An empirical study of programming
paradigms for animation

Jan-Peter Kramer'2, Michael Hennings*, Joel Brandt?, Jan Borchers!

! RWTH Aachen University

{kraemer, hennings, borchers}@cs.rwth-aachen.de

ABSTRACT

Animations are an essential part of many modern user in-
terfaces. They are often defined programmatically, which
allows for parametrization and reuse. Two programming
paradigms to define animations are common: Procedural
animation programming allows the developer to make ex-
plicit updates to object properties at each frame, allowing
maximum control over behavior. Declarative animation pro-
gramming allows the developer to specify keyframes, i.e., the
value of an object’s property at a given point in time. All
frames between two keyframes are automatically interpo-
lated by the animation library.

In this paper, we investigate how these common program-
ming paradigms differ in terms of developers’ productivity.
In a controlled laboratory study, we asked developers to im-
plement a set of simple animations using both paradigms.
We found that developers can implement a given behav-
ior faster using declarative animation programming, but the
abstraction introduced by automatically creating the anima-
tion through keyframe interpolation left participants with
unexpected behavior for some tasks.

CCS Concepts

eSoftware and its engineering — Software develop-
ment techniques; eHuman-centered computing — Em-
pirical studies in HCI;

Keywords

Animations; programming paradigms; empirical studies

1. INTRODUCTION

Animations are used in many contexts [4]. For example,
they are added to user interfaces to provide feedback and
convey a sense of plausability [3], and they are used in sci-
entific visualizations to add another dimension to the dis-
play of data. More broadly, animations frequently appear
in digital artifacts, hence, software developers with various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHASE’16, May 16 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4155-4/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145,/2897586.2897597

2 Creative Technologies Lab, Adobe Research
joel.brandt@adobe.com

backgrounds are often faced with the task of creating ani-
mations.

Many animations can be abstracted as follows [14]: A
scene contains a number of objects and each object has a
set of animatable properties, such as position or size. The
animation defines how and when each of these properties
changes over time.

Property changes can be obtained from various sources,
e.g., from the real world through motion capturing or from a
physics simulation. In this paper, we focus on artistic anima-
tions [14], where the animator defines all property changes
as part of an artistic process.

Very broadly, two kinds of tools can be used to create an-
imations: graphical tools, such as Adobe After Effects', and
textual programming languages. Graphical tools usually al-
low users to animate a fixed set of objects in a single scene
and excel at previsualizing how the finished animation will
appear. In many scenarios, it makes sense to create anima-
tions programmatically, because this allows for modulariza-
tion and parametrization of behavior and, hence, for reuse.
This allows users to apply the same animation to multiple
user interface elements or to provide a character with realis-
tic behaviors, such as breathing, that happen continuously
but adapt automatically to the character’s acting.

Visual programming languages can combine the benefits
of a graphical tool with the benefits of defining animations
programmatically [2]. Resnick et al. [15] demonstrated that
visual programming languages for animation programing are
approachable enough to teach programming to children. An-
imations are often created as part of a bigger coding task
that is performed using a textual language, e.g., implement-
ing an application. In these cases, developers often continue
to use the language they are already using to avoid bridging
between different languages and context switching between
different development environments. Even if both a graph-
ical tool and a textual programming language are used to-
gether, the animation still needs to be controlled based on
the application state, which is implemented in a textual lan-
gauge. Hence, creating and controlling animations using a
textual language remains a common and relevant task.

In the existing libraries to support this task, we found
two prevalent paradigms: In the procedural paradigm, a de-
veloper updates the properties of each object in an update
method that is called for each frame of the animation. In
the declarative paradigm, a developer declares the object’s
behavior using keyframes. Each keyframe defines the value
of an object’s parameter at a given point in time. An anima-

"http:/ /www.adobe.com /products/aftereffects.html

tion library is then responsible for interpolating the property
values for all frames between two keyframes. The following
code implements a ball that moves up and down using a
procedural API (left) and using a declarative API (right):

function render(time) {
var loc = time % 300;

var actor = animator.addActor ({
context: ball

if (loc > 150) { b
loc = 150-(loc % 150);
} actor.keyframe(0, {top: 0});
ball.top = loc; actor.keyframe (150, {top: 150});
} actor.keyframe (300, {top: 0});
window animator.play();

.requestAnimationFrame(render) ;

Our long term goal is to provide better support for creat-
ing artistic animations using textual programing langauges.
First, we want to understand how developers utilize current
animation libraries, what problems occur, and whether or
not one of the widespread programming paradigms is su-
perior in allowing developers to create animations quickly.
To this end, we present a between-groups laboratory study
comparing a procedural and a declarative animation library.

2. EXPERIMENTAL SETUP

We performed a laboratory experiment with two condi-
tions: declarative and procedural. Participants had to solve
five tasks (Task A-E) once using a declarative API and once
using a procedural API. Half of all participants started in
the procedural condition, the other half started with the
declarative condition. Assignment of participants to start-
ing condition was randomized for each task.

In our study, developers had to use Javascript to animate
HTML elements. In the procedural condition, developers
used Javascript’s native animation frames, which allow to
provide a function that updates the properties of all ani-
mated objects in each frame. In the declarative condition de-
velopers used Rekapi?, a keyframe-based animation library
for JavaScript. We opted to use Rekapi instead of CSS ani-
mations, a widespread way to declaratively animate HTML
elements, because Rekapi uses Javascript syntax, making it
more comparable to the procedural condition. Both APIs we
selected are only one example of a procedural and declara-
tive animation libray. We designed the tasks in our study to
use only the most fundamental features of each library. We
expect these features to exist in virtually all other libraries
following the same paradigms. The API documentation nec-
essary to solve the study tasks was provided in the form
of basic cheat-sheets [9] (following the guidelines by Mayer
12)).

The tasks [8] (see Figure 1) were designed in a set of pilot
studies to make sure they could be solved in both condi-
tions within two hours. When time ran out, later tasks were
skipped.

Task A Animate a ball that continuously bounces up and
down on a black bar. The ball should not deform when
it hits the black bar and move at a constant speed
between the upper and lower turing point.

Task B Add easing to the ball’s movement to make the an-
imation more realistic. In Rekapi, a keyframe can be
configured to use a library-provided easing function.
To allow a fair comparison, we provided helper func-
tions for the procedural condition as well.

Zhttp://rekapi.com/

Task C Duplicate the bouncing animation for a second ball
that bounces next to the first one but with a delay.

Task D Implement a single bouncing ball that deforms when
it hits the ground.

Task E Implement a pendulum-like movement in which a
ball moves left and right while falling down. The ball
should stop at the lowest position.

For all tasks we provided a scaffold containing all required
HTML and CSS code and all JavaScript code except for the
animation itself. For Task B and C this scaffold included
a working solution of the previous task. The tasks we de-
signed are representative of many common animations in
user interfaces that are created by changing one or only few
properties of an object over time. In the popular presen-
tation software Keynote®, 40% of all animations to reveal
an object can be recreated by changing no more than three
properties of the revealed object over time.

Participants had to work using the Brackets* editor. We
added the following features to Brackets to support the study
procedure: When starting a task, Brackets opened all re-
quired files and the task description as a PDF document.
Participants had read-only access to the code written in pre-
vious tasks. A play button allowed participants to run their
animation in the Google Chrome® browser that also pro-
vided a debugger. Participants could use Brackets to hand
in their solution at any point. This caused all open files to
be saved and closed and the next task to be loaded.

Participants used a 15-inch laptop computer, optionally
with an external mouse and keyboard. We recorded the
participant’s screen, all key strokes and scroll events in the
editor, and the timestamps of each manual code execution.

3. RESULTS AND DISCUSSION

A total of 14 developers participated in the study, all of
whom were students from our university majoring in com-
puter science or a similar field. The participants were on
average 24.1 years old (SD = 3.4) and reported to develop
software on average 14.3 (SD = 7.6) hours per week. Six
participants reported to rarely or never have created an-
imations before, while three participants reported to cre-
ate animations regularly. Two participants reported to have
rudimentary knowledge about Rekapi. Participants were in-
formed that we wanted to compare two APIs for animation
programming but they did not know our research hypothe-
ses.

As tasks were skipped when time ran out, fewer partici-
pants worked on later tasks.

To compare both conditions, we analyzed three aspects:
user preference, performance, and changes in strategies.

Only one participant reported to prefer the procedural
condition, compared to seven developers prefering the declar-
ative condition. The remaining participants would have
liked a combination of both approaches, because they be-
lieved that the expressiveness of a declarative API was lim-
ited. Several participants suggested to use keyframes to de-
fine a timespan during which properties were not interpo-
lated but changed manually in a callback for each frame, as

3http://www.apple.com/mac/keynote/
“http://brackets.io
®http://www.google.com/chrome

t=0% t=50% t=0% t=25%

t=50% t=75% t=100%

-- ’ \
LemTme / \
. AN { \
’ \ '
’ \ \ '
! \ \ .
| ' \ /
\ ' ~ L
\ . Seloe-
. L/

t=5% t=50%

Figure 1: An illustration of the animation participants had to implement in each task. Tasks A and B only
differ by the easing function used to transition betwen the upper and lower positions.

in the procedural condition. As the expressiveness of both
libraries was sufficient to solve all tasks, this indicates that
fully understanding how to utilize a declarative animation
library can be difficult.

We analyzed task completion times only for Tasks A-D
(only two participants completed Task E), and only for par-
ticipants who solved a task in both conditions. Participants
solved tasks 2.4 times faster on average in the declarative
condition (F(1,42.4) = 14.2, p = 0.005) [10]. We found
no learning effects caused by the within-groups study de-
sign. Only in Task C, task completion times are comparable
in both conditions. This task turned out to be challeng-
ing in the declarative condition: Because the animation for
the added ball follows the first one with a delay, the last
key frame for the new ball is added after the last keyframe
for the first ball. When the complete animation loops, it
restarts after both balls have moved back to the top. This
causes both balls to pause for some time. This observation
indicates a more general problem: The abstraction intro-
duced in the declarative API can lead to unexpected behav-
ior which, in turn, caused participants to want to go back
to the procedural, less abstracted model.

We formed two hypothesis about how a change in develop-
ers’ behavior can explain the differences in task completion
times: (1) Animation creation tasks are known to require
many manual edit-test-edit cycles [1], hence, the number of
manual tests needed to arrive at a correct solution might be
lower in the declarative condition. (2) A declarative anima-
tion library might provide a more suitable abstraction of the
animation, leading to a smaller diversity in solutions.

We first tested hypothesis 1: In the procedural condition,
participants performed 15.0 tests on average (SD = 14.4),
while those in the declarative condition only performed 7.0
(SD = 6.9). This difference is significant (F'(1,60.5) = 10.1,
p =0.002) [10].

The observed difference in number of tests performed is
caused by a large difference for Tasks A and B, while the
number of tests while working on Tasks C and D is similar
in both conditions. Task C has been identified to be diffi-
cult to solve in the declarative condition before, but Task
D posed a different challenge: While compressing the ball
by decreasing its height, the offset from the top needs to
be adjusted accordingly to keep it fixed on the black bar.
Hence, two different but dependent properties needed to be
animated concurrently. The declarative programming model
seemed to offer few helpful abstractions for this case. Over-
all, we found that developers can predict the behavior of
declaratively defined animations more easily compared to
the procedural conditon, but only if one or more properties
change independently.

To analyze hypothesis 2 we compared the diversity of so-
lutions in both conditions. We only found solutions in the
declarative condition to be more consistent than those in
the procedural condition for Task A: Nearly all participants
in the Rekapi condition ended up with the same solution.
Only one participant calculated individual keyframes for all
intermediate steps, again indicating that understanding how
to utilize a declarative animation library can be difficult for
inexperienced users. In the procedural condition, solutions
were more diverse: Half of the participants calculated the

ball’s offset from the top as a function of elapsed time, and
the other half used fixed offsets to move the ball from the
previous position. Even though these solutions yield similar
results visually, only the first guarantees a predefined speed
of the animation, whereas for the latter the speed depends
on the system refresh rate.

For the other tasks, solutions in the procedural condition
were often more or similarly consistent compared to those in
the declarative condition. For example, in Task B nearly all
participants in both conditions ended up using the provided
easeInOut function. While the solutions were similar, par-
ticipants were more uncomfortable adding the easing meth-
ods into procedural code compared to configuring a keyframe
to use easing in the declarative condition. Consequently, a
lower number of participants found the correct solution at
all in the procedural condtion. We suspect that developers
did not fully comprehended the procedural implementation
of Task A. This caused those participants to be hesitant
to change the existing code, or to opportunistically perform
and test changes, which is a common but ineffective strategy
that aims to avoid understanding existing code [5].

In Task D, we again find surprisingly homogeneous solu-
tions. In the procedural condition, most participants started
with code similar to Task B and expanded it to move the
ball further downwards while decreasing its height once the
ball passed a certain threshold. Only one participant in the
procedural condition diverged from this solution and im-
plemented a state machine. This effectively implements a
structure that was similar to the solution in the declara-
tive condition. Once again, even though the diversity in
successfull strategies is lower than expected, the percentage
of participants finding a successful strategy is higher in the
declarative condition.

In Task C, we expected developers to make use of the
modularization and parametrization possible with program-
matic definition of animations. Instead, all participants in
both conditions duplicated the existing animation code to
animate the second ball. Most of their time was spent alter-
ing the copied code, resulting in highly redundant and hard
to debug code. We believed that the possibility to reuse
code to be one of the key benefits of defining animations
programmatically. Copying and modifying code instead of
using modularization is a common behavior of developers
who have not fully understood the existing code [5].

4. CONCLUSION AND FUTURE WORK

We found that developers can often create animations im-
plemented declaratively faster than those implemented pro-
cedurally, and developers needed less manual tests to author
declarativly implemented animations. This is likely caused
by the declarative framework providing guidance through
abstraction and a rigid structure. This abstraction, how-
ever, is only effective while multiple parameters animated in
parallel are independent, and it can lead to side effects that
are unexpected for inexperienced programmers. Both ani-
mation programming paradigms we studied do not promote
modularization appropriately.

In the future, we want to explore two directions to sup-
port developers in creating animations: First, we want to
study the effect of continuous execution [11, 7] on anima-
tion programming. In particular, we want to explore which
visualizations can be used in such a tool to show side effects
of changes and minimize the need to watch an animation

repeatedly to fine-tune parameters. Live conding could also
help visualizing the effect of animating multiple dependent
parameters at the same time. Second, we want to propose
a declarative library that in addition to keyframes allows to
define temporal and spatial relationships between objects in
the form of constraints [6, 13]. For example, Task C could
be solved by defining that the second ball’s x-coordinate is
always 200px right of the first ball (spatial relationship),
and the second ball’s y-coordinate is always the first ball’s
y-coordinate 500ms ago (temporal relationship). We also
want to explore if the benefits of declarative APIs we found
for animation programing also apply to other use cases.

5. REFERENCES
[1] R. Brinkmann. The Art and Science of Digital

Compositing. Techniques for Visual Effects, Animation
and Motion Graphics. Morgan Kaufmann
Publishers/Elsevier, Amsterdam, May 2008.

[2] P. Carlson, M. Burnett, and J. Cadiz. A seamless
integration of algorithm animation into a visual
programming language. In Proc. AVI ’96, New York,
NY, USA, 1996. ACM Press.

[3] B.-W. Chang and D. Ungar. Animation: from
cartoons to the user interface. In Proc. UIST ’93, New
York, NY, USA, 1993. ACM Press.

[4] A. Dahotre, Y. Zhang, and C. Scaffidi. A qualitative
study of animation programming in the wild. In Proc.
ESEM 10, New York, NY, USA, 2010. ACM Press.

[5] F. Détienne. Software Design—cognitive Aspects.
Springer-Verlag Inc., New York, NY, USA, 2002.

[6] R. A. Duisberg. Animation Using Temporal
Constraints: An Overview of the Animus System.
Human—Computer Interaction, 3(3):275-307, Nov.
2009.

[7] J. Edwards. Example centric programming. SIGPLAN
Notices, 39(12):84, Dec. 2004.

[8] M. Hennings, J.-P. Krdmer, J. Brandt, and
J. Borchers. Programmatic animations - user study
tasks, Jan. 2016, DOIL: 10.5281/zenodo.45262.

[9] M. Hennings, J.-P. Krdmer, J. Brandt, and
J. Borchers. Programmatic animations - cheat sheets,
Jan. 2016, DOI: 10.5281/zenodo.45263.

[10] J.-P. Kramer, M. Hennings, J. Brandt, and
J. Borchers. Programmatic animations - performance
data, Jan. 2016, DOI: 10.5281/zenodo.45273.

[11] J.-P. Krdmer, J. Kurz, T. Karrer, and J. Borchers.
How live coding affects developers’ coding behavior. In
Proc. VL/HCC ’14. IEEE.

[12] R. E. Mayer. Multimedia learning: Are we asking the
right questions. Educational Psychologist, 32(1):1-19,
1997.

[13] S. Oney, B. Myers, and J. Brandt. ConstraintJS:
Programming Interactive Behaviors for the Web by
Integrating Constraints and States. In Proc. UIST ’12,
pages 229-238, New York, NY, USA, 2012. ACM.

[14] R. Parent. Computer Animation. Algorithms and
Techniques. Morgan Kaufmann, 3rd edition edition.

[15] M. Resnick, J. Maloney, A. Monroy-Hernandez,

N. Rusk, E. Eastmond, K. Brennan, A. Millner,

E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Commun. ACM,
52(11):60-67, Nov. 2009.

