
Stacksplorer: Call Graph Navigation Helps Increasing
Code Maintenance Efficiency

Thorsten Karrer† Jan-Peter Krämer† Jonathan Diehl† Björn Hartmann‡ Jan Borchers†

†RWTH Aachen University
52062 Aachen, Germany

{karrer, kraemer, diehl, borchers}
@cs.rwth-aachen.de

‡Computer Science Division
University of California

Berkeley, CA 94720
bjoern@cs.berkeley.edu

ABSTRACT
We present Stacksplorer, a new tool to support source code
navigation and comprehension. Stacksplorer computes the
call graph of a given piece of code, visualizes relevant parts
of it, and allows developers to interactively traverse it. This
augments the traditional code editor by offering an additional
layer of navigation. Stacksplorer is particularly useful to un-
derstand and edit unknown source code because branches of
the call graph can be explored and backtracked easily. Visu-
alizing the callers of a method reduces the risk of introducing
unintended side effects. In a quantitative study, programmers
using Stacksplorer performed three of four software mainte-
nance tasks significantly faster and with higher success rates,
and Stacksplorer received a System Usability Scale rating of
85.4 from participants.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Development Tools / Toolkits / Programming
Environments, Visualization.

INTRODUCTION
A large part of a software developer’s work is maintaining
existing code bases. This includes adding new features, fix-
ing bugs, and refactoring code after the software has been
shipped. Maintenance has been shown to make up as much as
70% of the total expenses of a software project [19]. Because
of this, analyzing and improving how programmers maintain
code has recently become an active area of research.

Maintenance often comprises reading and understanding an
unfamiliar piece of source code and identifying problem-
atic sections. The developer then has to modify these sec-
tions while being aware of potential side effects [15]. To do
this, the developer spends a large part of his time navigat-

Figure 1: Stacksplorer visualizes and allows browsing
the call graph of an application’s source code. For
the current focus method, it shows callers in the left
column and methods called in the right.

ing through the code [20]. Navigating source code includes
file-based navigation, such as switching between classes that
are usually implemented in separate files, and navigating the
semantics of the code, e.g., locating a variable definition or
exploring the callers and callees of a certain method. Navi-
gating the call graph has been shown to be particularly im-
portant to understand code, to find out where to modify it,
and to assess the scope and side effects of any changes [13].

We present Stacksplorer, a plug-in that modifies the user in-
terface of the Xcode1 integrated development environment
(IDE) to visualize and navigate the neighborhood of any
given method in the call graph (Fig. 1). Stacksplorer lets de-
velopers see and access the callers “upstream” of a method,
reducing the risk of introducing unintended side effects. They
can also navigate downstream to understand how operations
are implemented in an unknown piece of code. The call
graph visualization helps developers retain the context of a
method and simplifies exploring and backtracking along in-
teresting branches of the call graph.

In a controlled experiment, developers solved code mainte-
nance tasks using Xcode with and without Stacksplorer. Our
results show that Stacksplorer helps developers to solve more
tasks correctly in less time, with a heightened awareness of
possible side effects.

1http://developer.apple.com/technologies/tools/xcode.html

RELATED WORK
Navigation Behavior
Today, most IDEs offer only limited tools for call graph re-
lated code navigation. Moreover, these tools are often diffi-
cult to find and invoke. By observing programmers working
with Eclipse on five change tasks in a 500SLOC2 Java appli-
cation, Ko et al. [11] found that about a quarter of the devel-
opers’ time was spent navigating, either by following depen-
dencies or by searching for names. Between code segments
related through structural relationships, users navigated us-
ing scroll bars and the package browser (14% of the test
period) or using the find and replace tool, although more
suitable and effective tools are available in Eclipse (see also
[18]). To perform comparisons, developers navigated back
and forth between code segments because by default, Eclipse
uses a single editing window.

Lawrance and Burnett [16] presented PFIS (Programmer Flow
by Information Scent), a model based on information forag-
ing theory to predict a programmer’s navigation. In informa-
tion foraging theory, each link between two pieces of infor-
mation has a certain scent that determines how likely a user
will follow this link on her search for relevant information.
In PFIS, a link is defined as any navigation possible with
one click; scent is determined by comparing words used in
the source code with those used in a bug report, which ver-
bally describes the users task. In an experiment, PFIS was
capable of predicting the navigation behavior of professional
software developers in a bug fixing task.

Recommender Systems
Recommender systems for software development aim at de-
termining automatically which information is relevant to the
developer’s current task. Most systems first calculate a ‘de-
gree of interest’ depending on the source file that is being
edited, for all files in the project. They then recommend
files with a degree of interest exceeding a threshold. Recom-
mender systems may take into account: a programmer’s nav-
igation history [23]; the navigation history of all program-
mers in the same code [6]; the history of editing activities in
addition to navigation [10]; and non-code resources such as
version control systems [24].

For small tasks, user studies of these tools consistently found
that the total effort spent on navigating through a project
could be reduced significantly, and that users considered au-
tomated guidance in software projects helpful, especially
when they were new to the project. For more complex
projects, however, the effect recommender tools have may
be minor compared to task and strategy specific effects [4].
In contrast to Stacksplorer, the recommender systems pre-
sented reduce the amount of information shown in the IDE,
but they do not introduce new ways to visualize the structural
relationships that led to the recommendations.

Call Graph Utilization
The Whyline [12] allows asking “Why did” or “Why didn’t”
questions about the textual and graphical output of an appli-
cation. For example, a line drawn in a painting application

2source lines of code (number of non-comment, non-empty lines of source
code)

may, after execution stopped, be queried “Why did this line’s
color = blue”. Using a trace of the actual program execution,
the Whyline computes a dynamic slice, i.e., it determines
which method executions influenced the relevant property.
Novice programmers using the Whyline could solve a bug
fixing task significantly faster than expert developers with-
out the Whyline. Stacksplorer is, in contrast to the Whyline,
not a debugging but a navigation tool; it does not allow users
to formulate an explicit question about a trace from a single
execution but facilitates exploration of the call graph during
code editing.

LaToza and Myers [14] scope searches in source code by re-
stricting them to branches of the call graph originating in or
leading to a certain method. The search results are visualized
in a graph, revealing the paths leading from the starting point
of the search to each result. Unlike Stacksplorer, this visual-
ization is a feature of the search tool and not integrated with
the source code editor as a means for navigation.

Commercial IDEs such as Visual Studio, Eclipse, or Xcode
offer various tools for exploring the call graph. Eclipse, for
example, is able to show multiple levels of callers and callees
of a method in a tree view; Visual Studio offers similar func-
tionality. These tools can be used for navigation, but they do
not update automatically when the user navigates through the
source code, and they are not part of, or visually connected
to, the code editor. For navigation inside the source code ed-
itor, most IDEs provide functionality to directly jump to the
definition of a method from where it is called, and some sup-
port jumping to callers; these tools, however, lack a perma-
nent visualization that could provide additional information
scent and help the user stay oriented.

Code Layout

Other tools focus solely on laying out relevant source code
elements visually in order to help developers navigating and
keeping track of source code. DeLine et al. [5] use the graph-
ically scaled down source code text file as an overview map
for navigation. While being too small to be readable, it al-
lows discerning the structure of the source code, thus sup-
porting inter- and intra-file navigation.

In Code Bubbles [2], code is viewed and edited in bubbles,
which can be arranged freely on a 2D plane. The bubbles
are connected with arrows representing existing relationships
between them. Users can use a number of tools, e.g., “Open
Declaration”, to find exactly the bubbles they need. Code
Bubbles is based on single methods as the basic navigational
unit, thus breaking the prevalent paradigm of regular IDEs,
which are based on a class-file dualism. In a qualitative study,
programmers solved one of two maintenance tasks signifi-
cantly faster with Code Bubbles than with Eclipse. The need
for back-and-forth navigation was also reduced significantly.
To combine the benefits of Code Bubbles and traditional
IDEs, Stacksplorer offers the familiar file- (or class-)based
navigation extended by a method-based navigation along the
call graph.

1 2 3 4 5

Navigating to a known
part in the source code

Navigating the call stack

Navigating variable access

Figure 2: The boxplot diagrams above show how
frequently (from 1=frequently to 4=seldom, 5=never)
developers think they perform navigation of different
types when working on bug fixing tasks.

FORMATIVE STUDY: HOW DEVELOPERS NAVIGATE IN
XCODE
We conducted a small formative study to understand how de-
velopers navigate source code in different situations when
using Xcode. To build on the findings of the aforementioned
studies, which used Java and Eclipse, we first had to confirm
that developers using Objective-C and Xcode navigate code
in ways similar to Java developers.

Six Objective-C developers who worked on maintenance tasks
at the time agreed to participate. Through a contextual in-
quiry, we analyzed the set of navigation actions our partici-
pants used during their work. For each navigation action we
noted the goal (e.g., “find first definition of variable”) moti-
vating the action and the tool used to perform it (e.g., “jump
to definition tool from contextual menu”). Afterwards, we
asked the participants to estimate the importance of the dif-
ferent goals, and to rate the support the IDE provided for
their navigation needs.

The most important goal when navigating source code was
to edit sections of code that were well-known to the devel-
opers both in location and content (see Fig. 2). This kind of
navigation happened mostly by switching between files and
scrolling through the source, and it was perceived to be well
supported by the IDE. When the developers’ knowledge of
the code was not sufficient to solve a task, and parts of the
source code had to be analyzed and understood, they mainly
followed structural relationships in the source code; most im-
portantly, the call graph was explored, and they investigated
which parts of the source code accessed an important vari-
able. Since variable access usually happened through acces-
sor methods, this also required an analysis of the call graph.

These findings confirmed our assumption that Xcode devel-
opers and Eclipse developers navigate through source code
similarly. Interestingly, the developers not only navigated
along edges of the call graph often, but they did so con-
sciously, and regarded it as important. They also actively
expressed that better tools for call graph navigation were
needed.

NAVIGATING WITH STACKSPLORER
These results motivated the main idea of Stacksplorer’s de-
sign: analyzing the code’s call graph [21] to offer relevant in-
formation related to the user’s focus method, i.e., the method
she is currently working on or trying to understand. The call
graph is a finite, directed graph in which each node corre-
sponds to one method in the source code. For any pair (A,B)

of methods, there exists an edge from A to B if (and only if)
method B is called from the implementation of method A.

At any time, Stacksplorer shows the neighborhood of the
focus method in the call graph, thus giving the user access
to the callers of and methods called from the focus method.
This is closely related to the way Herman et al. [8] suggest
incremental exploration of graphs by placing a window on
top of the graph, so that one logical frame is shown at a time.
Huang et al. [9] coined the term focus node for the logical
frame’s central node, which defines which other nodes will
belong to the logical frame. In our case, the focus method
corresponds to the focus node, and, together with the infor-
mation from its neighborhood in the call graph, forms the
logical frame.

Stacksplorer directly integrates with Xcode, adding two in-
teractive views alongside the code editor (Fig. 1). These three
views together display the current logical frame, basically
acting as a fisheye view [7] for the call graph. In the cen-
tral source code editor, the focus method is displayed in the
usual way. The side views show the names and classes of the
neighboring methods in the call graph. The left view shows
methods calling the focus method, the right shows methods
called from the focus method.

The items in the side columns are always positioned to min-
imize the on-screen distance to the related code in the edi-
tor. This simplifies grasping the context of the focus method.
Since the items in the right column reflect the order they
appear in the code, this also provides a rough overview of
what the focus method does. For densely written code, e.g.,
nested method calls, the assignment of items in the columns
to code locations can become unclear. To address this, Stack-
splorer optionally displays graphical overlays that connect
the method call in the source code to the corresponding item
in the side column (Fig. 1).

Most importantly, Stacksplorer adds a new ‘axis’ for naviga-
tion through a project’s source code; in addition to navigat-
ing through a single class by scrolling vertically in the editor,
Stacksplorer allows navigating horizontally by clicking on a
method in one of the side columns. This shifts the logical
frame inside the call graph and makes that method the focus
method. For example, navigating to a method that calls the
focus method by clicking on it in the left column will cause
the contents of all three columns to shift to the right (Fig. 3).
The method that was selected moves to the center and opens
in the central editor, and the side columns are updated ac-
cordingly. The previous focus method becomes an entry in
the list of called methods to the right. While this function-
ality is similar to the go to definition and find all references
commands of most IDEs, it differs in the way that it contin-
ually displays information scent and navigation affordances
that update dynamically.

Developers often find that existing means of documentation
are either hard to maintain or do not convey enough infor-
mation to fully understand how a given feature of an appli-
cation is implemented [15]. Comments in the source code,
for example, are tied to one location, making it difficult to
communicate which paths in the call graph constitute a fea-

MainController
 convert

MainController
 init

MainController
 convertClicked

AppDelegate
applicationDidFinish
Launching

Converter
 init

MainController
 inputP

MainController
 converterP

Converter
 c2f:M

MainController
 update:M

M

M
M

A

MainController
 convert

MainController
 init

MainController
 convertClicked

AppDelegate
applicationDidFinish
Launching

Converter
 init

MainController
 inputP

MainController
 converterP

Converter
 c2f:M

MainController
 update:M

M

M
M

A

1 2

Figure 3: The focus method that is being edited in the IDE (top) corresponds to the focus node in the call graph (bottom).
Clicking on a method in the left column of the Stacksplorer UI (1) shifts the logical frame inside the call graph and makes
the clicked method the focus method (2).

ture and how the methods involved work together. To this
end, Stacksplorer supports assigning tags to methods as a
lightweight form of documentation; important paths through
the call graph can be bookmarked for later reference by tag-
ging their methods. Tags can be named, and they are visu-
alized by colored frame overlays in the source code, such as
the red frames in Fig. 1. This way, tags can communicate
what purpose a certain method serves, or which features of
the application use a specific method. For example, the meth-
ods that are involved with screen redraws could be assigned
a common tag “redrawing” to clearly delineate this section
of the source code.

One of the limitations of call graph navigation (and, there-
fore, of Stacksplorer) is that we cannot accurately determine
all call stacks that may be executed during a real program
execution; in other words, it is impossible to correctly and
completely determine the call graph. In general, the ques-
tion if a path is reachable at runtime is undecidable [17]. For
example, static analysis is not able to detect if methods are
dynamically dispatched to a different object or a different
implementation at runtime. For these cases, tracing an ex-
ecution of the application would be needed. Despite these
limitations, we still decided to base Stacksplorer on static
analysis: the list of callees is populated with all methods that
match the name of the Objective-C selector and whose class
or ancestor class matches the class of the receiver. Thus, we
also get all possible overrides of a method, which is accept-
able in Objective-C with its typically fairly flat inheritance
structures. In terms of robustness against syntax errors, we
rely on Xcode’s parser. This approach yields a result more
quickly than runtime traces, and it works even if the source
code does not compile because of a bug. While providing

live updates to the visualization on every keystroke is pos-
sible, we currently limit updates to every save operation for
performance reasons.

EVALUATION
We tested the effectiveness of Stacksplorer’s call graph vi-
sualization and navigation in an experiment with 16 experi-
enced programmers performing code maintenance tasks with
and without Stacksplorer support. Our main goals for this
study were to better understand how practitioners use Stack-
splorer’s features when working with unknown code, and to
quantitatively compare task performance and success rates.
For the latter, we formulated the following hypotheses:

H1 More programmers can successfully solve a time-
constrained task that requires browsing and understanding
previously unknown source code when using Stacksplorer
than when using a default Xcode installation.

H2 Programmers can solve tasks that require browsing
and understanding previously unknown source code more
quickly when using Stacksplorer than when using a default
Xcode installation.

H3 Programmers can identify side effects of changes made
to unknown code more quickly when using Stacksplorer
than when using a default Xcode installation.

As a code base for the study, we used the open source project
BibDesk3, a bibliography manager for Mac OS X. We se-
lected this project because it is sufficiently complex with

3http://bibdesk.sourceforge.net

about 88.000 lines of code in over 400 classes, it is stable,
and it is written entirely in Objective-C.

The experiment was conducted on a Mac Pro computer with
a 23” screen at a resolution of 1920x1200. Xcode was
opened with the test project in a maximized window, and the
screen was recorded for the entire session.

Methodology
In the experiment, we compared two conditions: in the ex-
perimental condition participants could make use of Stack-
splorer’s features; in the control condition Stacksplorer was
not available. Participants had to solve two similarly diffi-
cult programming tasks, each consisting of two subtasks as
explained below. We counterbalanced task order and task to
condition assignment.

At the beginning of each user test, we demonstrated Stack-
splorer using an unrelated code base from one of our own
projects. We explained how to use the interactive visual-
ization of the call graph neighborhood and the tagging fea-
ture. To mitigate possible learning effects between the two
trials for each participant, we allowed them to then familiar-
ize themselves with the BibDesk source code for 10 minutes.

The participants did not know all tasks beforehand; we al-
ways introduced only the task they should work on next. The
time to complete each task was limited to 25 minutes for the
first subtask and 15 minutes for the second subtask to limit
the effects of fatigue. Additionally, participants were allowed
to take breaks between the tasks. While solving a task, speed
was the priority of the participants but it was made clear that
they should arrive at a working solution. To be consistent
with [2, 20], participants were allowed to use all of Xcode’s
code navigation features, except for runtime analysis tools
such as the debugger. The participants were, however, al-
lowed to examine the run-time behavior of the BibDesk soft-
ware using a precompiled version of BibDesk as a reference.

For each task and subtask, we measured the time until the
participant considered the task complete, and we checked
whether the task was solved correctly. We also encouraged
users to think aloud and tell us their motivation for using cer-
tain navigation techniques when working on the tasks. An
experimenter was supervising each trial and took notes; ad-
ditionally, the trials were videotaped for further analysis.

After the test, we asked our participants to fill out a question-
naire with the questions of the System Usability Scale (SUS)
[3] and six additional questions (see Fig. 5) specifically ad-
dressing the usefulness of the extra features introduced by
Stacksplorer. Finally, we conducted an open interview with
each participant to gain more insights into their behavior.

Participants
Our group of participants consisted of 14 students (6 grad-
uate, 8 undergraduate) and 2 professional software develop-
ers. By employing mostly students, we aimed to reduce the
impact of different levels of programming expertise on the
study, in accordance with [2]. Age ranged from 22 to 34
(M = 27.7), and there were no female participants (although
this was not intended by design). All participants were fa-
miliar with Xcode; their experience with the IDE ranged be-

tween 3 months and 6 years (M = 2 years), and they re-
ported to do programming work between less than an hour
and 40 hours a week (M = 13.1 hours). Ten participants
were already familiar with the BibDesk application, but none
of them had seen the source code before.

Tasks
The tasks should include searching for a specific location in
the code and identifying side-effects of a specific change of
the code. Therefore, we designed two different task types:
(1) identifying where a certain functionality is implemented
and change it; (2) identifying what side effects a change of a
certain functionality has. Tasks of type (1) were considered
solved if the suggested modification by the participant would
have achieved the intended effect. This was determined by
the experimenter who was familiar with the code. For tasks
of type (2), we considered any functional change in the be-
havior of the application (other than the one requested in the
task) that was caused by the modifications applied to the code
a side effect. For each type, we defined two separate tasks to
allow testing both conditions with every participant.

The first task concerned BibDesk’s Autofile feature, which
automatically sorts PDF documents of publications into dedi-
cated folders and renames them according to a user-definable
naming scheme. In the first subtask (1.1), participants were
asked to prepend the string “TRIAL” to every generated PDF
file name. In the second subtask (1.2), we asked the partici-
pants to identify side effects that would occur if the change
from the first subtask was implemented in a specific method.

The second task was to modify the behavior of BibDesk
when generating BibTeX output. In the first subtask (2.1),
participants were asked to prepend the string “TRIAL” to
every publication’s notes entry. The second subtask (2.2)
concerned the search command from BibDesk’s AppleScript
API. Participants were asked to change the behavior of the
search command to also match the search string against a
publication’s journal name. Furthermore, the participants
had to identify what side effects this change had.

Both tasks were similar in complexity, because the subtasks
of type 1 required navigating along at least three edges of the
call graph to solve them, and the subtasks of type 2 likewise
required at least two edges. A task was considered to be com-
pleted successfully if both subtasks were solved correctly.

Quantitative Results
Task Success. Only four participants were able to solve
both tasks. All tasks except for task 2.1 were solved cor-
rectly more often by participants in the experimental con-
dition. However, the difference in success rates was only
significant for task 1 (Fisher’s test, p = 0.041). Hence, the
results are not conclusive enough to prove H1.

We assume that the non-significant results for task 2 were
caused by two factors: firstly, in task 2.1 the participants
could benefit from knowledge in standard APIs more than
in task 1.1 because task 2.1 was concerned with document
saving, which uses a standardized API. Secondly, task 2.2
was probably the easiest of all tasks; independent of the con-
dition, it was completed successfully most often.

Task Completion Times. Average times are shown in Table
1. Developers solved task 1 in the experimental condition
significantly faster than in the control condition (t(14) =
−2.32, p = 0.018, d = 1.16, one-tailed). A compari-
son for task 2 did not yield a statistically significant result
(t(14) = 0.20, p = 0.84, d = 0.10, two-tailed). Further
analysis revealed that task 2.2, like task 1, was solved signif-
icantly faster in the experimental condition (t(14) = −2.37,
p = 0.016, d = 1.18, one-tailed). The results for task 2.1
were inconclusive (t(14) = 1.17, p = 0.26, d = 0.58, two-
tailed). Apart from subtask 2.1 these results support H2.

We specifically designed subtasks 1.2 and 2.2 to require find-
ing and understanding the side effects that would arise from
changes to the code. The comparison for subtask 2.2 clearly
supports H3; the analysis of subtask 1.2 also indicated that
developers could identify side effects better using Stack-
splorer, but the results were not significant (t(14) = −1.25,
p = 0.12, d = 0.62, one-tailed).

experiment control
M SD M SD

Task 1 20m 43s 6m 49s 28m 45s 7m 4s
Task 1.1 14m 45s 5m 54s 19m 39s 6m 16s
Task 1.2 5m 58s 4m 5s 9m 5s 5m 49s
Task 2 22m 55s 9m 22s 22m 0s 8m 34s

Task 2.1 17m 14s 7m 46s 13m 3s 6m 29s
Task 2.2 5m 42s 2m 13s 8m 58s 3m 12s

Table 1: Average task completion times for the differ­
ent tasks and subtasks in the experiment and control
conditions.

Qualitative Results
We observed that all participants used a similar high level
strategy for finding the correct location to implement a
change. When searching for a location for a change, par-
ticipants usually started with an exploration phase, in which
they searched for an anchor point. These anchor points cor-
respond to what Sillito et al. [22] called focus points. Ko et
al. [11] also observed similar behavior and referred to the
exploration phase as search phase. Once the users found
an anchor point, a traversal phase followed, in which they
traversed the call graph until they either found the correct
location for a change or noticed that they got lost and had to
start again with a new exploration phase. During the traversal
phase, participants often navigated along an outgoing path
in the call graph and came back to the previously viewed
method or to the anchor point if they decided to discard the
path. This simple model is depicted in Fig. 4.

In tasks 1.1 and 2.1, all users started with some exploration
phase, the length of which varied substantially. In task 1.2
and 2.2, the starting point for participants was indicated
clearly, so the exploration phase was much shorter and had
much less influence on success and completion time for these
tasks. During the exploration phases, the participants used
different techniques: Most performed a project-wide search
for a term probably related to the task. Another popular tech-
nique was to find the UI related to the task and to look up
which methods were called by the controls in the interface.

Second Phase

First Phase

Start

Search high-level
structures for anchor point

Anchor Point
found

Explore a call graph branch
including the anchor point

Branch leads to
location for change?

Location for
change found

Unexplored, interesting branches
in the call graph that include the

anchor point exist?

no

yes

no

yes

Figure 4: A simple model of programmers’ navigation
behavior splitting exploration of source code into two
phases: developers first search for a place to start
their investigation from, then they use the call graph to
navigate through the source code.

Stacksplorer is not designed specifically to support the ini-
tial exploration phase, as it does not provide a high-level
overview of the project and does not facilitate searching or
opportunistic browsing [20]. It is much more useful during
the traversal phase. Two techniques participants employed
to utilize the plug-in could be differentiated clearly: Most
participants read a part of the source code and tried to under-
stand (at varying levels of detail) its purpose. When they had
identified the relevant section of the source code for the task
at hand, they enabled Stacksplorer’s overlays to see which
methods were called from this section and then navigated
there. In contrast, another group of participants read the
methods presented by Stacksplorer in the right column as a
summary of the method. In the extreme case, these partici-
pants did not inspect the source code at all; instead, they only
browsed through the called methods and navigated to what-
ever they found interesting. Once Stacksplorer no longer re-
vealed interesting called methods, the participants read the
focus method’s source code to decide if they had found the
correct location for the requested change. The latter tech-
nique is of course much more prone to error, but it can be
very fast.

Using Stacksplorer resulted in a significantly increased use
of Xcode’s forward and back navigation buttons. They work
like the forward and back buttons in a web browser to navi-
gate through a history stack of visited locations in the source
code. In the preliminary study, these buttons were only used
on very rare occasions. Stacksplorer tempted participants to
explore a path to see where it brought them and to discard

it if they found themselves getting stuck. When a path was
discarded, the participants used the back button to navigate
back to a previous anchor point and started exploring another
path from there. In a refined version of Stacksplorer we now
accommodate for this behavior by showing the five most re-
cently visited methods in the side columns with a colored
background, the saturation of which is lower the further away
the method’s position in the history stack is.

All participants highly appreciated Stacksplorer’s ability to
help identify side effects. To determine the side effects of
a change in a method, it is generally required to analyze
all paths in the call graph that lead to the changed method.
In Xcode, this requires searching for the changed method’s
name in the project; some other IDEs provide a dedicated
tool to reveal callers of a method. Using Stacksplorer for this
analysis was faster and more robust against errors in compar-
ison to the project-wide search that otherwise was required in
Xcode. Participants often missed Stacksplorer in the second
task if they had already used it in the first task (“Can I get the
plug-in for that [task 2.2] again?”).

We observed that users analyzing side effects of a change
tended to only inspect the direct predecessors of the changed
method in the call graph. For example, in task 2.2 the
changed method is only called once. Side effects exist only
because this single caller of the changed method is used in a
different context than the one described in the task. When us-
ing Stacksplorer, participants navigated back once from the
starting point and then found the relevant information in the
left side column. In the control condition, users performed
a search to find callers of a method, but they often hesitated
to explore higher degree neighborhoods in the same way, in
some cases causing them to fail the task.

Postsession Questionnaire
The combined score from the SUS questions was 85.4 on av-
erage (SD = 7.4). According to Bangor et al. [1], this score
can be considered “excellent”. This result is quite promising
given that Stacksplorer is still a research prototype with some
performance issues and minor bugs.

Nearly all participants strongly agreed that Stacksplorer
makes it easier to understand source code compared to Xcode
without the plug-in (Fig. 5, Q12). However, quite a few par-
ticipants still found understanding source code challenging
even when using Stacksplorer. This comes as no surprise
since a large, feature-rich software project is a complex arti-
fact and hard to understand without prior knowledge.

More than half of the participants strongly agreed that nav-
igation with Stacksplorer is faster than without it. We think
that this is primarily due to Stacksplorer’s support for naviga-
tion to callers of a method. This type of navigation seems to
be important for programmers: Stacksplorer improved their
overall impression of how quickly they can navigate through
source code solely by improving call graph navigation.

More than half of the participants did not feel lost in the
source code when using Stacksplorer (Fig. 5, Q16). Com-
pared to Xcode, users found that Stacksplorer supports ori-
entation in the source code considerably better (Fig. 5, Q15).

SUMMARY AND FUTURE WORK
We presented Stacksplorer, a new tool to support source code
navigation and comprehension. Stacksplorer visualizes the
call graph neighborhood of a method in an application and
supports navigating through it. Thus, Stacksplorer exploits a
semantic aspect of source code to suggest relevant methods
for exploration. Information displayed in Stacksplorer is vi-
sually linked to the source code. A prototype of Stacksplorer
was implemented as a functional IDE plug-in.

Our user study showed that software maintenance tasks in
a large open-source application could be completed signifi-
cantly faster with Stacksplorer support. Participants reported
that they were very satisfied with the plug-in and would like
to use it for real world projects.

Two aspects present themselves as promising directions for
future work: Firstly, having found that structural relation-
ships in source code are of particular value for developers
to better comprehend source code, more of theses relation-
ships besides the call graph could be visualized and made
accessible in IDEs. Secondly, we found that in some situa-
tions an additional, higher-level overview of the source code
than what is provided by Stacksplorer would have been ben-
eficial to get a first idea of the application’s structure. This
visualization could support transitioning fluently between a
Stacksplorer-like view, which shows much source code with
some context, and a new kind of visualization, showing less
source code but a greater part of the application’s structure.

ACKNOWLEDGEMENTS
This work was funded in part by the German B-IT Founda-
tion and by the German Government through its UMIC Ex-
cellence Cluster for Ultra-High Speed Mobile Information
and Communication at RWTH Aachen University.

REFERENCES
1. A. Bangor, P. Kortum, and J. Miller. An Empirical

Evaluation of the System Usability Scale. Intl. Journal
of Human-Computer Interaction, 24(6):574–594, Aug.
2008.

2. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,
W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. LaViola. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In
Proc. CHI ’10. ACM, 2010.

3. J. Brooke. SUS-A quick and dirty usability scale.
Taylor and Francis, London, 1996.

4. B. de Alwis, G. C. Murphy, and M. P. Robillard. A
Comparative Study of Three Program Exploration
Tools. In Proc. ICPC ’07, pages 103–112. IEEE, 2007.

5. R. Deline, M. Czerwinski, B. Myers, G. Venolia,
S. Drucker, and G. Robertson. Code Thumbnails:
Using Spatial Memory to Navigate Source Code. In
Proc. Visual Languages and Human-Centric
Computing 2006. IEEE, 2006.

6. R. DeLine, M. Czerwinski, and G. Robertson. Easing
Program Comprehension by Sharing Navigation Data.

strongly
disagree

disagree neither agree
nor disagree

agree strongly
agree

Q11: I found understanding the source code easy using Stacksplorer

Q12: I do not think Stacksplorer has benefits for
code understanding compared to Xcode

Q13: I think navigation in source code is faster when
using Stacksplorer (compared to vanilla Xcode)

Q14: I found navigation using Stacksplorer awkward

Q15: When using Stacksplorer I had a better idea of where
I am in the source code compared to using plain Xcode

Q16: I often felt lost in the source code when using Stacksplorer

Figure 5: The boxplot diagrams show how the participants of our study responded to the six questions of the post­session
questionnaire that did not belong to the SUS.

In Proc. Visual Languages and Human-Centric
Computing 2005. IEEE, 2005.

7. G. Furnas. Generalized Fisheye Views. In Proc. CHI
’86. ACM, 1986.

8. I. Herman, G. Melancon, and M. Marshall. Graph
Visualization and Navigation in Information
Visualization: A Survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24–43,
2000.

9. M. Huang, P. Eades, J. Wang, and P. R. China. Online
Animated Graph Drawing Using a Modified Spring
Algorithm. Journal of Visual Languages and
Computing, 9(6), 1998.

10. M. Kersten and G. C. Murphy. Mylar: A
Degree-of-Interest Model for IDEs. In Proc.
Aspect-oriented Software Development, pages
159–168. ACM, 2005.

11. A. Ko, B. Myers, M. Coblenz, and H. Aung. An
Exploratory Study of How Developers Seek, Relate,
and Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions on Software
Engineering, 32(12):971–987, 2006.

12. A. J. Ko and B. A. Myers. Debugging Reinvented:
Asking and Answering Why and Why Not Questions
about Program Behavior. In Proc. ICSE ’08, pages
301–310. IEEE, 2008.

13. T. D. LaToza and B. A. Myers. Developers Ask
Reachability Questions. In Proc. ICSE ’10, pages
185–194. ACM, 2010.

14. T. D. LaToza and B. A. Myers. Searching Across
Paths. In 2nd Intl. Workshop on Search-driven
development: Users, Infrastructure, Tools and
Evaluation, 2010.

15. T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
Mental Models: A Study of Developer Work Habits.
In Proc. ICSE ’06, pages 492–501. ACM, 2006.

16. J. Lawrance, R. Bellamy, M. Burnett, and K. Rector.
Using information scent to model the dynamic
foraging behavior of programmers in maintenance
tasks. In Proc. CHI ’08. ACM Press, 2008.

17. H. R. Lewis and C. H. Papadimitriou. Elements of the
Theory of Computation. Prentice-Hall, 1981.

18. G. C. Murphy, M. Kersten, and L. Findlater. How Are
Java Software Developers Using the Eclipse IDE?
IEEE Software, 23(4):76–83, 2006.

19. R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, 7. edition,
2010.

20. M. P. Robillard, W. Coelho, and G. C. Murphy. How
Effective Developers Investigate Source Code:An
Exploratory Study. IEEE Transactions on Software
Engineering, 30(12), 2004.

21. B. G. Ryder. Constructing the Call Graph of a
Program. IEEE Transactions on Software
Engineering, 1979.

22. J. Sillito, G. C. Murphy, and K. D. Volder. Asking and
Answering Questions during a Programming Change
Task. IEEE Transactions on Software Engineering,
34(4):434–451, 2008.

23. J. Singer, R. Elves, and M.-A. Storey. NavTracks:
Supporting Navigation in Software Maintenance. In
Proc. IEEE Software Maintenance. IEEE, 2005.

24. D. Čubranić and G. C. Murphy. Hipikat:
Recommending Pertinent Software Development
Artifacts. In Proc. ICSE ’03. IEEE, 2003.

