RWTH

HelpMeOut

Crowdsourcing suggestions
to programming problems
for dynamic, interpreted
languages

Diploma Thesis at the

Media Computing Group
Prof. Dr. Jan Borchers :
Computer Science Department si¢?
RWTH Aachen University i

Manuel Kallenbach

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bjoern Hartmann

Registration date: Jun 21st, 2010
Submission date: Jan 18th, 2011

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, January2011
Manuel Kallenbach

Contents

[Uberblick

[Acknowledgements|

| Conventions|

(I__Introduction

!

Chapter Overview|

o

SoftwareBugs|00

P2

Dynamic languages|

23

xiii

XV

xvii

xix

Contents

3 Related workl 15
3.1 HelpMeOut 15
[3.2 Automated Debugging| 17

B21 ReAssertl................. 17
322 AutoDebugl 18
3 BugFix| 18
[3.3 Finding related resources|. 18
.31 Blueprint. 18
3.3.2 DebugAdvisor| 19
333 Hipikat|. 20
[3.4 Helping understand the error| 20
341 Whylingl 20
342 Backstop| 21
3.5 Summary|. 21

I Desig 23

41 Motivationl 23
4.1.1 Categories of errors|. 23
#.1.2 How bugs are solved today| 24
4.1.3 Participation Inequality| 25

4.2 Designstudies|. 26
4.2.1 The Contextual Inquiries| 26

[Apprenticeship Model| 26

Contents

4.2.2 Own Contextual Inquiries|
4.2.3 Traditional interviews|
4.2.4 Design Decisions|
[Programming Language|
Mterfacel
[Iesting Framework|
p.1 Requirements
[>.1.1 Collecting fixes|
[p.1.2 Suggesting fixes|.
2 IVIEWI . . . o v v o
.2.1 Walkthrough|
b.2.2 Architecturel
B3 Clienfl.
p.3.1 Collecting fixes|
[0.3.2 Suggesting fixes|.
B4 Served.
[0.4.1 Finding relevant fixes|
(Iokenization of source codel

6 Evaluation|

6.1 Questions|

viii Contents

[6.2 Participants|

6.3 Methodl L.

[7 Summary and future work]

[7.1 Summary and contributions|

[72.1 Detection of duplicate fixes|

[7.2.2 Suggesting fixes outside of tests| . . .

[7.2.3 Improve matching and rating of fixes|

[7.2.4 Usability improvements|

A Description of the evaluation programming task|

[Bibliography|

[Index

50

57

57

58

58

63

67

ix

List of Figures

2.1 Test-driven development cycle] 11
.1 HelpMeOut 16
B2 ReAsserfl 17
3.3 Screenshot of Blueprint|. 19
3.4 Screenshot of Whyline 21
p.1 HelpMeOut overview| 38
.2 HelpMeOuts presentation of a failing test| . . 40
0.3 XML structureofafixf. 42

[6.1 Suggestion containing solution to future tasks| 51

[A.1 Description of the evaluation task|. 62

xi

List of Tables

.1 Tokens replaced by the lexical analyzer| . .. 46

5.2 Source code before and after transformation |

by the lexical analyzer| 46

xiii

Abstract

When working on a software project, developers usually encounter a lot of errors
they have to fix. To find more information about how to solve them, they usually
start to search the web, which is challenging for two main reasons: First, finding a
good search query for several reasons is not easy. Second, someone has to have —
usually manually — provided the necessary information before.

We present a tool that tries to help with both of these problems. It consists of
two components: a central server running a crowdsourced database of fixes and
a client program. This client program augments a testing framework for the Ruby
programming language and monitors the test executions. When a failing test is
encountered, a query for related fixes is automatically generated and sent to the
server. Related fixes are then displayed next to the test results for the developer’s
examination. When a test passes that failed before, a diff of the affected files is sent
to the server and becomes part of our crowdsourced database of fixes.

A preliminary evaluation between 8 developers showed that during 8 hours of
programming, our tool was able to provide useful suggestions for 57% of the failing
tests. During this time 161 new fixes were generated.

xiv

Abstract

XV

Uberblick

Wihrend der Entwicklung von Softwareprojekten werden Programmierer hdufig
mit Fehlern konfrontiert, fiir die sie eine Losung finden miissen. Um weitere In-
formationen zu ihrem aktuellen Problem zu erhalten, verwenden sie haufig Web-
suche. Dies bringt zwei Probleme: Eine gute Such-Anfrage zu formulieren ist
aus verschiedenen Griinden nicht einfach und damit Informationen gefunden wer-
den konnen, miissen sie vorher von einer anderen Person — meist hindisch — zur
Verfligung gestellt worden sein.

Wir présentieren eine mogliche Losung fiir diese Probleme. Unser Ansatz besteht
aus einer zentralen Datenbank von Losungen und einem Client-Pogramm. Das
Client-Programm {iberwacht die Testldufe eines Testing-Frameworks fiir die Ruby
Programmiersprache. Wenn Tests fehlschlagen, wird automatisch eine Anfrage
nach verwandten Losungen generiert und an den Server gesendet. Diese Losungen
werden dann in der Ergebnisansicht des Testing Tools prédsentiert und dienen den
Entwicklern als Anhaltspunkte fiir ihre eigene Losung. Wenn unser Tool einen er-
folgreichen Test bemerkt, der vorher fehlschlug, werden die Unterschiede der be-
troffenen Dateien zum Server gesendet und zu einem Teil der Losungs-Datenbank.
Eine vorldufige Studie unter 8 Entwicklern hat gezeigt, dass ein Prototyp innerhalb
von 8 Stunden Programmierung niitzliche Vorschlédge fiir 57% der fehlschlagenden
Tests machen konnte. Wahrend dieser Zeit wurden weiterhin 161 neue Losungen
generiert.

xvii

Acknowledgements

Without the people and companies acting as user testers and allowing us to conduct
interviews and contextual inquiries this thesis would not have been possible. I am
very grateful for the support we received in this way.

I would also like to thank Prof. Dr. Jan Borchers, Prof. Dr. Bjéorn Hartmann and
Leonhard Lichtschlag for providing me with lots of advice and corrections of this
thesis.

Valuable contributions came from Brandon Liu and Dhawal Mujumdar, who
worked together with me on this project. Thank you!

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in Definition:

a book, usually in an appendix, or digressions in a writ- '
Excursus

ten text.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Chapter 1

Introduction

Correcting errors is a large part of software development. It
starts with the beginning of the implementation phase of a
software project, when developers are faced with bugs dur-
ing programming. After releasing a software, more bugs
are usually encountered by end users and are to be cor-
rected for the next version of the software.

Developers are required to figure out what caused the error
and find a solution. When errors result in an exception, its
message is often cryptic and hard to understand. Relating
it to a possible solution is often impossible for novice pro-
grammers. When the error manifests not in an exception,
but simply in unexpected program behaviour, the task of
fixing the bug becomes even harder. Developers now re-
quire at least some understanding of the program’s internal
structure to find the source of the bug.

Hartmann et al. [2010] introduced HelpMeOut to suggest
fixes for programming errors in the Processing and Ar-
duino environment. These fixes are collected from users of
the HelpMeOut tool during development. Whenever they
change their source code in a way that eliminates an excep-
tion, HelpMeOut sends these changes to its central server.
When developers later encounter a related problem, these
fixes are presented as examples to the developers. Their
studies showed high potential for such recommender sys-
tems.

1 Introduction

In dynamic, interpreted languages there is no compiler to
do static analysis and catch errors before the program is ex-
ecuted. Our initial interviews showed, that most errors in
dynamic languages do not result in a runtime exception,
but simply in wrong program behaviour. This makes di-
rectly applying the original HelpMeOut technology, that
relied on compile-time errors and runtime exceptions, to
dynamic languages impossible.

Because there is no compiler to check for errors, test-driven
development is widely used together with dynamic lan-
guages. The principle of not writing any implementation
code unless there is a failing test results in many failing tests
during development and gives us a good way to suggest
and collect fixes.

This thesis contributes an application of the HelpMeOut
concept for dynamic, interpreted languages. It demon-
strates how to leverage test-driven development practices
to enable crowdsourced bug fix suggestions.

A preliminary evaluation of a prototype implementation
showed promising results. Eight developers, each work-
ing for one hour on a simple test-driven development task,
generated 161 new fixes. For 120 (57%) of the 211 times tests
failed, the prototype suggested useful fixes.

1.1 Chapter Overview

The remainder of this work is structured as follows:

Chapter 2 explains terms and concepts important for the
understanding of the rest of this work.

Chapter 3 summarizes previous approaches aiding the
process of software debugging and presents [Hart-
mann et al.| [2010]'s HelpMeOut, which our tool is
heavily inspired by.

Chapter 4 then describes our initial design studies and
their results. It also reasons about the decisions we
took in implementing our prototype.

1.1 Chapter Overview

Chapter 5 presents our prototype, its architecture and
technical design.

Chapter 6 describes the studies we evaluated our proto-
type in and explains their results.

Chapter 7 summarizes this thesis and gives some ideas for
future work.

Chapter 2

Theory

This chapter explains terms and concepts that play a fun-
damental role for the rest of this work.

First we talk about software bugs, their commonness and
impact. Next, we show what differentiates dynamic from
static languages and describe the Ruby language in partic-
ular. Finally, the concept of software testing is explained.

2.1 Software Bugs

SOFTWARE BUG:
A software bug is an error in a computer program that
leads to a wrong result.

This definition implies that bugs do not need to manifest
in program crashes. They can also result in wrong pro-
gram output. These kinds of bugs are less obvious and be-
cause of that much harder to detect. In general, bugs are
caused by mistakes in the programs source code and are
very widespread.

There is probably no completely error free larger software
project. According to its bug trackelﬂ , the Linux kernel at

'http:/ /bit.ly /9cpIRm

Definition:
software bug

Bugs are very
common.

http://bit.ly/9cpIRm

2 Theory

The industry average
is at 15-20 errors per
1000 lines of code.

Novices often have
problems locating

and correcting errors.

Approaches to
increase software
quality

High economic
impact of software
bugs

the time of this writing (October 2010) contains 7628 bugs
that are not yet corrected. One can assume that there are
more yet to be discovered.

Reasons for bugs being so common can be seen in the high
complexity and the huge source code volume of large pro-
grams. The current Linux kernel version 2.6.36 consists of
about 13 million lines of code (H—Onlineﬂ). This makes a
defect rate of about 0.6 errors per 1000 lines of code, which
is in comparison to industry projects very good. According
to McConnell [2004] the industry average is at 15-20 errors
per 1000 lines of code.

Of course, bugs are not only prominent on large, estab-
lished software projects, but also in programming novices
code. As they are not yet familiar with programming in
general or the language they use, they are very likely to
make a lot of mistakes. When confronted with the results
of their errors, they are also more likely to have problems
relating them to a possible solution. They lack the expe-
rience to quickly relate error messages to the changes that
need to be done to resolve them. [McCauley et al., 2008]

Great efforts are taken to reduce the number of bugs in
software projects. New programming languages are de-
veloped that hide dangerous features like pointers and as-
sure that programmers only use them in a safe way. Com-
pilers are constantly improved to detect more errors. Lots
of static analysis tools (e.g. Coverit , CodeSona , Kloc-
Workﬂ) are developed to check code for error patterns and
methodologies like Pair Programming and test-driven de-
velopment are presented that promise higher code quality,
often by better testing techniques.

The results of bugs can be very severe. They can present
security risks that allow users to execute malicious com-
mands or crash systems that are of a very important func-
tion. Software bugs even let to fatal accidents, like the
crash of the Ariane 5 rocket. According to a study by the

*http:/ /www.h-online.com/open/features /What-s-new-in-Linux-
2-6-36-1103009.htmlI?page=6

3http:/ /coverity.com/

*http:/ /www.grammatech.com /products/codesonar/overview.html

5h’tt’p: / /klocwork.com/

http://www.h-online.com/open/features/What-s-new-in-Linux-2-6-36-1103009.html?page=6
http://coverity.com/
http://www.grammatech.com/products/codesonar/overview.html
http://klocwork.com/
http://klocwork.com/

2.2 Dynamic languages

US National Institute of Standards and Technologyﬁ , soft-
ware bugs cost the US economy about $59 billion per year.
[Tassey, 2002]

2.2 Dynamic languages

A programming language is said to be dynamic, if it al-
ters its structure and behavior at runtime in a way, that
static programming languages can only do at compile time.
These alterations can include adding methods to objects,
changing the class of an object, changing the implementa-
tion of an object or many other things. [Paulson, 2007

Most, if not all, of these dynamic languages are also dynam-
ically typed. This means, that most of the type checking
is done at runtime. Variables are, in contrast to statically
typed languages, not bound to a specific type and can hold
values of any type. Because of the huge flexibility of dy-
namic languages it would be substantially harder to enforce
type rules at compile time. The types of objects a method
can accept as parameters could even depend on user input
and therefore be impossibly determined before runtime.

There are advantages as well as disadvantages associated
with dynamic typing;:

Advantages of dynamic typing

Flexibility As variables do not need to be set to an explicit
type, code can be much more flexible. One can easily
define methods to accept all kinds of parameters and
handle their differences appropriately.

Productiveness Flexibility and missing type declarations
result in less code to write and thus can lead to a
higher productiveness simply by decreasing the typ-
ing work of the developer. [Church et al., 2008]

Ease of learning The missing type related syntax leads to
less learning effort. No commands related to type

6h’c’cp: / /www.nist.gov

Most dynamic
languages are also
dynamically typed.

http://www.nist.gov

8 2 Theory

declaration or casting need to be remembered. [War-
ren), 2004]

Intuitiveness Often dynamic typing seems more intuitive.
If a method depends on its parameter values to define
some other method, one can simply assume they do.
In most statically typed languages this would require
special techniques. Java, for example, has the concept
of interfaces for this, which results in another layer of
complexity. [Warren, 2004]

Disadvantages of dynamic typing

Type safety In dynamic languages, type errors are not de-
tected by a compiler. This can result in less stable pro-
grams. According to Tratt and Wuyts [2007] however,
type related errors are rare in production code for dy-
namically typed languages and most errors —i.e. di-
vision by zero, off-by-one — cannot be caught by a

type system anyway.

Interfaces are less clear In statically typed languages, ex-
plicit type declaration can also provide a form of doc-
umentation. The signature of a method defines what
parameter types it accepts. As there are no parameter
types in dynamically typed languages, the developer
has to find out what values are suitable parameters
differently. Descriptive identifiers are of great help
here.

IDE Support Because many aspects of a program are not
determined before it is run, static analysis of the
source code results in less information when using
dynamic languages. Therefore, it is much harder for
IDEs to assist their users in refactoring tasks. Renam-
ing a method in a Java program can be done almost
automatically with an IDE like Eclipse, that replaces
all references to the methods old name with its new
name. In a dynamic language, the parser usually does
not know enough about the programs structure to al-
low features like this.

Most dynamic Most dynamic languages are interpreted and not directly
languages are
interpreted.

2.2 Dynamic languages

compiled to machine code. This is a little ambiguous, be-
cause in the end they result in machine code too, of course
— otherwise they could not be executed. The difference to
compiled languages is, however, that there is no explicit com-
pilation period. Program code instead is analyzed and run
by an interpreter every time the program is executed.

While dynamic languages were often seen as amateurish,
prototyping languages in the past [Paulson, 2007], today
many big companies make use of them. Google heavily
uses and promotes Python, Twitter is built on Ruby on
Rails, a web-framework written in Ruby, and SAP is cre-
ating an own Ruby interpreter to run on their ABAP stack
— the environment which SAP business applications are
built around. The use of dynamic languages for large web
projects also increased their acceptance in enterprise envi-
ronments.

221 Ruby

Rubyﬂ is a dynamic programming language. It was de-
veloped by Yukihiro “matz” Matsumoto and published in
1995. Since then it has gained a lot of popularity, especially
since the release of the Ruby on Railg’| framework in 2003.
It builds on some principles:

Everything is an object In Ruby, every piece of informa-
tion is an object. This makes it possible, for exam-
ple, to add methods to numbers, which in many other
languages like Java are primitives. This consistency
adds to the simplicity of Ruby and makes very read-
able code possible. The code

3.times { puts ’hello’ }

does exactly what it reads: it puts the string “hello” 3
times to the screen.

Flexibility As developers can alter almost everything,
Ruby is very flexible. One can reopen classes and

"http:/ /www.ruby-lang.org
8h’c’cp:/ /www.rubyonrails.org

Dynamic languages
rise in popularity.

http://www.ruby-lang.org
http://www.rubyonrails.org

10

2 Theory

Definition:
software testing

A software tests
purpose is to reveal
errors.

alter their behavior. The following example adds a
method scream to the core class St ring, that prints
the string followed by an exclamation mark:
class String
def scream
puts self + ”7!”

end
end

The existing behavior is not affected by this alteration.
All other methods remain in the class.

Principle of least surprise Ruby is designed to be very
consistent and intuitive. The focus for designing the
language was not on maximizing execution speed but
programmers productivity and joy.

Duck Typing In Ruby, there is no static type checking.
The type-requirements of objects are not explicitly ex-
pressed by specific type names, but implicitly by the
attributes they are expected to have. A method that
expects a parameter can be called with a parameter
of any type, as long as it supports all operations the
method will perform on it.

This is often described by the phrase “If it walks like a
duck and quacks like a duck, it must be a duck.”, leading
to the name Duck Typing.

Because of the flexibility to alter almost all behavior and the
very dynamic type system, static analysis of Ruby source
code is very hard. This is why test-driven development is
widely used among Ruby developers.

2.3 Software Testing

SOFTWARE TESTING:

According to Myers and Sandler [2004], “Testing is the
process of executing a program with the intent of finding
errors.”

As this definition implies, a test is considered successful, if

2.3 Software Testing

11

it reveals an error in the program. The overall goal of test-
ing is to raise the programs quality and decrease the prob-
ability that it contains errors.

Testing usually makes up a big part of the software devel-
opment process. According to Desai et al.|[2009], typically
50% or more of a programming projects resources are spent
on testing.

In traditional development models like the Waterfall model
testing is done after the implementation by a group that
is potentially independent from the development team. In
contrast, newer methods like Agile or Extreme Program-
ming promote test-driven development (TDD), where testing
and implementation are done in parallel by the application
developers. The typical TDD cycle is illustrated in Figure
and consists of the following steps:

Write a
new test
See the
Refactor new test
fail
Write code
See all that makes
tests <|uemt «
the new
succeed
test pass

Figure 2.1: Test-driven development cycle

1. Before adding any implementation code, write a fail-
ing test. This makes sure that the new functionality
does not exist yet. The test should be minimal and
only test the new functionality, so that it clearly de-
fines, what needs to be changed to make it pass.

2. Run the tests and see the new one fail. If it does not,
either there is a mistake in the test or the functionality

Test-driven
development
integrates testing into
the whole
development cycle.

12

2 Theory

In TDD tests are
executable
specification.

RSpecs syntax
encourages writing
of very readable
examples.

already exists.

3. Implement code that makes the new test pass. This
code should be as minimal as possible, to ensure a
high test coverage. If the new test expects a function
to return 0 for a given input, it is perfectly fine to im-
plement the function to always return 0 first, before
further tests really make a computation of the return
value necessary.

4. Run the tests again and see them succeed.

5. If necessary, refactor the code to remove duplication.
The existence of a passing test suite ensures that this
step does not change the behavior of the implementa-
tion.

This means, that in TDD tests are written before functions
are implemented and implementation code is only written
when there are failing tests. This mostly results in a large
test suite. Often there is even more test code than imple-
mentation code.

2.3.1 RSpec

RSpeﬂ is a framework for test-driven development in
Ruby. It allows developers to easily create and run tests.
It was initially developed by Steven Baker in 2005 but soon
handed over to David Chelimsky, who still maintains it to-
day.

The philosophy behind RSpec is called Behaviour-Driven or
Example-Driven Development to emphasize that in TDD tests
actually are executable specifications or examples of the
programs intended behaviour. Test cases are usually re-
ferred to as examples and what other frameworks call “as-
sertions” is termed “expectations” in RSpec. This is also
visible in RSpecs syntax, which aims to be close to specifi-
cations in natural English language:

A describe block groups specifications for one subject.

9htl’p: / /rspec.info

http://rspec.info

NT = WO -

2.3 Software Testing

13

describe 'GET new’ do
it “should render the new template’ do

get :new
response.should render_template (:new)
end
end

Listing 2.1: RSpec syntax

Line 1 in listing [2.1| begins an example group for the sub-
ject GET new. Line 2 then begins one example or specifica-
tion for this subjects behaviour. The name of this exam-
ple — should render the new template — clearly
expresses how the subject should behave. Lines 3 and 4
then perform the actual test logic. In line 3 a GET re-
quest to the new action is performed, while line 4 tests
whether the response renders the expected template file.
RSpec provides convenient methods with names resem-
bling natural language for checking expectations. The ex-
pression response.should render_template (:new)
checks, whether the template used for rendering the re-
sponse is identified by the given parameter (: new).

RSpec is widely adopted in the Ruby community. In a sur-
veym taken by more than 4000 developers, 39% of the par-
ticipants stated that it is their preferred testing framework.
16% preferred Test::Unit, the framework that comes with
the Ruby Standard Library and ranked second.

Because of its popularity in the Ruby community, our pro-
totype builds on RSpec.

2.3.2 C(Classification of Tests

Bourque and Dupuis| [2005] suggest different dimensions
for the classification of software tests. The one most inter-
esting for our topic is the classification by target. Tests can
be classified by the components they test:

Unit tests Unit tests are the most fine-grained tests in this
classification. Their targets are the smallest pieces of

]Ohttp:/ /survey.hamptoncatlin.com/survey/stats

39% of Ruby
developers prefer
RSpec as testing
framework.

http://survey.hamptoncatlin.com/survey/stats
http://survey.hamptoncatlin.com/survey/stats

14

2 Theory

Unit tests are best
suited for our tool.

code that can be tested separately — often methods,
classes or modules. They are typically implemented
by the developers with access to the code they test.

Integration tests Integration tests verify the interaction be-
tween several smaller pieces of code, that might al-
ready have been tested by unit tests. The level of ab-
straction is higher than for unit tests and depends on
the components that are subject of the test.

System tests System tests verify the behavior of a whole
software system. At this point, most failures should
already have been identified by unit and integration
tests.

Because they are often implemented prior to all other
classes of tests, our tool will be most useful with unit tests,
where simple bugs like syntactical ones are likely to be
found. And because the volume of code they cover is sup-
posed to be minimal, similarities to other code and possi-
ble solutions to errors should be easier to discover than in
integration and system tests, where much code has to be
inspected to find related bug fixes.

15

Chapter 3

Related work

This chapter summarizes previous approaches to aid the
debugging process. We describe examples of work on au-
tomated debugging, providing useful information for the
users current task and different attempts to make it easier
for the user to understand the source of a bug.

We will also talk about HelpMeOut, which our tool heavily
bases on.

3.1 HelpMeOut

Hartmann et al.|[2010] introduced HelpMeOut, a tool that
suggests crowdsourced solutions to programming errors
for the Processing and Arduino environments. It consists
of IDE plugins and a central server.

When a programmer using the HelpMeOut plugin encoun-
ters either a compiler error or a runtime exception, the plu-
gin queries the central database for examples of related
problems that others successfully fixed. These examples
then are presented to the developer, who can apply them
to his own code.

In contrast to other tools employing hard-coded strategies
of solving errors, the fixes in HelpMeOut are collected from

16

3 Related work

File Edmt Skeich Tooli Help

00 EEB3

lira

Helphe et

-'ilﬂ.llﬂ-ﬂﬂ“

£% helpmeout "

Error Message:
Variagble must pm-.tlﬁ eRher dimension EIPIBEEEII'IE‘DI' an amay inidalizer

Balons | Broken) Afhar (Fimed)
L 2ink y[] = new dnt[] int y[] = new lok|eidEs|; .
e inls | vobe wp | wote down | find ling | cogy fis
Suggestion 2
I Paders |Broken) Alter (Flusd)

ifloat arc|] = mew Floak|]j €losk arc|| = {3.0, B.33, @.44, D.0};
Ebis 0l | vobs wp | ¥ols down | find line | Sopy s

Figure 3.1: Screenshot of HelpMeOut suggesting fixes

programmers using the plugins. Whenever HelpMeOut
notices an error has been solved, it sends a diff of the af-
fected files to its database and makes it available as a possi-
ble suggestion for others.

In a study amongst novice programmers, HelpMeOut
could suggest useful fixes for 47% of errors after 39 person-
hours of programming.

Hartmann et al.|[2010] describe the problems related to de-
ciding whether a runtime error has been fixed. Runtime er-
rors can depend on user input, the current time or other dy-
namic variables. Because of that, it is not possible to decide
whether a bug is fixed by simply watching whether a given
line of code executes without an exception being thrown.
This is why HelpMeOut employs a progress heuristic to
catch a subset of these runtime exceptions.

3.2 Automated Debugging

17

In dynamic languages this problem is even more promi-
nent. There is no compiler to catch errors before the pro-
grams execution and so all errors are runtime errors. This
is a reason for us to utilize a test framework. In contrast to
deciding whether a bug is fixed or not, it is easily decidable
whether a test passed or failed.

3.2 Automated Debugging

Automated Debugging tries to take a lot of the effort of
fixing broken code from the developer by automatically
providing bug fixes. Noteworthy research in this field in-
cludes:

3.2.1 ReAssert

In software projects with a large test suite, even minor
changes in the implementation code can make many tests
fail. Daniel et al. [2009] developed the Eclipse plugin Re-
Assert to fix these tests with several strategies. ReAssert
for example compares expected and actual values of asser-
tions and can change the test to expect the correct value.
ReAssert is not intended to fix actual implementation bugs,
but solely to change the tests and make them pass.

£ Confirm proposed fixes X

& Structure Compare

v @ cant

Text Compare SRR BN
original Test File Fixed Test File
public void testRedPenCoupon() (public void testRedPenCoupon() {
Cart cart = new Cart(): Cart cart = new Cart();
cart.addProduct (new RedPen()): cart . addProduct (new RedPen()):
cart.addProduct (new RedPen()): cart . addProduct (new RedPen());:
cart.addCoupon (new AnniversaryCoupon()); cart . addCoupon (new AnniversaryCoupon())
[assertEquals (3.0, cart.getTotalPrice ()); |—] assertEquals (6.0, cart.getTotalPrice()); || |7
assertBquals (assertEquals (
"Discount: -$3.00, Total: 53.00", "Discount: §0.00, Total: $6.00",
cart.getPrintedBill()); cart.gotPrintedBill()) s

Figure 3.2: Screenshot of ReAssert suggesting a fix for a
broken test

18

3 Related work

3.2.2 AutoDebug

AutoDebug is an algorithm to locate and correct erroneous
statements in a programs source code. Modifications of the
source code are computed by different strategies and tried
until one is considered successful or none are left. It re-
quires a test that validates the bug as well as pre- and post-
conditions of the function containing it in first order pred-
icate logic. [He and Gupta [2004] implemented AutoDebug
for a subset of the C language and were able to fix most
bugs in their test programs.

3.2.3 BugFix

BugFix [Jetfrey et al., 2009] suggests possible solutions to
programming errors from a knowledge base. Machine
learning techniques are used to improve the suggestions
for a given bug. Once a bug is fixed, developers are able
to enter a new bug fix description into the knowledge base.

3.3 Finding related resources

Finding resources related to an error can be challenging.
Searching the web is not trivial (see 4.1.2—"{How bugs are]
solved todayl") and even project specific repositories can
contain a huge number of artifacts like bug tickets, docu-
mentation or the actual source code. We here present some
tools that identify resources related to the developers cur-
rent task to assist him in getting a deeper understanding.

3.3.1 Blueprint

Brandt et al| [2010] developed a plugin for Adobe
FlexBuilder that integrates a web search interface into the
IDE. Queries are augmented with the current code context

and results are presented in a more code centric way(Figure
B.3). If the developer decides to adopt the presented code

3.3 Finding related resources 19

oad image Po

load image i kisgay @

'Y Loading an Image in Flex3 (B) k4 G0

In the next example, we use a very simple script to load an image @

into an Image Control after a Button is prun.cd.

http://livedocs.adobe.com/flex/ 3 langref/mx/controls/Image. html

<Paml version="1.8"7>)]
=

amx:Applicotion xmlns:mx="http: /wew.odobe.com/ 2006/ muml™>
anx:Imoge x="58" y="6@" id="img" />
amx:Button click=-"loadInage)" />
mx:Scripte
<! [CDATA[@
private function loadImage(e:MouseEvent):void {
img.source = “image. ipg";

11>
</moc: Script>

</ma:Applications

Image embedded in the applicaton.
! —
load image flash
load image flash mx
load image flex dynamic list
load image in bitmap in flex

Figure 3.3: Screenshot of Blueprint showing the example-
centric presentation of the search results

examples, the source code is linked to the web page con-
taining the example. A study found significant improve-
ments in code quality and programmer productivity when
Blueprint was used.

3.3.2 DebugAdvisor

DebugAdvisor [Ashok et al., 2009] allows developers to
search for information related to a bug with a fat query con-
sisting of the whole context of the bug. This query can in-
clude natural language text, core dumps, debugger output
etc. Results in their study at Microsoft come from all their
software repositories including version control, debugger

20

3 Related work

logs, bug databases etc. As the results are linked to other re-
lated resources, navigating through the shared knowledge
is easily possible. 75% of the artifacts DebugAdvisor re-
turned during their study were considered useful by the
developers.

3.3.3 Hipikat

Hipikat [Cubrani¢ and Murphy, 2003] relates artifacts in
software projects to make it easier for newcomers to get
an overview of the project. The tool is implemented as
an Eclipse plugin and lets users query by elements of their
current workspace (a Java class for example). Hipikat then
shows a list of related source code, bug or feature descrip-
tions, mailing list messages or other project documents.

3.4 Helping understand the error

When confronted with an error, developers have to form a
mental model of why it occurred. Compiler messages are
often cryptic and challenging to understand. The following
shows different approaches to lead developers towards a
deeper understanding of the error.

3.4.1 Whyline

Whyline [Ko and Myers, 2008] helps developers answering
why and why not questions about program behaviour. A
trace of the program execution is generated and program-
mers can ask questions like “Why did x=3?" or “Why didn’t
Frame appear?” and view steps from the program execu-
tion related to their question. Figure 3.4|shows its interface
while presenting events related to his question.

3.5 Summary

21

source

hlﬂ.; text exceptions

+ (detault package)
edu.cmu hcii paint
AcBons. java
+ EraserPaintjava
PaintCanvas java
PaintObject java 28
PaintObjectConstructor java 23
PaintObjeciConstructorLisie 30
PaintWindow java 31
PaintWindow§ 1. class
PaintWindow3 1()

public void stateChanged{Chan{s
objectConstructor. setColo
nen Color
T T Value(),
gslider.getValue(),
gslider getValue())); &

PaintWindow$2 class 3

PaintWindow$ 3 class »

PaintWindow class

PencilPaint java
L .class

PencilPaint()
define()
getBoundingBox()
getEndX()

cepaink();

Q why did color =[]
A These events were

cior] [numa] o (ovssloroa] eoce] (g [nmacn)

getEndY()
gelStartX()
getStarty()
paini()
java awt
java awtevent

(1) why did this execute?

(1) why did getvalus() raturn 07 (producer)
v|2- why did getvalua() return 07 {producer)
(3] why did getvalue() return 07 (producer)

p—r

"o

E— fﬁ_

i

v

threade wekh | E==

AWTEveniQueuel-5

PalntWindow$ 1 : stateChanged(
+ this = PaintWindows$1 83,742
cha =

+ Jsiider - fireStateChanged()
+ ModelListener : stateChanged()
+ DefaultBoundedRangeModel : fire]

DefaultBoundedRangeModel : set

7)

FE— tread | | theaad | Coor DefaultBoundedRangeModel : set
e man-0 AWTEventQueuel-5 #19,941 + JSlider : setValuelsAdjusting()
—_————— TrackListener : mouseReleased()
_ m + Component : processMouseEven
search code start of program {]) . ._ICamnanant NMa::Ilnnc-Fu_- |

o
-
Ask | why did color =[f?

Figure 3.4: Whyline presenting the answer to a Why question.

3.4.2 Backstop

Murphy et al.| [2008] developed Backstop, a tool to assist

programming novices in fixing runtime errors in Java pro-
grams. It replaces exception output with more user friendly
messages that also suggest how to avoid that error. These
messages are provided by backstop and not collected dur-
ing runtime.

3.5 Summary

All the approaches described above assist debugging by
either automatically fixing errors or providing useful in-
formation for the developer. Our tool not only finds and
presents examples of bug fixes related to the currently fail-
ing test, but also automatically collects these. It provides
fixes that others applied to closely related errors in a test-
driven development environment. In contrast to ReAssert,
we do not try to alter only the tests to make them pass, but
also the actual implementation code. What differentiates
our tool from Blueprint is the step of explicitly searching for
information. While Blueprint improves search results for

22

3 Related work

user-entered queries, our tool automatically queries when-
ever a test fails.

23

Chapter 4

Design

4.1 Motivation

While writing a program, software developers usually en-
counter a lot of situations where they have to fix errors. Es-
pecially when TDD is employed, every new functionality
first results in a failing test and as such in an error. These
errors can be roughly divided into the following categories:

4.1.1 Categories of errors

Syntax Errors are invalid sequences of characters in the
programming language. In compiled languages they
cause the compiler to be unable to translate the source
code. In interpreted languages however these errors
are noticed during runtime, when the interpreter tries
to parse the effected part of the source code.

An example for a syntax error in most programming
languages are unbalanced opening and closing paren-
theses.

Semantic Errors also called logic errors, are errors that do
not cause a program to be syntactically invalid, but
to produce a wrong result. This could be an abnor-
mal abortion or wrong output. While the first case
can be easily detected and handled in most program-

Fixing errors makes
up a big part of
software
development.

24

4 Design

TDD allows more
bugs to be
automatically
detected.

Developers use web
search to find
solutions.

Error messages
describe symptoms,
not the root of the
problem.

ming languages, wrong program output often is not
noticed, especially if no extensive test suite is used.
An example for a semantic error that results in pro-
gram abortion is the use of an invalid array index.
Wrong output not resulting in an exception could be
caused by rounding errors, that are not obvious from
the source code.

Missing implementation is a special category of errors
that occur, when test-driven development is used.
When tests are written and executed prior to the im-
plementation of the actual code, they result in an er-
ror, because the functionality they test does not exist
yet. Strictly, these kinds of errors would also fit into
above categories, but for our purposes, we will dis-
tinguish them from other syntax or logic errors.

While usually only syntax and some logic errors result in
an exception and so can be easily detected, with a good
test suite, errors of all the above categories can be caught
programmatically. This gives us the chance to employ the
HelpMeOut approach to more fields of errors.

4.1.2 How bugs are solved today

Oftentimes a similar error that occurs to one developer has
been made and solved by himself or someone else before.
This is why many developers use a web search engine to
find a solution for their problem if they do not immediately
know how to solve it. Searching for source code however
presents the developer some challenges:

First, the developer has to think of a proper search term.
Obvious queries could consist of the exception message or
the line of source code that represents the error. Each of
these strategies has some problems:

Exception messages do not necessarily describe the root of
the problem. A message like “NoMethodError: undefined
method ‘to_str’ for someVar:SomeClass” could be caused by
a wrong assignment to the variable someVar earlier in the

4.1 Motivation

25

code, by a missing implementation of the method to_str,
by a spelling error in “someVar” or many other reasons.
Therefore, the exception message does not directly relate to
the solution the developer wants to find.

As the above error message shows, it is also unclear what
parts of the exception message to search for. It may contain
variable or method names that are unlikely to be the same
in other developers code. On the other hand, the method
name may be relevant, if it is a standard method. The so-
lution for above error could also be to cast the object to an-
other class that implements the missing method.

Searching for the line of code that caused the error implies
that this location is known. This, however, is not always
the case. If the error results in an exception, the stack-
trace might point to a location in the source code where the
exception was thrown. The real problem, however, could
be for example a wrong variable assignment earlier in the
code.

Also, most search engines are optimized for natural lan-
guage queries and cannot relate similar source code frag-
ments. Specialized source code search engines like Google
Code Seardﬂ usually index repositories of working code
and as such are unlikely to return good results when
queried with a line of broken code.

4.1.3 Participation Inequality

Only a tiny minority participates in online bulletin boards
by providing solutions to problems. According to Nielsen
[2010]], 90% of users of most online communities do not pro-
duce any content, 9% produce a little and only 1% is respon-
sible for most of the content. Most people either only search
for their problem or ask questions and wait for others to re-
ply. Participants in our interviews noted that they do not
like to ask questions at bulletin boards because they do not
have the time to wait for somebody to reply.

Because of this participation inequality, a lot of knowledge
is not accessible to others. While many people probably
would not mind sharing their knowledge, they simply lack

'http:/ /google.com/codesearch

The location of the
error is not always
known.

Search engines are
not optimized to help
debugging

Most content in
online communities
is produced by only
1% of users.

http://google.com/codesearch
http://google.com/codesearch

26

4 Design

Design was guided
by eight interviews
with users of

dynamic languages.

Contextual inquiries
were performed at
the users
workplaces.

time and motivation to do so.

With HelpMeOut a technique to collect instances of bug
fixes and later suggest them to developers was introduced.
We apply this technique to TDD in dynamic languages.

4.2 Design studies

To help us design a tool that fits todays work practice and
is most helpful to developers, we conducted eight inter-
views with developers using dynamic languages. Four of
these interviews were traditional question and answer in-
terviews and four of them were contextual inquiries (CIs).
Because they enable the designer to actually watch the
work process rather than rely on peoples description of it,
we assume contextual inquiries to result in more and more
precise data than common interviews. Contextual inquiries
are very time consuming and subjects are easier to convince
to participate in a usual survey, so we conducted four con-
textual inquiries and augmented them with data from four
additional interviews.

4.2.1 The Contextual Inquiries

The contextual inquiry method as described by Beyer and
Holtzblatt| [1997] has the goal of creating a shared under-
standing of the users task by herself and the designer.
Therefore, the designer collects data at the users work en-
vironment by watching and getting explained what the
user does. For this process, the apprenticeship relationship
model has proven to be useful.

Apprenticeship Model

A familiar model of the relationship between designer and
user gives both of them the possibility to behave in a natu-
ral way without thinking too much about the proper way to

4.2 Design studies

27

behave in an interview. Beyer and Holtzblatt [1995] suggest
the relationship between master and apprentice as such a
model for the following reasons:

Users are not teachers Usually, the user has no teaching
abilities. This matches the craftsman, that also does
not have a teaching education but still manages to
teach his apprentice. This is done by simply doing
a task and explaining what he is doing.

Recalling is harder than doing Doing the work is often
easier for the user than recalling how he did it in the
past. Steps of his task might have become habitual
and are done without thinking about them. When
people have to recall their actions, these steps might
get lost. Explaining what they are doing while they
do it often also gives users a chance to stop and think
about their work, which is not natural in the normal
workflow and can result in revealing problems and
ways to improve their work situation.

Recalled situations lack details When users have to recall
how they work on a task, they usually abstract over
all the times they did that task. This way, a lot of de-
tails get lost. They might also think that specific de-
tails are not important to the designer and leave them
out of their descriptions.

Recalled situations lack divergence To design a useful
product, the designer needs to find a structure in the
work of the users. Therefore he abstracts over all of
the situations he observed at different users. If the
users recalled their behaviour and already abstracted
over it themselves, important structural similarities
between different users might get lost.

Artifacts serve as reminders When working on a task, the
involved artifacts like a handbook, the keyboard or
a spreadsheet remind the user of events related to
them. “Last time I worked on that spreadsheet, 1 was
struggling with...”. Recalling these events while
working on something similar helps to emphasize the
differences between the two times the user did that
task and so provides more details.

28

4 Design

Designer has to
understand the users
work structure.

Of course there are also differences to a real master and ap-
prentice relationship that a designer has to keep in mind.
The designer is not really interested in learning to do the
work. The purpose of his apprenticeship is to gather data
about the structure of his masters” work. It is therefore his
responsibility, to guide the master to a direction that is use-
ful for that purpose. He must also articulate his under-
standing of the work structure, so the user can correct him.
In contrast to an apprentice, it is not sufficient for a designer
to be able to copy what he sees. To find a structure in the
users work, he has to really understand it. It is also a good
practice to directly discuss ideas of improvement with the
user. This ensures that the designers interpretation of the
users work structure is adequate and leads to a first feed-
back and maybe also to suggestions for different ways of
improving the design.

Data gathered in a CI is usually more precise, as the user
does not have to remember how he solved a task in the past
or even make up how he would do something fictional.
Instead the interviewer watches him doing the actual task
and gathers whatever data is helpful in designing the prod-
uct. This also often leads to completely new ideas, because
the designer can watch things he might not have thought
about before at all.

4.2.2 Own Contextual Inquiries

To find subjects for our design studies we searched German
online job listings for companies looking for Ruby devel-
opers. We were allowed to visit two companies to conduct
contextual inquiries with their developers. A message to
the universities mailing list gave us two more subjects to
interview.

This way, we had two subjects working professionally with
Ruby at companies that specialized in that field as well
as two subjects that were hobby developers and described
themselves as beginners. Experience with Ruby was be-
tween 4 and 5 years among the professional developers and
less then 1 year among the beginners.

4.2 Design studies

29

During the contextual inquiries we followed the appren-
ticeship model. Subjects were instructed to work as usual
but explain what they are doing while working. During
these sessions of about 2 hours each, one of us watched
the subjects and took notes about their work structure. If
anything needed more explanation, we interrupted to ask
questions.

Relevant findings of the CIs were:

Test-driven development While professional developers
used TDD, beginners did not. They knew about it and
had an idea how it would be applied, but simply did
not have a project large and complex enough to feel
the need for it. Both beginners stated that they were
curious about TDD and would like to try it some day.

Amongst professional Ruby developers TDD seems
to be standard, though. Besides both companies we
visited using TDD, discussions on Ruby web pages,
conference topics and job listings very frequently
mention testing frameworks or TDD practices and
imply that this is highly adopted amongst profes-
sional Ruby developers. In a 2010 surveyE| amongst
more than 4000 Ruby developers, more than 85% of
the participants stated that automated testing was ei-
ther “required” or they at least “do it often”. Only
about 15% answered “don’t do it”.

As a consequence of the large adoption, we decided
to facilitate a TDD framework to collect bug fixes. It is
not clear how to decide when an error is solved with-
out a test or compiler indicating so. There are many
publications proposing TDD to be included in early
programming education ([Desai et al., 2009], [Schaub,
2009, [Spacco and Pugh) 2006]), which could benefit
from such a tool. While we limit the collection of bug
fixes to a testing framework, suggesting these outside
of this context could be easily implemented in a fu-
ture project.

Exceptions vs. “silent errors” Most of the errors develop-
ers encountered during our interviews were logical

2h’c’cp:/ /survey.hamptoncatlin.com/survey/stats

While TDD is
common amongst
professionals, the
beginners we
interviewed did not
use it.

Silent failures are
very common.

http://survey.hamptoncatlin.com/survey/stats

30

4 Design

Common strategy of

bug fixing

ones that did not result in an exception but in wrong
program output . One of the professional developers,
for example, was working on a JavaScript application
that received time entries from a server and displayed
them in a calendar. The beginning and end of a time
entry were supposed to have a different color than the
rest of it, which was not the case. Errors like this do
not result in an exception but can be caught by tests.

This shows that without a testing framework, we
would not be able to detect most errors in dynamic
languages. Tests give us the possibility to turn silent
failures into exceptions that we can catch and react
on.

Sequence of actions When developers encountered an er-

ror, depending on its kind they all followed a similar
sequence of actions.

First they tried to find out what place in the source
code the error originated at. If an exception was
thrown, they used the backtrace to get the file and
line number. If there was no exception, they thought
about what methods were related to the misbe-
haviour and inspected those.

When TDD was used and the error was in existing
code, a test was written that would catch the bug.
When they identified the source of the bug, they ei-
ther immediately knew how to solve it or took some
time to think about it and tried some variations of
their existing code.

If this did not lead to a result, they began looking for
help. They either asked their colleagues, looked at
some documentation or used Google to search for re-
lated errors.

For all the errors we encountered, this sequence even-
tually led to a solution.

Our tool will assist in the “looking for help” step. By
automatically suggesting fixes, we free the developer
from formulating a search query. If used internally in
a company, we can also suggest a colleague that ex-
perienced a related mistake before and might be able
to help.

Workplace situation All the beginner developers we inter-

viewed work on their own. Professional program-

4.2 Design studies

31

mers worked in small teams of 3-5 developers to-
gether in an office. Both companies we visited also
employed remote coworkers that telecommuted via
Skype. Especially at one of the companies, the lead
developer spent a lot of his time answering questions
of his remote colleagues via Skype, some of which
were also about programming problems.

4.2.3 Traditional interviews

To back up the data we gathered during the contextual in-
quiries, we conducted four more interviews in a traditional
question and answer style. Subjects were referrals from
students at Berkeley using different dynamic programming
languages and their experience ranged from a few month to
6 years.

These interviews confirmed our findings from the contex-
tual inquiries. Especially the action sequence described
above was approved here, too. No matter which program-
ming language was used, if developers did not immedi-
ately find the solution to their problem, they mostly started
a web search.

Subjects also noted, that they seldom actively generate con-
tent that might be helpful for others. One subject stated,
that he uses Google and hopes that the search results refer-
ence a page from Stackoverﬂowﬂ. The same person, how-
ever, said that he would not ask or answer questions him-
self, because it takes too much time. When he is looking for
information, he wants to find it immediately and not wait
for others to reply.

The interviews also revealed that errors are harder to lo-
cate on the client side, as the information browsers give
when an error occurs is typically less than the information
interpreters for server side languages give and especially
often misses the location in the source code where the er-
ror originated. There seems to be no widely adopted TDD
framework in client-side programming. This suggests that

3h’c’cp:/ /www.stackoverflow.com

Bug fixing strategy
confirmed in
traditional interviews.

Client side
interpreters provide
less information
about errors than
server side
interpreters.

http://www.stackoverflow.com

32

4 Design

Ruby as underlying
programming
language

No standard IDE for
Ruby developers

Results presented in
web browser

a server-side language like Ruby might be more promising
for our tool.

4.2.4 Design Decisions
Programming Language

As web browsers give less information about the source
of errors, the HelpMeOut approach at this point does not
seem to fit client-side languages. Programmers usually use
their semantic understanding and knowledge of what spe-
cific methods do to locate bugs in their source code. With-
out semantic understanding, there seems to be no way for
HelpMeOut to know which part of a program to compare
to collected fixes to find a solution for the current problem.
Semantic equivalence among code pieces however is an un-
decidable problem, so we considered it best to implement
HelpMeOut for a server-side language.

As we had some knowledge about and experience with
Ruby, we chose this language. It is easily extensible and
test-driven development is highly adopted. Most large
open source Ruby projects require each patch contributed
to contain unit tests (see Railg?|, Gemcutte , Sinatraﬁ for
examples).

Interface

In contrast to other languages like Java, where IDEs like
Eclipse or Netbeans are used by most developers, there is
a very wide choice of editors among Ruby programmers.
This is probably caused by the dynamic nature of Ruby, that
makes automatic refactoring — one of the main benefits of
such IDEs — very hard.

For this reason, implementing HelpMeOut as a plugin to
some editor seems not to be reasonable, because this way

*http:/ /edgeguides.rubyonrails.org/contributing_to_rails.html
*https:/ / github.com/rubygems/gemcutter /wiki/contribution-

http://edgeguides.rubyonrails.org/contributing_to_rails.html
https://github.com/rubygems/gemcutter/wiki/contribution-guidelines
http://www.sinatrarb.com/contributing

4.2 Design studies

33

we would strongly limit the number of potential users. As
a web browser should be installed on most developers com-
puters, we chose to implement the HelpMeOut interface as
a web page.

Testing Framework

According to above mentioned surveyﬂ , RSpec seems to
be the most used testing framework for Ruby. The mail-
ing lists, websites and the source code of Ruby projects at
Githubﬁ we used while working on this prototype also very
frequently mentioned or employed RSpec.

As RSpec also provides a mechanism to write custom for-
matters for its output, we chose HelpMeOut to use RSpec
as its underlying testing framework. This gives us a good
handle on the test results while at the same time providing
an interface to easily add to the test runners output.

guidelines
Shttp:/ /www.sinatrarb.com/contributing
"http:/ /survey.hamptoncatlin.com/survey/stats
8h’c’cp:/ /www.github.com

http://survey.hamptoncatlin.com/survey/stats
http://www.github.com

35

Chapter 5

Prototype

5.1 Requirements

To aid test-driven development, there are several require-
ments we defined for our tool. We divided these by
whether they help us collecting fixes or whether their pur-
pose lies in suggesting these fixes to the user.

5.1.1 Collecting fixes

To collect fixes for failing tests, our tool first has to notice
when a test fails. It then should be able to identify this test
and recognize when it is fixed.

When a formerly broken test is fixed, our tool should iden-
tify what changes lead to the test passing. These changes
in the source code should then be stored at a central server,
together with data identifying the error.

5.1.2 Suggesting fixes

When a test fails, our tool should query the database of col-
lected fixes and return the most relevant ones.

36

5 Prototype

U W=

—_

Presentation of the suggested fixes should be in a way that
allows the programmer to easily spot the affected pieces of
source code.

5.2 Overview

5.2.1 Walkthrough

This section will provide a quick example of how HelpMe-
Out could be used in practice. In the following scenario,
consider two developers working on two unrelated Ruby
on Rails projects in different physical locations.

Developer A implements a blogging application and cur-
rently works on the interface for creating new blog posts.
According to the Rails conventions, he decides that when-
ever a GET request to the action called new is issued,
the template named new should be rendered. Because he
works in a test-driven way, the first thing he does is to write
the test from Listing 5.1}

describe ’'GET new’ do
it “should render the new template’ do

get :new
response.should render_template (:new)
end

end

Listing 5.1: Developer As RSpec test

As the functionality is not implemented yet, this test case
fails with an ActionController: :UnknownAction ex-
ception.

He then implements the missing functionality. Because
Rails automatically renders a template with the same name
as the action, the solution in this case is to simply create a
method named new:

def new
end

Listing 5.2: Solution to the test case from Listing

ONUl B WN =

N =

5.2 Overview

37

He runs his test again and sees it passing. HelpMeOut re-
alizes that this test failed before and generates a new fix for
its global database, consisting of the lines in Listing

Developer B now works on a Ruby on Rails application to
manage his DVD collection. He wants a page to list all his
DVDs and names the method to generate it index, again
according to Ruby on Rails conventions. He writes the
RSpec test case in Listing [5.3|to ensure that this action as-
signs an instance variable @dvds for use in his template file.

describe ’'GET index’ do
it ’‘should assign all my dvds’ do
get :index
assigns [:dvds].should == @all_.dvds
end
end

Listing 5.3: Developer Bs RSpec test case

As the action index is not defined yet, this test will also
fail with an ActionController: :UnknownAction ex-
ception. HelpMeOut queries its central database for fixes
and finds the one from Developer A. Developer B sees, that
others have added a new method to solve a similar prob-
lem, so he tries that. He knows that his method needs a
different name, because he is not currently working on a
new action, and creates a method named index.

Because his test also checks whether the variable @dvds
gets correctly assigned, his test will still fail, this time with a
Spec: :Expectations: :ExpectationNotMetError.

He continues implementing functionality and alters his

code to Listing

def index
@dvds = Dvd. all
end

Listing 5.4: Solution to Developer Bs RSpec test case

When his test passes now, HelpMeOut again realizes that it
failed before and stores a new fix, consisting of the addition
of line 2 in Listing 5.4}

38 5 Prototype

Figure 5.1: HelpMeOut leverages a test framework to collect and suggest bug fixes:
(» Test executions are monitored for changes that lead to a formerly failing test
passing. @ When such changes are noticed, a new bug fix description is gener-
ated and submitted to the central server. G) When a test fails, a query consisting
of the error data and source code fragments is sent to the server. (x) The server
replies with suggestions of what others did to solve similar problems. (5 These
suggestions are then displayed inside the test frameworks output.

5.3 C(Client

39

5.2.2 Architecture

HelpMeOut is designed according to the client-server
model.

CLIENT-SERVER MODEL:

The client-server model describes a software architecture
in which many clients request services from one central
server.

The client comes in the form of a Ruby Gem and integrates
into the RSpec testing framework. It is responsible for col-
lecting and presenting the fixes. When a fix is made at the
client-side, it is send to the server. When a failing test is no-
ticed, the server is queried for matching fixes, which then
would be presented to the developer.

RUBYGEMS:

RubyGems is a package manager for Ruby libraries.
These library packages are called Gems and are easily in-
stallable via the gem install command.

The servers task then is to find fixes related to the given
query. Fixes are retrieved by exact matches of the excep-
tions classname and a processed backtrace. This can result
in many fixes, so they are ranked by string distance of the
exception message and processed source code, before the 5
highest rated ones are send back to the client.

From the users perspective, nothing changes besides of the
augmented output of the test results. He still runs his tests
with the rake command, waits for them to complete and
reviews the output. If there are failing tests, HelpMeOut
tries to find related fixes and adds them to the test runners

output (see Figure[5.2).

5.3 Client

RSpec provides an interface to register custom formatters.

Definition:
client-server model

Definition:
RubyGems

Implemented as
RSpec formatter

40 5 Prototype

HelpMeOut

10 tests
2 failures

PostsController new:

Location of the test:

Jspecfcontrollerfposts_controller_spec.rbie

Exception Message:
Mo action responded to new. Actions: create, edit, and index @

Backtrace:

. 7-p299chelpneout-testproject/gens/actionpack-2, 3.10/1ib/action_controller/filters. rbi617:in “call_filters'

. 7-p299@helpmeout-testproject/gens/actionpack-2, 3.10/1ib/action_controller/filters. rb:610:in “perforn_action_without_benchmark'
7-p299ghelpmeout - testproject /gens /actionpack-2. 3.18/1ib/action_controller/benchmarking. rb:6&:in “perforn_action without_rescue®
. 7-p299ghelpneout - testproject/gens /activesupport-2.3,10/1ib/active_support/core_ext/benchmark. rb:17:in “ms’

. 7-p299ghelpneout - testproject/gens /activesupport-2,3,10/1ib/active_support/core_ext/benchmark rb:17:in ‘ms’

/home/manuel/, rvm/gens/ruby-1.8, 7-p299ghelpmeout-testproject/gens/actionpack-2,3.10/1ib/action_controller/benchmarking, rb:68:in “perforn_action_without_rescue’
/home /manuel/. rum/gems/ruby-1.8. 7-p299ghe L pmeout - testproject/gens/actionpack-2.3.10,/1ib/action_controller/rescue. rb:160:in “perforn_action_without_flash'

/home /nanuel/. rvn/gens/ruby-1.8
8
3
3
8
8
8
/home/nanuel/. rvn/gens/ruby-1.8. 7-p299ghe 1 pneout - testpraject/gens ac tionpack-2. 3.10/1ib/action_controller/flash.rb:15L:in "perform_action’
8
8
8
3
3
8

/home/manuel/, rum/gems/ruby-1.
#home /nanuel/. run/gens /ruby-1
/home /manuel/. rvm/gems/ruby-1,
/home /manuel/. rum/gems/ruby-1,

3

3

3

/home /manuel/. rum/gens/ruby-1.8, 7-p299helpneout - testproject/gens /actionpack-2. 3. 10/1ib/action_controller/base. rb:532:in “send'

/home /manuel/. rvn/gens/ruby-1.8, 7-p299ehe lpneout - testproject/gens /actionpack-2, 3.10/1ib/action_controller/base. rb:532:in “process_without_filters'

/home/manuel/, rum/gems/ruby-1. 3.10/1ibsaction_controller/filters. rb:606:in “process®
3.10/1ib/action_controller/test_process.rb:567:in "process_with_test'
3.10/1ib/action_controller/test_process.rb:447:in “process’
3.18/11b/action_controller/test_process.rb:398:in “get'

. 7-p299@helpmeout-testproject/gens/actionpack-2,

7-p299ghelpmeout - testproject/gens /actionpack-2
/home /manuel/. rum/gems/ruby-1.8, 7-p299ehe L pmeout - testproject/gens /actionpack-2,
/home /manuel/, rum/gens/ruby-1.8, 7-p299@he L pmeout - testproject/gens /actionpack-2,
./spec/controller/posts_controller_spec.rb:7

Suggestions: @

Suggestions 1

/home/manuel/. rumfgens,/ruby-1

app/controllers/posts_controller.rb

@e -17,5 +17.9 @@
end
end

def index
@posts = Post.all
end

Suggestions 2

appfcontrollers/posts_controllar.rb

@@ -9.5 +9,8 @@

@post = Post, find(parans[:id])
end
end

4

def new
end
end

+ 4

Figure 5.2: The HelpMeOut interface suggesting fixes to a broken test. () shows
the name of the failing test, @ and (3) show the exception message and backtrace
to help understanding the error. HelpMeOuts suggestions start at (+) , containing
one related fix and the exact fix in second position, at (5 .

5.3 C(Client

41

These are usually used to present the output of the test runs
in different ways. The standard formatter outputs the test
results to the console, but there are others that generate a
web page or integrate into an editor. Whenever a test fails
or succeeds, a method on the formatter is called with argu-
ments containing the name and location (file and line num-
ber in the source code) of the test and, if the test failed, the
exception and the backtrace.

As this gives us access to the information we need about
the test runs and lets us present the test results together
with our fixes, we implemented the HelpMeOut client as a
custom RSpec formatter. It serves two purposes:

5.3.1 Collecting fixes

To collect fixes, HelpMeOut watches the test execution for
failing tests. Whenever a failing test is noticed, a new local
database entry containing the name of the test, the excep-
tion that was thrown and the backtrace is created.

When the HelpMeOut client notices a passing test, it
queries its local database of formerly failing tests for an
entry matching the passing tests name. If it finds one,
this suggests that the test failed before and is fixed now.
We then need to find out what files changed since the test
failed.

For this the HelpMeOut client uses the Git version control
system. After every run of the whole test suite, we commit
all the changes to a local git repository. When we encounter
a fixed test, we ask git for the files that changed since the
last commit. We then add the latest committed version as
well as the version on the file system of these files to the
data that is sent to the server.

Failing tests are
stored in a local
database.

Git is used to track
changes to files.

42 5 Prototype

Fix
|
reETETEsT7 7 | [y . 1
Vv y ! 4
exception_messagebl backtraceBI 1 exception_classnamebl
|
|
|
Mapy

Y

fix_files_att ributesbl

path | content_beforebl content_afterbl

Figure 5.3: Structure of the XML data sent to the server as a new fix

GIT:
Git is a distributed version control system. It was ini-
tially designed for Linux kernel development by Linus

Deﬁmtuon: Thorvalds. As every working copy contains the full ver-
Git . . s . s .
sion history and has full revision tracking capabilities, it
is not dependent on network access or a central server.
To later match this fix with other programmers problems,
further data is needed. We also send the exceptions mes-
sage and classname as well as the generalized backtrace.
The structure of the sent XML data is shown in[5.3|
User-specific Generalization of the backtrace is necessary, because it usu-
differences are ally contains absolute paths to locations of installed li-
removed from the braries, which can vary between different users. We also
backtrace. need to ensure that it does not contain paths to project

specific files, which are unlikely to be the same in other

5.3 C(Client 43

projects. This is done in three steps:

T
L

/home/manuel/test_project_2/app/controllers/posts_controller.rb:16:in ‘show”
/usr/lib/ruby /gems/actionpack —2.3.10/1lib/action\ _controller/base.rb:1333:in ‘send’

/usr/lib/ruby /gems/actionpack —2.3.10/1lib/action?controller/base.rb:1333:in ‘perform
\-action_without\ _filters ’

/usr/lib/ruby /gems/actionpack —2.3.10/1lib/action\ _controller/filters.rb:617:in ‘call
\ -filter

/usr/lib/ruby /gems/actionpack —2.3.10/1lib/action_controller/filters .rb:610:in *
perform\ _action_without_benchmark’

/usr/lib/ruby /gems/actionpack —2.3.10/ 1lib/action\ _controller /benchmarking.rb:68:in *
perform\ _action_without)\ _rescue ’

/usr/lib/ruby /gems/activesupport —2.3.10/ 1lib /active_support/core)\ _ext/benchmark.rb
:17:in ‘ms’

/usr/lib/ruby /gems/activesupport —2.3.10/ 1lib /active_support/core)\ _ext/benchmark.rb
:17:in ‘ms’

/usr/lib/ruby /gems/actionpack —2.3.10/1ib/action\ _controller /benchmarking.rb:68:in *
perform\ _action\ _without\ _rescue’

/usr/lib/ruby /gems/actionpack —2.3.10/ 1lib /action_controller/rescue.rb:160:in *
perform\ _action_without\ _flash’

./spec/controllers /posts_controller_spec.rb:10

1

1

Listing 5.5: Example of an unprocessed backtrace — user- and project-specific parts
in orange

e First, all relative paths are expanded. This
makes comparison in the next steps easier. In
this would affect line 11, which would be
/home/manuel/test_project_2/spec/controllers/posts_controller_spec.rb:10

afterwards.

e The next step ensures that differences in the loca-
tion of installed libraries are ignored. For that, the
HelpMeOut client provides the configuration option
exclude_paths, which for the example backtrace
in should point to /usr/lib/ruby. Every
occurrence of an exclude_path at the beginning of a
line in the backtrace is then replaced with the string
“EXCLUDE”. For line 2 in B.5 this would result in
EXCLUDE/gems/actionpack-2.3.10/1ib/action_controller/base.rb:1333:1in

‘send’.

e Finally, all lines referring to project specific files are re-
moved from the backtrace. These are determined by
a configuration option project_root, which should

44

5 Prototype

The server is queried
for suggestions for
every failing test.

point to the projects root directory. Paths to files in
this directory are unlikely to be the same between dif-
ferent users. In the example above, this would affect
lines 1 and 11, which would not be part of the pro-
cessed backtrace anymore.

The generalized backtrace of [5.5]is shown in

EXCLUDE/gems/actionpack —2.3.10/ lib /action_controller /base.
rb:1333:in ‘send’
EXCLUDE/gems/actionpack —2.3.10/1lib/action_controller /base.
rb:1333:in ‘perform_action_without_filters ’
EXCLUDE/gems/actionpack —2.3.10/1lib /action_controller/
filters .rb:617:in ‘“call_filters ’
EXCLUDE/gems/actionpack —2.3.10/lib/action_controller/
filters.rb:610:in ‘perform_action_without_benchmark’
EXCLUDE/gems/actionpack —2.3.10/lib/action_controller/
benchmarking.rb:68:in ‘perform_action_without_rescue’
EXCLUDE/gems/activesupport —2.3.10/lib /active_support/
core_ext/benchmark.rb:17:in ‘ms’
EXCLUDE/gems/activesupport —2.3.10/1lib /active_support/
core_ext/benchmark.rb:17:in ‘ms’
EXCLUDE/gems/actionpack —2.3.10/lib /action_controller/
benchmarking.rb:68:in ‘perform_action_without_rescue’
EXCLUDE/gems/actionpack —2.3.10/ lib /action_controller/rescue
.1tb:160:in ‘perform_action_without_flash”’

Listing 5.6: Processed backtrace frorn

5.3.2 Suggesting fixes

When the HelpMeOut client notices a failing test, it gener-
ates a query consisting of the line of code where the error
is assumed to originate, the class name and message of the
exception and the backtrace, processed as described above.
The assumed error location is generated from the first line
in the backtrace that refers to a file in the projects directory.

It then sends this query to the server and retrieves related
fixes. These are rendered in an html file that is presented to
the user after all tests are completed.

5.4 Server

45

5.4 Server

The servers purpose is to store fixes and match them to in-
coming queries from clients. It is build as a Ruby on Rails
application.

5.4.1 Finding relevant fixes

A query to the server for relevant fixes consists of the excep-
tions classname and message, the backtrace and the line of
code where the errors origin is assumed. When the server
retrieves such a query, it has to find relevant fixes in its
database. This is done in two steps:

First, we retrieve fixes by exact matches of the processed
backtrace and exception classname from the database. As
the processed backtrace only contains lines referring to in-
stalled libraries and the number of exception classes usu-
ally is not very high, this is a very liberal step and usually
returns a lot of candidates.

To decide which of the fixes from the first step to present to
the user, we rate these and return the five highest rated ones
to the client. Rating is based on a weighted sum of normal-
ized Levenshtein string distance of the exception messages
and the given line of code to the source code of the bro-
ken files in the fix. The source code rating of one fix is the
highest rating of any line in any one of the files that belongs
to this fix. Some tests showed, that a weight of 2 for the ex-
ception message and a weight of 1 for the source code gives
good results.

LEVENSHTEIN DISTANCE:

The Levenshtein distance between two strings is defined
as the minimum number of insertions, deletions or sub-
stitutions of a single character needed to transform one
string into the other one.

Normalization is done by dividing this number through
the number of characters of the longer string, resulting in
a number between 0 and 1.

Query fixes by
exception class and
message, backirace
and line of code

Rate fixes and return
five best

Definition:
Levenshtein distance

46

5 Prototype

Identifiers are
replaced for
comparison in the
source code.

Tokenization of source code

Because different programmers will use different identi-
fiers, we replace these in both the code line from the query
and the source code in our database before computing the
ratings. We replace all custom variable, class and method
names as well as number, string and symbol values. To
match on the usage of Ruby or Rails specific methods or
classes, we extracted method and class names from the
Ruby and Ruby on Rails documentation and check if the
current identifier is in this list before replacing it. This list
currently consists of 711 class and 2520 method names.

This generalization of the source code is done by a custom
lexical analyzer. Table[5.1|shows the name of the tokens we
replace and the string we replace them with.

| Token | Replacement string | Example ‘

VarNameToken | INST_-VAR / CONST / VAR | @foo — INST_VAR

Foo — CONST

foo — VAR
MethNameToken | METHOD def hello — def METHOD
StringToken STRING “hello” — STRING
SymbolToken SYMBOL :hello - SYMBOL
NumberToken NUMBER 42 — NUMBER

Table 5.1: Tokens replaced by the lexical analyzer

class Post <

class CONST <

ActiveRecord :: Base ActiveRecord :: Base
def pluralize_title def METHOD
@title = @title.pluralize INST_-VAR = INST_VAR. pluralize
end end
end end

Table 5.2: Source code before and after transformation by the lexical analyzer

Table [5.2| gives an example of source code before and af-
ter transformation. The class name Post is replaced by
a general token CONST, the method pluralize_titles
name is replaced with the token METHOD and the instance
variable @title is replaced by INST_VAR. The identifiers

5.4 Server

47

ActiveRecord: :Base and pluralize, that both are
part of the Ruby on Rails framework, stay part of the trans-
formed source code.

Once the rating of the matching fixes is computed, XML
data is generated from the 5 highest rated ones and sent to
the client.

49

Chapter 6

Evaluation

To evaluate the utility of our prototype, we had 8 users per-
form a development task with HelpMeOut.

6.1 Questions

We concentrated our observations on the amount and util-
ity of the presented suggestions as well as the number of
newly generated fixes. We were also interested in general
feedback subjects could provide about our tool.

A comparative study to evaluate the possible increase in
productivity and software quality HelpMeOut could pro-
vide remains future work.

6.2 Participants

Participants were found through the mailing lists of a Ruby
on Rails class at Berkeley and the East Bay Ruby User
Group. We also contacted the Ruby consultancy from Ger-
many again, resulting in 3 more subjects, two of which al-
ready took part in our contextual inquiries. Like in our ini-
tial design interviews, the subjects experience with Ruby

Participants had
varying programming
experience, but
knowledge of RSpec.

50

6 Evaluation

Evaluation set-up
tested in pilot tests

Very specific tasks

on Rails varied. Some just finished their first introductory
programming class while others had worked professionally
for several years on large software projects. By the nature
of our tool however, subjects were required to at least have
some knowledge of the RSpec testing framework.

6.3 Method

To answer above questions, we wanted our subjects to pro-
gram using the HelpMeOut tool. We would then watch
them and take notes about the provided bug fix suggestions
and receive general feedback about the tool.

To not have our subjects spend a lot of time thinking about
what to work on, we had to design a task for them, which
yielded some problems. The task description had to be
fine-grained enough so developers know what to do but
open enough to allow realistic results. An initial pilot test
showed, that too specific task descriptions lead to fixes that
are directly applicable to other subjects problems, which
would seldom happen outside of our study and thus lead
to invalid results.

6.4 Pilot tests

Before the actual tests, we pilot tested with two more sub-
jects to ensure that our evaluation set-up will provide use-
ful results.

6.4.1 Firstrun

The task for our first pilot tests participant was very spe-
cific. We set up a Ruby on Rails “Quiz” application consist-
ing of a Question and an Answer model. The subject then
was given very specific instructions on what he should do
like

“Write the method Answer#correct?. It should return true if the

6.4 Pilot tests

51

given answer matches the questions solution.”

or

“Adjust Answer#correct? to be case-insensitive and ignore lead-
ing and trailing white-spaces in the given answer as well as in
the questions solution.”.

To be able to present some suggestions right from the start,
we did the tasks twice before the participant and seeded
the database with some fixes.

We quickly realized that this approach is too specific and
will not scale to multiple subjects. Even with only our ini-
tial data seeds, the suggestions for the first problem our
participant ran into contained the complete solution, often
even for future tasks. When the first test for the correct?
method failed, our suggestions contained the fix in Figure
for example, which would have made this test pass, but
is also the solution for the last task involving this method.
This way all he had to do to solve his task was copy and
paste the suggestion to the correct file.

Fix 3

app/models/answer.rb

BE -5,7 +5,5 @@

def correct?
teXt.upcase.strip == guestion.solution.upcase. strip
question. solution.split({',').any? do |solution|
text.upcase.strip == solution.upcase.strip
end
end
end

+ 4+

Figure 6.1: Suggestion containing solution to future tasks

Another problem this test revealed was the perception of
suggested fixes not as examples of what others did, but as
exact changes that need to be done to the users own code.
The closeness of the examples we provided might also be
responsible for that, but we also changed the wording of
the suggestion interface to talk about Suggestions instead of

Too specific tasks not
suitable for multiple
subjects

Subject regarded
suggestions as
changes to his own
code

52

6 Evaluation

More open task:
creation of a blog
application

No use of code
generation, strict
test-driven
development

Fixes and explained what our tool did more in detail before
subjects started programming for our next tests.

We then realized that only a more open task would be suit-
able to evaluate the utility of our tool. The most realistic ap-
proach would be to let developers work on whatever they
want. This, however, is problematic, as many participants
would probably not immediately have an idea of a web ap-
plication they could develop when we invite them to our
test. Extremely spontaneous trial and error programming
also seems hard to do in a test-driven way.

6.4.2 Second Run: Blog application

For the second pilot test, we let the subject create a blog
application. It should allow creating, listing and showing
blog posts. Most Rails developers should already be famil-
iar with that task, as it is a very common theme of learning
tutorials. A video tutorial labeled “Creating a weblog in 15
minutes” was featured on the official Ruby on Rails website
(www.rubyonrails.or) for a long time.

This is a more open task, as functionality can be imple-
mented in many different ways and there is no given or-
der of the steps involved. For the subjects less experienced
with test-driven development however, we provided a list
of tests that should exists when they are done (see
“IDescription of the evaluation programming task!”).

We also instructed our participants not to use any code gen-
erators except for database migrations. All code had to be
written by hand. Another requirement was to strictly de-
velop test-driven. No implementation code should be writ-
ten unless there was a failing test. Otherwise our tool could
not show its full potential. Failing tests are required to as
well collect as suggest fixes.

Before this pilot test we again worked through the tasks
ourselves and generated some fixes. Even after this phase
it was visible that there are multiple ways to solve the task.

]htt’p: / /www.rubyonrails.org

http://www.rubyonrails.org

6.5 Results

53

This time, after the pilot test, our set-up seemed more
promising. The subject understood the interface and re-
alized that the suggestions were examples of others solu-
tions. The task was open enough for suggestions to only
provide hints and not complete solutions.

6.5 Results

During the study, we recorded the screen and the users
voice. We then counted the number of useful suggestions
and noted suggestions and comments a participant might
have about our tool.

We considered a suggestion useful, if its application would
lead to the affected test case passing. As suggestions were
only examples of other peoples code, the changes they pre-
sented had to be mapped to the current users code. Because
of that, we considered suggestions useful, if they present
the next abstract step to take. If the current problem is
a missing method edit, we also considered a suggestion
showing the definition of a method with a different name
as useful.

After 8 hours of programming, our subjects generated 161
fixes. Of the 211 times they ran into problems, HelpMeOut
suggested useful fixes in 120 cases (57%). 38 times (18%)
suggestions were of no help and for 30 problems (14%)
there were no fixes suggested. 23 times (11%) the users tests
contained errors that prevented execution to reach the point
where HelpMeOut gets loaded.

Between the three subjects working for the same company,
HelpMeOuts suggestions were useful in 63% of the cases
versus 53% for the rest of the subjects. This difference can
be explained by the common style of programming compa-
nies often try to establish between their employees, but the
sample of course is much too small to ensure significance.

After the small modification suggested by our pilot testers,
people generally liked the HelpMeOut interface. Only lit-
tle improvements were requested like still showing the re-

Suggestions did not
provide complete
solutions

161 fixes were
generated and 57%
of suggestions were
useful.

More suggestions
were useful if
subjects followed a
similar programming
style.

Only small
improvements were
suggested.

54

6 Evaluation

sults of the last test runs or presenting positive test runs in
green. One subject suggested showing more than five sug-
gestions per failing test and others did not like being unable
to copy and paste from our interface due to the + and - line
prefixes from the diff output. Copy and paste being hard
might however not be too bad, because implementing the
examples we show by hand encourages developers to think
about them, which the HelpMeOut model requires. Not all
solutions we suggest do really work when simply copied.

The three subjects working for the programming company
noted they could imagine using a tool like HelpMeOut to
train new employees to follow their programming conven-
tions and style. If the new employees would see related
examples prior to implementing functionality, this could
not only help them to solve errors, but also remind them
of company conventions like proper formatting or naming
of variables and methods.

6.6 Discussion

While our study did not test the effect of the suggestions
on programmer’s productivity and software quality, we
demonstrated that the concept of the original HelpMeOut
tool can be applied to dynamic languages with similar re-
sults.

For the collection of bug fixes we added the requirement
of using test-driven development, which might be an addi-
tional hurdle for programming beginners in contrast to the
original HelpMeOut. Because of the large adoption of soft-
ware testing amongst Ruby developers, we do not consider
this to be a really big problem, however.

The difference in the rate of successful suggestions be-
tween the subjects with the same employer and the others
suggests, that following common programming guidelines
might improve HelpMeOuts utility. This effect could also
be true for the other direction, as subjects imagined using
HelpMeOut to train new coworkers to follow their guide-
lines by showing related examples during programming.

6.6 Discussion

55

One remaining problem is that users might not want their
code to be publicly available. As they currently have no
control about what parts of their source code get submitted
as a fix, it might contain private data and even passwords.
If deployed inside one company, this might not be a prob-
lem at all, but future work could also implement mecha-
nisms to filter certain parts of the source code before trans-
mission.

57

Chapter 7

Summary and future
work

7.1 Summary and contributions

Fixing bugs is a major part of software development. Start-
ing with the first implementation steps, where developers
often try different variations of possible solutions to simply
see whether they will work, and certainly not ending with
the release of the software to customers, resolving errors is
an always present task.

Especially in dynamic languages, where there is no com-
piler and no type system to ensure certain constraints are
satisfied and eliminate classes of errors, software testing is
vital for a projects quality. In the Ruby community, test-
driven development is very popular, resulting in very large
test suites for many projects — often consisting of more code
than the actual implementation.

This thesis presents an approach to automatically collect
and suggest fixes for broken unit tests. A tool monitors the
tests execution and queries a central server for fixes, if tests
fail. If these tests later successfully pass, the differences of
the affected files are sent to the server to become a new pos-
sible suggestion. Because of mentioned popularity of test-
driven development in the Ruby community, this approach

58

7 Summary and future work

Multiple similar fixes
are presented for
one failing test.

Use testing
framework for
collection, suggest
fixes whenever
exceptions occur

gives us a very good handle on problems developers en-
counter.

To evaluate the idea we implemented a tool for the RSpec
testing framework for Ruby programs. A user study of 8
hours of programming showed good potential for as well
collecting as suggesting fixes. During this time, 161 new
fixes were collected and 57% of the suggestions were useful.

7.2 Future work

7.2.1 Detection of duplicate fixes

One problem with the current implementation is that there
is no detection of duplicate fixes. When we select the fixes
to be presented to the user, we simply take the 5 highest
rated ones. The more our database is filled, these highest
rated fixes are likely to be very similar though. There cur-
rently is no detection of whether one of our suggested fixes
was applied, resulting in a new submission of the same fix
the next time the affected test is run and passes successfully.

Implementations circumventing this duplication in the sug-
gested fixes have to apply some way to detect them first.
This could be achieved by either asking the user to state
which fix he will apply in the HelpMeOut interface and
then not submitting it again or by some similarity detec-
tion at the server. Both of these strategies have problems.
Asking the user in the interface presumes that he knows
whether a fix will work before it is applied and similar fixes
at the server are also likely to not be exactly the same. Here
again some heuristical way has to be evaluated in future
work.

7.2.2 Suggesting fixes outside of tests

While we think it is a good way to limit the collection of
fixes to a testing environment, suggestions could also hap-
pen outside of it. This would also allow users that do not

7.2 Future work

59

use RSpec to benefit from our tool, while for the collec-
tion of fixes we would still have the very clear indication
of whether a bug is resolved and a test passes. Most people
doing their first steps in Ruby probably do not use a test-
ing framework and would probably be happy to see some
suggestions when they run into exceptions.

An example implementation of this could be done by
surrounding the request processing in the Ruby on Rails
framework with a HelpMeOut exception handler. Instead
of showing an error page in the browser in the case of an
exception, an interface suggesting possible fixes could be
presented.

7.2.3 Improve matching and rating of fixes

There is still a lot of room to improve fetching of fixes for
a given error. Possibilities include improvements of the
current approach by changing the text-based comparison
of source codes to a comparison based on the programs
structure, like a similarity matching of the generated syn-
tax trees.

Other possibilities may include new features like allowing
users to rate fixes. This way, we would not only crowd
source the fixes itself, but also their relevance for specific
problem scenarios.

7.2.4 Usability improvements

As some subjects noted, an option to allow copy and past-
ing or even automatic application of presented fixes might
be helpful. As suggestions are most often not directly ap-
plicable to the users code and more a source of inspiration,
more research has to be done on how to improve the way
users can adopt the suggested fixes.

Another way to improve the users perception of the sug-
gestions as helpful information and not code changes they
need to apply might be to enrich their presentation with

60

7 Summary and future work

more textual elements, moving the focus a bit away from
the source code. These textual information could be user
provided explanations of the suggested fixes. Future work
could also prove a combination of HelpMeOut with the
Blueprint concept (see (3.3.1—"Blueprint[’) by integrating
results from web search into HelpMeOuts suggestion in-
terface useful.

61

Appendix A

Description of the
evaluation programming
task

62

A Description of the evaluation programming task

Create a blog application. Strictly follow the Test-Driven Development principles: Only write
implementation code if there is a failing test. Do not use any rails generators except for
migrations.

At least the following tests should exist:

Post:
- A post without a title is invalid
- A post without a body is invalid

PostsController:
- A get request to the index action renders the index view
- A get request to the index action assigns all posts as @posts

- A get request to the edit action renders the edit view
- A get request to the edit action assigns the requested post as @post

- A get request to the new action renders the new template
- A get request to the new action assigns a new post as @post

- A post request to the create action renders the new template, if creation was not successful
- A post request to the create action assigns the post as @post, if creation was not successful
- A post request to the create action redirects to the new post, if creation was successful

- A put request to the update action redirects to the post, if it was updated successfully
- A put request renders the edit action, if the update was not successful

- A put request assigns the post as @post, if the update was not successful

- A get request to the show action renders the show template
- A get request to the show action assigns the requested post as @post

Figure A.1: Description of the evaluation task

63

Bibliography

B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani,
Gopal Srinivasa, and Vipindeep Vangala. Debugadvisor:
a recommender system for debugging. In ESEC/FSE "09:
Proceedings of the the 7th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT sym-
posium on The foundations of software engineering, pages
373-382, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-001-2. doi: http://doi.acm.org/10.1145/1595696.
1595766.

Hugh Beyer and Karen Holtzblatt. Contextual Design: Defin-
ing Customer-Centered Systems (Interactive Technologies).
Morgan Kaufmann, 1st edition, September 1997. ISBN
1558604111.

Hugh R. Beyer and Karen Holtzblatt. Apprenticing with
the customer. Commun. ACM, 38(5):45-52, 1995. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/203356.
203365.

Pierre Bourque and Robert Dupuis, editors. Guide to the
Software Engineering Body of Knowledge: 2004 Version —
SWEBOK. IEEE Computer Society Press, Los Alamitos,
CA, 2005. ISBN 0-7695-2330-7. URL http://www2.

computer.org/portal/web/swebok/2004guide.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. Example-centric programming: in-
tegrating web search into the development environ-
ment. In Proceedings of the 28th international confer-
ence on Human factors in computing systems, CHI 10,
pages 513-522, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-929-9. doi: http://doi.acm.org/10.1145/

http://www2.computer.org/portal/web/swebok/2004guide
http://www2.computer.org/portal/web/swebok/2004guide

64

Bibliography

1753326.1753402. URL http://doi.acm.org/10.
1145/1753326.1753402.

Andrew Church, Lawrence Tratt, Roel Wuryts, Berend
de Boer, Hong-Lok Li, George Brooke, James E. Hew-
son, and David T. Britt. Dynamically typed languages.
Software, IEEE, 25(2):7 -10, 2008. ISSN 0740-7459. doi:
10.1109/MS.2008.35.

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Mari-
nov. ReAssert: Suggesting repairs for broken unit tests.
pages 433—444, November 2009. http://mir.cs.
illinois.edu/reassert/.

Chetan Desai, David S. Janzen, and John Clements. Im-
plications of integrating test-driven development into
csl/cs2 curricula. In SIGCSE “09: Proceedings of the 40th
ACM technical symposium on Computer science education,
pages 148-152, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-183-5. doi: http://doi.acm.org/10.1145/
1508865.1508921.

Bjorn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. What would other programmers do:
suggesting solutions to error messages. In CHI "10: Pro-
ceedings of the 28th international conference on Human fac-
tors in computing systems, pages 1019-1028, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. doi:
http:/ /doi.acm.org/10.1145/1753326.1753478.

Haifeng He and Neelam Gupta. Automated debugging us-
ing path-based weakest preconditions. In Michel Wer-
melinger and Tiziana Margaria-Steffen, editors, Funda-
mental Approaches to Software Engineering, volume 2984 of
Lecture Notes in Computer Science, pages 267-280. Springer
Berlin / Heidelberg, 2004. URL http://dx.doi.org/
10.1007/978-3-540-24721-0_20. 10.1007/978-3-
540-24721-020.

D. Jeffrey, Min Feng, N. Gupta, and R. Gupta. Bugfix: A
learning-based tool to assist developers in fixing bugs.
In Program Comprehension, 2009. ICPC '09. IEEE 17th In-
ternational Conference on, pages 70 =79, May 2009. doi:
10.1109/ICPC.2009.5090029.

http://doi.acm.org/10.1145/1753326.1753402
http://doi.acm.org/10.1145/1753326.1753402
http://mir.cs.illinois.edu/reassert/
http://mir.cs.illinois.edu/reassert/
http://dx.doi.org/10.1007/978-3-540-24721-0_20
http://dx.doi.org/10.1007/978-3-540-24721-0_20

Bibliography

65

Andrew J. Ko and Brad A. Myers. Debugging rein-
vented: asking and answering why and why not ques-
tions about program behavior. In Proceedings of the
30th international conference on Software engineering, ICSE
‘08, pages 301-310, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.
1145/1368088.1368130. URL http://doi.acm.org/
10.1145/1368088.1368130.

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy,
B. Simon, L. Thomas, and C. Zander. Debugging: a re-
view of the literature from an educational perspective.
Computer Science Education, 18:67-92, June 2008. doi:
10.1080/08993400802114581.

Steve McConnell. Code Complete, Second Edition. Microsoft
Press, Redmond, WA, USA, 2004. ISBN 0735619670.

Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam
Cannon. Backstop: a tool for debugging runtime errors.
In SIGCSE '08: Proceedings of the 39th SIGCSE technical
symposium on Computer science education, pages 173-177,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-799-
5. doi: http://doi.acm.org/10.1145/1352135.1352193.

Glenford J. Myers and Corey Sandler. The Art of Software
Testing. John Wiley & Sons, 2004. ISBN 0471469122.

Jakob Nielsen. Participation inequality: Encourag-
ing more users to contribute, November 2010.
URL http://www.useit.com/alertbox/

participation_inequality.html,

Linda Dailey Paulson. Developers shift to dynamic pro-
gramming languages. Computer, 40(2):12 -15, 2007. ISSN
0018-9162. doi: 10.1109/MC.2007.53.

Stephen Schaub. Teaching cs1 with web applications and
test-driven development. SIGCSE Bull., 41(2):113-117,
2009. ISSN 0097-8418. doi: http://doi.acm.org/10.1145/
1595453.1595487.

Jaime Spacco and William Pugh. Helping students appreci-
ate test-driven development (tdd). In OOPSLA “06: Com-
panion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications,

http://doi.acm.org/10.1145/1368088.1368130
http://doi.acm.org/10.1145/1368088.1368130
http://www.useit.com/alertbox/participation_inequality.html
http://www.useit.com/alertbox/participation_inequality.html

66

Bibliography

pages 907-913, New York, NY, USA, 2006. ACM. ISBN 1-
59593-491-X. doi: http://doi.acm.org/10.1145/1176617.
1176743.

G. Tassey. The economic impacts of inadequate infrastruc-
ture for software testing. Technical report, National Insti-
tute of Standards and Technology, 2002.

Laurence Tratt and Roel Wuyts. Guest editors” introduc-
tion: Dynamically typed languages. Software, IEEE, 24
(5):28 =30, sept.-oct. 2007. ISSN 0740-7459. doi: 10.1109/
MS.2007.140.

Davor Cubrani¢ and Gail C. Murphy. Hipikat: recom-
mending pertinent software development artifacts. In
Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 408-418, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-
X. URL http://portal.acm.org/citation.cfm?
1d=776816.776866.

Peter Warren. Learning to program: spreadsheets, script-
ing and hci. In Proceedings of the sixth conference on Aus-
tralasian computing education - Volume 30, ACE "04, pages
327-333, Darlinghurst, Australia, Australia, 2004. Aus-
tralian Computer Society, Inc. URL http://portal.
acm.org/citation.cfm?1d=979968.980012.

http://portal.acm.org/citation.cfm?id=776816.776866
http://portal.acm.org/citation.cfm?id=776816.776866
http://portal.acm.org/citation.cfm?id=979968.980012
http://portal.acm.org/citation.cfm?id=979968.980012

67

Index

abbrv, see abbreviation

apprenticeship model,
automated debugging,

backtrace, 26, B0H34]

Behaviour-Driven Development, [§

bug, B} @ [10} . [13}[14] see also error, 27} 28]

- economic impact, {4

CI, see contextual inquiry

compiler, [4} 6]

contextual inquiry, [22H27]
debugging,

defect rate, |4

design, (1928
duck typing, 7]

dynamic language, [BH7] 27

dynamic typing, [5

error, B} [7} [T0H12) [T4) [T} [T9H2T) 2527 29} B3

error message, [20]
evaluation, 37]

example, 8, 9]

Example-Driven Development,
expectation, 8

future work,
git, B1]

integration test, [10]

interpreter, [6} [19} 27]

lexical analyzer,
logic error, 20}

participation inequality,
Principle of least suprprise, [7]

68

Index

semantic error, [T9]

software testing, [3}[7]
specification,
stacktrace, see backtrace

static ananlysis,g

static language,

syntax error, [T9
system test,@

TDD, see Test-Driven Development, [8) D7
test, [7H0) 13} [[9} [20} [25} 26} P31 B3]

Test-Driven Development, E @ @
type checking, [

unit test, [0} [I0]

waterfall model,

web search, 20} 26} 27]
xml,

Typeset January 13, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Chapter Overview

	Theory
	Software Bugs
	Dynamic languages
	Ruby

	Software Testing
	RSpec
	Classification of Tests

	Related work
	HelpMeOut
	Automated Debugging
	ReAssert
	AutoDebug
	BugFix

	Finding related resources
	Blueprint
	DebugAdvisor
	Hipikat

	Helping understand the error
	Whyline
	Backstop

	Summary

	Design
	Motivation
	Categories of errors
	How bugs are solved today
	Participation Inequality

	Design studies
	The Contextual Inquiries
	Apprenticeship Model

	Own Contextual Inquiries
	Traditional interviews
	Design Decisions
	Programming Language
	Interface
	Testing Framework

	Prototype
	Requirements
	Collecting fixes
	Suggesting fixes

	Overview
	Walkthrough
	Architecture

	Client
	Collecting fixes
	Suggesting fixes

	Server
	Finding relevant fixes
	Tokenization of source code

	Evaluation
	Questions
	Participants
	Method
	Pilot tests
	First run
	Second Run: Blog application

	Results
	Discussion

	Summary and future work
	Summary and contributions
	Future work
	Detection of duplicate fixes
	Suggesting fixes outside of tests
	Improve matching and rating of fixes
	Usability improvements

	Description of the evaluation programming task
	Bibliography
	Index

