributions to the gaze tracking community, and give
an outlook on future research ideas.

6.1 Summary and Contributions

We started with an introduction to the field of eye tracking. Lack of accurate user
calibration-free gaze
tracking systems

We showed what recent eye tracking systems are capable of
and that a calibration-free system with sufficient accuracy
for post-desktop interactions has not yet been built.
To explore interactions beyond pointing through gaze or
gaze-enhanced video conferencing the system must meet
the following requirements:

• allows free head movement

• accurate tracking

• real time processing of input images

• user calibration-free

To find out why current systems do not fullfill these
requirements, we developed a comparable gaze tracking

78 6 Summary and Future Work

system and thoroughly evaluated its performance.

We based our work on the proposal by Shih et al. [2000]
and hardened their approach using least square error
methods and multiple cameras. We implemented this
approach and built a system with three cameras and six
light sources.
To evaluate the system’s behaviour and find reasons for the
absence of a system with the above mentioned capabilities,
we fed synthetical errors (e.g., add noise to the images)
into the system and measured its fault-tolerance.
We calcaluted the ratio between each error input and itsThe error ratio

allowed a
comparison of the
error sources

resulting error. This way we were able to quantitatively
predict the influence of an error and to sort the error
sources by their damage potential. Using this ratio we
discovered that especially the extrinsic parameters of the
cameras (i.e., position and rotation) have to be measured
very precisely or the system will always produce errors,
like it does in every gaze tracking system up to now —
even after calibration to the user.

To compensate for errors due to less than perfect systemAdaptive calibration
can improve the
accuracy

calibration we designed and implemented an adaptive on-
line calibration algorithm. It uses the images from the cam-
era to calculate more fitting rotation matrices for the cam-
eras. This approach was tested and it was shown that it was
able to reduce or even nullify some kinds of errors.

As we can see from our test results, it is difficult to measure
the system setup well enough to achieve very good (i.e.,
way less than 1◦) tracking results, even in a highly con-
trolled research setup. As can be seen with our adaptive
calibration algorithm, it is possible to use the images from
the cameras to improve upon an initial calibration.

The main contributions of this thesis to the gaze tracking
research community are:

• our gaze tracking system, which can support an arbi-
trary number of cameras and light sources

6.2 Future Work 79

• our evaluation method and its results

• our adaptive online calibration algorithm

As a benefit of this thesis, future researchers know that their
system calibration and especially a precisely measured ori-
entation of the cameras is crucial for accurate gaze detec-
tion. This insight should be applicable to every research
field that attempts to calculate 3D data based on 2D camera
images. These include 3D model reconstruction, geodesy,
motion capturing, and so forth.

6.2 Future Work

It should be possible to expand the current calibration
algorithm to compensate for more types of calibration
errors. There are several real-time 3D tracking algorithms
that could be combined with our gaze tracker to calibrate
the system during its use. With such a self-calibrating and
user calibration-free gaze tracking system, more interesting
interactions could be explored.

Another research idea would be to apply our research
method to other 3D tracking systems like motion capturing
or 3D model reconstruction.

One could setup the system using several cameras in an
ordinary conference room and analyse the gaze direction
of the users. Because most people look at the people they
are talking to, it would be possible to enrich a video of the
meeting with this metadata for easier browseability.

To use gaze trackers in public places at a long range, it
would be necessary to have a lot more than three cameras.
It would be interesting how to solve the correspondency
problem, because the cameras initially do not know what
persons they are looking at and which light source gener-
ated the glints on the person’s eye.

80 6 Summary and Future Work

With our results, future researchers will be able to explore
new interactions, because they know what kind of factors
negatively influence the performance of their gaze tracking
system and can take care to circumvent these problems.

81

Appendix A

The Pinhole Camera
Model

The pinhole camera model is the standard model for the
generation of 2D images from 3D scenes (see Figure A.1). It
can also be used to calculate 3D viewing rays from 2D im-
age points.

Let [P]G =

XY
Z

 be a three dimensional point given in the

global coordinate system G.
To “see” this point the camera is rotated and translated
from its initial position. Because we want the camera’s po-
sition to be static we instead translate and rotate the point.

[P]L =

xy
z

 = R

XY
Z

+ t

withR being a 3×3 rotation matrix and t a 3×1 translation
vector. We now have [P]L given in the local coordinate
system of the camera. The so called extrinsic parameters
(rotation and translation) are saved for further point
conversions from the global to the local coordinate system.
The point is then projected onto the image plane, which is
defined to be at z = 1 (w.r.t. the local coordinate system)
using perspective transformation, which is a simple divi-
son by z in our case.

82 A The Pinhole Camera Model

Figure A.1: The pinhole camera model

x′y′
1

 =

x/zy/z
z/z


To map this point onto a pixel in the final image we need
the focal distances fx, fy, expressed in pixel-related units,
and the center position (cx, cy) of the image. We then scale
by the focal distance, shift by the center,(

u
v

)
=
(
fx ∗ x′ + cx
fy ∗ y′ + cy

)
and yield the coordinates of the point projection in pixels.

83

Appendix B

CD Contents

On the enclosed CD you will find two folders “GazeTop”
and “Tests” and a pdf of this thesis. The first folder con-
tains the gaze tracking algorithm written in C++ using Vi-
sual Studio 2005 including some sample images. The sec-
ond folder contains our test results, some matlab skripts to
analyze the textfiles, and images of the evaluation graphs.

85

Bibliography

David Beymer and Myron Flickner. Eye gaze tracking using
an active stereo head. In CVPR (2), pages 451–458, 2003.

J Canny. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell., 8(6):679–698, 1986. ISSN
0162-8828.

Andrew T. Duchowski. A breadth-first survey of eye-
tracking applications. Behavior Research Methods, Instru-
ments and Computers, 34(4):455–470, 2002a.

Andrew T. Duchowski. Eye Tracking Methodology: Theory
and Practice. Springer, November 2002b.

Yoshinobu Ebisawa. Unconstrained pupil detection tech-
nique using two light sources and the image difference
method. Visualization and intelligent design in engineering
and architecture, II:79–89, 1995.

Editure. Worksheet 2: The human eye - structure and func-
tion, 2007. URL http://www.schools.net.au/edu/
lesson_ideas/optics/images/eye_structure.
gif. [Online; accessed 03-November-2007].

E.D. Guestrin and M. Eizenman. General theory of remote
gaze estimation using the pupil center and corneal reflec-
tions. IEEE Trans Biomed Eng, 53(6):1124–33, 2006.

Berthold Horn. Closed-form solution of absolute orienta-
tion using unit quaternions. Journal of the Optical Society
of America, 4:629–642, 1987.

Robert J. K. Jacob. The use of eye movements in human-
computer interaction techniques: What you look at is
what you get. ACM Trans. Inf. Syst., 9(2):152–169, 1991.

http://www.schools.net.au/edu/lesson_ideas/optics/images/eye_structure.gif
http://www.schools.net.au/edu/lesson_ideas/optics/images/eye_structure.gif
http://www.schools.net.au/edu/lesson_ideas/optics/images/eye_structure.gif

86 Bibliography

Ravi Kothari and Jason L. Mitchell. Detection of eye loca-
tions in unconstrained visual images. IEEE International
Conference on Image Processing, III:519–522, 1996.

Dongheng Li, D. Winfield, and D. J. Parkhurst. Star-
burst: A hybrid algorithm for video-based eye
tracking combining feature-based and model-based
approaches. volume 3, pages 79–79, 2005. URL
http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1565386.

Paul P. Maglio, Teenie Matlock, Christopher S. Campbell,
Shumin Zhai, and Barton A. Smith. Gaze and speech in
attentive user interfaces. In ICMI, pages 1–7, 2000.

Carlos Hitoshi Morimoto, David Koons, Arnon Amir, and
Myron Flickner. Pupil detection and tracking using mul-
tiple light sources. Image Vision Comput., 18(4):331–335,
2000.

Clifford Nass, Youngme Moon, B. J. Fogg, Byron Reeves,
and D. Christopher Dryer. Can computer personalities
be human personalities? In CHI 95 Conference Companion,
pages 228–229, 1995.

Alice Oh, Harold Fox, Max Van Kleek, Aaron Adler,
Krzysztof Gajos, Louis-Philippe Morency, and Trevor
Darrell. Evaluating look-to-talk: a gaze-aware interface
in a collaborative environment. In CHI Extended Ab-
stracts, pages 650–651, 2002.

Takehiko Ohno and Naoki Mukawa. A free-head, simple
calibration, gaze tracking system that enables gaze-based
interaction. In ETRA, pages 115–122, 2004.

Takehiko Ohno, Naoki Mukawa, and Atsushi Yoshikawa.
Freegaze: a gaze tracking system for everyday gaze in-
teraction. In ETRA, pages 125–132, 2002.

Kenichi Okada, Fumihiko Maeda, Yusuke Ichikawa, and
Yutaka Matsushita. Multiparty videoconferencing at vir-
tual social distance: Majic design. In CSCW, pages 385–
393, 1994.

Derrick Parkhurst and Ernst Niebur. A feasibility test for
perceptually adaptive level of detail rendering on desk-
top systems. In APGV ’04: Proceedings of the 1st Sym-
posium on Applied perception in graphics and visualization,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1565386
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1565386

Bibliography 87

pages 49–56, New York, NY, USA, 2004. ACM Press.
ISBN 1-58113-914-4. doi: http://doi.acm.org/10.1145/
1012551.1012561.

Polhemus. Polhemus fastrak: The motion tracking in-
dustry standard, 2007. URL http://www.polhemus.
com/?page=Motion_Fastrak. [Online; accessed 03-
November-2007].

Keith Rayner. The perceptual span and peripheral cues in
reading. Cognitive Psychology, 7(1):65–81, 2000.

Jun Rekimoto and Masanori Saitoh. Augmented surfaces:
A spatially continuous work space for hybrid computing
environments. In CHI, pages 378–385, 1999.

Abigail J. Sellen. Speech patterns in video-mediated con-
versations. In CHI ’92: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 49–59,
New York, NY, USA, 1992. ACM Press. ISBN 0-89791-
513-5. doi: http://doi.acm.org/10.1145/142750.142756.

Jeffrey S. Shell, Roel Vertegaal, and Alexander W. Sk-
aburskis. Eyepliances: attention-seeking devices that
respond to visual attention. In CHI Extended Abstracts,
pages 770–771, 2003.

Sheng-Wen Shih, Yu-Te Wu, and Jin Liu. A calibration-free
gaze tracking technique. In ICPR, pages 4201–4204, 2000.

J. David Smith and T. C. Nicholas Graham. Use of eye
movements for video game control. In Advances in Com-
puter Entertainment Technology, page 20, 2006.

John D. Smith, Roel Vertegaal, and Changuk Sohn. View-
pointer: lightweight calibration-free eye tracking for
ubiquitous handsfree deixis. In UIST, pages 53–61, 2005.

Rainer Stiefelhagen, Jie Yang, and Alex Waibel. A model-
based gaze tracking system. International Journal on Arti-
ficial Intelligence Tools, 6(2):193–209, 1997.

Vildan Tanriverdi and Robert J. K. Jacob. Interacting with
eye movements in virtual environments. In CHI, pages
265–272, 2000.

Roel Vertegaal. The gaze groupware system: Mediating
joint attention in multiparty communication and collab-
oration. In CHI, pages 294–301, 1999.

http://www.polhemus.com/?page=Motion_Fastrak
http://www.polhemus.com/?page=Motion_Fastrak

88 Bibliography

Roel Vertegaal, Gerrit C. van der Veer, and Harro Vons. Ef-
fects of gaze on multiparty mediated communication. In
Graphics Interface, pages 95–102, 2000.

Xuuk. eyebox2, 2007. URL http://www.xuuk.com/
Products.aspx. [Online; accessed 03-November-
2007].

Shumin Zhai, Carlos Morimoto, and Steven Ihde. Manual
and gaze input cascaded (magic) pointing. In CHI, pages
246–253, 1999.

Zhengyou Zhang. Video-based eyetracking methods and
algorithms in head-mounted displays. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–
1334, 2000.

Zhiwei Zhu and Qiang Ji. Eye and gaze tracking for in-
teractive graphic display. Mach. Vis. Appl., 15(3):139–148,
2004.

http://www.xuuk.com/Products.aspx
http://www.xuuk.com/Products.aspx

89

Index

abbrv, see abbreviation
adaptive calibration, 54–56

- evaluation, 75–76

canny edge detection, 59
collaborative environment, 31–35
conventions, xix
coordinate system, 41
cornea, 6, 19, 22
cornea center, 45

- calculation, 46–49
- linear constraint, 47–48

evaluation, 67–76
eye, 5
eye contact sensor

- head-mounted, 13
- remote, 15–16

eye tracking, 12
- head-mounted, 13–15
- invasive, 12
- non-invasive, 12

feature-based tracking, 18–19
focal point, 38, 68
fovea, 7
foveal angle, 25
future work, 79–80

games, 35–36
gaze, 1, 7

- calculation, 44–56
- combined, 53
- linear constraint, 51
- on screen, 53–54
- parametric representation, 51–52

gaze tracking system, 7, 22–23, 37
- calibration-free, 22, 25, 27
- free head movement, 23–25

90 Index

- neural networks, 25
gaze-based interactions, 28–36

- dragging, 28
- pointing, 28, 29
- selecting, 28–30

glint
- detection, 19, 59–60

human-computer interaction, 1, 28–36

iris, 7

least square error approach, 48, 55
level of detail rendering, 35

midas touch, 28
model-based tracking, 16–18

noise, 22, 27, 38, 40, 48, 56, 58, 69

performance measure, 22
POV-Ray model, 38–39, 43
pupil, 7, 22

- detection, 13–15, 19–20, 56–59
- tracking, 20–21
- virtual image, 50

red-eye effect, 19, 45
related work, 11–36

sclera, 5
software implementation, 60–66
system calibration, 23–25, 38, 40–42

unprojection, 47
user calibration, 38

video conferencing, 32–35
virtual reality, 29–30

Typeset November 5, 2007

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Overview

	Fundamentals
	The Human Visual System
	The Lense System
	The Pupil and the Iris

	A Simple Eye Tracking System

	Related Work
	Eye Tracker
	Head-mounted
	Remote

	Interaction-techniques and Applications

	System Design and Implementation
	Hardware Setup
	POV-Ray Model

	Gaze Model
	Cornea Center
	Gaze Direction
	Combining Gaze
	Gaze on Screen
	Adaptive Calibration

	Image Processing
	Detecting the Pupil
	Finding the Glints

	Software Implementation
	Algebra.cpp
	GazeTop.cpp
	GTCamera.cpp
	Image_processing.cpp
	Table.cpp

	Evaluation
	Test Setup
	Independent Variables
	Dependent Variables

	Results
	Adaptive Calibration

	Summary and Future Work
	Summary and Contributions
	Future Work

	The Pinhole Camera Model
	CD Contents
	Bibliography
	Index

