RWTH

Stacksplorer
Understanding Dynamic
Program Behavior

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University 35!

Jan-Peter Kramer

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bjorn Hartmann

Registration date: Jul 23th, 2010
Submission date: Jan 24th, 2011

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, January 2011
Jan-Peter Krimer

Contents

Abstract xi
Uberblick xiii
Acknowledgements XV
Conventions xvii
1 Introduction 1
1.1 Chapter Overview 4
2 Theory 7
2.1 Object-oriented Software Development . .. 8
2.2 Programmers’ Work Practices 10
2.3 IDE Utilization. 12
3 Related Work 15
3.1 Making Information Accessible 15

3.1.1 RecommenderTools 16

iv

Contents

312 QueryLanguages 17

3.2 Spatial Layouts 20
321 CodeBubbles 20

322 JASPER 21

323 Code Thumbnails. 22

4 Prototyping Platform 25
41 Objective-C. 26
411 Messaging 26
412 Memory Management 28

41.3 Declared Properties. 29
414 Plug-Ins 30

415 Reverse Engineering 32

416 Cocoa................... 34
Delegation 35
Notifications 36
Concurrency Programming 36

42 Xcode 37
421 NavigationTools 37

422 Plug-inAPI 39
ProjectIndex 40

Source Scanner 40

Code Completion Engine 41

Contents

ProjectSearch

CodeEditor

5 Navigation Behavior

51 StudyDesign

511

512

5.1.3

5.2 Results

5.2.1

522

523

524

525

5.2.6

527

Participants
Contextual Inquiry
Execution
Hypothesis
Questionnaire
Demographics and Experience
High-level Strategies
Documentation
Source Code Access
Importance of Navigation Types . . .
XcodeTools

Suggestions for Improvement

6 Software Prototype

6.1 Design

6.2 Stacksplorer Xcode Plug-in

6.3 Implementation

45

45

45

46

46

47

49

51

51

52

52

53

55

59

61

63

vi Contents

631 Callers 69

6.3.2 Called Methods 70

6.4 Limitations. 71
7 Evaluation 73
7.1 Experimental Setup 74
711 Participants 74

712 Conditions and Tasks 74

713 Methodology 76

7.1.4 Postsession Questionnaire 77

72 Results 78
721 Participants 79

722 TaskSuccess 79

7.2.3 Task Completion Times 80

7.24 Qualitative Observations 82
Initial Exploration 82

Two-phase Navigation 83
Stacksplorer Adoption 85

User Defined Paths Usage 87

7.2.5 DPostsession Questionnaire 87

SUS. 87

Non-SUS questions 88

726 Users’Comments. 90

Contents

vii

8 Improved Prototype

8.1 User Interface Refinements

8.1.1

8.1.2

8.1.3

Overlay Highlighting
User Defined Paths

Navigation History

8.2 Performance Enhancements

8.2.1

8.2.2

Cached Call Graph
Implementation
Implications

Algorithmic Improvements

9 Summary and Future Work

9.1 Summary and Contributions

92 FutureWork

921

9.2.2

9.2.3

924

9.2.5

Structural relationships
Runtime Traces
Storing Interesting Paths
Advanced Visualization Techniques .

Mental Models of Software

A Hide a Search from the Project Browser

B Preliminary Study: Questionnaire

93

93

94

96

98

98

99

99

100

101

105

105

107

107

108

109

109

110

111

113

viii

Contents

C User Test: Task Descriptions

D User Test: Post Session Questionnaire

Bibliography

Index

121

127

131

137

ix

List of Figures

1.1

2.1

3.1

3.2

3.3

34

3.5

3.6

4.1

4.2

4.3

44

51

Screenshot of Stacksplorer 3
The original MVCmodel 9
Screenshotof Mylar 17
TwoJQueries. 18
AUMLdiagram 19
Screenshot of Code Bubbles 21
Screenshot of JASPER 22
Screenshot of Code Thumbnails 23
Method resolution in Objective-C 27
Screenshot of F-Script 33
The MVC modelinCocoa 35
Screenshot of Xcode’s Class Browser 38

Usage frequencies of different navigation
types for different tasks 56

List of Figures

52

53

6.1

6.2

6.3

7.1

7.2

7.3

74

8.1

8.2

8.3

Users’ rating of Xcode’s support for different
types of navigation. 59

Users’ rating of the importance of different
toolsinXcode 60

Stacksplorer paper prototype 64
Screenshot of the Stacksplorer Xcode plug-in 67

Screenshot of Stacksplorer’s User Defined
PathEditor 69

Number of successfully competed tasks in
the quantitative user study 79

Task completion times in the quantitative
userstudy 81

The two-phase navigation model 84

Likert scale ratings for statements 11-16 from
the post-session questionnaire 88

Screenshot of the improved overlays in
Stacksplorer 95

Screenshot showing how side columns scroll
automatically in Stacksplorer 96

Performance measurements comparing the
original and the improved version of Stacks-
plorer 102

xi

Abstract

Even when using modern programming environments, comprehending source
code is still a major problem for developers. Nevertheless, code comprehension
is required to perform successful software maintenance. In the first part of this
thesis, we analyze how developers use available tools to cope with this problem.
We complement the results of previous studies to show that current IDEs often do
not fulfill developers” requirements. The semantic of the source code is insuffi-
ciently visualized and not used in order to provide guidance for developers when
navigating through the code.

In the second part of the thesis, we present Stacksplorer, a new tool to sup-
port source code navigation and comprehension. Stacksplorer visualizes potential
call stacks in an application and allows to navigate along them. Thus, Stacksplorer
exploits a semantic aspect of source code to suggest relevant methods for explo-
ration. Information displayed in Stacksplorer is visually linked to the source code,
the medium developers are most familiar with. A prototype of Stacksplorer was
implemented as a fully functional IDE plug-in.

A user study showed that software maintenance tasks in a large open-source
application could be completed significantly faster with Stacksplorer than without
it. Participants reported that they were highly satisfied with the plug-in and would
like to use it for real world projects.

xiii

Uberblick

Trotz der Verfiigbarkeit moderner Software-Entwicklungsumgebungen ist das
Verstehen von Programmquellcode immer noch ein grofies Problem fiir Soft-
wareentwickler. Das Verstindnis des Programmquellcodes ist allerdings eine
notwendige Voraussetzung, um erfolgreich bestehende Software zu pflegen und
zu korrigieren. Im ersten Teil der vorliegenden Arbeit stellen wir eine Studie
vor, in der wir analysiert haben, wie Softwareentwickler vorhandene Werkzeuge
nutzen, um mit dem Problem des Quellcodeverstindnisses umzugehen. Wir
erweitern damit die Erkenntnisse fritherer Untersuchungen und zeigen, dass die
heute verfiigbaren Werkzeuge die Anforderungen von Entwicklern oft insbeson-
dere deshalb nicht erfiillen kénnen, weil die Semantik von Programmquellcode
unzureichend visualisiert und nicht dafiir genutzt wird, dem Programmierer
Hilfestellung bei der Navigation anzubieten.

Im zweiten Teil der Arbeit stellen wir ,Stacksplorer” vor, ein neuartiges Werkzeug,
das das Verstehen von und das Navigieren durch Programmquellcode erleichtern
soll. Stacksplorer visualisiert mogliche “Call Stacks” in einer Applikation und
erlaubt es, entlang der “Call Stacks” zu navigieren. Es nutzt also einen bestimmten
Aspekt der Semantik des Quellcodes, um Stellen im Programm zu identifizieren,
die moglicherweise fiir den Programmierer relevant sind. Die Informationen, die
Stacksplorer anzeigt, sind visuell mit dem Quellcode, also dem Medium, das
Programmierer am besten kennen, verbunden. Umgesetzt wurde Stacksplorer als
voll funktionsfahiges Plug-in fiir eine Entwicklungsumgebung.

Eine Benutzerstudie konnte zeigen, dass Wartungsaufgaben in einem grofsen
Open-Source Projekt, wenn Stacksplorer genutzt wird, signifikant schneller
erledigt werden konnen als ohne Stacksplorer. Auflerdem berichteten Teilnehmer
der Studie, dass sie hochzufrieden mit dem Plug-in waren und dass sie Stacks-
plorer gerne bei ihrer alltdglichen Arbeit benutzen wiirden.

XV

Acknowledgements

First of all, I want to thank everyone working at the Media Computing Group for
their support. In particular, I want to thank Prof. Dr. Jan Borchers and my advisor
Thorsten Karrer for their valuable help during the thesis. You and everyone else
at the Media Computing Group contributed many helpful comments and advice.
Thanks also to Jonathan Diehl, who supported me since I first joined the Media
Computing Group in 2008, and to all other research assistants and long-term
members of the group. All of you are great colleagues.

I also received very valuable input for the thesis from my second examiner,
Prof. Dr. Bjorn Hartmann, who always answered questions via email elaborately
and nearly immediately. Your expertise was very helpful for this thesis, thank you!

Special thanks to Prof. Dr. Leif Kobbelt and again Prof. Dr. Jan Borchers, who
agreed to fund multiple trips to conferences, which were invaluable experiences.

Furthermore, I want to thank all participants of my studies again. Without
you I would not have obtained any result; thanks for your time!

I also want to thank Bianca for her emotional encouragement. Last but not
least, I am very grateful to my parents, who have always supported me.

xvii

Conventions

Throughout this thesis, we use the following conventions.

Source code and implementation symbols are written
in typewriter-style text, except in listings or ap-
pendixes.

The whole thesis is written in American English.

In boxplot diagrams, the whiskers always extend to the
maximal and minimal values in the dataset; the left box
boundary marks the 25% percentile; the right boundary
marks the 75% percentile. The thick line in the box indi-
cates the median.

Throughout the thesis, estimates about the size of an ap-
plication will be given in source lines of code (SLOC). Mea-
surements are always, except if they are cited, performed
using sloccount! by David A. Wheeler, which counts each
“line ending in a newline or end-of-file marker, and which
contains at least one non-whitespace non-comment charac-
ter”2.

http:/ /www.dwheeler.com/sloccount/
*http:/ /www.dwheeler.com /sloccount/sloccount.html

http://www.dwheeler.com/sloccount/

Chapter 1

Introduction

“The important thing is not to stop questioning;
curiosity has its own reason for existing.”

—Albert Einstein

Up to 70% of the total expenses of a software project
are spend on software maintenance [Lientz, 1980], i.e., on
adding new features, fixing bugs or performing refactoring
after the software has been shipped. In order to work on
these maintenance tasks, programmers have to understand
the existing source code first [Boehm, 1976]. Code compre-
hension is also necessary if new developers join a team, a
developer gets responsible for a new feature, or even if a
developer has to come back to his own code after a while.
Interestingly, LaToza et al. [2006] found that software de-
velopment engineers at Microsoft considered understand-
ing source code their biggest problem. As it also requires
detailed understanding of existing source code, developers
found it similarly problematic to be aware of side effects
when implementing changes. To make things worse, the
maintenance effort of source code is increasing. Mainte-
nance effort is correlated to size, even for object-oriented
software [Li and Henry, 1993]. Embedded software, for
example, is doubling in size every two years [Ommering
et al., 2000].

Source code
comprehension is
required to perform
software
maintenance.

2 1 Introduction

Nowadays, The source code developers have to deal with nowadays
object-oriented is mostly object-oriented. Based on the Transparent Lan-
programming guage Popularity Index! from December 2010, seven of the
languages are widely Top 10 most popular compiled programming languages
used. are object-oriented, which account for more than 50% of

the popularity of all compiled programing languages. On
TIOBE'’s Programming Community index?, among the Top
10 programming languages in 2010, only object-oriented
ones could gain popularity in comparison to 2009’s mea-
surements. This indicates that the trend towards object-
oriented languages is ongoing and these languages can be
expected to become even more widespread in the near fu-

ture.
A lot of effort is put To support developers of object-oriented languages, inte-
into the improvement grated development environments (IDEs) are provided as
of tools for software tools. Over the last years, a lot of effort has been put in
developers. improving these IDEs. For example, new major versions

of the popular Eclipse IDE?® are released annually. In the
Eclipse Marketplace*, more than 900 plug-ins are avail-
able (at the time of writing) to extend the Eclipse IDE. En-
hancements of development tools to make them more use-
ful for programmers are also widely discussed in academia.
Throughout the last 10 years, papers addressing this topic
have been presented on every Conference on Human Fac-
tors in Computing Systems (CHI), the premier conference on
Human-Computer Interaction. The IEEE Conference on Pro-
gram Comprehension, whose 19th edition happens in 2011, is
exclusively concerned with investigating how developers
understand software and with tools supporting this activ-

ity.
Source code is Many popular IDEs, such as Eclipse (with a market share
mostly organized in of over 50% in 2004°) or Microsoft’s Visual Studio® (which
multiple files. is believed to be the most adopted IDE in enterprise de-

velopment”), still primarily structure source code in sepa-

'http:/ /lang-index.sourceforge.net/

thtp: / /www.tiobe.com/index.php/content/paperinfo/tpci/index.html

*http:/ /www.eclipse.org

*http:/ /marketplace.eclipse.org

>http:/ /www.jboss.com/pdf/bzresearch,tudy.pdf

Shttp:/ /www.microsoft.com/ visualstudio/en-us/

"http:/ /adtmag.com/articles /2010/06/23 / eclipse-5th-release-
train-helios.aspx

http://lang-index.sourceforge.net/
http://lang-index.sourceforge.net/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.eclipse.org
http://marketplace.eclipse.org
http://www.jboss.com/pdf/bzresearch_study.pdf
http://www.microsoft.com/visualstudio/en-us/
http://adtmag.com/articles/2010/06/23/eclipse-5th-release-train-helios.aspx

m| MHTScreenCaptureGatherer.m - MeHatesThis

"I Show only relationships from project Paths: (& New Path & Add Method &) Overlays: ("Left Right)

- o MHTScreenCaptureGatherer.m:68:1 + [0 -init v ™% |Cy| ¥ -
B N =]
46

51 @end

’
55 @interface MHTScreenCaptureGatherer ()
’

58 - (void) captureScreen;

;-: @end

61

62

63

64| | //

65 @implementation MHTScreenCaptureGatherer

66 | //

67

68 id} init

£ {id) in MHTInfoGatherer

self = [[super init]; & init

MeHatesThisAppDelegate 1 if (self != nil) { : . .
- N L e N 2 self.captureTimer = [NSTimer timerWithTimeInterval:SCREEN_CAPT MHTInfoGatherer
14 applicationDidFinishLaunching: 7 [[NSRunLoop currentRunLoop] addTimer:captureTimer forMode:NSRUAL

74 } Wl setCaptureTimer:

4, return self;

6 by, 1

79| | = {ynid) deallac

Figure 1.1: Stacksplorer provides information about potential call stacks including
the currently edited method in two side columns next to the source code, and offers
navigation along this information.

rate files. This representation does not reveal a lot about
the source code’s semantics. Hence, code comprehension
is not supported well by a file-based representation. Previ-
ous research, which is introduced in depth in chapter 2.2 —
“Programmers’ Work Practices”, and a study conducted by
us (5 — “Navigation Behavior”) have shown that this lack of
support with program understanding is, in fact, problem-
atic for developers.

The goal of this thesis is to design a new tool for develop- Developers rarely

ers to support code comprehension. Robillard et al. [2004] consult

found that developers, who want to successfully modify documentation to

source code they are not familiar with, have to follow struc- understand source
tural dependencies when navigating. Furthermore, devel- code.

opers are often not willing to put effort in reading or up-
dating documentation or similar documents; source code is
always consulted first to solve a task [LaToza et al., 2006].
For the tool we created, this implies three requirements:

1. The tool should support browsing along structural
dependencies.

1 Introduction

Stacksplorer
visualizes
information about
potential call stacks
in an application.

Stacksplorer fulfills
developers’
requirements.

In a user study
Stacksplorer was
evaluated with
positive results.

2. The tool should work fully automatic, requiring no
effort from the user.

3. The tool should work in conjunction or interlinked
with a source code editor.

In the second part of this thesis, we present Stacksplorer
(see Figure 1.1), an IDE plug-in fulfilling these require-
ments. Stacksplorer is a novel visualization technique pro-
viding information about possible call stacks in an appli-
cation. For a focus method, which is marked by the cursor
in a source code editor, Stacksplorer shows callers on the
left side of the source code editor and methods called from
the focus method on the right side of the editor. Users can
navigate to methods shown in the side columns by clicking
them.

In the preliminary study we conducted (5 — “Navigation
Behavior”), we showed that the call stack is one of the most
important structural aspects of source code. Hence, Stacks-
plorer fulfills the first requirement. Furthermore, the side
columns are updated automatically, which conforms to the
second requirement. Optional overlays that connect entries
in the side columns with method calls in the source code
implement the third requirement.

We tested Stacksplorer’s effectiveness for developers in a
quantitative user study (7 — “Evaluation”) with positive re-
sults. We could show that Stacksplorer was not only sub-
jectively considered beneficial but it could also significantly
decrease the time required to perform software mainte-
nance tasks.

1.1 Chapter Overview

Chapter 2 In chapter two, we introduce some fundamental
aspects of object-oriented development as well as the
existing research about work practices of program-
mers and their use of current IDEs. These topics es-
tablish the theoretical foundation upon which Stacks-
plorer was invented.

1.1 Chapter Overview

Chapter 3 Related work in the field of tool support for de-
velopers is introduced in chapter three. We focus on
tools that are related to Stacksplorer: Either they au-
tomatically determine which locations in source code
are relevant for developers, or they introduce clever
visualizations of relevant information.

Chapter 4 Because of the immense variety of programing
languages and toolkits, we found it impractical to
consider all of them in our studies and the design of
the Stacksplorer prototype. Hence, we concentrated
on developers working with Objective-C and the Co-
coa framework. The peculiarities of this language and
toolkit are introduced in chapter four.

Chapter 5 In an observational study, we confirmed that de-
velopers working with Objective-C and Cocoa exhibit
the same navigational behavior as found in previous
research. The results of this study, which complement
previous work, are presented in chapter five.

Chapter 6 In chapter six, we introduce the software proto-
type of Stacksplorer. We describe in detail the design
choices we made and explain interesting aspects of
the implementation.

Chapter 7 The software prototype of Stacksplorer was
evaluated in a user study, in which we compared the
performance of developers working with and with-
out Stacksplorer. We could show that participants us-
ing Stacksplorer were able to solve maintenance tasks
faster. The design and the results of this second user
study are described in chapter seven.

Chapter 8 During the user test, we noticed some potential
for improvement of the first version of Stacksplorer.
In chapter eight, we explain these issues and how we
fixed them.

Chapter 9 In the last chapter, we summarize the contribu-
tions of this thesis and point to interesting research
questions that were revealed while working on and
evaluating Stacksplorer.

Chapter 2

Theory

“If someone claims to have the perfect
programming language, he is either a fool or a
salesman or both.”

—Bjarne Stroustrup

Our work is rooted in two different theories, which are in-
troduced in this chapter. Firstly, the goal of IDEs and im-
provements for them is to support the creation of good, (by
now nearly exclusively) object-oriented software. Stacks-
plorer is also designed for object-oriented source code. We
present the fundamental properties of object-oriented soft-
ware development in the first section of this chapter. Sec-
ondly, users of Stacksplorer are programmers. In the sec-
ond section of this chapter, we explain how programmers
work with and think about source code. In the last section,
we summarize previous studies analyzing how developers
utilize existing tools that should support them with object-
oriented development.

2 Theory

Object-oriented
development helps
structuring source
code.

Objects are
instances of classes,
which are structured
hierarchically.

Object-oriented
languages are tools
for object-oriented
development.

2.1 Object-oriented Software Develop-
ment

Software quality can be assessed based on different criteria,
e.g., portability, maintainability, understandability, or con-
sistency [Boehm, 1978]. Most of these properties are pos-
itively correlated with a proper software architecture. Al-
though generally no particular development technique is
required to create good software architectures, today most
software conforms to an object-oriented architecture, which
has been proven to model many application domains suffi-
ciently well [Meyer, 1997].

In object-oriented software, application behavior is defined
by interactions of objects at runtime. Each object is an in-
stance of a class, which defines the set of properties the ob-
ject has and the methods the object can perform. The class
to which an object belongs is sometimes also called the ob-
ject’s type. Objects and classes often represent real world
entities or groups of them. For example, in a school’s man-
agement application, teachers might be represented by in-
stances of a class Teacher. Classes are structured in a hi-
erarchy of one ore more trees, which is called the static ob-
ject hierarchy or inheritance hierarchy. Each class can declare
properties and methods itself and inherits the properties
and methods of its parent class. In some languages, e.g.,
in C++, a class might have more than one parent class, re-
sulting in a more complicated inheritance hierarchy. In the
school’s management application example, instances of a
class MathTeacher might inherit all properties and meth-
ods declared in a class Teacher, but in addition instances
of MathTeacher are able to perform more complex alge-
braic operations. This implicit structure of object-oriented
software can make software easier to manage.

Object-oriented software can be implemented in any pro-
gramming language. However, modern object-oriented
programming languages have been developed as tools for
object-oriented software development. They allow eas-
ily defining classes, creating objects as instances of these
classes, and they provide a syntax to call methods on these
objects.

2.1 Opbject-oriented Software Development

There are manifold ways to define useful classes and ob-
jects for an application. Real world entities can often be
easily mapped to objects. Meyer [1997] called classes repre-
senting real world entities analysis classes. For more abstract
parts of applications, e.g., a video post processing engine,
other mappings have to be used. One typical approach is
to encapsulate a single responsibility into a class. Meyer
called theses classes design classes. For example, in a video
processing engine that, at some point, needs to scale the
video to half its size, there might be one class dedicated
solely to video scaling. If real world analogies are missing,
defining useful borders between object’s responsibilities
can become complicated and ambiguous. Because of these
difficulties, the practical benefits of object-oriented devel-
opment have been widely discussed (e.g., [Lewis et al,,
1991; Potok et al., 1999]), with some researchers even sug-
gesting that there is no benefit in using object-oriented ar-
chitectures at all [Potok et al., 1999].

Controller

User Input
l— Update Update —l
Notify
View
Get Data

Figure 2.1: The MVC model suggests three categories of
classes for applications with a graphical user interface:
views, models, and controllers. Image adopted from [Ap-
ple, 2010a].

A class typically
encapsulates a
single responsibility.

10

2 Theory

Modern user
interface toolkits are
object-oriented and
use the MVC
paradigm to split
responsibilities
among classes.

Bottom-up models
suggest, source
code is understood
by iteratively
understanding
increasingly large
blocks.

Different developers
ask similar questions
when trying to
understand source
code.

Today, many modern user interface toolkits, such as Mi-
crosoft’s Windows Presentation Foundation' (part of .NET
3.0 and above), Apple’s Cocoa?, or Nokias’s QT3, are imple-
mented using an object-oriented language. In these toolk-
its each individual user interface component is represented
by an object. The popular Model-View-Controller (MVC)
paradigm [Krasner and Pope, 1988] suggests a structure
how responsibilities in applications with a graphical user
interface can be split into classes. The view defines how
the application’s interface looks like and how data is pre-
sented. The application’s data and the application logic are
contained in the model. A view updates itself by reading
data from the model; and a controller, which is associated to
a view, defines how the model changes in response to user
input. The MVC pattern is illustrated in Figure 2.1.

2.2 Programmers’ Work Practices

Programmers, the target group of Stacksplorer, have devel-
oped specific work practices to cope with the complexity of
source code. Previous studies describing these practices are
presented in this section.

Starting in the 80’s, a lot of studies tried to find cogni-
tive models, which describe how developers create mental
models of source code. Bottom-up cognitive models sug-
gest that developers understand source code by first read-
ing the code and then iteratively chunking it into larger
blocks. Pennington [1987] showed that during this iterative
process a hierarchy of more and more abstract representa-
tions of the programs’ control flow, decision hierarchy, data
flow, and goal/subgoal structure evolves.

Sillito et al. [2008] published a more recent iterative bottom-
up model. They found that questions different developers
ask when working with an unknown software project are
similar. Their model consists of 44 questions grouped in
four phases, which represent the iterative steps required to

http:/ /msdn.microsoft.com/en-us/library/ms754130.aspx
*http:/ /developer.apple.com/technologies/mac/cocoa.html
3h’tt’p: //qt.nokia.com/

http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://developer.apple.com/technologies/mac/cocoa.html
http://qt.nokia.com/

2.2 Programmers’ Work Practices

11

build a mental model of the source code. In the first phase,
developers want to find focus points to begin the investi-
gation from. Afterwards, in the second phase, the context
of these focus points is explored. Ultimately, programmers
try to answer questions concerning structures of a complete
subgraph containing a focus point in the third phase, and
concerning the relationship between multiple subgraphs in
the fourth phase.

In contrast to bottom-up models, top-down models suggest
that programmers understand source code by mapping the
problem domain (possibly through intermediate domains)
to the source code [Brooks, 1983]. To build this mapping,
programmers start with a number of hypotheses they refine
and test iteratively.

Of course, hybrid strategies are also feasible. Letovsky
[1987] found that experienced programmers are able to uti-
lize top-down or bottom-up strategies as needed.

In a study of Robillard et al. [2004] developers were asked to
perform a complex change task in a 65KSLOC software ar-
tifact and their success was analyzed. Robillard et al. found
that, in order to complete the task successfully, it was es-
sential to adequately analyze the source code to find the
appropriate locations for changes. In contrast, unsuccess-
ful participants implemented all changes in the same place.
Additionally, the amount of structurally guided navigation
through the source code was positively correlated with task
success; opportunistic source code browsing was shown to
be less effective.

A full comprehension of source code is often unnecessary
or impractical because the complete project is far too big
to be fully understood [Chen and Rajlich, 2000]. Program-
mers then try to distill information relevant for the current
task from the source code. One technique used is called pro-
gram slicing [Weiser, 1982]. A slice of a program contains all
source code lines that could influence a given variable and
hence isolates a single computational thread. Program slic-
ing can be performed algorithmically. Many variants of this
technique have been developed, for example, an algorithm
that allows slicing (C++) class hierarchies and hence allows
utilizing the slicing technique on a more abstract level [Tip

Top-down models
suggest developers
understand source
code by trying to
confirm hypothesis.

Structured source
code browsing leads
to better code
understanding, which
is required to perform
successful
modifications.

A program slice
isolates a
computational thread
influencing a single
variable.

12

2 Theory

Beacons are
recurring patterns in
source code.

Modern IDEs mostly
support file-based
source code access.

Structured
documentation about
software is often
missing.

et al., 1996]. Tools to visually support program slicing us-
ing a graph representation of different program slices are
also available [Gallagher, 1996].

Reoccurring patterns or features in the source code that
programmers recognize to typically implement certain
structures or operations are called beacons [Brooks, 1983].
They help programmers to get a rough understanding of
code blocks. Similarly to slices, this prevents programmers
from having to analyze the full source code in in detail.

2.3 IDE Utilization

IDEs should support programmers with code understand-
ing. Today, IDEs are mostly designed for object-oriented
development. Object-oriented source code is typically
structured into different files, which each contain one (or
occasionally more) class(es) including their methods. This
representation does neither fully represent the static object
hierarchy, nor does it reveal the interactions of the objects at
runtime. Nevertheless, most of today’s IDEs primarily rely
on file-based source code navigation. For file-independent
access to source code or other information, IDEs often in-
clude a project wide search and a tool to reveal the defini-
tion of a variable, a method, or, more generally, a symbol.
More specialized features often depend on the toolkit the
IDE is designed for, so IDEs’ capabilities may differ and not
all features might be equally beneficial for working with
any toolkit. Features of IDEs that are relevant for naviga-
tion will be discussed exemplarily for a particular IDE later
(4.2.1 — “Navigation Tools”). In this section, we introduce
some of the previous work analyzing how developers work
with IDEs in order to perform software maintenance.

LaToza et al. [2006] investigated the work of software devel-
opment engineers (SDEs) at Microsoft by conducting sur-
veys and interviews. They found out that SDEs spend most
of their time fixing bugs, followed by enhancement and
refactoring tasks. Required knowledge about the program
domain is often gathered as needed and not documented in
a structured way. The tools used are for the most part lim-

2.3 IDE Utilization

13

ited to various source code editors and debuggers. If these
are not sufficient, the owner of the code, mostly the devel-
oper who originally wrote it, is consulted personally. This,
in turn, leads to interruptions, which are not supported
very well by current development tools, because these tools
do not capture the current task’s context.

In addition, current IDEs for the most part lack tools sup-
porting navigation that is meaningful for programmers.
By observing programmers working with Eclipse on five
change tasks in a 500SLOC Java application, Ko et al. [2006]
found that about a quarter of developers’ time was spent
navigating, either by following dependencies or by search-
ing for names. Navigating indirect dependencies using
scroll bars and the package browser accounted for 14% of
the test period. The find and replace tool was also fre-
quently used for various navigation tasks, although more
suitable and effective tools are available in Eclipse (see also
[Murphy et al., 2006]). To perform comparisons, develop-
ers had to navigate back and forth between code segments,
because Eclipse uses a single editing window.

Current navigation
tools in IDEs are
time-consuming and
cumbersome to use.

15

Chapter 3

Related Work

“I find that a great part of the information I have
was acquired by looking something up and finding
something else on the way.”

—Franklin P. Adams

Stacksplorer stands in the tradition of previous research
that has put a tremendous effort in improving IDEs to
make development of well-structured applications easier
and hence also accessible to a broader audience. We present
two kinds of approaches in this chapter. The first category
contains projects that aim to simplify the process of finding
relevant parts of the source code. The second category of
projects contains novel approaches to source code visual-
ization that try to either speed up navigation or to reduce
the need for navigation by laying out related source code
fragments side by side.

3.1 Making Information Accessible

In this section we present tools that, like Stacksplorer, try to
reduce the effort spent on navigating through source code
by making relevant information easier to find. This can be
done either by providing clever recommendations for users
where to navigate to or by allowing users to search relevant

16

3 Related Work

Recommender tools
automatically show

files containing task
related source code.

Various techniques
to determine degree
of interest and to
incorporate non-code
information exist.

Recommender
systems were shown
to be effective for
small projects
containing unknown
source code.

source code using techniques that are more efficient and
versatile than the usual textual search. The systems mostly
differ in the criteria they apply to determine importance of
information.

3.1.1 Recommender Tools

The purpose of a source code recommender system is to au-
tomatically find information related to the source code in
the file a programmer currently works with. In this sense,
Stacksplorer is also a recommender system. The systems
presented here generally generate recommendations by cal-
culating a degree of interest, which depends on the source
code file that is currently edited, for all files in the project.
They then recommend files with degree of interest exceed-
ing some threshold.

The degree of interest may be derived from a programmer’s
navigation history [Singer et al., 2005], maybe even includ-
ing the navigation history of other authors of the same code
[DeLine et al., 2005]. Kersten et al. [2005] propose to in-
corporate editing in addition to navigation activities when
determining the degree of interest. Cubrani¢ et al. [2003]
extend the analyzed data set with information other than
source code, e.g., logs from version control systems. Robil-
lard [2005] suggests to provide recommendations not only
for a single file, which is currently edited, but for a user
defined set of interesting elements in the source code. His
fuzzy logic based algorithm extends the user defined set of
elements with automatic suggestions.

User studies of the above mentioned tools consistently
found that users considered automated guidance in large
software projects helpful, especially if they were new to the
projects. Evaluations with small tasks or case studies could
also show that the total effort spent on navigating through
the project could be significantly reduced.

3.1 Making Information Accessible 17

Mylar - WSIFRequest. java - Eclipse Platform E]
File Edit Source Refackor Mavigate Search Project Run Window Help
£ - Q- lBwe- ey to G- w5 Eer @
14 package Explorer (Mylar) ©2 - Hierarchy | 5| fyhSeriaii. . b JM5Mana., . [J] Message. . [3] wsiFReq.., 52 % 5 || 4Z Pointeut Mavigator £ =
B S| &w g ~| '/l L) x 3% = -
T figures-test “public class U3IFRequest implements Serializable { = & AbstractMoritoring.monitored()
=] ’7‘1 wsif-2.0 # Logging.messages()
£ s (538 private static final long serialVersionUID = 1L; i Bl WelFPersistance, serialization(s
- iH org.apache.wsit [8.,14] = § PersistancePolicy.enforcem
+-[J] WSIFConstants.java 3 fiisa] -1~ @ PersistancePalicy, arour
- [J] WSIFInterceptorConfig.java 3 public USIFRecuest (QNeme servicelD) {[] o advises
[J] WSIFMessage.java @ IMSProperty.s
+ LJ WSIFRequest.java » it p] @ IMSOukput,se
#-[J] WSIFResponse.java - public QNeme getServiceID(] @ IMSFaulkIndic:
[J] wsIFResponseHandler. java return servicelID; @ WSIFRespons:
+ L J| WSIFService java) @ WSIFReguest,
[J] wSIFServiceFactory java
=1 {1 org.aparhe.wsi providers s 16,61 . oo
Lj jm::ﬂl:z:;f’];i;a = public void setIncomingMessage (I3IFMessage incomingMe
LJ T T e Ty this.incowingMessagye = incowmingMessacge:
Lj WSIFDynamicProvider _Jms.java ¥ s
[J] WSIFOperation_Jms java & Ed
¥ [J) WSIFPort_Ims.java b /7L 82 outine 52 =5
=-H org.apache.wsk providers, soap.apachez 4 public void setFortName (String portName) {[] =
[J] WSIFImsSender.java B W e
=1 org.apache.wsi providers. soap. apaches ¥ LEE £ arg.apache.wsif
[J] SOAPIMSConnection java 4 public String getPortMame () ([] = (= WsIFRequest |6.23|
- [org.apache.wsf schema [4..11] T @ getSenviceld()
- [J] Attribute, java 4 £l @ setIncomingMessage(!
[J] ComplexType.java » public void setoperationName {String operationName) ([® setOutpUtiame(Sting)
[J] SchemaType java @ setlnputMame(String)
#-[J] SimpleType.java p 7% & inputhame
== JRE System Library [j2rel.4.2_05] » public String getOperationName() {[] & contextMessage
=L rt.jar - C:\Program Files\Javaijzrel.4.2_1 w
= £ javaio |1..108| < m >
{ip Serializable class = -
2 f2eedar [1..357] Lo Problems (Mylar) 52 . Search o T
=} cam.sun.jms.service |1..40] O errors, 100 warnings, O infos {Fiter matched 100 of 112 items)
+-Jh IMSManagerTmpl.class | Description | Element [
2 st (L] % The import org,apache wsif,utl,,, WSIFOperation_JCA.java
& The method compile(String[]) fr... @ Conwentions. JDKcompile v
< R |HES i * < *

Figure 3.1: Mylar [Kersten and Murphy, 2005] is a recommender system that filters
files shown in Eclipse’s standard tools based on their relevance for the developer’s
current task.

3.1.2 Query Languages

Similar to recommender systems, the following systems us- Query tools allow to
ing query languages try to reduce the amount of source exploit the source
code that is presented for exploration. Query tools do code’s structure
not automatically try to perform this reduction; instead, when searching.

they offer efficient ways for users to find interesting source
code. Query languages often allow searching by the means
of structural relationships users know about, e.g., the call
stack, which cannot be expressed easily using a textual
search.

JQuery! [Janzen and Volder, 2003] is a logical program-
ming language, similar to Prolog [Deransart et al., 1996],

'JQuery can be downloaded at http:/ /jquery.cs.ubc.ca

http://jquery.cs.ubc.ca

18

3 Related Work

class(?C, name, HelloWorld).

package(?P, class, ?C),
class(?C, super+, ?I),
interface(?I, method, ?2IM),
method(?IM, signature, ?IS),
method(?IM, name, ?IN),
class(?C, method, 2CM),
method(?CM, signature, ?CS),
method(?CM, name, ?CN),
equal (?IS, ?2CS),

equal(?IN, 2CN).

Figure 3.2: A JQuery defines a hierarchical browser. The simple query on the left
defines a browser with all classes named “HelloWorld”, the more complex query on
the right produces a browser containing a class’s methods grouped by the interface

they belong to.

JQuery allows
defining the content
of a hierarchical file
browser using a
logical programming
language.

UML defines several
graph
representations of
source code.

to specify queries for source code. It allows querying for
types and methods in Java source code. JQuery is expres-
sive enough to exploit relationships that are meaningful for
source code of object-oriented software. It is possible, for
example, to query for the superclasses of an object. A hier-
archical browser, similar to Eclipse’s Package Browser, is
used to display the results of JQueries. Each individual
node in the browser can again be queried using a JQuery.
A user study showed that users tended to formulate only
rather simple queries.

In contrast to the evaluations of each individual tool pre-
sented so far, a larger study comparing JQuery and two
recommender tools found that the tools had little effect in
comparison to the generally dominating task and strategy
specific effects [de Alwis et al., 2007].

Numerous tools use a graph-based representation of source
code. For example, the call graph, which is visualized by
Stacksplorer, is a graph representation of source code. More
widely known examples are the diagrams defined in the
unified modeling language (UML) [Object Management
Group, 1997]2. Particularly popular to provide an overview
of source code is the class diagram (see Figure 3.3), which
shows the static object hierarchy of an object-oriented soft-

>The UML is constantly developed further, the newest version is 2.3
[Object Management Group, 2010].

3.1 Making Information Accessible

19

Person
firstName
__Student 7> lastName <— Professor
idNumber chairName
semester 1
major
participates in gives
Lecture
name

Figure 3.3: The exemplary UML diagram above shows in-
heritance (arrows) and associations between classes. The
diagram does not depict how associations should be real-
ized in source code. The labels on associations show how
many instances of one class are associated with a single in-
stance of the other class.

ware project and associations between instances of classes.
To discern these different relationships between classes,
multiple types of edges are used in the graph.

Robillard et al. [2002] create a graph that interlinks classes,
tields, and methods in a single data structure to represent
the structure of a program. A subset of this graph that con-
tains all relevant structural information for a given task is
called concern graph. The developer can interactively gen-
erate these concern graphs by querying vertices that are al-
ready part of the current concern graph. The graph itself is
presented as a set of trees in an outline view, which allows
opening a source code editor to display the source code as-
sociated with a node in the graph.

Query interfaces are not necessarily restricted to queries of
source code. The Whyline [Ko and Myers, 2008] allows
asking questions about the textual and graphical output of
an application. Possible questions always start with “Why
did” or “Why didn’t”and refer to a particular output that
the application produced during an execution. For exam-
ple, a shape drawn in a painting application may, after the
execution stopped, be queried “Why did this line’s color =
blue”. Using a trace of the actual program execution, the

Concern graphs are
user created graphs
containing
information about
classes, fields and
methods.

The Whyline
searches a trace of
an application’s
execution for the call
stack, which is
responsible for a
particular output.

20

3 Related Work

Users need to pick
the correct starting
point to obtain useful
recommendations or
search results.

In spatial layouts
information is
arranged on a 2-D
plane.

In Code Bubbles,
code editors are
embedded in a graph
visualization.

Whyline can then inform the user which call stacks influ-
enced the relevant property. Using the Whyline, novice
programmers could solve a bug fixing task significantly
faster than expert developers without the Whyline.

Recommender systems as well as query interfaces are only
useful if users pick the correct query or start at a relevant
file [Ko and Myers, 2008]. The Whyline was designed to
solve this problem, because problems in the application
output are easier to spot and name. However, even us-
ing the Whyline developers occasionally picked the wrong
questions to start with in the conducted study.

3.2 Spatial Layouts

In contrast to recommender tools, spatial layouts do not
help to retrieve interesting information in source code.
They focus on laying out relevant source code elements
visually in order to help developers finding and keeping
track of source code. Many of theses visualization tech-
niques exploit spatial memory, i.e.,, a human’s ability to
memorize where information is placed on a 2-D plane. Spa-
tial layouts are similar to Stacksplorer, because they also
provide visual representations of source code and (in some
of the presented systems) its semantics.

3.2.1 Code Bubbles

In Code Bubbles [Bragdon et al., 2010] code editors are em-
bedded in a graph visualization. Starting with any bubble
showing a part of the source code (e.g., a single method),
users can use familiar tools like “Open Declaration” to find
related elements of the source code that are opened in new
bubbles. The bubbles are connected with arrows represent-
ing the relationship used to find them. Other relationships
that exist between visible bubbles are inserted automati-
cally. To facilitate space optimally, a lot of effort was put
into automatically arranging bubbles and into reducing the
width of overly wide bubbles by applying code reflow.

3.2 Spatial Layouts

a
[a0
=

Waminns 1)

Figure 3.4: Code Bubbles [Bragdon et al., 2010] is a development environment in
which individual code fragments and related information, such as documentation,
are shown and edited in bubbles, which can be arranged freely on a 2-D plane.

A qualitative study, where programmers were asked to
complete a set of maintenance tasks with either Code Bub-
bles or Eclipse, showed that more tasks could be completed
successfully with Code Bubbles and the total time required
to complete a task could be reduced significantly for one of
two tasks. Because related sections of the source code can
be viewed side by side in Code Bubbles, the amount of nav-
igation actions and especially the amount of back and forth
navigation could be reduced significantly compared to the
control group using Eclipse.

3.2.2 JASPER

JASPER (Java Aid with Sets of Pertinent Elements for
Recognition) [Coblenz et al., 2006] is an Eclipse plug-in to
show a complete working set of related information. It
allows users to add read-only representations of various
types of information, such as text, URLs, and, of course,
source code, to a 2-D plane where task relevant informa-

In a user study Code
Bubbles allowed
users to solve more
tasks successfully.

JASPER allows
organizing
task-relevant
information on a 2-D
plane.

22

3 Related Work

In Code Thumbnails,
graphically scaled
down versions of
source code
documents are used
to support intra- and
inter-file navigation.

Java - PaintWindow.java - Eclipse SDK =)

]85l e) 5 &ava

G Erasepaintjava | PamtObjeciConstrut =5

> A2
» 52 jasper
v i Paint
» 6 (default package)
& educmu.hci
v i educmuy

en PaintObjectConstructor(this);
)

b 1) Actions java
» [0 Eraserpaintja
» [1) PaintCanvas.j
» [1) PaintObjectz 3
» (1) PaintObjectCe
» fJ) PaintObjectCe |
» {J) PaintWindow.]
b 4] Pencilaint jay

b = JRE System Librar.

Q%

Jut(colorPansl, Bordawout.v_AXIS)); | 3

|

Pltform SEv14.2)

s ax, int value)
tes a horizontal slider using the specified min, max and value.

? Working Sets & = O

[Add thickness sider

(Javadoc| Error Log [E Console £ 9. = 0
No consoles to display at this time.

Writable SmartInsert | 157:2

Figure 3.5: JASPER [Coblenz, 2006] allows collecting task
relevant information in working sets on 2-D planes.

tion is collected. Multiple of these 2-D planes, which are
also called working sets, can be managed, e.g., one for each
task. Similarly to Code Bubbles, layout of the information
on the plane is semi automatic. JASPER places new infor-
mation without overlapping other items and resizes items
to accommodate for the size of the complete plane. Users
can change the layout determined by JASPER if they desire.
Automatic adjustments to the layout never change the po-
sition of information on the plane. Otherwise, spatial mem-
ory could not be used to retrieve information on the plane.

3.2.3 Code Thumbnails

Code Thumbnails [Deline et al., 2006] implements a dif-
ferent way to facilitate spatial memory to navigate to rel-
evant aspects in source code. The system provides a graph-
ically scaled down version of the file contents that is un-
readable but allows discerning the structure of the source
code. This thumbnail is used as a replacement for the tradi-
tional scroll bar for inter-file navigation. Multiple thumb-

3.2 Spatial Layouts

23

- : > :
File Edit View Project Buld Debug Data Tools Test Window Community Help

~ > ||CodeThumbnal + 1 X

& |~

w | |3VCanMove(rﬂoveDirecﬁon dir) a8l —

o Thumbnail Overview Figure.csa |

|§3GATeh'isC0nh'ol.Figure
= = -
//first clear previous location of the fig
ClearFigure() :

switch (dir)

| [

L ha

case MoveD
xPosition —
break:

case MowveDirection.Right:

momomomom

o b

xPosition +

break:

0o m

case MoveDirection.Down:
vPosition +
break:
oveDirection.Rotate:
ChangeRotatehngle () ;
break:;

Loha

case

BT R Te BT B T = e R e e}

[TaRT=JT
© =1 @

e

¥

/fdraw the figure at the new location

- — | EIEN

Ready

Figure 3.6: When used for inter-file navigation, Code
Thumbnails [Deline et al., 2006] replaces the scroll bar with
a scaled down version of the source code to allow exploit-
ing spatial memory for navigation.

nails are shown on a flexibly organizable 2-D plane, the
Code Thumbnails Desktop, to support intra-file navigation.

An evaluation with 11 professional software developers
showed that the new navigation technique was rapidly
adopted. Code Thumbnails was preferred even for a time
critical search task where participants had the option to
use more familiar search techniques. The evaluation could
also show that completion times for file searching tasks
decreased significantly when using the Code Thumbnails
Desktop.

Search tasks could
be completed
significantly faster
using Code
Thumbnails.

25

Chapter 4

Prototyping Platform

“If there is ever a science of programming
language design, it will probably consist largely of
matching languages to the design methods they
support.”

—Robert Floyd

Before introducing our work on a new system to support
developers when understanding source code, we discuss
some aspects of the platform we have developed the pro-
totype for. It makes sense to make a decision regarding
the development platform early on, so that specific pecu-
liarities of this platform can be considered throughout all
design stages.

We chose to develop Stacksplorer for integration with
Xcode!, Apple’s standard IDE. Xcode is built for develop-
ment with the Cocoa framework, which is used to imple-
ment native applications for Mac OS X? and iOS®. Cocoa
itself is written in Objective-C, which is also the program-
ming language Cocoa developers have to use. (Bridges to
Ruby and Python exist but are seldom used.) In theory, the
restriction to a particular toolkit impacts the generalizabil-
ity of our work. However, to develop and evaluate a work-

'http:/ /developer.apple.com/technologies/tools/xcode.html
*http:/ /developer.apple.com/technologies /mac/
*http:/ /developer.apple.com/technologies/iphone/

Stacksplorer is
developed for
programmers using
Cocoa and Apple’s
Xcode IDE.

http://developer.apple.com/technologies/tools/xcode.html
http://developer.apple.com/technologies/mac/
http://developer.apple.com/technologies/iphone/

26

4 Prototyping Platform

Objective-C is an
object-oriented
programming
language based on
C.

Objective-C is
dynamically typed.

ing prototype for and with multiple IDEs and languages
is practically impossible. We hypothesized that developers
working with Objective-C and Cocoa exhibit similar navi-
gation behavior as found in previous studies for other lan-
guages and toolkits. To confirm this hypothesis we con-
ducted a preliminary study, which we describe later (5 -
“Navigation Behavior”).

In this chapter we will introduce some of the fundamental
properties of Objective-C and Xcode. They will be impor-
tant to understand particular aspects of our study designs
as well as the details of the implementation of our proto-

type.

4.1 Objective-C

Objective-C is, like C++, an object-oriented extension of C.
In contrast to C++, which changes some of C’s semantics,
Objective-C is, syntactically, a strict superset of C. It adds a
set of keywords to allow the definition and implementation
of classes, as well as a syntax to send a message to an object.
Conceptually, Objective-C is close to Smalltalk [Kay, 1993].

4.1.1 Messaging

Usually, a message is sent to an object in Objective-C by en-
closing the object, the method name (which is called selector
in Objective-C), and the parameters in brackets. Parameters
for a method can be inserted in the method name after ev-
ery colon. For example, the expression

[aString addString:anotherString
withAttributes:attributes]

would call the method with the selector
addString:withAttributes: on the object anObject,
passing the parameters aString and attributes.

4.1 Objective-C

27

isa superclass superclass

!nstance Vaf!able selector -> address selector -> address
instance variable selector -> address selector -> address
instance variable selector -> address selector -> address

Object Object's class Object's superclass

superclass
selector -> address

selector -> address
selector -> address

Root class

Figure 4.1: Messages in Objective-C are dispatched by traversing the static class
hierarchy in the runtime system. Image adopted from [Apple, 2009].

Objective-C is a dynamically typed language. Message dis-
patch is performed at runtime, e.g., if and how anObject
implements the addString:withAttributes: method
is decided in the moment the method is called when the
application runs.

To implement dynamic typing, a runtime system is re-
quired that performs these decisions. The runtime system
contains information about all classes and instantiated ob-
jects, and it offers an API, the Objective-C runtime library4,
to interact with this information directly. Each object is rep-
resented in the runtime system as a C struct, which stores
the instance variables of the object and a pointer to the class
of the object. The class is again stored as a C struct (each
class in Objective-C is at runtime an instance of the class
Class), which contains a pointer to the superclass and a
dispatch table for messages. The dispatch table associates
all selectors known to a class with a function pointer to their
implementation.

If an object is sent a message, the runtime will follow the
pointer from the object to the object’s class and search in the
class’s dispatch table for the selector. If the selector is not
found, the dispatch table of the superclass is queried. This
way, queries move upwards the static object hierarchy un-
til no more superclass exists because a root class of the class
hierarchy is reached (see Figure 4.1). To increase perfor-
mance, these lookups are cached, similarly to a previously

*http:/ /developer.apple.com/mac/library /documentation/Cocoa/
Reference /ObjCRuntimeRef/Reference/reference. html

Dynamic typing in
Objective-C is
implemented in the
runtime system.

Messages are
mapped to their
implementation at
runtime when the
message is sent.

http://developer.apple.com/mac/library/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html

28

4 Prototyping Platform

The parameters
self and sel are
passed to method
implementations
implicitly.

Objective-C’s
garbage collector
frees all
non-reachable
objects.

Objects may assign,
retain, or copy other
objects stored in
instance variables.

suggested technique for Smalltalk [Deutsch and Schiffman,
1984].

A C function to which a selector is mapped in the dispatch
table does not implicitly know that it is an instance method
of an object. That is why these C functions take two pa-
rameters in addition to those the developer specifies when
implementing the method: self, the object on which the
method is called, and sel, the method’s selector. Both pa-
rameters can be used in a method’s implementation. They
are passed to the C functions by the runtime system when
dispatching a method and do not need to be passed explic-
itly.

4.1.2 Memory Management

Objective-C offers two different memory management
strategies: Reference-counting and garbage collection. The
latter is only available on the Mac, not on iOS. When
garbage collection is enabled, a garbage collector auto-
matically frees unused memory from time to time [Apple,
2010b]. Therefore, the garbage collector creates a set of all
reachable objects. This set is comprised of a fixed set of root
objects, which are expected to always exist, and all objects
that are connected to these root objects through a path of
strong references. All references are strong references un-
less they are specifically marked as weak. Once the set of
reachable objects is determined, the garbage collector frees
all objects not in this set. In most cases, a developer does
not need to care about memory management a lot when
garbage collection is enabled.

When using reference-counting, objects store a retain count.
Initially, after allocation, an object’s retain count is one. As
soon as it reaches zero, the object will be deallocated. The
developer is in charge to retain an object (increase the re-
tain count by one) if a reference to the object is to be kept
around and to release (decrease the retain count by one) the
object if the reference is no longer needed. For an object A
stored in an instance variable of another object B, typically,
three options exists: Commonly, B retains A, so A cannot be
deallocated without B releasing A. In this case B owns A. If

4.1 Objective-C

29

B does not own 2, A should be just assigned to B, i.e., B does
not retain A. In this case, B can not influence if and when A
is released or freed. The last option is that B stores a copy
of A, which is a new object and hence independent of what-
ever happens to A.

4.1.3 Declared Properties

In well-designed object-oriented software, a pair of ac-
cessor methods (getter/setter) is typically used to access
an instance variable. This realizes the principle of infor-
mation encapsulation [Kim and Lochovsky, 1989]. De-
clared properties add twofold support for using this pat-
tern in Objective-C. Firstly, syntactic features are added to
Objective-C that allow to declare accessor methods for an
instance variable. Developers can also define if the instance
variable should be assigned, retained, or copied. Option-
ally, the according implementation can be generated auto-
matically. Per convention, getters are named like the prop-
erty; setter’s names are constructed by prefixing the prop-
erty name with set and capitalizing the first character of
the property name.

Secondly, the declared properties feature introduces a
dot () operator, which can be used as an alternative
to square brackets when calling an accessor method.
The new operator does not add any new features, but
it allows for very compact and readable source code.
For example, the expression object.propertyName,
which uses the dot operator, is equivalent to [object
propertyName]. Using the dot operator more than
once in a single expression is also possible, e.g.,
object.aProperty.anotherProperty is equivalent
to [[object aProperty] anotherProperty]. The
dot syntax can be used to call setters if an equal sign
follows the property name. For example, the expression
object.aValue = 10 could be replaced with [object
setAValue:10].

Declared properties
support automatic
generation of
accessor methods.

The dot operator
offers an alternative
syntax to call
accessor methods.

30

4 Prototyping Platform

static char addedPropertyKey;

— (id) addedProperty;

return objc_getAssociatedObject (self, &addedPropertyKey);

}

— (void) setAddedProperty: (id) newValue;

objc_setAssociatedObject (self,

}

&addedPropertyKey,
newValue,
OBJC_ASSOCIATION_RETAIN) ;

Listing 4.1: The minimal implementation for getters and setters of an instance vari-
able, which is added to a class in a category.

Loading a plug-in for
an
Objective-C-based
application adds
information about a
number of classes to
the runtime system.

Associated
references provide a
workaround to add
instance variables to
an object from a
category.

414 Plug-Ins

Because the complete information about the static object hi-
erarchy can be manipulated at runtime through the runtime
system, it is easy to load and link additional classes at run-
time. This is how plug-ins are realized in Objective-C. A
plug-in is a compiled version of information about a num-
ber of classes, their methods and instance variables. If a
plug-in is loaded, these classes are made available in the
runtime and then behave as if they belonged to the applica-
tion from the start. Using the runtime API, plug-ins can not
only add classes to an application but also change existing
ones.

The simplest way to change an existing class is to write
a category. A category for a class contains methods that
are added to the class’s dispatch table in the runtime sys-
tem. However, categories have two practical limitations:
Firstly, because the category might be loaded when objects
are already instantiated, categories can only add methods,
no instance variables. Adding instance variables to a class
would require to allocate more memory for every instance
of the class. Therefore, a reference to all instances of the
class would be required. Instead, associated references, which
were introduced in Mac OS X 10.6, can be used. Associ-
ated references allow to add storage for an associated object

4.1 Objective-C

31

to an object. The associated object is referenced through
a key, so an arbitrary number of objects can be associated
with an object. Additionally, associations ensure proper
memory management, as properties would do (4.1.3 — “De-
clared Properties”). The minimal source code required to
add an (retained) associated object with a getter and setter
to a class from a category is shown in listing 4.1.

A second limitation of categories is that, although methods
can be overwritten in a category, there is no way to call the
old implementation that has been overwritten like it would
be possible when implementing a subclass. A workaround
for this problem involves using method swizzling, a tech-
nique that allows exchanging the implementations of two
methods. That means, in the runtime system the function
pointers for two entries in the dispatch table are exchanged.
Using method swizzling, overriding a method in a class
and calling the old implementation from the new one is
possible in three simple steps:

1. The new implementation of the method is added to
a category using a new method name. For example,
when overriding a method called fullName, a new
method called swizzleFullName is added to a cat-

egory.

2. At the point in code where the old implementation
should be called, a call to the new method on self is
inserted.

3. The implementations of the old and the new method
are swizzled. This will cause the new method to be
executed when the old one is called. Additionally, the
call to the new method from step 2 will actually exe-
cute the old implementation.

The implementation of a simple NSObject category that
allows to swizzle the implementations of two methods
from aClass by calling

[aClass exchangeInstanceMethod:@selector (old)
withMethod:selector (new)]

Method swizzling
allows exchanging
the implementations
of two methods.

A class’s 1oad
method is called
when the class is
added to the runtime
system.

32

4 Prototyping Platform

@implementation NSObject (MethodSwizzling)

+ (woid) exchangeInstanceMethod: (SEL)sell withMethod: (SEL) sel?2;

{
Method methodl
Method method2

= class_getInstanceMethod([self class], sell);
= class_getInstanceMethod ([self class], sel2);

method_exchangeImplementations (methodl, method2);

}

@end

Listing 4.2: Implementation of an NSObject category containing a convenience
method to swizzle the implementations of two instance methods.

is shown in listing 4.2. A good place to perform method
swizzling is the class’s 1oad method, which is called once
the class is added to the runtime. If the 1oad method is
overwritten in a category, it will be called after the class’s
original 1oad method was called, so both will be executed.

4.1.5 Reverse Engineering

Before the techniques explained above to change classes
from within a plug-in can be applied, reverse engineering
is required to find the appropriate locations for changes. In
particular, four tools have proven to be useful to introspect
an Objective-C application.

class-dump® The class information, which is available
through the runtime system, is stored in the compiled
binary files. This information can be extracted using
class—dump. The tool generates class header files,
i.e., the class interfaces, from a given binary. Develop-
ers of plug-ins can than refer to these generated head-
ers if the original source code of the application is not
available.

F-Script Anywhere® F-Script is an object-oriented script-
ing language, which uses Objective-C and Cocoa

>http:/ /www.codethecode.com/projects /class-dump /

4.1 Objective-

C

33

Release AR - 24 - by Y] 6 Q~ String Matching
Qverview Action Breakpoints Build andRun Tasks Info Search
G“’:"&F"“ I « | » [CNMemberSymbolCell.m:23:5 ¢ <No selected symbol> # = e a
CodeNavigatorPlugin | B - .
i CodeNavigatorPlugin ane F-Script Object Browser (an]
[1Xcode Headers
[Classes [Workspace | [Classes | [Select View] [Name | [Inspect »
e Changed Xcode EFUSILION_aSk.
[Model nil -

[] CNRelationsH
(1] CNMemberO
(] CNMember0
[] CNCallerRela
] CNCallerRela
[i] CNCallerRela
] CNCallerRela
(] CNUserDefin
|| CNUserDefin
[1i] CNUserDefin
] CNUserDefin
(3] View

[1i] CNSpinningP.

[u] CNSpinningP.

[1i] CNMemberSy

1] CNMemberSy

—

setPreferredBackingLocation:

Previous valid key view T
nil mse[PreseNesComemDurlnngveRes\ze‘
Print job title setPreventsApplicationTerminationWhenModal:
‘CNMemberSymbolCell.m - CodeNav. setReleasedWhenClosed:
Should draw color setRepresentedFilename:
YES setRepresentedURL:
Tag setResizelncrements:
1 setShadowStyle: m
Tracking areas setSharingType:
NST;a(kmgArea 0x2031a9640: rect setShouldBeVisibleOnlyOnCurrentSpace:
NSTrackingArea 0x20319e040: rect setShowsContentSeparator:forEdge:

setShowsLockButton:
setshowsResizelndicator:
setShowsToolbarButton:

Visible rect
(0<>0 extent:753<>479)
‘Wants default clipping

YES setSize_ask:
Wants layer setStyleMask:
NO ailimeMachineDelegare:
Width adjust limit
0.2 £ EWithRepresentedFilename:
Window setToolbar:
<XCWindow: 0x20096f840> 4 setUserinterfaceltemidentifier: -
¥ setValue:forKey: v

Il setViewsNeedDisplay: {0

BN

Figure 4.2: F-Script can be used for runtime introspection of
Objective-C applications. Here, F-Script is used to browse
through the methods of Xcode’s window class and the win-
dow’s title was changed using the set Tit le: method (see

marked spots).

classes internally. F-Script Anywhere can be loaded
as a plug-in into any Objective-C application.
allows browsing graphically through the dynamic
object hierarchy of the application and through all
classes available in the application’s runtime system.
Additionally, F-Script Anywhere allows interacting
with objects while the original application is running.
Methods can be called ad-hoc through a graphical in-
terface, with the effects immediately visible in the ap-
plication (see Figure 4.2).

It

GDB’ Of course, GDB, one of the most widely used de-
buggers, also supports Objective-C. GDB can be at-
tached to every running application to perform re-
verse engineering. Unfortunately, proprietary ap-
plications typically contain no debugging informa-
tion, so it is not possible to step through the im-

Shttp:/ /www.fscript.org/
"http:/ /www.gnu.org/software/gdb/

34

4 Prototyping Platform

Cocoa is the
framework provided
by Apple for Mac and
iOS development.

plementation of a method. It is, though, possible
to break on method calls, because method names in
clear text are required at runtime for method reso-
lution in Objective-C. Then, the call stack can be ex-
plored by either showing a backtrace or by executing
instructions stepwise, to advance to methods called
from the current one. This technique helps to un-
derstand how methods use each other. Further, ar-
guments passed to methods can be revealed in GDB,
to understand how a method is used. This is possi-
ble, because arguments for a method call are always
stored in the same CPU registers. For example, on
an x86_64 architecture, $rdi holds the self param-
eter of the method call, $rsi holds the sel parame-
ter, Srdx, $rcx, $r8, $r9hold the first four pa-
rameters for the method. For other architectures, the
appropriate registers are different®. However, regard-
less of the architecture, the registers can be inspected
easily with GDB.

Instruments “Instruments” is a performance measure-
ment utility, which comes with Apple’s developer
tools. Although it is not designed for reverse engi-
neering, Instruments can, among other things, sam-
ple which methods are executed by an application.
Call stacks executed while the program was running
can be browsed graphically afterwards.

4.1.6 Cocoa

Cocoa and Cocoa Touch are the frameworks provided by
Apple to develop software for Mac OS X and iOS respec-
tively. The versions for both systems differ mostly in their
respective Ul toolkit. Apart from the UITK only minor dif-
ferences between the two versions exist.

The UI toolkits of both Cocoa versions adapt the MVC
paradigm, which was introduced before (2.1 — “Object-
oriented Software Development”) as a pattern to split re-
sponsibilities in applications with a graphical user interface

$http:/ /www.clarkcox.com /blog/2009/02/04/inspecting-obj-c-
parameters-in-gdb/

4.1 Objective-C

35

Notify
Model Controller View
«—— Update

Figure 4.3: In Cocoa, all communication between model
and view is mediated by a controller. Image adopted from
[Apple, 2010a].

into classes. Apple’s implementation [Apple, 2010a], how-
ever, is different from the original version of the MVC pat-
tern. Whereas in the original version of the MVC pattern,
a view updates itself by reading data from a model, in Co-
coa controllers mediate all communication between mod-
els and views. Consequently, in Cocoa, the controller is in
charge of reformatting model data for display in a view.
Apple’s implementation of MVC is depicted in Figure 4.3.

In the following sections, we give an outline about some
of Cocoa’s most important design patterns, because these
structures are important to keep in mind when analyz-
ing where and why programmers navigate through source
code.

Delegation

Typically, in an object-oriented user-interface toolkit, wid-
gets or, more generally, objects are specialized for the use
in a particular application by subclassing them. In Cocoa,
subclassing is often avoided by using delegation. Delega-
tion allows an host object to hand off control to a delegate
object, which can supply application specific behavior. To
implement delegation, the host object defines a protocol,
i.e., a set of methods to implement, containing the meth-
ods it will call on the delegate while executing a task. All
methods in this protocol are optional; hence, the delegate
object only needs to implement those that are required to
achieve the desired effect. Before the host object calls one
of the delegate methods, the runtime is queried to deter-
mine if the delegate implements that method. Because the

Im Apple’s
implementation of
the MVC pattern, all
communication
between model and
view is mediated by a
controller.

Delegation allows
refinement of objects
without subclassing.

36

4 Prototyping Platform

Objects can send
notifications to inform
interested objects
about changes.

Receivers of a
notification can
change at runtime
and are unknown to
the poster.

Operation queues
support
implementing
concurrency.

runtime is able to provide this information, the type of the
delegate object is irrelevant and generally unknown to the
host object.

Notifications

Notifications are a mechanism for an object to inform any
interested object about changes. This inter-object commu-
nication is mediated by a notification center. An object, the
poster, can send a message with a unique name, an object,
and a dictionary containing additional information to the
notification center. Other objects, the receivers, can regis-
ter at the notification center to receive notifications with a
specific object or a specific name or both. The notification
center is responsible for delivering the correct notifications
from the posters to the receivers.

From a software architectural standpoint, notifications are
similar to a method call from a poster to all receivers. How-
ever, the receivers can change at runtime and are not known
to the poster, what makes notifications extremely flexible.
This flexibility also makes it harder for a developer to un-
derstand the control flow by reading the source code.

Concurrency Programming

Operations and operation queues provide a powerful way
to implement concurrency, i.e., to have multiple things hap-
pen in parallel. For example, complex calculations should
happen while the user can still interact with the user inter-
face. An NSOperation encapsulates a single task that is
supposed to run concurrently to something else. Instead
of running the operation on a background thread manu-
ally, as it is usually required for multithreaded applications,
it can be scheduled on an NSOperationQueue. Opera-
tion queues launch each operation on a separate thread
automatically, and they can decide how many operations
should run in parallel to facilitate a computer’s capabilities
best. The operation queue executing a part of the source
code can be determined programmatically.

4.2 Xcode

37

4.2 Xcode

Xcode is Apple’s IDE for the development of Cocoa-based
applications. It ships with a variety of tools to help pro-
grammers developing, testing, and deploying their appli-
cations. Most importantly, besides Xcode, the developer
tools include Interface Builder, a tool to graphically lay out
user interfaces, and Instruments, a performance analysis
tool.

Xcode is not localized and only available in English. For
our work, this implies we will also develop our software
localized to English only. Additionally, we can assume that
users are used to reading left-to-right. This is important,
because it allows us to assume that Ul elements are also
read or used from left to right, due to a cultural constraint
[Norman, 1988].

While Xcode offers a wide range of editing, refactoring, and
debugging tools, for the purpose of this work we are only
interested in the tools to navigate and understand source
code as well as in Xcode’s plug-in API. Throughout this
thesis, we always refer to Xcode in version 3.2.4.

4.2.1 Navigation Tools

Xcode already includes tools that can aid navigation
through and understanding of a project’s source code. In
particular, we identified the following 13 tools to be rele-
vant for navigation.

File Browser The file browser is shown at the left side of
Xcode’s main window by default and allows brows-
ing and accessing files in the project.

Jump to Definition This feature allows to open the defi-
nition of a selected symbol in the current editor. It
can be accessed from the context menu of a symbol
or by double-clicking the item while holding down
the command key. If the symbol is ambiguous, i.e.,
multiple symbols with the same name exist, a menu is

Xcode is an IDE for
development with
Cocoa.

Xcode’s user
interface is only
available in English.

38

4 Prototyping Platform

anon [CodeNavigatorPlugin - Class Browser (=)
Class Member Kind
CNl;athL;yel - L initialize Class Method -
CNSlidingAnimationLayer [bind:toObject:withKeyPath:options Instance Method |
CNSpinningProgressindicator! Ll dealloc Instance Method
CNCallerRelationshipFetcher L init Instance Method
CNMemberOfRelationshipFetche L initWithLayer. Instance Methad
CNPlugin [observedKeyPathForstrokeColor Instance Method
CNUserDefinedPath [observedObjectFarStrokeColor Instance Method
CNUserDefinedPathManagement [1] observevalueForkeyPath:ofObject:change:context: Instance Method
CNUserDefinedPathstorage L setBackgroundClipPath Instance Method
NSAttributedstring [setObservedKeyPathForStrokeColor: Instance Method
NSMutableAttributedstring @ [setObservedObjectForStrokeColor: Instance Method
NSTextStorage [setPathWithPaints Instance Method
XCFoldingTextStorage 7 observedKeyPathForstrokeColor Property |
XCTextStorage 7 observedKeyPathForStrokeColar Property |
NSCell @ 7 observedObjectForstrokeColor Property W
NsActionCell S 7 observedObjectForStrokeColor Property
- . .
backgroundClippingPath Instance Variable
e P ’
CNMembersymbolBurto =
NSOperation @& [h CNPathlayer.h:12:1 ¢ [@interface CNPathLayer . ", |C. #. &
1 /
CNCallerRelationshipUpdated | 3| | 7/ CNPathLayer.h
NSResponder @ 1| | // CodeNavigatorPlugin
NSVi 4| |4
tew @ 5| | // Created by Jan-Peter Kramer on 85.87.18.
NSText @ 6| | // Copyright 2818 RWTH Aachen University. All rights reserved.
NSTextView [e3 7| |47
XCTextView 4 . - o W
. 3| | #import <Cocoa/Cocoa.h>
NsviewController @ 10| | #import <QuartzCore/QuartzCore.h>
ChNavigatorViewControlle |4 || 11
NSWindowController @ v 12

Figure 4.4: Xcode’s Class Browser allows browsing the in-
heritance hierarchy of a project.

shown from which the user can select which symbol’s
definition Xcode should open. If the implementation
for the symbol is located inside the project, it will be
opened, otherwise the declaration will be shown.

Project-wide Search The project-wide search searches in
all files of the project for either text, symbols, or by
matching a regular expression.

Find (Selected Text) in Project A feature that allows start-
ing a project-wide search from the context menu for
selected text or a symbol.

Search Documentation An incremental textual search can
be used to quickly find information in the documen-
tation.

Find (Selected Text) in Documentation This feature al-
lows starting a search in the documentation from the
context menu of selected text, similar to the “Find (se-
lected text) in project” feature.

Switch to Header/Source File The public interface of a
class is typically declared in a separate header file.
This feature allows switching between this header file

4.2 Xcode

39

and the implementation of the class by clicking a but-
ton or using a keyboard shortcut.

Class Browser The class browser (see Figure 4.4) shows
the static class hierarchy, methods and member vari-
ables of classes, and the corresponding implementa-
tion.

File History A history of visited locations in the source
code can be browsed using forward and backward
navigation like in a web browser.

Bookmarks Lines in source code files can be bookmarked
and accessed later from the file browser.

Open Quickly A quick incremental search through sym-
bol and file names, that can be accessed via a hotkey.

Single Step Advance (Debugger) A feature of the debug-
ger that allows advancing program execution line by
line.

Call Stack (Debugger) If a program is paused or crashed,
the current call stack for each thread can be explored
from the debugger.

In comparison to other IDEs, such as Eclipse or Microsoft’s
Visual Studio, we think Xcode’s selection of tools is quite
exemplary for a modern IDE. The most important differ-
ences to both Eclipse and Visual Studio are that Xcode,
tirstly, does not support tabs, which can help users to main-
tain a set of source code they are currently interested in; sec-
ondly, Xcode has no feature dedicated to revealing callers
of a method.

4.2.2 Plug-in API

Xcode’s plug-in API utilizes Objective-C’s dynamic bind-
ing capabilities. Xcode automatically loads all bundle files
whose file extension is pbplugin and that are located in
either the user’s or the system’s Library/Application
Support/Developer/Shared/Xcode/Plug-ins path.
Interesting for plug-in development are the possibilities

Xcode provides
similar tools as other
IDEs.

Xcode automatically
loads plug-ins
located in a specific
folder.

40

4 Prototyping Platform

The project index
stores information
about classes,
categories, and
protocols.
Information in the
project index is
represented by
instances of
PBXSymbol or a
subclass.

The source scanner
implements a lexer
for languages

supported by Xcode.

Xcode offers internally. We will now give an overview
about the subsystems that were particularly interesting for
Stacksplorer.

Project Index

The project index contains information about all classes, cat-
egories, and protocols that are defined or used (through a
framework) in a project. Xcode creates a project index for
each project in the background.

Internally, each project is represented in Xcode by an in-
stance of PBXProject. It can be queried for the project’s
index, an instance of PBXProject Index. This class allows
performing various queries on the project index, e.g., it can
determine to which class a given line in a given file of the
source code belongs. Each indexed item, such as a class
or a method, is represented by an instance of PBXSymbol
or one of its subclasses. These objects also structure the
available information. For example, a PBXClassSymbol
instance, representing information about a particular class
in the project, can return an array of its methods, each rep-
resented by a PBXMethodSymbol. Multiple PBXSymbols
may be instantiated for the same represented entity. Gen-
erally, they can most reliably be tested for equality by com-
paring their name and their container symbol’s name.

Source Scanner

The project index stores information about everything de-
fined in any source file in the project, but not about how
it is implemented. This is done by the source scanner. A
XCSourceScanner is able to parse a single source file ac-
cording to a grammar specifying the language’s syntax.
Each symbol in the grammar is represented by an instance
of XCSpecification. The scanner builds up a tree of
XCSourceScannerItem instances, which represent the
source code. In this tree, a source scanner item can have
children if it represents a pair of expressions that enclose
other source code (e.g., parenthesis). The source scanner

4.2 Xcode

41

can be queried either for symbols of a specific type or for
symbols at a specific location in source code.

Code Completion Engine

The code completion engine provides access to another
parsing engine in Xcode, the CParser. This parser is writ-
ten in C++ and hence cannot be used by a plug-in like
Objective-C classes can be. The code completion engine,
however, uses the CParser and is accessible through an
Objective-C class. Similarly to the source scanner, the
CParser scans a single source file. It is superior to the source
scanner in its ability to determine the type of expressions
from the source code. This allows the code completion en-
gine, if invoked for an expression, to return the type of the
expression as well as a list of methods that this type re-
sponds to.

When using the code completion engine programmatically
to complete a given expression in a file, an instance of
the PBXCodeCompletion class has to be set up with the
project index for the project containing the file. Further-
more, the class containing the expression has to be speci-
fied, and the code completion needs to know if the expres-
sion is used in an instance method or in a class method.
Afterwards, parsing requires two steps: Firstly, the code
completion parses the source code of the method contain-
ing the expression in order to find the locally defined vari-
ables; then, the expression can be passed to the code com-
pletion instance to obtain its type and a list of completion
suggestions. The returned list is exactly equivalent to the
one a user could obtain by placing the cursor at the end of
the expression and invoking the code completion there.

Project Search

Project-wide search was already explained as a naviga-
tion tool previously (4.2.1 — “Navigation Tools”). It can,
however, also be used programmatically. The differ-
ent kinds of project-wide searches, e.g., textual or regu-

The CParser can
determine the type of
an expression in
source code.

The CParser’s
features can be
utilized through the
code completion
engine.

The project-wide
search can also be
invoked from source
code.

42

4 Prototyping Platform

A hack is required to
hide the project-wide
search from the file
browser.

Xcode’s code editor
is based on Cocoa’s
text system.

Different file editors
are used to
accommodate for
different file types.

lar expression based search, are implemented as differ-
ent PBXBatchFinder subclasses. To perform a search,
an instance of one of these subclasses is set up with a
list of projects to search in and the query string. Addi-
tional options can be configured by passing an instance of
the PBXFindOptions class to the PBXBatchFinder in-
stance. Commonly used find options, e.g., for a project
wide search, are available through a class method of
PBXFindOptions. The actual search is automatically per-
formed in the background. To get informed about new re-
sults, an object has to register itself as notification observer
for the finder. Retrieving the results is a two-step process:
Firstly, the finder is queried for all files that contain results;
then, for each file the list of results can be obtained.

A problem when using the project-wide search is that
searches automatically show up in the file browser’s cat-
egory “Find Results”. To change this behavior, we added
a Boolean variable to the finder class that determines if the
search shows up in the file browser. We also had to ac-
cordingly change the class that is responsible for displaying
the “Find Results” category. The full source code for this
change is available in appendix A — “Hide a Search from
the Project Browser”.

Code Editor

Xcode’s code editor is implemented in the
XCSourceCodeTextView class, a subclass of Cocoa’s
NSTextView class. It works in conjunction with a custom
NSTextStorage subclass, which is particularly interest-
ing because it holds a reference to a XCSourceScanner
for the currently edited file.

The delegate of a XCSourceCodeTextView is a
XCEditFileEditor, which allows accessing the cur-
sor position and which provides some convenience
methods to query the source scanner and the project index
for information about the edited file. The file editor is
managed by a XCFileNavigator instance. The file
navigator chooses an appropriate editor for different files
types that are opened, so the file navigator might replace

4.2 Xcode

43

the source file editor with another editor to show, e.g., an
image file.

45

Chapter 5

Navigation Behavior

“Science is a way of trying not to fool yourself.”

—Richard Feynman

Before we could start implementing a new tool to improve
navigation in source code, we needed to understand the re-
quirements and current work practices of programmers. To
acquire this information we conducted a preliminary study.

5.1 Study Design

The study consisted of two parts; it incorporated a contex-
tual inquiry and a questionnaire. In this section, we will
explain which participants we chose to participate in the
study, how we executed and analyzed the contextual in-
quiry, and why we complemented the inquiry with a ques-
tionnaire.

5.1.1 Participants

Since the Stacksplorer project focuses on the development
of a prototype for Xcode and Objective-C (4 — “Prototyp-
ing Platform”), eligible participants had to use these tech-

46

5 Navigation Behavior

Only Cocoa
developers could
participate in the
study.

Contextual design
aims to create
systems supporting
existing work
practices.

A contextual inquiry
combines an
observation of and a
discussion with the
user.

The term
“maintenance task”
describes coding
activities related to

existing source code.

nologies. We only accepted participants who had at least
6 months experience with Cocoa. We wanted to avoid ob-
serving programmers that spend most of their time look-
ing up documentation that more experienced developers
would know by heart.

5.1.2 Contextual Inquiry

In the first part of the study, we observed participants dur-
ing their work on real programming tasks using a tech-
nique called contextual inquiry. This technique originates
from the contextual design method [Wixon et al., 1990]. The
purpose of this methodology is to create systems that fit
into users’ existing work practices to improve users’ ex-
perience and efficiency. At the same time, the methods
used to design these systems should be time and cost effec-
tive, so they can be used in tight development schedules.
Many contextual design techniques, such as contextual in-
quiries, can be applied independent of each other [Beyer
and Holtzblatt, 1999].

During a contextual inquiry, a user is observed in a real
work setting. The designer discusses and reflects with the
user the forces, requirements, and problems that influence
the work process. This helps the designer to understand
how tools influence the way users approach their tasks and
where the tools support or hinder effective practices. A
small sample of representative participants is sufficient to
obtain profound results, as for most qualitative evaluations
[Nielsen and Landauer, 1993].

Execution

In the contextual inquiries we conducted, we observed par-
ticipants that worked on maintenance tasks. “Maintenance
tasks” is an umbrella term for all coding activities, which
relate to an existing code base, such as refactoring, bug fix-
ing, adding a feature to, or changing one in an existing
product. For the purpose of this work, we adopt the very
general definition of refactoring by Fowler et al. [1999]:

5.1 Study Design

47

“Refactoring is the process of changing a soft-
ware system in such a way that it does not alter
the external behavior of the code yet improves
its internal structure.”

In contrast to Ludewig and Lichter [2007], we do not imply
that a specific process is used to perform these changes.

All interviews took roughly one hour, which allowed par-
ticipants to finish one or two tasks. During the study, we fo-
cused on participants” navigation behavior. We wanted to
understand which relationships in source code are explored
and which tools are used. In the interviews, we asked for
the motivation for a navigation action (unless it was obvi-
ous), so we could understand which information was con-
sidered relevant for a task and why. Users were generally
asked to think aloud, so the number of interruptions due
to clarifying questions could be reduced. Too many inter-
ruptions might prevent users from successfully completing
tasks that require a high cognitive effort.

During the observation we took notes. Additionally, the
screen contents were video captured and the discussion
with the user was audio recorded to allow a more detailed
analysis afterwards. These recordings allow to transcribe
for each navigation action from a code segment A to a code
segment B the following information: 1) How A and B are
related (e.g. “A calls B” or “A writes to a variable that B
reads”); 2) which tool was used; and 3) how long it took
to find B. The feasibility of this transcription was tested
with the recordings of one participant beforehand. Unfor-
tunately, the detailed transcription of a user’s navigation is
very time consuming. We decided to only produce these
transcriptions if the other results obtained from the inquiry
were insufficient or unclear.

Hypothesis

Before running the study, we defined the following navi-
gation types. One navigation type should roughly repre-
sent one motivation to perform a navigation action. Most

The inquiries focused
on navigation
behavior.

All sessions were
videotaped for more
detailed analysis
afterwards.

Navigation types
represent reasons to
navigate.

48 5 Navigation Behavior

of these types (N2-N6) are actually based on a structural
relationship between two segments of source code.

N1: Navigating to a known part of the source code refers
to navigation to source code that is saved in a loca-
tion (in the file system or in the project) that the user
knows beforehand.

N2: Navigating the call stack refers to navigation from a
part A of the source code to either a part B, so that
A is called from B, or so that B is called from A.

N3: Navigating variable access refers to navigation from
an occurrence of a variable to other locations in the
source code where the same variable is read or writ-
ten.

N4: Navigating between a poster and recipient of a notification
is related to the notification system in Cocoa (4.1.6 —
“Notifications”).

N5: Navigating between interface and implementation
means to navigate from the header file, which con-
tains a class’s interface, to the file containing the
implementation of the class.

Ne6: Navigating between objects and delegates refers to
the delegation pattern (4.1.6 — “Delegation”).

N7: Other navigation is used in the analysis to describe
navigation that we did not expect beforehand.

We assumed that We assumed that users could confidently navigate the parts
users often navigate of the source code they were actively working on, hence
to source code that is primarily navigations of type N1 occur. If users had to
structurally related to look up the context of some part of the source code, we as-
the code they sumed that they would navigate to other parts of the code
investigated before. that were structurally related to their starting point. This

navigation is represented by N2-N6. If changes are im-
plemented that span across multiple classes, we expected
that these classes are also related and hence the naviga-
tion between them is similar. Because information about
a class is always split across interface and implementation
(in Objective-C and many other languages), we assumed
to observe a lot of navigation of type N5 throughout the

5.1 Study Design

49

observation, even if the user was not currently exploring
structurally related source code. The following hypotheses
can be formulated:

e H1: Programmers working on a software mainte-
nance task in Objective-C mostly perform navigation
of type N1.

e H2: If they access source code containing contextually
relevant information, programmers perform naviga-
tion of types N2-N6.

e H3: If they implement changes that span across multi-
ple classes, programmers perform navigation of types
N2-N6.

5.1.3 Questionnaire

The contextual inquiry has two potential weaknesses:
Firstly, only one or two tasks per participant can be ob-
served. Because each task has to be approached differently,
chances are that the user is observed working on a task that
is not typical for his regular work. Although this is coun-
terbalanced over all observations, we still wanted to get an
idea of the differences to each user’s usual work. Secondly,
as the tool that is used might shape the user’s workflow, the
actually observed navigation actions may not be equivalent
with what the user would ideally like to do.

To compensate for these weaknesses, we asked each partici-
pant to fill out a questionnaire after the inquiry session. The
questionnaire was answered in a web browser and was im-
plemented using Google docs!. The full questionnaire can
be found in appendix B — “Preliminary Study: Question-
naire”.

In Q1-Q11 demographic information about participants
was collected and it was tested if the sample of participants
is broad enough in terms of programming experience to ob-
tain valid results. To take part in the study, participants had
to had at least 0.5 years experience with Objective-C.

'http:/ /www.google.com/google-d-s/forms/

Available tools may
prevent users from
doing what they
ideally would like to
do.

Participants were
asked to fill a
questionnaire after
the inquiry.

Information about
participants’
programming
experience was
collected.

http://www.google.com/google-d-s/forms/

50

5 Navigation Behavior

Importance of
different navigation
types was evaluated
for different tasks.

We expected users
to rate N1 and N5
most important.

Xcode’s support for
different navigation
types and the
usefulness of its
tools was assessed.

We assumed that
Xcode does not
support structurally
guided navigation
satisfactorily.

In the following questions, we wanted to investigate how
important users consider the navigation types listed above.
The importance of a navigation type for a task is measured
by the frequency with which a navigation of this type is
performed (Q12-Q14). In addition to the per task type anal-
ysis, in Q15 answers should not be specific to any task, so
non-maintenance tasks were also included.

Consistent with the anticipated observation results (H1-
H3), we expected users to rate N1 and N5 most important,
independent of the task. We assumed that the other naviga-
tion types (N2-N4, N6) are rated less important with little
differences between them. Because implementing new fea-
tures is a task that can be approached more isolated than
the other tasks, we expected the importance of N2-N4 and
N6 to be rated lower for this task.

Jr

e H4: For three tasks, “bug fixing”, “refactoring”, and
“adding new features”, Objective-C developers rate
N1 and N5 the most important navigation types, with
no significant difference among the tasks.

e Hb5: Developers rate the importance of N2-N4 and N6
roughly equal for all tasks.

e H6: The importance of N2-N4 and N6 is lower for
“adding new features” tasks, than for “bug fixing” or
“refactoring” tasks.

The last section of the questionnaire was concerned with
the tool support provided by Xcode. Firstly, participants
could rate how well Xcode supports the different naviga-
tion types (Q17) and where they miss support from Xcode
(Q18). Next, the importance of tools that are provided by
Xcode (4.2.1 — “Navigation Tools”) was rated (Q19).

We expected that answers to this last set of questions
showed that the tools provided in Xcode do not fully sat-
isfy users’ needs for navigation guidance. This means, in
Q17 we anticipated users to rate Xcode’s support for navi-
gation types N2-N4 and N6 mediocre or low. Moreover, we
assumed users would rate the importance of tools low if
these tools are not directly applicable for one of the naviga-

5.2 Results

51

tion actions N2-N6 (e.g., “Class Browser”, “File History”,
and “Bookmarks”).

e H7: Objective-C developers rate Xcode’s support for
N2-N4 and N6 3 or worse on average.

e HS8: Importance of features not directly applicable for
a navigation type N2-N6, is rated 3 or worse on aver-
age.

5.2 Results

The study could, generally speaking, confirm that devel-
opers using Cocoa and Xcode exhibit similar navigation
behavior as Java developers. This indicates that we can,
when designing Stacksplorer, build on previous results
from studies with Java developers. Furthermore, we could
show that developers are not fully satisfied with the tools
provided by Xcode. These conclusions are based on our
observations regarding developer’s work practices and on
the results from the questionnaire. Both will be extensively
described in this section.

5.2.1 Demographics and Experience

Six developers (P1-P6) participated in our study. Five par-
ticipants were males; the average age was 26.2 (SD = 1.83).
All participants were computer-science students; two had
a finished Bachelor or Master degree (equivalent to a Ger-
man Diploma). On average, participants had 6.92 years
(SD = 3.26) experience with programming in general and
1.22 years (SD = 0.90) experience with Objective-C. The
median of their experience ratings for Objective-C was 2.
In Q9, one participant stated he was most experienced with
Pascal; another participant rated his experience with PHP
highest. Everyone else selected to be most experienced in
Objective-C. All participants but one currently exclusively
develop for the Mac and/or the iPhone/iPad.

Most participants
currently exclusively
develop with Cocoa.

52

5 Navigation Behavior

Cocoa developers
exhibit similar
high-level strategies
as developers on
other platforms.

Quick access to the
documentation was
crucial for all
developers.

Some users
preferred a web
browser to access
documentation
because of its
feature set.

5.2.2 High-level Strategies

During the observation, users worked on a variety of main-
tenance tasks. Three participants added new features to
their existing software, two participants performed bug
fixing, and one participant worked on a refactoring task.
Two participants managed to complete two tasks during
the interview session, the other participants worked on the
same task all the time. The high level approaches to these
tasks were similar to those Ko ef al. [2006] observed in their
work. Two users started with a written plan describing
what changes should be implemented and how. One of
these two users currently tested this strategy and was not
sure if he would adopt it ultimately. Users not using a writ-
ten plan approached their tasks less structured and started
with a longer exploration of the existing source code.

5.2.3 Documentation

The resource users accessed by far most frequently, be-
sides the parts of the source code they actively worked on,
was documentation. Methods to access the documentation
were manifold. The most prominent method was using the
“Quick Help” tool, which shows the documentation for a
single symbol inline. Often the full documentation was
used after the “Quick Help” tool, because users felt the doc-
umentation shown in the “Quick Help” tool was insuffi-
cient, or they were unsure if the method, whose documen-
tation was shown, was appropriate for their task at all. One
participant complained that the “Quick Help” tool did not
offer a way to open the full documentation (that includes a
search feature), if it did not find documentation for a sym-
bol (“If it did not find documentation, I want to search for
it manually.”, P5).

Two participants did not or not always use the built-in fea-
tures of Xcode to access documentation, but used a browser
instead. They explained that they prefer the features their
favorite browser offers (for example, tabbed browsing, P2).
Users also stated that Google found some documentation

5.2 Results

53

more reliably, for example, documentation for APIs not de-
veloped by Apple, such as OpenGL.

5.2.4 Source Code Access

If source code was accessed, we observed three basic strate-
gies participants used. The first strategy was to search old
source code that was similar to the code users currently
worked with. When users encountered a problem, they
could often remember if they solved a similar problem be-
fore (“I did this some time ago in another project...”, P3). If
they implemented the solution recently, users were quite
successful finding the relevant parts of their old source
code, even if the old source code was located in another
project. Users could then copy this old source code to reuse
it for their current task. If the source code was too old,
users could still remember that they solved the problem a
while ago, but they had to search for hints that reminded
them of the correct solution in the documentation. The
other two strategies could be interpreted as opportunis-
tic and structured browsing, as described by Robillard et
al. [2004]. Users doing opportunistic navigation frequently
scrolled through a file to scan it for probably relevant code
fragments. Structured browsing was more frequently per-
formed if the user had less experience with the project he
was working on (so the chance to be successful with op-
portunistic browsing was too low), or if the user was more
experienced with Objective-C.

Analyzing navigation at a lower level, we found that the
most used method to access a particular part of the source
code was to select the containing file in the file browser.
Mostly users knew by heart where they had to navigate to,
which supports H1. However, we assume that one impor-
tant reason we observed that much navigation happening
using the file browser is that it is the most obvious way to
navigate. Consequently, users did a lot of navigation ac-
tions using the file browser, although more effective tools
were available. For example, one user always switched be-
tween header and implementation using the file browser
instead of using the “Switch between header/source file”
command, although this was time consuming (especially

Structured source
code browsing was
preferred over
opportunistic
browsing for work in
unknown projects or
by more experienced
developers.

The file browser is
the most obvious and
most used way to
navigate to a known
location in the source
code.

54

5 Navigation Behavior

The “Jump to
definition” tool and
the project-wide
search were used to
reveal contextually
relevant code.

The project-wide
search is more
versatile but slower
to use than the
“Jump to definition”
tool.

when the file browser showed a lot of files on a small
screen) and error prone (because the user frequently acci-
dentally clicked the wrong file).

If users started to look for contextual information in the
source code, they increasingly used more advanced tools,
in particular the “Jump to definition” feature and the
project-wide search. These tools can help to answer ques-
tions like “Where is that accessed?” (P5) or “Is it save to
delete this [validation] from this method?” (P4), because
they can be used to reveal how a method is used in the con-
text of the complete application. Hence, a frequent use of
these tools to access contextual information supports H2.

A good example of how these tools can be used effectively
was given by P5, who worked on a project in which she
should replace the current user interface with a new one.
She analyzed potential call stacks in the current implemen-
tation to figure out which responsibilities the UI code had.
To jump to the implementation of a method, which was
called from the current part of the source code, she used the
“Jump to definition” tool. Unfortunately, no similarly con-
venient way exists to jump to methods that are calling the
currently viewed method. Hence, she always did a project-
wide search for the selector of the currently viewed method
for this purpose. Compared to the “Jump to definition”
tool, the project-wide search needs much longer to show re-
sults. Additionally, the results have to be further analyzed
manually, because selector names can be ambiguous if they
are used in different classes. For example, a search for the
selector init, the default initialize method for an object
(similar to Java’s constructors), will reveal all initializations
of any object in the project, which is mostly not useful. If
a method takes more than one argument, regular expres-
sions are required in the search to find all calls to meth-
ods with exactly that name. For example, to match calls to
a method initWithFirstName:lastName: the search
query “initWithFirstName:.* lastName:.*” is required. No
user used such a query, though. Instead, users only
searched for the first part of the method name if a method
took more than one argument. In the example above, users
would have searched for “initWithFirstName:”. This am-
plifies the ambiguity problem, especially if a class con-
tains a whole cluster of methods taking various amounts of

5.2 Results

55

arguments, e.g., initWithFirstName:lastName: and
initWithFirstName:lastName:emailAddress:.

Another important difference between the project-wide
search and the “Jump to definition” tool is that the first
feature uses a separate editor window to show the results,
whereas the second one changes the contents of the ed-
itor from where it was used. Some users preferred the
project-wide search for its behavior, because it allows to
view the method they are working on and contextual infor-
mation that was revealed by the search side by side. Hence,
some users even used the project-wide search to explore
the call stack in both directions (i.e., from a method to the
called methods, and to methods calling the method). How-
ever, not all users doing so really preferred the project-wide
search, some were not aware of the “Jump to definition”
tool, or they had trouble predicting if this tool would take
them to the implementation or to the definition of a sym-
bol. The project-wide search is also the only tool users were
aware of that can help exploring relationships of type N4.
Some users tried to circumvent both tools by keeping the
knowledge about the important parts of the call stack en-
tirely in their heads.

Navigation to locations in the source code where a given
variable is accessed (N3) happened mostly by scrolling
through the source code in an opportunistic fashion. Some
participants used a Xcode feature that allows jumping to
methods in the current file directly if they knew where
the information they were looking for was located. If the
variable is accessed from a different class, the access usu-
ally happens through an accessor. As accessors are regular
methods, the techniques used to find the relevant informa-
tion were, in this case, equivalent to those used to explore
the call stack.

5.2.5 Importance of Navigation Types

Figure 5.1 shows an overview of users’ estimates about
the frequency with which they use the different navigation
types when working on different tasks. The diagram la-

In contrast to the
“Jump to definition”
tool, the project-wide
search shows results
in a separate
window.

If variable access
does not happen
through an accessor,
it was mostly
searched for using
opportunistic
strategies.

5 Navigation Behavior

56

“ID9AU=G “WOPp[as=F ‘A[puonbary=1
UIIM pafaqe] sAemye sem afeds 3uryer 9y, sk} ay) jo jusapuadapur ‘sasuodsar ,S19sn JO [[e SMOYS , [[eIdA(),, Pa[oqe] weiderp
YL "Yse} Jo puny yoea 10j adA) uonedraeu yoes asn Aoy Apusnbaiy moy uorsap ,s1esn Jurmoys sjordxog :1'g InSry

sainjeaq map buippy

S 14 € 4 3

9p02 92IN0s 8y} ul Jed
umouy| e 0} buiebinep : LN

I yoess |[eo ay) BunebineN :gN

I ssa@00e a|gelen bunebineN (€N
uolnedllou € jo juaidioal pue
Jaysod usamiaq BunebineN yN

uonejuswsa|dwi pue adeuajul
usamiaq bunebinep :GN

sajebajap JI8y} pue s}oalqo
usamiaq bunebinep :9N

L uonebineu JoyiQ /N

9p0o 924n0S 8y} ul Yed
| umouy| e 0} Bunebinep : LN

I yoels |1eo ay) bunebineN 2N

I sseooe d|qeleA BunebineN :eN
uolyeolijou e jo juaidioal pue
| 1e1sod usamiaq BuiebireN N

uonejuswaldwi pue adepaul
| usemiaq BunebinepN SN

sejeboajop J1ay) pue s109(qo
| useamiaq BunebineN :9N

L uonebineu JaylQ LN

Buixi4 bng

TEIENYe)

5.2 Results

57

beled “Overall” plots all responses users gave, independent
of the task.

Overall, navigation of type N5 was rated the most fre-
quently used navigation type. This is consistent with the
actually observed behavior, where users primarily used the
“Switch to header/source file” feature for this type of navi-
gation. However, only two users were aware of the shortcut
for this feature; another one complained, that the button for
this feature was inconvenient because it was too small.

The second most important navigation type is N1 (N3 has
the same median but responses are spread more). For bug
fixing, two thirds of the users answered to do this type of
navigation “frequently”. Considering also the observed be-
havior, we think users build a good model of the slice of the
source code they are currently actively working on and can
hence navigate in these parts of the source code mostly by
using knowledge they have in their head.

Navigation types other than N5 and N1 are only necessary
if contextual information is required. Hence, their usage
frequency is only rated between 2 and 3.5 (one exception
being N4, what will be discussed later). H4 and H5 are
hence confirmed, which can additionally be backed by the
results of Q15: N1 and N5 both had top positions in user’s
Top 5 rating (N1: M = 1.67, SE = 0.33 and N5: M = 3.00,
SE = 0.55).

Besides N1 and N5, only N2 appeared in every user’s Top
5 list (rating: M = 2.50, SE = 0.72). There is a consis-
tently high agreement that N2 is essential for debugging
(see Figure 5.1). For other tasks it is rated much less impor-
tant; for refactoring there is only one rating indicating more
than average usage frequency. Because refactoring can be
performed using relatively fixed procedures for restructur-
ing [Ludewig and Lichter, 2007], we assume that in depth
comprehension of the call stack is not required. Addition-
ally, for tasks other than debugging the ratings for N2 are
much wider spread. This indicates that different strategies
when working on these kinds of task have a big influence
on the frequency with which this navigation type is per-
formed.

Switching between
header and
implementation was
considered the most
frequently used
navigation type.

Users try to
memorize the
currently relevant
slice of the code.

Structurally guided
navigation is required
if contextual
information is
accessed.

Call stack exploration
was considered
especially important
for debugging.

58

5 Navigation Behavior

Variable access is
explored particularly
frequently while
refactoring.

Navigating to
delegates was
considered less

important to add new

features.

Notifications are
used seldom in
Cocoa, so
exploration of
notification posters
and receivers was
considered
unimportant.

Access to
documentation is
seamless enough to
not be noticed.

N3 is used especially frequently while refactoring and less
often for other tasks and hence seems similar to N2, which
was especially important for bug fixing. Although N3 got
worse ratings on users’ Top 5 lists than N2, it was consid-
ered to be used slightly more often overall. Probably this
is because N2 relates to an inter-method only relationship
while N3 can also apply to intra-method analysis.

Navigation of type N6 is performed with an average fre-
quency overall, but less frequently when adding new fea-
tures. We assume implementing new delegates is a rela-
tively straightforward process, which is very well docu-
mented in most cases. So the relationship between an object
and its delegate is only explored in more depth if a bug oc-
curs or the structure of the source code is being questioned
when working on refactoring tasks.

The least used navigation type for all tasks is N4. The
reason for this is probably that notifications are not used
very frequently in Cocoa and hence participants lacked ex-
perience in using them. Two participants did not even
know what notifications are, because they never had to use
them. Most other participants selected to use this navi-
gation type “seldom” or “never”, but commented that it
would in fact be more important if notifications were used
more frequently. One participant, who was currently work-
ing on a system relying a lot on notifications, rated the im-
portance of N4 with 1.

H6 could only be confirmed for N6. Both N2 and N3 were
especially important for one task, but similar for the re-
maining tasks. The results obtained for N4 are too biased
by the low experience of participants with notifications to
draw valid conclusions.

Other navigation is performed with a slightly less then av-
erage frequency. With “other navigation”, users referred
to navigation to the documentation or to a xib file (a file
that specifies the user interface of an application and that
can be edited in a graphical interface builder). Interestingly,
the user relating “other navigation” to navigating the docu-
mentation rated the frequency of this navigation task with
3 (for all tasks), although we found that all users looked
up documentation very frequently during our observation.

5.2 Results

59

N7: Other navigation

N6: Navigating between
objects and their delegates

N5: Navigating between
interface and implementation

N4: Navigating between poster
and recipient of a notification

N3: Navigating variable access

N2: Navigating the call stack

N1: Navigating to a known
part in the source code

very useful support

e
R |----------- 1

T T T T T
1 2 3 4 5

no support

Figure 5.2: The boxplot diagram shows users’ rating of Xcode’s support for differ-

ent types of navigation.

This indicates that accessing the documentation is seamless
enough for users to not really notice how frequently they

do it.

5.2.6 Xcode Tools

Users’ rating of Xcode’s support for the different types of
navigation is shown in Figure 5.2; their rating of Xcode’s
tools” importance is shown in Figure 5.3.

Xcode’s support was rated best for the most frequently per-
formed navigation tasks N1 and N5. As expected, the tools
supporting these navigations are also rated quite essential:
For N1 the most important tool is the “File Browser”; to
perform N5 efficiently the “Switch to header/source file”

tool is crucial.

Xcode supports the
most used navigation
types best.

60 5 Navigation Behavior
Call stack from debugger 4| F----------- O - 4
Single step advance in debugger - | | [4
Open Quickly — bomm e []
Bookmarks — ‘:]
File History 4 +F----------- | |
Class Browser bomm e |:!
Switch to Header/Source File | []----------- 1
Find selected text in Documentation — | I ----------- 1
Search Documentation 4 []-----------------oooooo 3
Find selected text in Project { +----------- | |
Projectwidesearch 4 [| |----------- 1
Jump to Definition | | I ----------- 1
FileBrowser | [7]

1 2 3 4 5
essential unnecessary

Figure 5.3: The boxplot diagram shows users’ rating of importance of different

tools in Xcode.

The documentation
search was
considered crucial.

Xcode’s support for
structurally guided
navigation was rated
mediocre or worse.

Not surprisingly, because documentation was the most ac-
cessed non-code resource, documentation search was rated
similarly important as tools supporting N1 and N5. Ac-
cess to the same feature from the context menu of a symbol
or text was considered less important. The context menu
command is harder to find, requires using the mouse, and
hence is slower to use.

Support for navigation of type N2, N3, N4, and N6, i.e., for
all types reflecting a structural aspect of the source code,
was rated with a median of 3 or worse (see Figure 5.2).
From these four navigation types, N2 is still supported best,
since the “Jump to Definition” tool at least provides a con-
venient way to navigate the call stack in one direction (from
a method to the methods that are called). Unfortunately, no
comparably convenient way exists to navigate the call stack
in the other direction. This might also explain why the im-
portance of the “Jump to Definition” tool was rated slightly
worse than the features supporting N1 and Nb5.

5.2 Results

61

The project-wide search features were rated similarly to the
“Jump to Definition” feature. While the standard search
feature was considered nearly essential, the importance of
the context menu item was much worse. The project-wide
search was most likely considered essential because of its
versatility. It can be used to access a multitude of relation-
ships in the source code (5.2.4 — “Source Code Access”); for
example, the project-wide search allows, in addition to the
“Jump to Definition” feature, exploring the call stack, or ex-
ploring where notifications are sent and received.

Regarding the debugger features, single step advance was
considered more important than the ability to explore the
call stack of a halted application. The two features dif-
fer in the direction of the call stack they offer for explo-
ration: When the application is halted in a method A, the
call stack presented in the debugger is a back trace, i.e., a
list of methods that were called to finally call A, while sin-
gle step advancements allow inspecting which methods are
called from A. We also assume that users prefer the more
interactive exploration the single step advance mechanism
offers, because it helps slowly tracking what the application
does to generate a particular output.

The class browser, file history based navigation, the “Open
Quickly” tool, and bookmarks were rated much less im-
portant than the other tools. Only few participants actually
knew these features. This supports hypothesis H8.

5.2.7 Suggestions for Improvement

In two open questions (Q18, Q21) users had the opportu-
nity to describe their ideas to improve Xcode’s support for
navigation tasks. Although Q21 did not specifically ask for
navigation in source code, most comments still related to
this problem domain. Many suggestions were directly re-
lated to one of the navigation types explained above and
suggested improvements helping to explore structural re-
lationships in source code. This supports our hypothesis
that this kind of navigation is in fact important and not sat-
isfactorily supported.

The project-wide
search was
considered essential
because of its
versatility.

Single step advance
in the debugger was
considered more
important than the
debugger’s ability to
show a back trace.

Tools not supporting
structured code
browsing were
considered
unimportant.

Users wished for
more support of
structurally guided
navigation.

62

5 Navigation Behavior

Users’ primary focus
should not get lost
when exploring
contextual
information.

Variable access
should be
represented
graphically.

Graph
representations
should be used to
represent the
structure of source
code.

One user was concerned with the loss of his current fo-
cus when exploring related source code, for example, us-
ing the “Jump to Definition” tool. Although he was aware
of workarounds, such as the possibility to split the editor
view, he suggested the addition of tabs for open files. He
would like to be able to lock the tabs for files he was actu-
ally working on in a fixed position, and use other tabs to
explore related code. Tabbed code editors are not uncom-
mon for modern IDEs, e.g., they are available in Microsoft’s
Visual Studio.

Two users suggested a visualization of variable access.
While one user thought of a graph-like representation,
showing the access to a variable chronologically, the other
user would already be satisfied if other locations where
a given variable is accessed could be highlighted in the
source code. This feature actually exists in Xcode. If the
cursor is placed within a variable name, other occurrences
of this name are underlined with a dashed blue line. This
highlighting is too subtle to be noticed for most users,
though.

Improvements in support for navigation of type N2 were
also suggested by two users. One user requested a feature
that always takes him to the implementation of a method.
Using the existing “Jump to Definition” tool the user was
unsure if it would take him to the definition of a sym-
bol or to its implementation, although for him the imple-
mentation was the more interesting information. The other
user suggested a more sophisticated tool that shows the dy-
namic object graph side by side with the source code. He
had no strict definition of a dynamic object graph, how-
ever it should contain “owns” and “uses” relationships be-
tween classes. Hence, it is similar to the relationship we
referred to with N2. Some sketches the user showed also
incorporated other communication between objects besides
method calls, for example, notifications. Occurrences of the
delegation pattern were also specially marked. So this kind
of dynamic object graph incorporates information related
to N2, N3, N4 and N6 in a single graphical representation.

63

Chapter 6

Software Prototype

“Vision without implementation is
hallucination.”

—Benjamin Franklin

From previous work and our own preliminary study, we
could conclude several implications for the design of a new
visualization tool for source code navigation. This chap-
ter will introduce the design and the idea of Stacksplorer,
as well as explain how a first prototype was implemented,
which could be used to evaluate the design idea in a user
test.

6.1 Design

In the preliminary study (5 — “Navigation Behavior”), we
learned that users considered the call stack as one of the
most important structural relationships in source code.
Hence, supporting visualization of and navigation along
the call stack is crucial in order to make the system bene-
ficial to developers. The call stack also includes informa-
tion about access to instance variables, which usually takes
place through accessor methods.

The call stack also
includes information
about variable
access, if it happens
through accessor
methods.

64

6 Software Prototype

Structured and
opportunistic
browsing has to be
supported.

Possible call stacks
of an application can
be represented as a
graph.

Stacksplorer shows a
focus method’s
neighborhood in the
call graph.

Stacksplorer has to support two different kinds of source
code browsing strategies [Robillard et al., 2004]. For users
with structured browsing behavior, the system should
make the call stack accessible more easily and the naviga-
tion through the call stack faster. If opportunistic strategies
are applied, providing targeted support is harder. How-
ever, we still have to make sure that the displayed infor-
mation is relevant for the task at hand. This might lead
to a “sightseeing” behavior, where users gather knowledge
about nearby methods when they pass by while navigating
[Storey et al., 2000].

Possible call stacks in an application can be represented as a
finite, directed graph. Each node in this graph corresponds
to one method in the source code. An edge from method A
to method B exists in the graph, if method B is called from
the implementation of method A.

The idea of Stacksplorer’s design is to show a section of the
call stack as contextual information for a focus method, i.e.,
the method the user is currently working on or trying to
understand. The context of a focus method is, in Stacks-
plorer, the neighborhood of the focus method in the call
stack graph, i.e., callers of and methods called from the fo-

cus method.
”‘e return Sel:f; 0 MainController &

} BlnsTextrield* input

MainCowntroller

NSButton // convert temperature [B]converter* converter

A onclickt // from celsius to fahrenheit Converter

) - (void) convert { M- (void) caf: (float) e
MaincCowntroller
A init MaincController

// vead input value [- (voio) wpdlate: (Aloat) £
float c= [self.input intvalul;
// convert temperature

float f= [self.converter c2f:cl;

// write output value
[self update:fl;

[
<> (&

Figure 6.1: Stacksplorer utilizes horizontal navigation to
explore potential call stacks of an application.

6.1 Design

65

A paper prototype of our tool is shown in Figure 6.1. The
central editor (1) is equivalent to Xcode’s standard editor,
retaining all its features and functionality. The cursor in this
window marks the focus method. The left hand column (2)
shows methods calling the focus method; the right column
(3) shows methods that are called by it. The information in
both side columns is gathered and updated automatically
with no user interaction required at any point.

This visualization technique could be interpreted as fish-
eye view [Furnas, 1986] for the call stack graph. The fo-
cus method is shown completely, including the implemen-
tation. Neighbor methods in the call stack graph are visible
at the same time, but in a reduced form, without their im-
plementation. In a more general sense, Herman et al. [2000]
collated this kind of incremental exploration of a graph
with placing a window on top of the graph, so that one logi-
cal frame is shown at a time. Huang et al. [1998] phrased the
term focus node for the logical frame’s central node, which
defines which other nodes will belong to the logical frame.

Stacksplorer also adds a new degree of freedom for navi-
gation through a project’s source code. In addition to nav-
igating through a single class by scrolling vertically in the
editor, our design allows navigating horizontally through
the call stack graph by clicking a method in one of the side
columns. For example, navigating to a method that calls
the focus method will cause all 3 columns to shift to the
right. The method that was selected moves to the cen-
ter and opens in the central editor (1), the previous focus
method appears in the list of called methods to the right
(3), and the left column is updated with new information
(2). This can be interpreted as sliding the logical frame over
the call stack graph.

To help understanding why methods appear in one of the
side columns, optional graphical overlays are provided,
which relate the method call in the source code with the
corresponding item in the right column. In the paper pro-
totype (see Figure 6.1), the overlays are shaded yellow and
are drawn behind the source code. In the final implemen-
tation (see Figure 6.2), overlays are drawn as grey paths,
which reassemble visual elements already used in Xcode.
A path surrounding all methods in the left column and the

The side columns
show who calls and
who is called by the
focus method.

Stacksplorer applies
previously known
ideas for graph
exploration to source
code browsing.

Stacksplorer uses
the horizontal
navigation axis for
call stack navigation.

Graphical overlays
connect the source
code and the entries
in the side columns.

66

6 Software Prototype

Important paths
through the source
code can be stored.

The side columns
can be collapsed.

Stacksplorer should
be evaluated in a real
world setting.

focus method’s source code indicates that all methods in
the left column call the focus method. Because the remain-
ing source code in the central editor is slightly grayed out,
the current focus method stands out visually. This affords a
method-based navigation in contrast to today’s class-based
navigation. Of course, the overlays can be hidden if call
stack exploration is not the developer’s primary task or if
the overlays are undesirable for other reasons.

Important paths through the code may also be stored for
later reference. Firstly, this allows tagging methods while
exploring source code to capture knowledge about the
source code. Secondly, it can be used by the original de-
veloper of the application as a new form of documentation.
This documentation can communicate to other developers
what purpose a method serves or which features of the ap-
plication use a method. Storing a method in a path should
be possible with minimal effort, because developers are of-
ten not willing to put much effort in creating documenta-
tion [LaToza et al., 2006].

A downside of Stacksplorer’s design is that it occupies ad-
ditional screen space horizontally. Hence, it works best on
high-resolution, wide-screen displays. Collapsing the side
columns in case they are not needed is possible, to accom-
modate for smaller screens.

6.2 Stacksplorer Xcode Plug-in

To evaluate the effectiveness of a novel visualization for
runtime interactions of objects in an application, it is nec-
essary to build a working prototype that can be tested in a
real world scenario. Users should be able to navigate in the
source code of an application freely, as they would do using
tools that are currently available. Additionally, we wanted
to investigate if Stacksplorer works well with users” famil-
iar programming workflows. If the system was easy to use
and helped programmers to understand source code more
easily but was impractical for them to integrate into their
everyday workflows, it would still be a bad design.

6.2 Stacksplorer Xcode Plug-in

67

Sy

enn m| CNM bolCell.m - CodeNavi Plugin

=

¥ Show only relationships from project

CNMemberSymbolCell

Remaove from Path:) (ll Cell Drawing 3

« B CNMemberSymbolCell.m:107:1 ¢ [_-drawingRectForBounds: ¢ L[™=]C.[#.

(_Hide

CREY
]

TSUPET SETDECKUTUOIUS Ty TETST,

e | e B el
[self.methodTextCell setBackgroundStyle:stylel;
[self.typelnageCell setBackgroundStyle:stylel;

[celisizeForBounds: "

CNMemberSymbulBultonCell‘
.. drawingRectForBounds:
—(NS5ize) cellSizeForBounds: (NSRect)aRect;
4

return [self drawingRectForBounds:aRect].size;

NSRectldrawingRectForBounds: [NSRect]aRect;

if (memberSymbol)
return NSUnionRect(NSUnionRect(([self titleFrameForInteriorf rame:aRect],

[self subtitleFrameForInteriorFrame:aRect]);
else {
NSRect drawingRect = [super urawmgnectFurBuund. aRect];
drawingRect.size.height = 36
return drawingRect;

}

imageFrameForInteriorFrame:aRect]),

- (NSRect)titleFrameForInteriorFrame: (NSRect)frame;
£

NSRect result = frame;
/4 Inset the top
result.origin.y += IMAGE_INSET;
/f Inset the left
result.origin.x += IMAGE_INSET;

result.size = [super cellSizeForBounds:frame];

return result;

- (NSRect)imageFrameForInteriorFrame: (NSRect)frame;
{

NSRect titleFrame = [self titleFrameForInteriorFrame:framel;
NSRect result = frame;

/4 Move our inset to the left of the image frai

result.orioin.y = NSMaxY(titleFrame) + INSET FRDM IMAGE TO TEXT;

———————— NI}

Reload) Overlays: ("Left Rjgﬁl

|
1y

|

CNMemberSymbolCell

L4 titleFrameForinteriorFrame:
CNMemberSymbolCell

.| imageFrameForinteriorFrame:
CNMemberSymbolCell

L1 subtitleFrameForinteriarFrame:

Figure 6.2: Stacksplorer is implemented as a Xcode plug-in. In the screenshot,

Xcode’s file browser and toolbar are hidden.

Regarding the concluding evaluation, we had to implement
the prototype on the same level of detail and using the same
technologies as existing implementations to be able to com-
pare the approach with existing ones. In addition, a soft-
ware prototype is beneficial, because it can be easily dis-
tributed to practitioners all over the world to gather broad
qualitative feedback. The typical drawback of a software
prototype is that it affords too detailed feedback, although
in early design stages high-level feedback about concepts
is required. This problem may not impede our work as
much, since we will evaluate Stacksplorer with program-
mers. They should have a better idea of the distinction be-
tween the concept of a visualization and implementation
details. We actually found this hypothesis confirmed later
during the user test, since we got a lot of helpful concep-
tual feedback during the evaluation (7.2.6 — “Users” Com-
ments”).

The prototype was implemented as a plug-in for Xcode (see
Figure 6.2). It integrates the navigation technique explained
before into Xcode for Objective-C source code. When a

To test Stacksplorer
in a real world
setting, a software
prototype was
required.

68

6 Software Prototype

The software
prototype was
implemented as a
Xcode plug-in.

Methods can be
stored in user
defined paths during
the exploration.

Graphical overlays
are rendered in a
separate transparent
window.

project is loaded, the two additional columns are shown.
By default, these columns only show callers and called
methods that are implemented inside the project, so calls
to methods in other frameworks, e.g., Cocoa, are hidden.
For methods in a framework, the source code of the imple-
mentation is usually not available anyways. However, the
user may decide to include calls to methods for which the
source code is not available in the visualization.

Users can easily store a path for later reference while they
explore source code. They can add a method to a user de-
fined path, as these stored paths are called in Stacksplorer,
by just pressing a button while the method is the focus
method. If the focus method and one of the methods in
the side columns belong to the same path, the overlay
connecting both is colored in a color specific to the path.
In the situation shown in Figure 6.2, the focus method,
the caller cel1SizeForBounds: and the called method
titleFrameForInteriorFrame: belong to the same
path, which is colored red. A separate user defined path
editor window (see Figure 6.3) is used to create new paths,
name paths, and assign them a color. Additionally, all
methods on a path can be reviewed and navigated to im-
mediately. The paths are stored inside Xcode’s project file,
so they can be shared with others and are compatible to
version control systems, such as SVN! or GITZ.

6.3 Implementation

We developed the plug-in using Xcode’s plug-in API (4.2.2
— “Plug-in API”). All graphical overlays that Stacksplorer
draws on top of the source code are rendered in a separate
transparent window, to make sure our changes do not inter-
fere with Xcode’s original views. Apple’s Core Animation?
library is used extensively for fluent animations.

'http:/ /subversion.apache.org/

*http:/ /git-scm.com/

*http:/ /developer.apple.com/mac/library /documentation/Cocoa/
Conceptual /CoreAnimation_guide/Introduction/Introduction.html

http://subversion.apache.org/
http://git-scm.com/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html

6.3 Implementation

69

ano User Defined Paths - CodeNavigatorPlugin
User Defined Paths Path Name: (g|| Drawing|
Cell Drawing Path Color: | NN |
CNMemberSymbolCell @
|l drawingRectForBounds:
CNMemberSymbolCell @

Wl cellSizeForBounds:

CNMemberSymbolCell
1| titleFrameFarinteriorFrame:

Figure 6.3: The user defined path editor allows creating and
reviewing paths the user stored for later reference.

The source code to realize the visualization is relatively
straightforward to implement for an experienced Cocoa de-
veloper, but the algorithms to extract the incoming and out-
going edges for a given focus method are more interest-
ing. Hence, we will now give an overview about both algo-
rithms and how they utilize Xcode’s integrated code pars-
ing features.

6.3.1 Callers

Xcode does not provide a method to immediately reveal
callers of a method (neither for users nor for plug-in de-
velopers). In our preliminary study, we learned that users
commonly search for the method name using a project wide
search to navigate to callers of a method. We mimic this
technique with our algorithm.

Firstly, we construct an appropriate search query from
the focus method’s selector by adding a wildcard regu-
lar expression “.«” after every colon. The result is a
regular expression that matches every occurrence of the
method name regardless of the arguments. We then set

To determine callers
of a method,
Stacksplorer mimics
what users would do.

To search for a call to
a method, wildcard
regular expressions
are inserted into the
method name after
every colon.

70

6 Software Prototype

The code completion
is used to determine
the type of an
expression on which
a method is called.

To find method calls,
the source code is
pared using Xcode’s
source scanner.

The code completion
is used to find out to

which class a called

method belongs.

up a PBXRegexBatchFinder (4.2.2 — “Project Search”) to
search for the regular expression in the background. This
search finds all occurrences of a method call to a method
with the given name, regardless of the arguments.

Unfortunately, method names are ambiguous and a
method with the same name as the focus method may be
implemented in another class. Hence, we have to check for
each result of the search if the method is really called on
an instance of the class containing the focus method. For
that purpose we use Xcode’s code completion engine (4.2.2
— “Code Completion Engine”). We query it for the list of
suggestions that the code completion would present if the
user invoked it at the cursor position immediately before
the result we found. If the list of suggestions contains a
PBXMethodSymbol equal to the focus method’s symbol,
we consider the search result as a call to our focus method.

6.3.2 Called Methods

To find methods called from the focus method’s imple-
mentation, we have to parse the method’s source code
in order to find all method calls in it. To parse the
source code, Xcode’s XCSourceScanner (4.2.2 — “Source
Scanner”) is used. Unfortunately, the source scanner
does not parse selectors from a method call into a single
XCSourceScannerItem. Hence, problems arise because
method calls can be nested, arguments can be as compli-
cated as a block, which is again an arbitrary piece of source
code, and methods are called implicitly when Objective-C’s
dot operator (4.1.3 — “Declared Properties”) is used. In the
latter case, we have to distinguish wether the getter or the
setter method is called.

Once we found the syntactic features that indicate a method
call, we have to find out in which class the called method
is implemented. This can again be figured out by using
the code completion engine. We invoke the code comple-
tion before the method call and filter the results for the
PBXMethodSymbol with the selector that is actually used
in the source code. The PBXMethodSymbol’s reference to

6.4 Limitations

71

the method’s implementation can be used to navigate to the
method.

6.4 Limitations

To accurately determine all call stacks that may be executed
during real program runs is nearly impossible. In general,
the question if a given path is reachable at runtime is un-
decidable [Lewis and Papadimitriou, 1981]. Techniques to
obtain approximations of the paths used during program
executions can be split in two categories.

The first category describes techniques that involve run-
ning the application. During a single execution of the ap-
plication all method calls can be logged. This process is
also called tracing the application. If the application is run
multiple times with different input data, more and even-
tually different paths are used. To generate test cases for
software testing, software engineering research has devel-
oped techniques to generate input data for applications to
test as many different call stacks as possible. As these tests
require a lot of effort to be set up and run, they are not suit-
able for our plug-in. Furthermore, it is impossible to decide
if all call stacks that might occur during program execution
are actually covered by a given set of tests, since it is not
decidable if a given path is executed with any input data.

Secondly, techniques exist that analyze the application’s
source code statically, without running the application. The
term static code analysis is, today, typically associated with
analysis performed by automated tools. These tools work
similar to a compiler in that they apply dataflow analysis to
detect problems such as access to a previously deallocated
object. The algorithms used are often, e.g., in FindBugs (for
Java) [Ayewah et al., 2008] or clang4 (for Objective-C), re-
stricted to interprocedural analysis, and hence are not suit-
able for call stack, i.e., intraprocedural, analysis. To im-
pede that too many false positives (because testing is usu-
ally done to find defects in software, a positive result in
this context is a defect) are found, static code analysis tools

4h’c’cp:/ /clang-analyzer.llvm.org/

It is undecidable if a
given call stack may
be executed during a
real program
execution.

Running an
application and
logging all method
calls is called tracing.

Static code analysis
tools are able to
detect some defects
in source code
without running the
application.

http://clang-analyzer.llvm.org/

72

6 Software Prototype

Stacksplorer caches
call stack information
for the last visited
focus method.

often focus on defects that are easy to detect. Static code an-
alyzers do not claim to find or investigate all possible paths
through the source code. For our purpose, however, acci-
dentally found method calls are not dramatically bad; to
the contrary, calls we do not find may cause the program-
mer to miss an important piece of information.

Another limitation of our prototype is sub-optimal per-
formance. Only call stack information for the last visited
method is cached to improve performance when the user
is navigating back and forth between two methods, which
was shown to be common [Ko et al., 2006]. Also, when
performing navigation along the call stack, the old focus
method is shown in the respective side column immedi-
ately to make the horizontal navigation easy to grasp. More
advanced caching is not performed, so in most cases the call
stack information has to be gathered on the fly after the fo-
cus method changed. However, we found that this process
works sufficiently fast on recent hardware (2.8GHz Core 2
Duo, 4GB RAM). Hence, we decided not to apply further
performance tweaks, because the current implementation
should work good enough to obtain profound results from
a user test. This was also confirmed by three beta testers,
who opted in to test the plug-in during their daily work be-
fore the user test. Thanks to the beta test, we found and
fixed a lot of annoying bugs before the evaluation.

73

Chapter 7

Evaluation

“In theory, there is no difference between theory
and practice. But, in practice, there is.”

—Jan van de Snepscheut

To test how Stacksplorer works for practitioners, we ran a
user test in which we compared Xcode with the plug-in in-
stalled to a default Xcode installation. In this user test we
wanted to explore five hypotheses.

H1 Given a time-constrained task that requires browsing
and understanding previously unknown source code,
more programmers can solve this task correctly using
Stacksplorer than using a default Xcode installation.

H2 Using Stacksplorer, programmers can solve tasks that
require browsing and understanding previously un-
known source code more quickly than using a default
Xcode installation.

H3 Using Stacksplorer, programmers can analyze side ef-
fects of changes more quickly than using a default
Xcode installation.

H4 Programmers (subjectively) find that Stacksplorer
helps them understanding previously unknown
source code.

74

7 Evaluation

Participants were
students experienced
in Cocoa
development.

Participants had to
understand source
code to answer a
question.

H5 Programmers (subjectively) find that Stacksplorer
helps them knowing where they are in the source
code.

In this chapter, we will introduce the methodology and the
results of the study we conducted to test these hypotheses.

7.1 Experimental Setup

Hypothesis H1-H3 can be tested by performing quantita-
tive measurements. Supporting H4 and H5 requires quali-
tative methods, such as a questionnaire and observation of
users working on tasks. In this section we present in detail
the setup of the experiment we conducted.

7.1.1 Participants

For the study, we recruited graduate and undergrad-
uate students, who at least had basic experience with
Objective-C. By hiring students, we could reduce the im-
pact of different levels of programming expertise on the
study. In contrast to professional developers, experience
levels among students are less varying [Bragdon et al,,
2010]. However, to be sure that students do not behave dra-
matically different than professional software developers,
we also recruited two professionals.

7.1.2 Conditions and Tasks

The goal in developing the evaluation of the Stacksplorer
plug-in was to test H1-H3 with quantitative methods. We
did not want users to spend too much time on actually writ-
ing code, because Stacksplorer is not designed to support
this activity specifically. Instead, the tasks should focus as
much as possible on inter-method navigation and require a
thorough understanding of the order in which methods are
called at runtime. In the end, we chose tasks that required

7.1 Experimental Setup

75

users to read and understand the source code in order to an-
swer a specific question. Questions were either asking for a
location in which a simple change could be implemented or
for side effects a particular change in the source code would
have. Because Bragdon et al. [2010] pointed out that users
are often curious about how precise such questions should
be answered, we made sure that each question could be
answered with a single method name, class name, or by
pointing out a specific Ul element. Pilot tests confirmed
that users were very confident how thorough their answer
should be for the questions we developed.

Curtis [1981] pointed out that huge individual differences
in performance between programmers exist. Hence, we
decided to do a within-groups study design to make sure
we obtain comparable pairs of performance measurements.
Each participant had to be tested in two conditions: Once
working with Stacksplorer and once working without it.
So, two tasks, one per condition, were required.

The tasks users had to solve are listed in appendix C —
“User Test: Task Descriptions”. All tasks concerned the
source code of BibDesk!, an open-source BibTeX bibliog-
raphy manager for Mac OS X. BibDesk comprises 88000
SLOC in roughly 400 classes. We used the source code
from the BibDesk SVN repository in revision 17029. To
make task 2.2 more interesting, we changed the source code
slightly: The categories implemented on BibItem and
BibDocument, in which the finding algorithms used by
the “Search For” command are implemented, were moved
to separate files. Previously, they were all implemented in
the implementation file for the “Search For” command.

To equal out differences in task difficulties, the two tasks
we used each consist of two subtasks. For the first subtask
of both tasks, users had to search for the appropriate loca-
tion of a change. The second subtask always included an
analysis of side effects of a change. Tasks were given to
participants one subtask at a time in printed form. Users
were allowed to work up to 25 minutes on the first subtask
and 15 minutes on the second one.

'http:/ /bibdesk.sourceforge.net/

A within-groups
study design should
compensate for huge
individual differences
between
programmers.

Tasks concerned the
source code of the
open source
application BibDesk.

We asked for
appropriate locations
for changes or side
effects of changes.

http://bibdesk.sourceforge.net/

76

7 Evaluation

Users were provided
with a hint where to
start.

All of Xcode’s tools
could be used except
for the debugger.

Stacksplorer was
explained before the
study.

For each task, we provided users with a hint, to simulate
knowledge about the very high level structure of the source
code. This should reduce the time users spend searching
for a starting point, which helped us keeping the total time
for the user test below two hours. Providing a starting
point of some kind has also proven to be feasible in other
studies [Bragdon et al., 2010; de Alwis et al., 2007]. Task
order and condition-to-task assignment were counterbal-
anced to compensate for learning effects, which inevitably
occur when working on a previously unknown code base
for two hours. To further accommodate for these learning
effects, users were given 10 minutes at the beginning of the
study to familiarize with the project and its organizational
structure.

7.1.3 Methodology

During the study, participants were not allowed to use any
additional tools that analyze a running instance of Bib-
Desk. For example, debugging or compiling the appli-
cation (with inserted trace statements) was not allowed.
These additional tools might have confounded the results,
since we wanted to measure the efficiency of Stacksplorer
for code understanding from reading it, and not the ef-
fectiveness of other tools. This choice is also consistent
with previous studies [Bragdon et al., 2010; Robillard et al.,
2004]. Of course, this choice limits the validity of the study,
since in real world scenarios these tools would be avail-
able. All other tools in Xcode were available to partici-
pants, although we did not put any effort in explaining
them, since we assumed that participants were sufficiently
familiar with Xcode and we did not want to influence their
current work practices.

We introduced users to Stacksplorer before the study using
a small sample project. In particular, we explained which
information is shown in the side columns, how Stacks-
plorer allows navigating through the source code, how the
overlays can be turned on and off, and how the “User de-
fined paths” feature works.

7.1 Experimental Setup

77

During the study, we asked participants to think aloud, so
we could get insights about their mental model while work-
ing. However, they were not allowed to ask questions to
the experimenter regarding the BibDesk source code. To
accommodate for different levels of knowledge about Co-
coa, participants were allowed to ask questions about Co-
coa. Participants should not be hindered by missing expert
knowledge regarding Cocoa at any point.

The dependent variables we measured were correctness of
the given answers (to check H1) and time required to com-
plete the tasks (to check H2 and H3). The screen contents
and audio were recorded using Screenflow? to allow fur-
ther analysis afterwards if necessary.

The Stacksplorer prototype was not optimized with regard
to performance due to development time constraints. To
minimize the impact of this limitation on the results of the
study, the tests were performed on a fairly powerful com-
puter (Mac Pro, 2.8GHz Intel Quad-Core processor, 2GB
RAM). Participants used a 23" screen with a 1920x1680 res-
olution, which is common for a modern work place for pro-
gramming.

7.1.4 Postsession Questionnaire

After participants worked in both conditions, we also
wanted to find out their subjective opinion about Stacks-
plorer. To measure their satisfaction with the prototype, we
used the System Usability Scale (SUS) [Brooke, 1996]. The
SUS consists of 10 statements, for which participants ex-
press their level of agreement using a 5 point Likert scale.
It yields a single value between 0 and 100 where higher val-
ues correspond to users being more satisfied with the tested
system. Each rating contributes a value between 0 and 4 to
the result. Individual contributions are then summed and
scaled to be in the range 0-100 (using a factor of 2.5). The
statements are formulated alternately positive and nega-
tive.

2h’c’cp:/ /www.telestream.net/screen-flow /overview.htm

Participants were
asked to think aloud.

Correctness of
solutions and task
completion time were
measured.

All participants
worked with the
same hardware.

To measure users’
satisfaction with
Stacksplorer, the
System Usability
Scale was used.

http://www.telestream.net/screen-flow/overview.htm

78

7 Evaluation

The SUS is a widely
known and
thoroughly tested
metric.

Six additional
questions were
added to the SUS to
address specifically
Stacksplorer’s impact
on programming.

The SUS was initially intended to be a “quick and dirty”
measurement. Nevertheless, analysis of finished experi-
ments using the SUS indicated that it yields very reliable
results (Cronbach’s alpha = 0.91) [Bangor et al., 2008]. Al-
though the SUS was initially designed to be a unidimen-
sional scale, a factor analysis done by Lewis and Sauro
[2009] revealed two independent factors, which are mea-
sured by the SUS: Learnability (aligned with statements
4 and 10) and usability (aligned with all remaining state-
ments). The same analysis could also show that the scales
for both factors meet common reliability requirements.
However, this multi-dimensional analysis of SUS should
be considered carefully, because other studies, e.g., [Bangor
et al., 2008], could not confirm the existence of two individ-
ual factors.

For the post-session questionnaire, we extended the set of
SUS statements with 6 more statements that address as-
pects which are specifically interesting for Stacksplorer. We
wanted to find out how well users feel supported with code
understanding (H4) and navigation (subjective measure of
H2), and if Stacksplorer helped them not to feel lost in the
project (H5). Each of these aspects was addressed with two
statements, one positive, and one negative one (to be con-
sistent in style with the statements from the SUS). Addi-
tionally, one of both statements for each aspect was formu-
lated as a comparison to Xcode without Stacksplorer. These
additional statements had to be evaluated isolated from the
regular SUS test, of course.

The full post-study questionnaire can be found in appendix
D - “User Test: Post Session Questionnaire”.

7.2 Results

We generally found that Stacksplorer was well adopted by
participants. They were not only objectively able to com-
plete tasks faster when using Stacksplorer, buy they were
also subjectively highly satisfied with Stacksplorer. In this
chapter, we explain in detail the results of the study and
additional observations we made.

7.2 Results

79

7.2.1 Participants

In the study, we tested 16 participants, which were all male
(although this was not intended by design). Apart from
two professional software developers, all participants were
students; six of them were graduates. All students were
majoring in computer science. On average, participants
had worked with Objective-C and Xcode for 2.25 years
(SD = 1.97) and spent an average of 13.1 hours per week
(SD = 13.0) on programming. Ten participants were fa-
miliar with BibDesk, but none of them had seen the source

code before.

Task 1.1 Task 1.2 Task 1 Task 2.1 Task 2.2 Task 2

7.2.2 Task Success

o = N W A~ 00 O N 0 ©

Successful Participants with Stacksplorer
B Successful Participants w/o Stacksplorer

Figure 7.1: The figure shows how many participants were
able to complete the tasks in each condition.

Figure 7.1 shows how many participants were able to com-
plete each individual task and subtask successfully de-
pending on the condition. A task was considered to be
solved successfully if both subtasks were solved correctly.
Only four participants were able to solve both tasks.

The diagram shows that all tasks but task 2.1 were solved
correctly more often by participants using Stacksplorer.
However, a Fisher’s test comparing the number of correct

All participants had
thorough experience
with Cocoa.

Only four participants
could solve both
tasks successfully.

Only for task 1, the
difference in number
of correct solutions is
significant.

80

7 Evaluation

Task 2.2 was likely
the easiest task.

Overall, tasks could
be solved
significantly faster
using Stacksplorer.

Among successful
participants, task
completion times
only differ
significantly for task
2.2.

solutions for both conditions could only show significance
for Task 1 (p = 0.041). Consequently, we cannot generally
confirm H1.

We can only hypothesize why task 2 produced less signifi-
cant results. We assume two factors influenced the results:
Firstly, in task 2.1 participants could more easily than in
task 1.1 utilize knowledge about Cocoa, because it was con-
cerned with document saving, which uses a standardized
Cocoa API. Secondly, task 2.2 was probably the easiest of
all tasks, because the code related to this task was better
isolated than in the other tasks. The three methods that
participants had to inspect to find the appropriate location
for the change were distributed among two class categories
and one class, which contained only four methods in total.
Another indication that task 2.2 was the easiest task is the
fact that, independent of the condition, it was completed
successfully most often.

7.2.3 Task Completion Times

Task completion times for task 1 and 2 were normally dis-
tributed (tested using a Shapiro-Wilk test, for task 1: W =
0.93, p = 0.21, for task 2: W = 0.94, p = 0.41). Hence,
they can be compared using a paired t-test to show that
there is no significant difference in completion time be-
tween the two tasks (¢(15) = 1.13, p = 0.27, d = 0.28). This
indicates a fair comparison between the task solved with
and without Stacksplorer is possible. In this comparison
we found that participants could solve the task in which
they were allowed to use Stacksplorer significantly faster
(t(15) = —1.91, p = 0.038, d = 0.48, one-tailed) than the
other task. This result supports H2.

When analyzing each task separately and considering only
the measurements from participants who were able to solve
the task correctly (see Figure 7.2), no significant difference
in task completion times between conditions can be found
in any task except 2.2 (Welch’s t-test, ¢(10.6) = —3.35, p =
0.003, d = 1.68). Hence, we can confirm H3 for task 2.2
but not for task 1.2. However, many participants not using
Stacksplorer could not solve task 1.2 at all within the given

7.2 Results

81

28m

ol | 1
il

Task 1.1 Task 1.2 Task 1 Task 2.1 Task 2.2 Task 2

With Stacksplorer ®Without Stacksplorer

Figure 7.2: The figure shows the average time required to
solve the different tasks, comparing measurements with
and without Stacksplorer and considering only measure-
ments of successful participants.

time limit. If they were given additional time to complete
the task, results may have been significant for task 1.2 as
well.

We assume that we observed the non-significant difference
in task completion times for most tasks, because most tasks
have not been solved by all participants. Those who did
solve them were generally more trained developers any-
ways and hence knew how to cope with the existing tools
in Xcode better. For example, in Figure 7.2, it may appear
surprising that, on average, participants not using Stacks-
plorer could solve task 1 faster. However, the average task
completion time for participants not using Stacksplorer in
task 1 is calculated from one single measurement (see Fig-
ure 7.1). Hence, a valid comparison to the average task
completion time of users using Stacksplorer is not possible
at all.

Additionally, we could observe during the tests that partic-
ipants typically solved the tasks in two steps: Firstly, they
searched using different techniques for a point to start, then
they followed the call stack to find the place to implement
the required change (this will be explained in more detail
in section 7.2.4 — “Qualitative Observations”). Since Stacks-
plorer does not provide specific guidance for the first phase,

More differences in
task completion
times may be
significant, if all
participants had had
enough time to
complete the tasks.

Stacksplorer does
not provide guidance
to find a place to
start.

82

7 Evaluation

In the initial
exploration, users
started either at a
model, a controller,
or a view class.

Model classes were
too extensive to
provide an overview
of the application’s
capabilities.

The application
delegate is a good
place to start, since it
is a part of nearly
every Cocoa
application.

experience and luck — especially if opportunistic strate-
gies (2.2 — “Programmers’ Work Practices”) are applied —
had a strong influence here. Some participants even went
through these two phases multiple times until they found
the correct location for an edit. We think this caused the
wide spread in measurements, which in the end lead to
non-significant results.

7.2.4 Qualitative Observations

Initial Exploration

Although this was not the primary scope of the study,
it was interesting to see how different participants ap-
proached the unknown project during the 10 minutes they
were given before the first task to familiarize with the
source code and its structure. After skimming the folder
names in the file browser, their exploration started at either
a model, a view, or a controller class (2.1 — “Object-oriented
Software Development”).

Half of all participants started out exploring the model
classes. Either they were simply overwhelmed by the
length of the important classes, or they read at least all
method names to get an idea of the capabilities of the
classes. Only very few participants took more time to
understand how the classes work and how they are con-
nected. The idea of exploring a model class first is to under-
stand what the program is working with and hence what
the application can possibly do with the data.

Five participants started at a controller class, mostly the
AppDelegate. The AppDelegate is the delegate of the
NSApplication class, which, in Cocoa, always represents
the running application. Controllers implement all features
of the application, so participants learned how the features
are split among different controllers by exploring them.

Only three participants started out from the user interface
to understand which processes are triggered by certain im-
portant Ul elements. These participants usually started at a

7.2 Results

83

xib file, which represents how various widgets are arranged
in the user interface (i.e., in a window), and not at a view
class. View classes are only implemented if a particular UI
need cannot be satisfied using existing widgets from the
toolkit. Also, these custom view classes mostly do not give
away much information about the feature or functionality
they enable.

Without a clear goal, it was impossible to determine which
parts of the applications are relevant. Hence, after this start-
ing point most participants started to navigate through the
source code randomly. Some of them looked for aspects in
the source code they found personally interesting. For ex-
ample, one participant was currently writing an own parser
for BibTeX, so he spent some time inspecting BibDesk’s Bib-
TeX parser.

Surprisingly, what most participants did not look at was
the included documentation and test cases. The included
documentation was a short text file named “Hacking Bib-
Desk”, containing an explanation where to start when try-
ing to modify certain aspects in BibDesk. Only two par-
ticipants had a look at this file. Additionally, all but one
participant ignored the included unit tests, although pre-
vious studies [Kiel, 2009] found out that they can serve as
valuable sample code and intuitive documentation about a
class’s designated behavior and use.

Two-phase Navigation

As explained before, for task 1.1 and 2.1 participants usu-
ally started with an exploration phase, in which they
searched for an anchor point. From this anchor point, they
traversed the call stack until they either found the correct
location for a change or they noticed that they got lost and
had to start again with a new exploration phase. During the
second phase, participants often tested an outgoing path
and came back to the previously viewed method or to the
anchor point if they decided to discard the path. This sim-
ple model is depicted in Figure 7.3.

Starting from the
user interface, users
explored how
specific features are
implemented.

Without a clear goal,
exploration was
mostly opportunistic.

Included
documentation was
mostly ignored.

Users explored the
source code in two
distinct phases.

84

7 Evaluation

In the first phase
users primarily
utilized the
project-wide search.

Start

4

y

Search high-level
structures for anchor point

First Phase

\ Second Phase

Anchor Point
found

Y

4

Unexplored, interesting
call stacks including the anchor
point exist?

Explore a call stack including
the anchor point

Call stack leads to
location for change?

yes
Location for
change found

Figure 7.3: A simplistic two-phase model for a typical de-
veloper’s strategy when searching for the appropriate loca-
tion for a change in unfamiliar source code.

Although we tried to shorten the explorative phase by pro-
viding hints for each task, all users started with some explo-
ration phase, whose length varied a lot, especially for task
1.1. For this task, a multitude of possible starting points
exists, and it depends on individual preference which one
a participant used. During the exploration phase, different
techniques were used. The most prominent technique was
performing a project-wide search for “autofile” in task 1.1
or “writeToURL:” in task 2.1. Some users managed to find a
correct starting point in the file browser using the provided
hint. Another popular technique to start was to find a user
interface related to the task and to look up which methods
were called by the controls in the interface. Stacksplorer

7.2 Results

85

was not very helpful during the initial exploration phase,
as it does not provide a high-level overview of the project
and does not facilitate searching or similar opportunistic
approaches.

In task 1.2 and 2.2, the starting point for participants was
clearly given, so the explorative phase was much shorter
and had much less influence on success and completion
time for these tasks.

Stacksplorer Adoption

Stacksplorer was a welcome addition for the explorative
browsing phase in tasks 1.1 and 2.1 as well as in the first
part of task 2.2, in which participants navigated along pos-
sible call stacks until they eventually reached the location
they decided to change. We could clearly differentiate
two techniques participants employed to utilize the plug-
in. Most participants read the source code and tried to un-
derstand (in varying level of detail) what it does. When
they were at least somehow sure which part of the source
code was relevant to the task at hand, they enabled Stacks-
plorer’s overlays to see which methods were called from
this part and then navigated there. Another group of par-
ticipants used the methods presented by Stacksplorer in
the right column as a summary of the method. In the ex-
treme case, they did not read the source code at all; in-
stead, they only browsed through the called methods and
navigated to whatever they found interesting. Once they
could no longer find such a method, they started reading
the method’s source code, to decide if they had arrived
at the correct location for the requested change. The lat-
ter technique is of course much more prone to error, but it
can be very fast. The two different techniques to make use
from Stacksplorer could represent the two code browsing
strategies (structured and opportunistic browsing) intro-
duced before (2.2 - “Programmers” Work Practices”). If par-
ticipants applied opportunistic strategies and used Stacks-
plorer, they had an increased chance to stumble upon rele-
vant information by accident. For example, during task 1.2
participant 5 was to discard a relevant method before he
accidentally saw a method name in the left column that he

Stacksplorer’s right
column can be
interpreted as a
summary of the
focus method.

86

7 Evaluation

Stacksplorer usage
leads to more
forward and
backward navigation
in the history of
visited methods.

Analyzing side
effects of a change
was easy using
Stacksplorer.

Navigating back in
the call stack more
than once was
difficult for some
participants when
using the
project-wide search.

thought could be interesting. This accidental discovery led
to his success in solving the task.

When using Stacksplorer, users started to also use Xcode’s
forward and backward navigation buttons much more than
before. In the preliminary study, these were only used in
very rare occasions. Since Stacksplorer made it easy to peek
into a call stack involving the current focus method, partic-
ipants were more tempted to explore a path to see where
it brought them and to discard it if they found themselves
getting stuck. At this point, they would use the backward
button to navigate back to a previous anchor point to start
exploring another path from there.

For the tasks that required analyzing side effects (1.2 and
the second part of 2.2), Stacksplorer was highly appreciated
by all participants. It was faster and more robust against er-
rors in comparison to the otherwise required project-wide
search for occurrences of method names, because no prob-
lems regarding ambiguous selector names (5.2.4 — “Source
Code Access”) occurred. Participants using Stacksplorer in
the first task frequently joked if they could get the plug-
in back when working on the second task (“Can I start the
plug-in for that [task 2.2] again?”, participant 8).

Another interesting observation from tasks 1.2 and 2.2 is
that users tended to go back only one step. For example,
in task 2.2 the method containing the change is only called
once. Side effects exist only because this single caller of
the changed method is used in a different context than the
one described in the task. When using Stacksplorer, partici-
pants navigated back once from the starting point and then
immediately saw the relevant information in the left side
column. However, when users had to perform a search,
they often hesitated to do this multiple times to explore dif-
ferent levels of the call stack. Some even started guessing
when their first search did not reveal any side effects, be-
cause they had no idea how to continue. We assume that
users are frightened to get lost when they use the search
from a fixed starting point and not in an explorative man-
ner.

7.2 Results

87

User Defined Paths Usage

The “user defined path” feature was only used by roughly
25% of all users. Those who used it primarily used it to
maintain a list of methods they already visited and under-
stood. When it comes to adding methods to a path, two
different types of use can be differentiated: Some users
added every method they saw, so they would not spend
time reading it again later. Others only added methods
they thoroughly understood and considered important, so
their paths contained isolated program slices (2.2 — “Pro-
grammers’ Work Practices”). Mostly, participants created
one path per task. Some users also used the path editor as a
navigation tool to jump back to anchor points. Participant
4 even rearranged the windows so he could see the path
editor and Xcode’s main window side by side.

7.2.5 Postsession Questionnaire

SUS

The post-session questionnaire was comprised of 16 state-
ments for which participants had to rate their level of agree-
ment on a 5-point Likert scale. Ten of these statements be-
longed to the SUS and should not be evaluated individu-
ally [Brooke, 1996]. The combined SUS score for Stacks-
plorer was 85.4 on average (SD = 7.4). Bangor et al. [2008]
presented an interpretation of SUS scores, where starting
from 85 products can be considered “excellent”. Consid-
ering that the tested version of Stacksplorer was clearly a
research prototype, with issues in performance and some
minor bugs, this result is very positive.

Using the factor analysis by Lewis and Sauro [2009], the
results can be analyzed further to obtain separate scores
for learnability and usability. The learnability rating (M =
94.1, SD = 10.0) was much higher than the usability rat-
ing (M = 83.3, SD = 7.8). Partially, this seems to be an
effect inherent to the SUS measurement [Lewis and Sauro,
2009]. However, it also indicates that participants under-
stood the concept of our visualization intuitively. The fact

Only one fourth of
participants used
user defined paths.

Stacksplorer’s
usability was rated
“excellent”.

The factor
learnability was rated
slightly better than
usability.

88

7 Evaluation

Agreement to the
statements not part
of the original SUS
has to be evaluated
separately.

that the usability rating is lower (although it is still a very
good result on Brooke’s interpreted scale) is most likely at
least partially due to the performance issues of our proto-

type.

Non-SUS questions

000 +

Statement 15 | f-----------------o-----

T) — 4
S— T

Statement 12 | ___________ q

Statement 11 — |, ___________
T T . | |
1 2 3 4 5

Figure 7.4: The boxplot diagram shows participants agree-
ment to statements 11-16 from the post-session question-
naire on a five point Likert scale.

Participants” agreement to the six statements we added to
the SUS specifically for Stacksplorer has to be evaluated in-
dependently of the original SUS. Figure 7.4 shows a boxplot
diagram for the rating of participants” agreement to these
statements. Although the statements were grouped in three
pairs, which were each concerned with a particular aspect
of how Stacksplorer changed the participant’s experience,
the 16 samples are not sufficient to perform a factor analy-
sis that could prove that responses to the two statements of
each group actually align with the same factor.

7.2 Results

89

Regarding source code understanding, nearly all partici-
pants strongly agreed that Stacksplorer has benefits com-
pared to Xcode without the plug-in (statement 12). Hence,
we could confirm H4. However, agreement to statement
11, stating that code understanding was easy using Stacks-
plorer, is not similarly overwhelming. Quite a few partici-
pants still found the tasks challenging when using Stacks-
plorer. This comes as no surprise, since a large, feature-rich
software project is always a complex artifact and hard to
understand without prior knowledge.

For the next pair of statements, which were concerned with
how fast source code could be navigated using Stacks-
plorer, answers were also very positive. More than half
of the participants strongly agreed, that navigation with
Stacksplorer is faster than without it. We think that this
is primarily because of Stacksplorer’s clear advantages for
navigation to callers of a method, when compared to the
project-wide search (7.2.4 — “Qualitative Observations”).
What is additionally notable about the positive ratings for
statements 13 and 14, is that both statements did not im-
ply that “navigation” referred to “navigation along the call
stack”. We conclude that this type of navigation is so im-
portant for programmers that Stacksplorer manages to im-
prove their overall impression of how quickly they can nav-
igate through source code by solely improving this partic-
ular type of navigation.

The last two statements were concerned with the support
Stacksplorer provides to help users knowing where they
are in the source code. More than half of the participants
agreed that they did not feel lost in the source code when
using Stacksplorer (statement 16). However, users least
agreed with statement 15, which states that Stacksplorer is
an improvement compared to Xcode in this regard. The
reason users did not see as much improvement compared
to Xcode as for the other factors we asked for is probably
that Stacksplorer only provides context that is relevant lo-
cally. There is no way to get a “bigger picture” of the soft-
ware’s structure directly from Stacksplorer. Although users
did not agree with statement 15 as clearly as with the other
statements, the median rating is still an agreement, so H5
could be confirmed.

Participants found
Stacksplorer to be
beneficial for source
code understanding.

Navigation was
considered to be
faster with
Stacksplorer than
without it.

Participants miss
support for
orientation in the
project on a higher
level.

90

7 Evaluation

Nearly all
participants asked for
a public release of
Stacksplorer.

Overlays from
Stacksplorer could
become messy with
many methods in the
side columns.

Xcode’s support to
navigate back to
previously visited
methods was
problematic.

Users had to wait for
Stacksplorer too
frequently.

7.2.6 Users’ Comments

After the tests, we spent some time chatting with the par-
ticipants to get some additional feedback that could not be
sufficiently expressed through the questionnaire. The most
noticeable observation was that a vast majority of partic-
ipants asked where and if they could download Stacks-
plorer. Some participants even asked that again when they
met us later in the university. The overly positive reactions
show that Stacksplorer definitely appeals to developers a
lot.

However, users had several minor concerns about Stacks-
plorer. Firstly, the overlays, which connect a method call in
the source code with the corresponding entry in the right
side column, got messy quickly. To ease following a partic-
ular overlay from the method call in the code to the entry
in the side column, it was highlighted slightly when users
hovered over it. Many users had problems noticing this in-
dication, because the effect was too subtle to really stand
out.

The forward /backward buttons in Xcode, which were in-
creasingly used by participants when using Stacksplorer,
navigate through a history of visited points of interest. Al-
though Xcode considers every navigation performed with
Stacksplorer as a point of interest, other locations in the
source code may be considered points of interest, too. As
it is not made obvious what is a point of interest for Xcode,
this concept was often confusing for participants. Many
users would have preferred a visualization of the naviga-
tion history within Stacksplorer.

Another concern users had was about speed. Because of
the rather simple parsing algorithm we used, updating the
side columns could take a while, depending on the cur-
rent focus method. Although users understood that a re-
search prototype may suffer from problems like this, they
still found themselves hindered in navigating more quickly
sometimes.

User defined paths turned out to be complicated to grasp
for many users. The name “path” is misleading, since it

7.2 Results

91

suggests methods on a path had a defined order. One user
even assumed that user defined paths could be used to de-
fine call stacks manually, which Stacksplorer would not de-
tect automatically. In fact, adding a method to a path only
means tagging it. To make things worse, visual feedback
for a path is only visible in rare occasions, concretely, if the
focus method and a method in one of the side columns are
on the same path and overlays are enabled.

We will address these concerns in the improved prototype
(8 = “Improved Prototype”).

Some users noted that, although Stacksplorer is a valuable
addition for their workflow, they needed additional sup-
port to get an idea of the higher-level software structure.
Mostly, users suggested some sort of graph visualization
that shows a larger portion of the call stack at a time. How-
ever, these visualizations are problematic, since they would
quickly contain lots of nodes and thereby become impracti-
cal to use. For example, Stacksplorer’s source code contains
330 non-accessor methods; the number of outgoing edges
of particularly interesting methods can easily exceed 10 or
20. Hence, users suggested an iterative technique to gener-
ate a graph containing only the information they were in-
terested in. While some users thought of this interface to be
detached from the source code, others indicated that they
liked Stacksplorer especially because it shows contextual
information next to the source code (“Ilike having informa-
tion next to the code, the stuff I actually work with.”, par-
ticipant 3). Participant 5 suggested to allow collapsing the
code editor to quickly switch between a bigger graph view
and the current Stacksplorer view. Other participants imag-
ined that advanced functionality could be incorporated into
the “user defined paths” feature. For example, paths could
auto-arrange themselves to reflect the actual call graph.

Problematic for this kind of advanced features is that the
first prototype we used for the user test would not techni-
cally be able to gather the information required to show a
larger portion of possible call graphs in an acceptable time.
The technical foundation for these advanced visualization
techniques will also be introduced in the improved version
of the prototype.

The “user defined
path” feature was
hard to understand.

A visualization of a
larger portion of the
call graph would be
desirable.

The first prototype of
Stacksplorer lacked
the technical
prerequisites to
visualize larger parts
of the call graph.

93

Chapter 8

Improved Prototype

“In the practical world of computing, it is rather
uncommon that a program, once it performs
correctly and satisfactorily, remains unchanged
forever.”

—Niklaus E. Wirth

Following the principle of iterative design, we incorporated
user’s suggestions and comments into an improved version
of the prototype. The changes we made regarding Stacks-
plorer’s design and implementation are explained in this
chapter.

8.1 User Interface Refinements

Many comments we got concerned smaller Ul problems.
This is not surprising, because the prototype was aimed to
explore the high-level concept of visualizing information
about potential call stacks in two columns at the sides of the
code editor. The detailed layout of associated controls was
not the scope of the prototype. Furthermore, the concept
was very appealing to the participants of the user study,
so they were tempted to suggest rather iterative improve-
ments than radical changes.

Most suggestions for
improvement related
to smaller Ul
problems and not to
Stacksplorer’s
concept.

94

8 Improved Prototype

Overlays were
highlighted too subtly
to be noticed.

Users would like to
see multiple calls to
the same method
easily.

Overlay highlighting
was changed to be
bolder.

In particular, three aspects of the user interface were com-
monly criticized: The way overlays are highlighted, the
“user defined path” feature, and the lack of a navigation
history. We introduce our improvements for these aspects
in the following sections.

8.1.1 Overlay Highlighting

To provide help with mapping a method call in the source
code to an entry in the side column, Stacksplorer shows
overlays connecting both. About half of the participants
had problems following these overlays from the source
code to the right side column or vice versa. When users
hovered over an overlay, it was emphasized by doubling
the opacity (effectively changing the color from a light gray
to a very dark gray). This was considered to be too subtle
by most users.

Additionally, users brought up that they would like to be
able to see all calls to one particular method from the focus
method more easily. Showing each method only once in the
side column was not an option, because all users were very
satisfied with the current design, which shows all method
calls in the same order as they appear in the source code,
possibly including multiple calls to the same method, be-
cause this list can serve as a summary of the focus method.

To satisfy both requirements, we changed the way over-
lays are highlighted when hovering above them (see Figure
8.1). When hovering with the cursor over an overlay, the
overlay’s line width is doubled, in addition to the chang-
ing opacity. All overlays that belong to a method call to the
same method are also highlighted, but without changing
their opacity, i.e., in a more subtle way. The contents of the
side columns could then remain unchanged.

Considering what actually makes emphasizing overlays
necessary, we became aware that the connections between
the source code and the table view cells became really hard
to follow if the source code was far away from the entries
in the side column (see upper screenshot in Figure 8.2).
Matching a method call in the source code with an entry

8.1 User Interface Refinements

95

165 user, @)
166 nill; -

167 MHTTimestampedTopStat
168 [statistics addObject:processDict]; istics

170 [blockPool releasel; [setTimestamp:
i

MHTTimestampedTopStat

1

1 b

173 tistics *tsTopStatistics = [[MHTTimestampedTopStat istics

174 tsTopStatistics.timestanp = [NSDate datel; [setTopStatistics:
175 t
1

1

tsTopStatistics.topSiatistics = statistics;
MHTInfoGatherer
7 [self.history insertObject:tsTopStatistics atIndex:@];
178 [tsTopStatistics releasel; [history
179
Tory count] > AR TOP ETATISTICE HISTORY STZE) MHTInfoGatherer

180 while ([Be
[self. tory removelastObjectl]; [history

183 assert([self.history count] <= MAX_TOP_STATISTICS_HISTORY_SIZE); MHTInfoGatherer
185 [[NSNotificationCenter defaultCenter] removeObserver:self]; 4 history

187 [pool release]; MHTInfoGatherer
b L4 history

102| | @end

Figure 8.1: When hovering over an overlay with the mouse
cursor, it is more prominently highlighted than before and
other calls to the same method are highlighted as well.

in the table view is much easier if the table view cells are
shown right next to the call in the source code (see lower
screenshot in Figure 8.2). The improved prototype scrolls
the table view automatically to achieve this layout. More
exactly, the right side column is not always scrolled to be
centered next to the method. Instead, it is scrolled so that
the summed length of the connections between method
calls in the source code and entries in the side column is
minimal. This is achieved by calculating the summed dif-
ference in y-position between the cells in the side column
and the position of the associated method calls in the source
code. Then an offset is calculated, so that the summed dif-
ference becomes 0. If the currently visible part of the focus
method contains more method calls than the right side col-
umn can show, a similar algorithm is used to show those
methods in the side column for which the summed dif-
ference is minimal. However, the algorithms will always
make sure that a maximal amount of information is shown
in the side columns, i.e., the number of methods shown in
the side column is maximal.

To additionally tidy up the right side column, the improved
version of Stacksplorer offers an option to hide calls to
accessor methods from the side columns. We found that
by analyzing calls to accessors mostly variable access was
explored. However, from the preliminary study we con-

Side columns are
automatically
scrolled so that its
entries are as close
to the respective
source code as
possible.

Calls to accessor
methods can be
hidden from the side
columns.

96

8 Improved Prototype

im| MHTScreenCaptureGatherer.m - MeHatesThis

I Show only relationships from project Paths: (& New Path &) Add Method C) Overlays: ((eftRight)
T | <> [@MHT 68:1% @ -initt SESCHERL I)
i [init
Cad MHTInfoGatherer

[0 setCaptureTimer:

"
@interface MHTScreenCaptureGatherer ()
"

- (void) captureScreen;

eend

"
@inplementation MHTScreenCaptureGatherer
"

- {id) init
self = ([super init];
if (self 1= nil) {
Self.captureTiner = [NSTimer timerWithTimeInterval:SCREEN_CAPT|
[[NSRunLoop currentRunLoop] addTimer:captureTiner forMode:NSRunl|

return self;

7
7
C
4
00 im] MHTScreenCaptureGatherer.m - MeHatesThis =
[_) Show only relationships from project Paths: (& New Path +)(Add Method) (&) Overlays: ((left IRight)
I <> | MHTScreen 681: W -t = [B @

49 =
50
51| | gend
2
5
54 rr
55| | @interface MHTScreenCaptureGatherer ()
56 rr
s
53| | - (void) captureScreen;
s
60| | eend
61
6
6
64 rr
65| | @inplementation MHTScreenCaptureGatherer
6 rr
| e MHTInfoGatherer

self = ([super initl; 1 init

MeHatesThisAppDelegate if (self 1= nil) {
self.captureTimer = [NSTimer timerWithTimeInterval:SCREEN_CAPT| MHTInfoGatherer
[2] applicationDidFinishLaunchin [[NSRunLoop currentRunLoop] addTimer:captureTimer forMode:NSRunt =
1 [E setCaptureTimer:
return self;
- unid) deall
Vi

Figure 8.2: The improved prototype automatically scrolls
the side columns so entries appear next to the source code.
In comparison to the old layout (above), the new layout al-
lows more easily mapping a location in the source code to
the according entry in the side column.

ducted we can conclude that variable access and the call
stacks are two different relationships. By hiding calls to ac-
cessor methods, we allow users to focus more on call stack
exploration.

8.1.2 User Defined Paths

In our prototype, user defined paths were implemented
like a tagging mechanism for methods. Contrary to user’s
expectation when reading the name, user defined paths

8.1 User Interface Refinements

97

do neither order methods according to a call stack, nor
do they require that methods on a path call each other at
all. Though some users used and liked the feature (7.2.4 -
“Qualitative Observations”), the misleading name mostly
caused user confusion, so the feature was not used. Hence,
in the improved version of Stacksplorer “User Defined
Paths” are called “Method Tags”.

Those users who used the paths feature to capture a partic-
ular path through the source code also wanted to give an
explicit order to items on the path to have the path editor
reflect the actual order in which the items are called. In the
refined prototype, this is possible by rearranging items on
the path via drag and drop in the path editor (which is now
called “Method Tag Editor”).

Another problem with the initial design was that informa-
tion about a method’s path membership was only visible
in very rare occasions. Path information was only shown if
overlays were turned on and the focus method as well as
one of the methods in the side column were on the same
path. This also contributed to the fact that users had prob-
lems understanding the “user defined paths” feature. To
solve this problem, we included an icon in the method’s
cell in the side columns if the method is tagged. Tag icons
match the icons used in the tag selection drop-down at the
top of the screen in color and shape.

The order of controls used to add a method to a path, was
also problematic. Although only one user mentioned the
problem explicitly, many users accidentally added methods
to the wrong path and afterwards wondered why the path
would not be visualized correctly. This is a typical mode
error, with the selected path being the mode that influences
the effect of the “Add to path” button. When reading from
left to right, which is the usual reading direction for En-
glish, the button to add or remove a method to or from a
path comes before the path selection drop-down. So, users
were tempted to use it before being aware of the current
mode. We switched the order of these controls, so users see
the path selection first.

User defined paths
provided merely a
tagging mechanism
for methods.

Users can reorder
the list of tagged
methods.

Method tags are
shown in the side
columns.

Controls to tag
methods were
rearranged.

98

8 Improved Prototype

Xcode’s navigation
through the history of
visited locations in
source code is
problematic.

Users could not
remember the
methods they visited.

Stacksplorer marks
recently visited
methods in the side
columns.

8.1.3 Navigation History

After exploring a particular call stack, users often navigated
back using Xcode’s forward and backward buttons at the
top of the source editor. These, however, cause problems:
Although many users think so, these buttons do not nav-
igate through the history of open files. They merely navi-
gate through a history of points of interest that have been
visited. This is, in fact, every opened file, but also differ-
ent locations in a file may be considered a point of interest.
Hence, the forward and backward buttons will not reliably
take users back to the method they previously inspected
with Stacksplorer. After all, using the forward and back-
ward buttons often leads to confusing results.

Some users evaded using the forward/backward buttons
and instead always used the side columns to navigate.
Unfortunately, method names are often similar, especially
if a class offers a collection of methods performing the same
functionality but with a varying number of user specified
parameters (e.g., parseFormat:forField:ofItem:
and parseFormat:forField:ofItem:suggestion:).
Hence, backwards navigation by memorizing the path and
traversing it backwards was often error prone.

As a result, we decided to visualize the history of visited
methods in the side columns. Therefore, the last five visited
methods are stored. If one of these methods appears in the
side column, the cell’s background is rendered in blue. The
further the method is at the back of the history stack, the
lighter (less saturated) the color is. We chose blue color,
because people can discriminate saturation levels for blue
best!.

8.2 Performance Enhancements

One of the major problems in the user test was the speed of
our plug-in. In particular, users who did not bother reading
source code a lot sometimes waited for a couple of seconds

]htt’p: / /www.visualexpert.com/FAQ/Part2 /cfaqPart2.html

http://www.visualexpert.com/FAQ/Part2/cfaqPart2.html

8.2 Performance Enhancements

99

for information to appear. For incoming edges, the time to
obtain a result depends on the size of the project (because
a project wide search is performed). If the project is very
large (like BibDesk), obtaining incoming edges may take a
while (about six seconds in BibDesk). The time required to
obtain information about outgoing edges only depends on
the length of the focus method. Although the performance
of the first prototype was reasonable for a research proto-
type, we decided to put some effort into making Stacks-
plorer much faster.

8.2.1 Cached Call Graph

Implementation

To reduce time required to update the side columns once
the focus method changed, we implemented a caching
mechanism for information about potential call stacks. The
cache is a doubly linked directed graph, in which each node
represents one method. An edge from a node A to anode B
in the graph exists iff B is called from the implementation of
A. We refer to this graph as call graph. In this call graph, we
can obtain the information about callers and called meth-
ods for a given method in O(n), where n is the number of
nodes, since a search for the node representing the focus
method in the graph is required. (Note that the search is
not actually performed on the graph, since it might not be
connected. Instead, all nodes of the graph are additionally
stored in an array for lookups.) For all practically feasible
projects, lookup of information happens with no noticeable
delay.

To obtain an initial call graph, the algorithm iterates
through all methods in the project and determines the
methods they call using the same algorithm used in the
tirst prototype. While this initialization is running, Stacks-
plorer works exactly like the first prototype. Once the ini-
tialization has finished, the object used to gather the infor-
mation displayed in the side columns is substituted by an
object complying with the same protocol, but using the call
graph to obtain the information. The benefit of this tech-

The performance of
the first prototype
was not sufficient for
users that navigated
quickly.

Stacksplorer caches
information about all
potential call stacks
in an application.

As long as the call
graph is created
initially, Stacksplorer
works like the first
prototype.

100

8 Improved Prototype

The call graph allows
revealing information,
that could not be
retrieved using the
first prototype of
Stacksplorer.

The call graph
provides a foundation
to build visualization
techniques for
higher-level
overviews.

nique is that users can start working right after they opened
a project, although generating the call stack might take a
while. Users can cancel the generation of a call graph if they
prefer so. To keep the call graph up to date, it supports par-
tial reloads. These are triggered whenever Xcode’s project
index updates.

Implications

In contrast to our first prototype, where at each point in
time only information about callers and called methods for
the current focus method was available, Stacksplorer now
knows the full information about potential call stacks ev-
erywhere in the project all the time. Besides improving the
speed of lookups, this can also enable new kinds of queries
for information. Stacksplorer’s call graph, for example, im-
plements Dijkstra’s algorithm to obtain the shortest path
from the focus method to each other method in the project.
This could be used for a “smart path” feature that allows
defining a user defined path that contains all paths that call
a given method at some point. In addition, many sugges-
tions users brought up for visualizations on a higher ab-
straction level (7.2.6 — “Users’ Comments”) could be real-
ized using the functionality provided by Stacksplorer’s call
graph. For example, many users imagined a feature to gen-
erate a graph that contains all relevant method calls for a
particular task. The user interface for this feature could be
very responsive if Stacksplorer’s call graph is used for the
implementation.

A detailed exploration of the various interaction techniques
that are possible by using the cached call graph goes be-
yond the scope of this work. In its current version, Stacks-
plorer contributes a framework other researchers or devel-
opers of Xcode plug-ins can build upon to implement and
evaluate these techniques easily.

8.2 Performance Enhancements

101

8.2.2 Algorithmic Improvements

While the call stack is initialized, the algorithm used in
the first prototype to extract method calls from the source
code of a method is performed on all methods in a project.
Hence, its weak performance becomes much more obvi-
ous, because even for small projects the generation of the
call graph takes a lot of time. We sampled the CPU usage
of Stacksplorer during a call graph update using Apple’s
Instruments (4.1.5 — “Reverse Engineering”). This analy-
sis allowed us to identify which parts of the algorithm to
extract outgoing edges from a piece of source code require
the most processing time. It turned out that querying the
project index for a list of all methods accounts for 32% of
the runtime of an update process. Simply caching this list
during a single call graph update could save this time.

An even bigger portion of the runtime for a call stack up-
date was consumed by invocations of the code comple-
tion engine (49%). A simple caching mechanism was not
suitable to solve this problem, since the code completion
is required to determine the type of each expression on
which a method is called. Additionally, it was impossi-
ble to use only parts of the code completion’s algorithm,
since the code completion engine uses a C++ based parser
internally. However, once the parser has determined the
type of the expression that should be completed, it inter-
nally creates an Objective-C object again (an instance of
PBXCCType) to represent this type. This Objective-C ob-
ject is then queried for the list of suggestions returned by
the code completion engine. Fortunately, this is also what
consumes most processing time required for code comple-
tion. Hence, we could change the PBXCCType class, to
not return a list of suggestions if the code completion is
used from Stacksplorer’s update algorithm, but to return
only its type instead. This change led to another signifi-
cant increase in update speed for the call graph. To deter-
mine from the changed implementation of PBXCCType if
it is called from our update algorithm or not, we check if
it runs on the same operation queue (4.1.6 — “Concurrency
Programming”) as our update algorithm. For that, we save
the operation queue the update algorithm runs on in a sin-
gleton object that can then be accessed from the implemen-

Caching a list of all
methods in the
project decreases
time to update the
call graph by over
30%.

Invocations of the
code completion
engine accounted for
the biggest portion of
the time required to
update the call
graph.

102

8 Improved Prototype

The time required for
call graph updates
could be decreased
by 90%.

tation of PBXCCType. The type name determined by the
code completion engine, which is what we are interested
in, is passed back to our algorithm by writing it to an in-
stance variable of the singleton. The regular methods to
obtain results from the code completion engine break due
to our changes (if the code completion is used from our up-
date algorithm).

300s

264.1s

250s

216.0s

200s

150s

100s

50s

26.1s

15.4s 113s

-
s
Sample Source Code Stacksplorer Source Code
Stacksplorer Original ®|mprovement 1 Improvement 2

Figure 8.3: The chart shows for two different code bases
how much time is required to create a complete call graph
with the algorithm from the first version of Stacksplorer, af-
ter caching the list of all methods returned from the project
index (Improvement 1), and after changing the code com-
pletion engine (Improvement 2).

To test the effectiveness of these changes to the update algo-
rithm, we measured the time required to create a complete
call graph for two different code bases after each iteration of
the algorithm. Firstly, we used a small project that evolved
from a different research project at our chair, which we will
refer to as sample code base. It comprises roughly 1700 SLOC.
As a second code base to test the performance with, we
used the source code of Stacksplorer itself, which contained
roughly 7000 SLOC at the time of testing. Figure 8.3 shows

8.2 Performance Enhancements

103

how much time is required to create a complete call graph
for these two projects using the algorithm of the version of
Stacksplorer that was used in user tests, after caching the
list of all methods in the project (Improvement 1), and after
hacking into the code completion algorithm (Improvement
2). Overall, we could reduce the time required to initialize
the complete call graph by up to 90%. This improvement
is also clearly noticeable when using the plug-in without
generating the call graph; outgoing edges appear with no
noticeable delay.

105

Chapter 9

Summary and Future
Work

“The future is not what is coming at us, but
what we are headed for.”

—Jean-Marie Guyau

This work complements existing research about program-
mer’s work practices and about tools to support software
developers. In this last chapter, we give a summary of
our work and point out interesting questions for future re-
search.

9.1 Summary and Contributions

In this thesis, we presented Stacksplorer, a novel visual-
ization technique for code browsing, which displays in-
formation about potential call stacks in two columns next
to the source code. The method currently edited in the
central source code editor is called the focus method. The
side columns display methods calling the focus method (on
the left) and methods called from the focus method (on
the right). Stacksplorer allows navigating through poten-
tial call stacks in an application horizontally, leaving intact

Stacksplorer allows
navigating through
potential call stacks
of an application.

106

9 Summary and Future Work

A software prototype
is available as Xcode

plug-in.

A user test could
show the
effectiveness of
Stacksplorer’s
visualization
technique.

Developers need to
navigate along
structural
relationships in the
source code to
understand a project.

the well-known vertical navigation through a single imple-
mentation file (typically representing one class). Graphi-
cal overlays that extend over the source code and the side
columns make intelligible which information is displayed
in the side columns. Additionally, Stacksplorer allows tag-
ging methods for further reference.

We presented a working prototype of this visualization
technique, which integrates into Apple’s Xcode IDE. The
prototype is able to gather and visualize data from arbi-
trary real world applications developed in Objective-C. Its
performance and its visual appearance have been itera-
tively refined. The latest iteration of Stacksplorer includes
a cached call graph, in which Stacksplorer stores informa-
tion about all potential call stacks in an application. Hence,
the prototype also contributes a framework for the devel-
opment of more advanced visualization tools, which show
a larger extent of call stack information at a time.

To evaluate Stacksplorer, we conducted a user test, in which
participants had to work on maintenance tasks in a large
software project that participants did not know before-
hand. The participants were overly satisfied with Stacks-
plorer. In the study, they had to work on one task with and
on one without Stacksplorer. One of two tasks could be
completed significantly more often when participants used
Stacksplorer. Additionally, the task in which participants
used Stacksplorer could be solved significantly faster than
the other task. Although other comparisons in our study
were not significant, we can conclude that Stacksplorer is a
highly valuable addition to a developer’s toolkit.

The work on Stacksplorer is rooted in a preliminary study
we conducted, in which we could confirm that develop-
ers using Xcode to develop Objective-C applications ex-
hibit similar navigation behavior as Java developers. The
similarity in navigation behavior between Java developers
and developers of other languages had not yet been tested.
Additionally, we could show that structural dependencies
in source code can serve as important guidance for pro-
grammers working on maintenance tasks, i.e., on an exist-
ing code base. However, not all structural dependencies
are equally important for each kind of task: While bug fix-
ing requires a thorough understanding of a program’s call

9.2 Future Work

107

stack, refactoring tasks require more insight in the use of
variables in a single method or class. Study participants
found that Xcode, as one example of a modern IDE, does
not support this structurally guided navigation satisfac-
torily. Some of Xcode’s tools that do not support struc-
turally guided navigation were considered nearly superflu-
ous and, hence, increase Xcode’s complexity unnecessarily.
These results should apply to other modern IDEs providing
similar tools as Xcode as well.

The results from this thesis up to and including chapter 6 —
“Software Prototype” were published as work in progress
at UIST 2010 [Krdmer et al., 2010].

9.2 Future Work

Besides the lessons learned from the work on Stacksplorer,
we also noticed several open research questions, which we
consider worth investigating in more detail. In the follow-
ing sections, we present these open questions.

9.2.1 Structural relationships

Because developers gave Stacksplorer an enthusiastic re-
ception, it is enticing to increase its applicability by sup-
porting a wider range of structural relationships. The pre-
liminary study we conducted showed that, for example, ac-
cess to variables would be important for developers. In
addition, exploring notifications in Stacksplorer would be
desirable, since Xcode’s native support for this task was
considered particularly underwhelming in the preliminary
study.

Other kinds of relationships might also require slight vari-
ations of the visualization to be useful. At least the map-
ping which information is shown in the side columns has
to change slightly. Regarding notifications, three different
kinds of locations in the source code are relevant: Firstly,
all methods from which a given notification is posted; sec-

Other structural
relationships besides
call stacks might be
visualized.

Stacksplorer’s design
is optimized to
visualize potential
call stacks.

108

9 Summary and Future Work

When visualizing
variable access,
information relates to
a single symbol
instead of a method.

Information about
actual program
traces could be
visualized as well.

Information obtained
through static
analysis is available
faster.

ondly, all methods which receive the posted notification;
and thirdly, all methods that register a receiver. The ex-
isting concept of Stacksplorer provides no clear reasoning
which of these kinds of information should appear in which
side column for which focus method.

Considering variable access, the more important relation-
ship compared to notifications according to the preliminary
study, problems are even tougher. Interesting about vari-
able access is to see all methods from where a given vari-
able, not a complete method, is accessed. To incorporate
variable access into Stacksplorer would require to intro-
duce the concept of a focus variable to which the information
in the side columns relates instead of a focus method. An-
other problem arises, because variable access and call stack
information are hard to separate completely since variable
access in object-oriented software is often wrapped in ac-
cessor methods.

9.2.2 Runtime Traces

To better isolate relevant paths through the source code,
actual application runs could be traced to find out which
methods are actually called in which order and how fre-
quently. This would, for example, allow to give edges in
the call graph a specific weight that might be mapped to the
thickness of the overlays in Stacksplorer, which connect the
entries in the side columns with method calls in the source
code. In combination with unit tests, specific (erroneous)
behavior of an application might be traced and the actual
call stack could be visualized. Traces also allow develop-
ers to spot methods which are never called, or only very
rarely, and hence to find opportunities to clean up the code
by removing parts that are no longer used.

We think runtime traces should always be an addition to
static code analysis, not a replacement. Static analysis
as used for Stacksplorer is applicable at any time during
development, even if the source code contains a compile
time error. Information obtained through static analysis is
quickly available, as it does not require running the appli-

9.2 Future Work

109

cation. Static analysis also reveals call stacks that existing
test cases do not cover.

9.2.3 Storing Interesting Paths

Our prototype did include a method tagging feature, which
was originally designed to allow storing certain paths
through the source code. Although some users liked and
used this feature, there also was a demand for a tool that
works more automatically and is more tied to the concept
of call stacks.

Consequently, other methods to define a path should be
explored. For example, one might pick a single method
and visualize all paths eventually calling this method at
some point, or all paths that eventually are called from
the single method. The latter would be especially useful
if users picked an anchor point during their exploration,
since it would always show them how to navigate back to
the anchor point. Another possibility to define a path in
the source code would be to pick two methods to select
all paths connecting these two methods in the call stack.
This would, for example, help to understand why a given
method in the data model is called after a certain Ul action
was triggered.

Additionally, it might be explored if a more advanced rep-
resentation of methods in the path editor is useful. Instead
of showing a list of methods on a path, the path editor
could also present a graph that shows how methods are
connected in the call graph.

9.2.4 Advanced Visualization Techniques

More advanced visualization techniques are not only ap-
plicable in the path editor but would also be useful in gen-
eral to provide a higher level overview of the software’s
structure, which is not provided by the current version of
Stacksplorer. Some ideas from users how such an inter-
face could integrate with Stacksplorer were presented ear-

Users wanted to
store a particular
path instead of just
tagging methods.

Other means to
specify a path to
store should be
explored.

More graphical
representations of
paths in the path
editor should be
explored.

Visualization
techniques providing
a high level overview
of source code are
still missing.

110

9 Summary and Future Work

A design space for
code visualization
would help to map
existing
visualizations.

Mental models of
developers are
widely unknown.

lier (7.2.6 — “Users’ Comments”). High-level visualizations
of source code have also been the topic of related work (3 -
“Related Work”). However, there is still much room for im-
provement and innovation. In the user test we conducted,
we could observe that, in an unknown code base, finding
the correct place to start the investigation from is still a big
problem.

To compare the different existing approaches as well as the
techniques proposed in the discussion of our user study;,
it might be useful to define a design space in which these
visualization techniques can be categorized. Possible di-
mensions of this space include the amount of source code
shown, the structural relationships that are visualized (e.g.,
static object hierarchy or call stack), and the kind of rep-
resentation used (e.g., query language or graph visualiza-
tion).

9.2.5 Mental Models of Software

Although some analysis has been done regarding the cogni-
tive models developers use to understand unknown source
code, less is known about the mental models developers
build of source code they understood. Learning more about
these models would help to design more appropriate rep-
resentations of source code. We suggest a study in which
developers are asked to build their own representations or
are asked to explain structural aspects of their source code
to novices using any kind of visualization they like. This
study may provide interesting insights into the different
mental models of developers, and how well these models
work to convey the information to others.

111

Appendix A

Hide a Search from the

Project Browser

//

// PBXBatchFinder.h
//

#import <Cocoa/Cocoa.h>

@interface PBXBatchFinder (CNPlugin)

—(BOOL)visibleInSmartGroup;
- (void) setVisbleInSmartGroup: (BOOL) flag;

@end

//

// PBXBatchFinder.m
//

#import "PBXBatchFinder+CNPlugin.h"
#import <objc/runtime.h>

@implementation PBXBatchFinder (CNPlugin)
static char visibleInSmartGroupKey;

- (BOOL)visibleInSmartGroup;

{

return [objc_getAssociatedObject (self,
boolValue];

&visibleInSmartGroupKey)

112

- (void) setVisbleInSmartGroup: (BOOL) flag;

{
objc_setAssociatedObject (self,
&visibleInSmartGroupKey,
[NSNumber numberWithBool:flag],
OBJC_ASSOCIATION_RETAIN) ;

@end

//

// PBXFindSmartGroup+CNPlugin.h

//

@class PBXBatchFinder;

@interface PBXFindSmartGroup (CNPlugin)

- (void)swizzleObserveBatchFinder: (PBXBatchFinder =) finder;
@end

//

// PBXFindSmartGroup+CNPlugin.m

//

#import "PBXFindSmartGroup+CNPlugin.h"
#import "PBXBatchFinder+CNPlugin.h"

@implementation PBXFindSmartGroup (CNPlugin)
+ (wvoid) load;

{

[self exchangeInstanceMethod:@selector (observeBatchFinder:)
withMethod:@selector (swizzleObserveBatchFinder:)];
- (void)swizzleObserveBatchFinder: (PBXBatchFinder =) finder;

if (![finder visibleInSmartGroup])
return;

[self swizzleObserveBatchFinder:finder];

@end

113

Appendix B

Preliminary Study:
Questionnaire

Question numbers were not part of the original test and are
included for reference only.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Working with source code

This test is a part of my, Jan-Peter Kramer's, diploma thesis. | research tools to support
structurally guided navigation in source code. With this test, | want to investigate how
programmers use available tools for navigation.

Background

Age

Gender
) Male

) Female

Occupation

What is your highest academic degree?
) Abitur

) Bachelor (Diplom-FH)

() Master (Diplom)

3 PhD

) Other:

If your highest degree is university level or if you are a student: What field did/will you
major in?

How many hours per week do you spend programming?

How many years of programming experience do you have?
Please include experience with any language.

How many years of experience with Objective-C and Cocoa/Cocoa Touch do you have?

Q9 Please rate your experience with the following languages.
1=very experienced, 5=never used

1 2 3 4 5
Objective-C O O 0 O 0
C++ O o 0o 0o o0
C#) M ') 3])
C O O O O O
Java 'S 0) 8 0 0)
Visual Basic O) 0 O (3
Ruby 'S 0) 8 0 0)
PHP O O O O 0O
Flash O S §] O 0O
Q10 If the programming language you are most experienced in is not listed above, please enter
it here.
Qn Which platforms do you develop for?
Select all that apply.
1 Mac
"] Windows
[Linux
["1 iPhone / iPad
[1 Android
] Web
1 Other:

Continue >)

»
—

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

Working with source code

Navigation

The following questions are concerned with different types of navigation in Xcode. Some of them
might need clarification: "Navigating to a known part in the source code" refers to navigation
actions where you already know, where you have to go to. "Navigating the call stack" means,
navigating from a method implementation to either the declaration of a method, which is used, or
to the caller of the method. "Navigating variable access" describes navigation from any
occurrence of a variable to other methods in the source code that read or write the same

variable.
Q12 How frequently do you use each navigation technique while bug fixing?
1=frequently, 4=seldom, 5=never
1 2 3 4 5
Navigating to a known
part in the source O O O O O
code
Navigating the call 0 P P P P
stack ') N ' '
Navigating variable Y) ')) 0
access ' ' . ' '
Navigating between
poster and recipient of 0 0 0 0 (]

a notification

Navigation between
interface and 0 $) 0 $))

implementation
Navigating between

objects and their O O §) $) O
delegates
Other navigation O O 8 3 3
Q13 How frequently do you use each navigation technique while refactoring?
1=frequently, 4=seldom, 5=never
1 2 3 4 5
Navigating to a known
part in the source 0 0 (3] 0 0
code
Navigating the call 0 0 P P P
stack ’ '
Navigating variable 0 o) ,—-ﬁ o~ o
access ’ ! . ' '
Navigating between
(= & 3] (& &

poster and recipient of
a notification

Navigation between
interface and O O O O O

implementation
Navigating between

objects and their 0 0 0 @] 0

delegates
Other navigation O 0 O O O
Q14 How frequently do you use each navigation technique while adding new features?
1=frequently, 4=seldom, 5=never
1 2 3 4 5
Navigating to a known .
part in the source)] 0 0 O
code
Navigating the call 0y) oy oy Py
stack N } N ' '
Navigating variable 0 0 ey Py P
access N] -) '
Navigating between
poster and recipient of) 8 8 3 (3

a notification
Navigation between
interface and §)) §) 0 O
implementation
Navigating between

objects and their 0 0 8]) ()
delegates
Other navigation O O O O o
Q15 Please rank the top 5 most frequently used types of navigation in you workflow.
1 2 3 4 5
Navigating to a known
part in the source O) 8 3 O
code
Navigating the call 0 0) P Py
stack)) N ' '
Navigating variable 0 0 ey Py P
access ‘
Navigating between
poster and recipient of 8] 0 0 8] (3]

a notification
Navigation between
interface and §]) 0 8] O
implementation
Navigating between

objects and their 0) 0 0 O
delegates
Other navigation 8] 0 0 8] O
Q16 If you do "other navigation" at all, please explain which relationships in the source code,

other than those listed above, you explore by navigation.

(« Back) (Continue »)

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

Working with source code

Support
Q17 Please rate how well Xcode supports each navigation action.
1= very useful support, 5= no support
1 2 3 4 5
Navigating to a known
part in the source O O O O §]
code
Navigating the call 0 o) oy P o
stack . N - “
Navigating variable)) fal) 0
access N ; N ' '
Navigating between
poster and recipient of 3] 0) 0 §)]

a notification

Navigating between
interface and 8 O 8 3 &)

implementation
Navigating between

objects and their O O) 0 e
delegates
Other navigation 0 0 0 §) O
Q18 Can you think of something you find particularly annoying while exploring source code?
Tools
Q19 Please rate the importance of each tool listed below.
1= essential, 5= unnecessary
1 2 3 4 5
File Browser §)]) 0 §) O
) My s) s

Jump to Definition

Project-wide search

Find (selected text) in
Project

Search
Documentation

Find (selected text) in
Documentation
Switch to

> 0 0 0
> 0 0 O
D 00
> O 0 0
> o O

D
D

)) ')) O
Header/Source File
Class Browser O 0) 3 O
File History O O) O O
Bookmarks O O) O O
Open Quickly O O) O O
Step through program
line by line (in O O O O §]
debugger)
Call stack (from) Fa) &) ')
debugger)
Q20 Do you use any other tools, which are not listed above?
e
Q21 If you had the chance to request one single change or addition to Xcode, what would that

be?

C« Backj [:Submitj

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

121

Appendix C

User Test: Task
Descriptions

Task 1.1

For a (hypothetical) trial version of Bibdesk, you want to add a limitation. This should add
“TRIAL” in front of every paper’s file name when using the “Autofile” feature. Where would
you implement this change?

Hint: The BDSKLinkedFile class is used to represent linked files.

Task 1.2

One of your colleagues suggests implementing the change from 1.1 by adapting the
parseFormat:forField:linkedFile:ofltem:suggestion: method in the BDSKFormatParser
class. Which effects would this have in the Ul?

Hint: The Autofile feature operates mainly in the background. The only part of the Ul that is
dedicated to the Autofile feature is the associated preference screen.

Task 2.1

For a (hypothetical) trial version of BibDesk, the BibTeX output should be changed to
contain “Exported by BibDesk” in the notes field whenever a BibTeX file is saved. Where
should this change be implemented? You do not need to consider that the added note will,
of course, show up in BibTeX when opening the created BibTeX file.

Hint: BibDesk’s document format is also BibTeX.
From Apple’s NSDocument documentation:

Commonly Used Methods

dataOfType:error:
Returns the document’s data in a specified type.

readFromData:ofType:error:
Sets the contents of this document by reading from data of a specified type.

writeToURL:ofType:error:
Writes the document’s data to a URL.

readFromURL:ofType:error:
Reads the document’s data from a file.

windowNibName
Returns the name of the document’s sole nib file (resulting in the creation
of a window controller for the window in that file).

makeWindowControllers
Creates and returns the window controllers used to manage document
windows.

Task 2.2

The “search for” command in apple script should also consider the name of the journal
when matching the string. Where should this change be implemented and which other
feature would be affected by that change?

Hint: Each Apple Script command is implemented in a separate class.

127

Appendix D

User Test: Post Session
Questionnaire

Stacksplorer - Post session questionnaire

Participant ID:

Strongly
Disagree

Strongly
Agree

1. |think that | would like to use this
system frequently

2. | found the system unnecessarily
complex

3. Ithought the system was easy to use

4. |think that | would need the support of
a technical person to be able to use
this system

5. | found the various functions in this
system were well integrated

6. |thought there was too much
inconsistency in this system

7. | would imagine that most people
would learn to use this system very
quickly

8. | found the system very awkward to
use

9. | felt very confident using the system

10.1 needed to learn a lot of things before
| could get going with this system

11.1 found understanding the source
code easy using Stacksplorer

12.1 do not think Stacksplorer has
benefits for code understanding
compared to Xcode

13.1 think navigation in source code is
faster when using Stacksplorer
(compared to vanilla Xcode)

14.1 found navigation using Stacksplorer
awkward

Strongly
Disagree

Strongly
Agree

15.When using Stacksplorer | had a
better idea of where | am in the
source code compared to using plain
Xcode.

16. | often felt lost in the source code
when using Stacksplorer

131

Bibliography

Apple. Objective-C Runtime Programming Guide, 2009.
Apple. Cocoa Fundamentals Guide, 2010a.
Apple. Garbage Collection Programming Guide, 2010b.

Nathaniel Ayewah, David Hovemeyer,]J. David Morgen-
thaler, John Penix, and William Pugh. Using Static Anal-
ysis to Find Bugs. IEEE Software, 25(5):22-29, 2008.

Aaron Bangor, Philip Kortum, and James Miller. An Em-
pirical Evaluation of the System Usability Scale. Inter-
national Journal of Human-Computer Interaction, 24(6):574—
594, August 2008.

Hugh Beyer and Karen Holtzblatt. Contextual Design. in-
teractions, 6(1):32—42, 1999.

Barry W Boehm. Software engineering. IEEE Transactions
on Computers, 25(12):1226-1242, November 1976.

Barry W. Boehm. Characteristics of Software Quality. 1978.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J. LaViola. Code
bubbles: a working set-based interface for code under-
standing and maintenance. In Proceedings of the 28th inter-
national conference on Human factors in computing systems -
CHI '10, New York, 2010. ACM Press.

John Brooke. SUS-A quick and dirty usability scale, 1996.

Ruven Brooks. Towards a Theory of the Comprehension of
Computer Programs. International Journal of Man-Machine
Studies, 18(6):543-554, 1983.

132

Bibliography

Kunrong Chen and Véclav Rajlich. Case study of feature lo-
cation using dependence graph. In Proceedings of the 8th
International Workshop on Program Comprehension, page
241. IEEE Computer Society, 2000.

Michael] Coblenz, Andrew] Ko, and Brad A Myers.
JASPER : An Eclipse Plug-In to Facilitate Software Main-
tenance Tasks. In Proceedings of the 2006 OOPSLA work-
shop on eclipse technology eXchange, pages 65-69, Portland,
Oregon, 2006. ACM Press.

M.]. Coblenz. JASPER: Facilitating Software Maintenance Ac-
tivities With Explicit Task Representations. PhD thesis, 2006.

B Curtis. Substantiating programmer variability. Proceed-
ings of the IEEE, 69(7):846-846, 1981.

Brian de Alwis, Gail C. Murphy, and Martin P. Robillard. A
Comparative Study of Three Program Exploration Tools.
In 15th IEEE International Conference on Program Compre-
hension (ICPC '07), pages 103-112. IEEE, June 2007.

Robert DeLine, Mary Czerwinski, and George Robertson.
Easing Program Comprehension by Sharing Navigation
Data. In Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 241-248.
IEEE, 2005.

Robert Deline, Mary Czerwinski, Brian Meyers, Gina Veno-
lia, Steven Drucker, and George Robertson. Code
Thumbnails: Using Spatial Memory to Navigate Source
Code. In Proceedings of the Visual Languages and Human-
Centric Computing, pages 11-18. IEEE, 2006.

Pierre Deransart, Laurent Cervoni, and Abdel Ali Ed-Dbali.
Prolog: the standard reference manual. Springer-Verlag,
London, UK, 1996.

L.P. Deutsch and A.M. Schiffman. Efficient implementation
of the smalltalk-80 system. In Proceedings of the 11th ACM
Symposium on Principles of Programming Languages, pages
297-302. ACM, 1984.

Martin Fowler, Kent Beck, John Brandt, William Opdyke,
and Don Roberts. Refactoring: improving the design of ex-
isting code. Addison-Wesley Longman, Amsterdam, 1999.

Bibliography

133

G.W. Furnas. Generalized fisheye views. In Proceedings of
the SIGCHLI conference on Human factors in computing sys-
tems (CHI '86). ACM, 1986.

K.B. Gallagher. Visual impact analysis. In Proceedings of
the International Conference on Software Maintenance, pages
52-58. IEEE, 1996.

I. Herman, G. Melancon, and M.S. Marshall. Graph visu-
alization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24-43, 2000.

ML Huang, Peter Eades, Junhu Wang, and P. R. China. On-
line Animated Graph Drawing Using a Modified Spring
Algorithm. Journal of Visual languages and Computing, 9
(6), 1998.

Doug Janzen and Kris De Volder. Navigating and querying
code without getting lost. In Proceedings of the 2nd inter-
national conference on Aspect-oriented software development
(AOSD "03), pages 178-187. ACM, 2003.

A.C. Kay. The early history of Smalltalk. ACM SigPlan No-
tices, 28(3):69-69, 1993.

Mik Kersten and Gail C. Murphy. Mylar: a degree-of-
interest model for IDEs. In Proceedings of the 4th inter-
national conference on Aspect-oriented software development,
pages 159-168. ACM, 2005.

Henning Kiel. Reducing mental context switches during pro-
gramming by. Diploma thesis, RWTH Aachen University,
2009.

Won Kim and Frederick H. Lochovsky. Object-Oriented Con-
cepts, Databases and Applications. 1989.

Andrew Ko, Brad Myers, Michael Coblenz, and Htet Aung.
An Exploratory Study of How Developers Seek, Relate,
and Collect Relevant Information during Software Main-
tenance Tasks. IEEE Transactions on Software Engineering,
32(12):971-987, December 2006.

Andrew] Ko and Brad A Myers. Debugging Reinvented:
Asking and Answering Why and Why Not Questions
about Program Behavior. In International Conference on

134

Bibliography

Software Engineering (ICSE '08), pages 301-310. IEEE,
2008.

Jan-Peter Kramer, Thorsten Karrer, Jonathan Diehl, and Jan
Borchers. Stacksplorer: understanding dynamic program
behavior. In Adjunct proceedings of the 23nd annual ACM
symposium on User interface software and technology, pages
433-434. ACM, 2010.

G.E. Krasner and S.T. Pope. A description of the model-
view-controller user interface paradigm in the smalltalk-
80 system, 1988.

Thomas D. LaToza, Gina Venolia, and Robert DeLine.
Maintaining Mental Models: A Study of Developer Work
Habits. In Proceedings of the 28th international conference on
Software engineering, pages 492-501. ACM, 2006.

Stanley Letovsky. Cognitive processes in program compre-
hension. Journal of Systems and Software, 7(4), 1987.

Harry R. Lewis and Christos H. Papadimitriou. Elements of
the Theory of Computation. 1981.

J Lewis and Jeff Sauro. The Factor Structure of the System
Usability Scale. LNCS: Human Centered Design, 5619:94—
103, 2009.

John A. Lewis, Sallie M. Henry, Dennis G. Kafura, and
Robert S. Schulman. An empirical study of the object-
oriented paradigm and software reuse. Conference pro-
ceedings on Object-oriented programming systems, languages,
and applications (OOPSLA '91), pages 184-196, 1991.

Wei Li and Sallie Henry. Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Software, 23(2):
111-122, 1993.

Bennet P. Lientz. Software maintenance management: a study
of the maintenance of computer application software in 487
data processing organizations. Addison-Wesley, 1980.

Jochen Ludewig and Horst Lichter. Software Engineering.
dpunkt.verlag, Heidelberg, 2007.

B. Meyer. Object-oriented software construction. 1997.

Bibliography

135

Gail C Murphy, Mik Kersten, and Leah Findlater. How Are
Java Software Developers Using the Eclipse IDE? IEEE
Software, 23(4):76-83, 2006.

J. Nielsen and T.K. Landauer. A Mathematical Model of
the Finding of Usability Problems. In Proceedings of the
INTERACT'93 and CHI'93 conference on Human factors in
computing systems, pages 206-213. ACM, 1993.

Donald A. Norman. The Design of Everyday Things. 1988.

Object Management Group. OMG Unified Modeling Lan-
guage Specification, 1997.

Object Management Group. Unified Modeling Language,
Infrastructure, 2010.

Rob Van Ommering, Frank Van Der Linden, and Jeff
Kramer. The Koala component model for consumer elec-
tronics software. Computer, 33(3):78-85, 2000.

Nancy Pennington. Stimulus structures and mental rep-
resentations in expert comprehension of computer pro-
grams. Cognitive Psychology, 19:295-341, 1987.

Thomas E. Potok, Mladen Vouk, and Andy Rindos. Pro-
ductivity analysis of object-oriented software developed
in a commercial environment. Software: Practice and Ex-
perience, 29(10):833-847, August 1999.

M P Robillard and G C Murphy. Concern Graphs: Finding
and Describing Concerns Using Structural Program De-
pendencies. In Proceedings of the 24th International Confer-
ence on Software Engineering, pages 406-416. ACM, 2002.

Martin P. Robillard. Automatic generation of suggestions
for program investigation. ACM SIGSOFT Software Engi-
neering Notes, 30(5):11, September 2005.

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy.
How Effective Developers Investigate Source Code:An
Exploratory Study. IEEE Transactions on Software Engi-
neering, 30(12), 2004.

Jonathan Sillito, Gail C Murphy, and Kris De Volder. Ask-
ing and Answering Questions during a Programming
Change Task. IEEE Transactions on Software Engineering,
34(4):434-451, 2008.

136

Bibliography

Janice Singer, Robert Elves, and Margaret-Anne Storey.
NavTracks: Supporting Navigation in Software Mainte-
nance. In Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance, pages 325-334. IEEE, 2005.

M Storey, K Wong, and H. A. Miiller. How do program un-
derstanding tools affect how programmers understand
programs? Science of Computer Programming, 36(2-3):183—
207, March 2000.

Frank Tip, Jong-Deok Choi, John Field, and G. Rama-
lingam. Slicing class hierarchies in C++. ACM SIGPLAN
Notices, 31(10):179-197, October 1996.

Davor Cubrani¢ and Gail C. Murphy. Hipikat: recommend-
ing pertinent software development artifacts. In Proceed-
ings of the 25th International Conference on Software Engi-
neering, pages 408-418. IEEE, 2003.

Mark Weiser. Programmers Use Slices When Debugging.
Communications of the ACM, 25(7):446—452, 1982.

Dennis Wixon, Karen Holtzblatt, and Stephen Knox. Con-
textual design: an emergent view of system design. In
Conference on Human Factors in Computing Systems, pages
329 - 336. ACM, 1990.

137

Index

Beacons. ... 12
Cached CallGraph ..., 99-100
class-dump ... 32
COC0a . .ottt 25, 34-36

- Concurrency Programming 36

-Core ANIMationoovitiiii e 68

-Delegation....................o 35-36

-NotficationSo 36
CodeBubbles.ccooiiiiii 20-21
CodeThumbnails ..., 22-23
Concern Graphs ... 19
Contextual Inquiry...................o 46
Design Rationale ... 63-66
Evaluation. ... 73-91
F-Script Anywhere ... 32-33
Fisheye View. ... 65
Focus Method. i 64
future Worko 107-110
G B oo 33-34
Hipikat 16
Implementation..........................L. 39-43, 66-72,99-103
Inheritance Hierarchy i 8
10 25
JASPER . ..o 21-22
JQuery ... 17-18
Mac O X . e 25
Maintenance Tasks 46
Mental Models of Programmers.............................. 11
Model-View-Controller Pattern........................... 10, 35

138

Index

Navigation
ST00IS . 13, 37-39
Jump to Definition o 54-55, 60
Project-wide search 41-42, 54-55, 60-61
NavTracks ... 16
Object-oriented Architecture....................... 8-10
Objective-C...... ... 26-34
- Associated Referencesooo 30-31
-Categories. 30-32
- Declared Properties ...l 29
-Memory Management.................... ... 28-29
-Messaging.............oo 26-28
-Method Swizzling ... 31-32
-Plug-ins ..o 30-32
-Runtime...................o 26-32
Paper Prototype.............o i 65
Program Slicing ... 11-12
Refactoring............ 46-47
Slicingooviiii see Program Slicing
Static Code Analysis.....................o 71-72
Static Object Hierarchy ... 8
Strategies for Code Understanding........................... 10
- Bottom-up vs Top-Down........................ ... 10-11
- Opportunistic vs Structured 11
Suade.o 16
SUS. .o see System Usability Scale
System Usability Scale............................. 77-78, 87-88
Team Tracks ... 16
Tracing ... 71,108-109
Two-phase Navigation Model 83
UML .o 18-19
User Defined Pathoo oo, 68
User Defined Paths. ... 87,96-97
Whyline. ... 19-20
Xeode. ..o 25,37-43

Typeset January 18, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Chapter Overview

	Theory
	Object-oriented Software Development
	Programmers' Work Practices
	IDE Utilization

	Related Work
	Making Information Accessible
	Recommender Tools
	Query Languages

	Spatial Layouts
	Code Bubbles
	JASPER
	Code Thumbnails

	Prototyping Platform
	Objective-C
	Messaging
	Memory Management
	Declared Properties
	Plug-Ins
	Reverse Engineering
	Cocoa
	Delegation
	Notifications
	Concurrency Programming

	Xcode
	Navigation Tools
	Plug-in API
	Project Index
	Source Scanner
	Code Completion Engine
	Project Search
	Code Editor

	Navigation Behavior
	Study Design
	Participants
	Contextual Inquiry
	Execution
	Hypothesis

	Questionnaire

	Results
	Demographics and Experience
	High-level Strategies
	Documentation
	Source Code Access
	Importance of Navigation Types
	Xcode Tools
	Suggestions for Improvement

	Software Prototype
	Design
	Stacksplorer Xcode Plug-in
	Implementation
	Callers
	Called Methods

	Limitations

	Evaluation
	Experimental Setup
	Participants
	Conditions and Tasks
	Methodology
	Postsession Questionnaire

	Results
	Participants
	Task Success
	Task Completion Times
	Qualitative Observations
	Initial Exploration
	Two-phase Navigation
	Stacksplorer Adoption
	User Defined Paths Usage

	Postsession Questionnaire
	SUS
	Non-SUS questions

	Users' Comments

	Improved Prototype
	User Interface Refinements
	Overlay Highlighting
	User Defined Paths
	Navigation History

	Performance Enhancements
	Cached Call Graph
	Implementation
	Implications

	Algorithmic Improvements

	Summary and Future Work
	Summary and Contributions
	Future Work
	Structural relationships
	Runtime Traces
	Storing Interesting Paths
	Advanced Visualization Techniques
	Mental Models of Software

	Hide a Search from the Project Browser
	Preliminary Study: Questionnaire
	User Test: Task Descriptions
	User Test: Post Session Questionnaire
	Bibliography
	Index

