
by
Markus Jonas

Tactile Editor
A Prototyping Tool to

Design and Test
Vibrotactile Patterns

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: Nov 30th, 2007
Submission date: May 30th, 2008

iii

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 Haptics . 1

1.1.1 Why Is Haptics Important? 2

1.1.2 Haptic Feedback 3

1.2 The DIA-cycle 3

1.3 Thesis Structure 4

2 Background 5

2.1 The Somatic Sensory System 5

2.2 The Sense of Touch 6

iv Contents

2.2.1 The Cutaneous System and the Tac-
tile Sense 7

Sensory Physiology 7

2.3 Perception of Vibrotactile Stimuli 8

2.3.1 Temporal Order 10

2.3.2 Vibrotactile Patterns 10

2.3.3 Tactile Spacial Resolution and Tactile
Acuity 11

2.3.4 Tactile Illusions 14

2.4 Summary . 16

2.4.1 Haptic Devices 16

2.4.2 Tactile Stimulators and Vibrotactile
Technology 17

3 Related Work 19

3.1 Haptic Feedback 20

3.1.1 Perception of Haptic Feedback 22

3.2 Editors to Specify Haptic Icons 22

3.2.1 Hapticon Designer, Editor and Dis-
player (HDED) 23

3.2.2 VITAL 24

3.2.3 Immersion Studio 25

3.2.4 VibeTonz 27

3.2.5 Skinscape 27

3.3 HCI Prototyping Toolkits 28

Contents v

3.3.1 iStuff 28

3.3.2 iStuff Mobile 29

3.3.3 Suede 30

3.3.4 d.tools 31

3.3.5 Exemplar 32

3.3.6 Discussion 33

3.4 Track-based Editors 33

3.4.1 Music Sequencing Software 34

3.4.2 Video Editing Software 34

3.5 Toolkit Evaluation 35

3.6 Summary . 36

4 Requirements 39

4.1 Overview . 39

4.2 Problem Definition and System Objective . . 40

4.3 Tactile Editor 40

4.4 Functionality 41

4.4.1 Necessary Properties 42

4.4.2 Desirable Properties 43

4.4.3 Conceivable Requirements 44

4.5 User Characterization 44

4.6 Development and Runtime Environment . . 45

4.7 Supported Hardware Platforms 45

vi Contents

4.7.1 Arduino 46

4.7.2 Make Controller Kit 47

5 Conceptual Design 51

5.1 System Architecture 51

5.2 Concepts of Interaction 54

6 Implementation Details 57

6.1 Overview . 57

6.2 Model-View-Controller Paradigm 58

6.3 Class Structure 59

6.4 Tactile Editor GUI 62

6.4.1 The Canvas 63

6.4.2 The Manage Devices Drawer 66

6.4.3 The Status Bar 69

6.4.4 The Menu Bar 70

6.5 Undo Functionality 72

6.6 Tactile Editor Help System 72

6.6.1 Tooltips 72

6.6.2 Help Book 74

6.6.3 Keyboard Shortcuts 75

6.7 Communication with Hardware Platforms . 76

6.7.1 Arduino 76

Contents vii

6.7.2 Make Controller Kit 78

7 Evaluation 81

7.1 User Testing 82

7.1.1 Setup 83

7.1.2 Users 84

7.1.3 Tasks 84

7.1.4 Results 86

8 Summary and Future Work 93

8.1 Summary and Contributions 93

8.2 Future Work 94

8.2.1 Export Function for Patterns 94

8.2.2 Communication with Other Tools . . 95

8.2.3 Control Points 95

8.2.4 Perception of Tactile Patterns 96

A Basic Data Structures for Tactile Editor 97

B List of Keyboard Shortcuts 99

C Questionnaire and Task List Tactile Editor User
Study 101

D GUI Development 107

Bibliography 111

viii Contents

Index 117

ix

List of Figures

1.1 DIA-cycle . 3

2.1 Mechanoreceptors 8

2.2 Vibrotactile patterns 11

2.3 Tactile acuity 13

2.4 Sensory humunculus 14

2.5 Sensory saltation temporal 15

2.6 Sensory saltation location 15

2.7 Phantom haptic devices 17

2.8 Vibrotactile stimulators 18

3.1 Haptic feedback system for robotic surgery . 21

3.2 Haptic feedback devices 21

3.3 Hapticon Editor 23

3.4 Software interface for VITAL 25

3.5 Immersion Studio GUI 26

3.6 VibeTonez Studio GUI 27

x List of Figures

3.7 Quartz Composer GUI 28

3.8 Quartz Composer GUI 29

3.9 Suede GUI . 30

3.10 d.tools editor GUI 31

3.11 Exemplar GUI 32

3.12 GarageBand GUI 34

3.13 Jahshaka GUI 35

3.14 Existing systems 37

4.1 Tracks . 41

4.2 Example motor vibrations 42

4.3 Pulse Width Modulation 47

4.4 Arduino box 49

5.1 System architecture 52

5.2 Feedback - tooltips 56

6.1 MVC diagram Cocoa 59

6.2 UML class diagram 60

6.3 Tactile Editor GUI 63

6.4 Canvas . 64

6.5 Creating patterns 65

6.6 Editing patterns 66

6.7 ”Manage Devices” drawer 67

List of Figures xi

6.8 Sensor window 68

6.9 Status bar . 70

6.10 Menu bar . 70

6.11 Undo . 72

6.12 Tooltips . 73

6.13 Tactile Editor Help 75

6.14 Arduino protocols 77

7.1 Changes made to GUI 82

7.2 Setup user test 83

7.3 User working with Tactile Editor 85

7.4 Statistical results task completion 87

7.5 Results task completion 87

7.6 Results toolkit evaluation 88

7.7 Results GUI evaluation 88

7.8 Statistical results toolkit evaluation 89

7.9 Patterns task 3 90

8.1 Patterns using polygons 96

C.1 Questionnaire user study - page 1 102

C.2 Questionnaire user study - page 2 103

C.3 Questionnaire user study - page 3 104

C.4 Task list user test 105

xii List of Figures

D.1 Development GUI 1/2 108

D.2 Development GUI 2/2 109

D.3 Tactile Editor GUI - final design 110

xiii

List of Tables

2.1 Definitions of terminology 6

2.2 Characteristics of the four types of
mechanoreceptors responsible for per-
ceiving tactile sensations 9

2.3 Spacial resolution evaluated with two-point
thresholds - from [Kandel et al., 2000] and
[Grunwald and Beyer, 2001] 12

2.4 Anatomical and perceptive characteristics
relevant for evaluating vibrotactile feedback 16

6.1 Protocol for Arduino and MakeController . . 79

B.1 List of keyboard shortcuts 100

xv

Abstract

The haptic sense is one of the most important human senses: it provides a valuable
source of information for the human. In situations where our auditory or visual
senses are occupied, touch can become a particularly important communication
channel.

While visual and auditory feedback is nowadays standard in most human-
computer-interfaces, the use of haptic feedback has only been recognized and
appreciated recently. Devices such as haptic mice or haptic joysticks provide
additional haptic feedback; primarily this feedback is restricted to computer
games. Haptic feedback is still widely a research area.

Therefore we present a prototyping tool to design and test vibrotactile pat-
terns in this work. Tactile patterns can convey important information in a subtle
way, where auditory or visual messages are inadequate. Tactile Editor is a software
tool that provides a track-based graphical user interface and enables end-users
to design patterns using direct manipulation techniques. The program uses an
evident interaction metaphor representing motors, which produce vibrations, as
rectangles on tracks and provides common drag and drop techniques that allow
end-users to work effectively with the editor.

For testing vibrotactile feedback, users can send patterns from the editor to
supported hardware devices that activate vibration motors to render these pat-
terns. Tactile Editor explicitly supports Arudino and MakeController devices - two
well-known and wide-spread hardware toolkits for creating physical prototypes.

Tactile Editor was tested in a first-use study at the Media Space Lab of the
Media Computing Group at RWTH Aachen University. Evaluation and analysis
of these tests show that Tactile Editor can be used effectively to design vibrotactile
patterns and to test those patterns with vibration motors.

xvi Abstract

xvii

Überblick

Die haptische Wahrnehmung ist mit Sicherheit einer der wichtigsten menschlichen
Sinne; der Tastsinn ist eine der wichtigsten Informationsquellen für den Men-
schen. Besonders in Situationen, in denen visuelle und auditive Wahrnehmung
beschäftigt sind, kann dem haptische Sinn eine große Bedeutung zukommen.

Während visuelles und auditives Feedback heutzutage Standards in Mensch-
Maschine-Schnittstellen sind, wird die Bedeutung von haptischem Feedback erst
nach und nach erkannt. Geräte wie haptische Mäuse oder haptische Joysticks
bieten dem Nutzer zusätzliches haptisches Feedback; hauptsächlich ist dieses aber
bisher auf Computerspiele beschränkt. Haptisches Feedback bleibt nach wie vor
größtenteils ein Forschungsgebiet.

Deshalb stellen wir in dieser Arbeit ein Prototyping-Tool vor, dass es Benutzern
ermöglicht, vibro-taktile Feedback-Patterns zu erstellen und zu testen. Taktile Pat-
terns können in Situationen, wo auditives oder visuelles Feedback unzureichend
oder unangemessen ist, unaufdringlich Informationen vermitteln. Tactile Editor ist
eine Software, die auf einer track-basierten grafischen Benutzeroberfläche aufbaut
und es dem Nutzer erlaubt, Patterns mittels direkter Manipulation zu erstellen.
Das Programm bietet seinen Nutzern dazu eine eingängige Interaktionsmetapher,
die Vibrationen erzeugende Motoren als Rechtecke auf Tracks darstellt und
bekannte Drag-and-Drop-Techniken zur Verfügung stellt, damit auch Erstbenutzer
erfolgreich mit dem Editor arbeiten können.

Die erstellten Patterns können zum Testen des vibro-taktilen Feedbacks vom
Editor an unterstützte Hardwaregeräte geschickt werden, die diese Patterns dann
über verbundene Vibrationsmotoren rendern. Tactile Editor unterstützt explizit
die Arduino und MakeController Plattformen - zwei bekannte und weit verbreitete
Hardware Toolkits für physikalische Prototypen.

Tactile Editor wurde in einer Erstbenutzerstudie im Media Space der Media
Computing Group der RWTH Aachen getestet. Bewertung und Analyse der Tests
zeigen, dass Tactile Editor erfolgreich eingesetzt werden kann, um vibro-taktile
Patterns zu erstellen und dieses Patterns zu testen.

xix

Acknowledgements

This thesis would never have been possible without the help and support of many
people, all of whom I owe my gratitude.

First of all, I want to thank Prof. Dr. Jan Borchers for introducing me to the
field of HCI, for teaching a different perspective an many issues, and for always
keeping a collegial touch around the department.

Many thanks to Daniel Spelmezan, my thesis advisor, for always taking the
time for meetings, suggestions, and constructive criticism. The countless reviews
of both the software and the draft of this thesis were very helpful and often guided
me towards the right direction.

Thanks again to everyone, who took part in the user studies and helped me
gain valuable feedback for improving Tactile Editor.

Special thanks go to Christina, who was always there for me, especially at
times, when I needed her emotional support.

Finally I want to thank my family, who made it possible for me to focus on
my studies. They always supported me both in my private and my educational
life.

Thank you!

xxi

Conventions

Throughout this thesis, we use the following conventions:

The plural “we” will be used throughout this thesis instead
of the singular “I”, even when referring to work that was
primarily or solely done by the author.

Unidentified third persons are always described in male
form. This is only done for purposes of readability.

Definitions of technical terms or short excursus are set off
in coloured boxes.

Source code and implementation symbols are typeset using
a monospace font.

The whole thesis is written in American English.

1

Chapter 1

Introduction

“Everything should be made as simple as
possible, but not one bit simpler.”

— Albert Einstein, US (German-born) physicist
(1879 - 1955)

Our ability to interact with the environment by touching
objects or receiving information through objects touching
us, is one of the fundamental human senses.

1.1 Haptics

In psychology and physiology, the word haptic refers to
the ability to experience the environment through active
exploration, as when palpating an object in order to expe-
rience its physical shape and material [Haptics, 2008].

Haptics is commonly used today to refer to the study
of touch in real and virtual environments. This includes Haptics: Study of

touch in real and
virtual environments.

the development of engineering systems to (re-)create
virtual haptic environments and is also know as computer
haptics.

As today’s interfaces get more and more complex,

2 1 Introduction

sensory overload is becoming a common problem, es-
pecially in non-desktop environments and for portable
devices. Therefore the haptic sense can absorb some of theSensory overload is

increasing. load that auditory and visual senses place on the user of
contemporary user interfaces.

In this thesis, we present a toolkit to design and test vibro-
tactile feedback. Our goal is to provide users with a sim-
ple, effective, and intuitive way of achieving this - without
the need for extensive soldering, wiring, or programming.
Therefore, we aim to contribute the following:

• A toolkit that enables testing vibrotactile feedback.

• A toolkit that supports various vibrotactile devices
that can easily be attached to various parts of the bodyContributions
for rapid prototyping.

• Tactile Editor, a graphical user interface for the
toolkit, that uses well-known interaction metaphors
such as a timeline-based canvas and a drag-and-drop
interface.

1.1.1 Why Is Haptics Important?

Touch and touch-related capabilities such as kinesthesia
are probably the most underrated human senses andTouch is the most

underrated human
sense.

abilities, as most of those capabilities operate effortlessly
and without our conscious awareness. However those
capabilities are critical for normal human functioning:

Without our sense of touch, it would be virtually im-
possible to walk, stand, or even sit upright and we could
not skillfully handle objects such as tools. Robles-De-Le-Loss of touch can

have severe
consequences.

Torre [2006] cites two cases, where patients lost their sense
of touch on a permanent basis and shows which extensive
consequences this loss had.

1.2 The DIA-cycle 3

1.1.2 Haptic Feedback

Haptic Feedback has only recently been recognized as an
important communication channel in user interfaces. The Haptic feedback

includes tactile and
force feedback.

term ”haptic feedback” includes tactile as well as kines-
thetic or force feedback. These two types of haptic feedback
refer to the sensory subsystem they activate: the cutaneous
or the kinesthetic sense.
In this work, we will focus on tactile feedback as the toolkit
developed in this thesis stimulates a human’s tactile per-
ception.

1.2 The DIA-cycle

When designing our tool, we followed an iterative design
approach, the DIA-cyclce, that consists of three phases
within each iteration: design, implement, and analyze, as
shown in figure 1.1

Figure 1.1: The DIA-cycle: one iteration consisting of de-
sign, implement, and analyze

4 1 Introduction

Iterative design approaches substantially improve the us-
ability of a system as developers can react to user demands
gathered from user testing in the analysis phases.

The DIA-cyle usually starts with an idea in the design
phase, a user survey as a first analysis, and a simple
storyboard as the initial implementation. During each it-
eration of the cycle, the artifacts get more and more refined.

We developed Tactile Editor in several DIA iterationsDIA-cycle adapted to
develop Tactile Editor - starting with a very basic paper prototype before gradu-

ally refining our system by adding, removing or modifying
certain features of our design. Appendix D shows, how
Tactile Editor’s graphical user interface evolved over the
different DIA-cycle iterations.

1.3 Thesis Structure

This thesis is organized as follows

• The chapter Background gives background informa-
tion on physiological facts that are relevant to our re-
search into vibrotactile feedback patterns.

• In Related work, we name similar research work on
vibrotactile patterns, track-based editors, and HCI
toolkits that relate to our work in this thesis.

• The chapter Requirements outlines the requirements
for our system to design and test vibrotactile patterns.

• In Conceptual design, we present our concept for Tac-
tile Editor.

• The chapter Implementation details describes the code
for the tool and how it was implemented.

• Evaluation elaborates on the process of evaluating Tac-
tile Editor and making changes based on the feedback
gathered form users working with the tool.

• In Summary and future work, we summarize our con-
tributions and give an outlook on improving the tool
in the future.

5

Chapter 2

Background

“If you have an apple and I have an apple and
we exchange these apples then you and I will still
each have one apple. But if you have an idea and I

have an idea and we exchange these ideas, then each
of us will have two ideas.”

—George Bernard Shaw, Irish literary Critic,
Playwright and Essayist, 1856-1950

2.1 The Somatic Sensory System

For designing and testing vibrotactile feedback, it is es-
sential to understand the principles of how our sensory
system perceives and processes vibration stimuli. There-
fore we will only focus on one of the five senses (sight, Five human senses
hearing, taste, smell, touch) in this work: the sense of touch.

The human somatic sensory system includes those
parts of the nervous system involved in receiving and
processing information about stimuli on the body surface
and inner structures such as muscles and joints. It is
responsible for the perception by transmitting information
of physical stimuli conveyed by receptors within the body.

Modern studies of sensation show that the sensory

6 2 Background

system processes four elementary attributes of a stimulus:Humans can
perceive four
attributes of a
stimulus.

modality, intensity, duration, and location of a stimulus
[Kandel et al., 2000]. We will discuss each of those in
conjunction with perceiving tactile feedback below.

2.2 The Sense of Touch

Touch can be defined as ”...the sensation evoked by me-Touch can be divided
into kinesthetic and
cutaneous
perception.

chanical, thermal, chemical, or electrical stimulation of
the skin and body” [Mazzone, 2004]. Our sense of touch
covers two main sensory systems: the kinesthetic and the
cutaneous (or tactile) system.

Kinesthetic perception constitutes awareness of one’s
body state - the ability to sense the position and movement
of one’s limbs - and covers all sensations originating in
muscles, tendons, and joints.

The cutaneous system however responds to all sensa-
tions applied to the surface of the skin, such as pressure,
pain, or temperature. In particular, the tactile sense refers
to the sensation of pressure, rather than temperature or
pain. For an overview of these definitions see table 2.1
(adapted from [Oakley et al., 2000]).

Overview: haptic
sensations

Term Definition
Haptic Relating to the sense of touch.
Kinesthetic Meaning the feeling of motion. Relating

to sensations originating in muscles, ten-
dons and joints.

Cutaneous Pertaining to the skin itself or the skin as a
sense organ. Includes sensation of pressure,
temperature, and pain.

Tactile Pertaining to the cutaneous sense but more
specifically the sensation of pressure rather
than temperature or pain.

Table 2.1: Definitions of terminology

2.2 The Sense of Touch 7

As the kinesthetic system is not involved in processing vi-
brotactile stimuli, we will not discuss it any further in this
work and concentrate on the tactile sense for the remainder We focus on the

tactile sense in this
work.

of this chapter instead. A detailed discussion of kinesthetic
perception can be found in [Goldstein, 2002].

2.2.1 The Cutaneous System and the Tactile Sense

The cutaneous system reacts to stimuli pertaining the sur- Tactile sense reacts
to temperature,
vibration, pain, and
pressure.

face of the skin, including pressure, vibration, thermal,
electrical, and pain stimuli. We will focus on skin deforma-
tion caused by pressure and vibration here, as only these
address the tactile sense, and refer to them as vibrotactile
stimuli.

Sensory Physiology

Sensor physiology examines physiological and neural
consequences of a stimulus, both how it is transduced by
receptors and processed by the brain. We will not go into
detail about stimulus procession and rather focus on the
various types of receptors relevant to the sense of touch
here.

Different classes of receptors are responsible for different
touch sensations: mechanoreceptors for tactile sensations, Mechanoreceptors

are responsible for
tactile sensations.

muscle afferent fibers for limb movements, nociceptors for
pain, and thermal receptors for temperature sensations. In
the following we will concentrate on mechanoreceptors as
those are pertinent to detecting vibrotactile stimuli.

Four types of mechanoreceptors responsible for tactile
perception are located in and between the two skin layers
Epidermis (outer) and Dermis (inner), as well as below
those in the hypodermis (see figure 2.1): Meissner Cor-
puscles, Merkel’s Disks, Pacinian Corpuscles, and Ruffini
Corpuscles.

Those types can be divided into two groups, based on their
response to skin deformation: Rapidly adapting receptors

8 2 Background

Figure 2.1: Location of the mechanoreceptors - cross section of glabrous skin; taken
from [Goldstein, 2002]

(Meissner and Pacinian) respond quickly to a stimulus
onset (or offset), but are not activated during sustainedFast and slow

receptors respond to
different tactile
stimuli.

skin deformation. Slowly adapting mechanoreceptors
(Merkel’s and Ruffini) however respond continuously
to a persistent stimulus. Mechanoreceptors can further
be categorized according to the sizes of their respective
reception fields, which can vary from 1 or 2 millimeters up
to 45 or 60 millimeters. All four types of mechanoreceptors
and their properties are summarized in table 2.2.

Most relevant for our research are the Pacinian corp-
sules as they are fast-responding receptors responding toPacinian corpsules

are most relevant for
tactile feedback.

vibration stimuli. In addition they offer a wide spatial
range and detect a broad range of vibrations of up to one
kilohertz.

2.3 Perception of Vibrotactile Stimuli

To adequately understand the effect of tactile sensations,Modality, intensity,
duration, and
location define a
stimuli.

we have to take a closer look at the four attributes the
tactile sense extracts from a stimulus: modality, intensity,

2.3 Perception of Vibrotactile Stimuli 9

Receptors Meissner Merkel’s Pacinian Ruffini
Corpuscles Disks Corpuscles Corpuscles

Location Dermis Epidermis Dermis Epidermis,
Dermis

Adaption Rapid Slow Rapid Slow
Spatial Small Small Large Large
range 12mm 12mm 100mm 60mm
Function Movement, Vibrations, Vibrations, Pressure,

Velocity Pressure Pressure Skin shear
Thermal
changes

Frequency 20-100 Hz 0-10 Hz 100 Hz-1 kHz 0-10 Hz

Table 2.2: Characteristics of the four types of mechanoreceptors responsible for
perceiving tactile sensations

duration, and location.

Modality

The modality identifies the type of stimulus presented. As
mentioned above, touch (as one of the five main senses)
can be divided into distinct submodalities: cutaneous,
proprioceptive, pain, and thermal sense.

Intensity

The intensity of a vibrotactile stimulus is defined by
the strength or magnitude of its vibration. Intensity is
measured in Decibel relatively to a detection threshold.
This threshold is adaptable and depends on a variety of
parameters such as actuator used, location of the stimula-
tion, person, or frequency of the vibration.

Geldard [1960] discovered that while we can discrim- We can identify three
levels of stimulus
intensity absolutely.

inate 15 levels of intensity when receiving vibrotactile
stimuli, no more than three intensity levels can be identi-
fied absolutely.

Duration

The term duration refers to the length of the tactile
stimulus - from onset to the termination of the stimulus

10 2 Background

- and is generally measured in milliseconds. There exist
various reference values for duration and timings of
vibrotactile stimuli; more on this in the section ”Temporal
Order” below.

Location

Our ability to locate the site of a vibrotactile stimulus
is important. The accuracy with which we can detect
the location of a stimulus highly depends on various
parameters as we will outline in the section ”Tactile Spacial
Resolution and Tactile Acuity” below.

2.3.1 Temporal Order

When our haptic system is given a sequence of tactileOur ability to
distinguish two
stimuli depends on
the time between
those.

stimuli on spatially different parts of the body, our ability
to distinguish the order of presentation depends on the
length of the interval between two stimuli.

Hirsh and Sherrick [1961] found out that the thresh-
old for distinguishing two brief stimuli is about 20 ms,
but increases significantly with the number of stimuli we
receive. In order to correctly identify a temporal sequence
of five or six stimuli, the intervals between the individual
stimuli may have to be as long as 500 ms.

It is important to ensure that the individual vibrotac-
tile stimuli are within a reasonable range of durations,
which Geldard ([Geldard, 1960]) found to be roughlyStimuli duration

between 0.1 and two
seconds is
reasonable.

between 0.1 and two seconds. Impulses shorter than 0.1
seconds may feel like unwanted pokes, while stimuli that
lasted longer than the upper limit of two seconds lead to
delays resulting in very slow communication.

2.3.2 Vibrotactile Patterns

A sequence of vibrotactile stimuli and gaps of different du-Vibrotactile patterns
are temporal
sequences of stimuli.

rations can be combined to form a temporal pattern, similar
to rhythm for the auditory sense. We will call these tempo-

2.3 Perception of Vibrotactile Stimuli 11

ral sequences vibrotactile pattern for the remainder of this
work. Figure 2.2 shows two examples of such a pattern;
one with only one actuator receiving on/off signals and an-
other with two actuators receiving signals with three levels
of intensity.

Pattern 1:

time

intensity

Motor 1

time

intensity

intensity

Motor 2

Motor 1

Pattern 2:

time

Figure 2.2: Two sample vibrotactile patterns; pattern 1 with
one actuator and one level of stimulus intensity, pattern 2
consisting of 2 actuators with varying levels of stimulus in-
tensity

Vibrotactile patterns form a fundamental concept for the Patterns form a
central concept for
this work.

toolkit we present in this work - we later on present a tool
to design and test these patterns very conveniently using a
graphical user interface.

2.3.3 Tactile Spacial Resolution and Tactile Acuity

In addition to temporal order, stimuli have to be identified
spatially. When presented a given tactile stimulus, one has Level of precision for

locating stimuli is
defined as spatial
resolution.

to determine where this stimulus originated. The level of
precision, with which we can locate the origin of a tactile
stimulus is called the tactile spacial resolution, see [Boven
et al., 2000] for details.

12 2 Background

Spatial resolution is not an absolute measure, but rather
depends on the type of stimulus and the area of the body
where it is applied (see table 2.3 and figure 2.3).Spatial resolution

depends on stimulus
and body area. It is proportional to the spacing of the different types of

mechanoreceptors in the skin and formally defined by
the so-called two-point threshold, ”defined as the smallest
separation at which two points applied simultaneously to
the skin can be clearly distinguished from a single point.”
[Colman, 2001]

Body part Two-point threshold
Tongue tip 1.1 mm
Finger (inside) 1-2 mm
Palm 10 mm
Upper arm 39 mm
Thigh 45 mm
Middle of the neck 67 mm

Table 2.3: Spacial resolution evaluated with two-point
thresholds - from [Kandel et al., 2000] and [Grunwald and
Beyer, 2001]

This threshold is highest on the fingerpad, where two stim-
uli that are only separated by 1 mm can be distinguished
[Johnson and Phillips, 1981]. On other parts of the body,Two-point threshold

ranges from 1 mm to
60 mm.

this resolution is much lower and can be as high as 60
millimeters on upper arm or back - table 2.3 lists sample
two-point thresholds for other parts of the human body.

Another measure of tactile acuity is the so-called error
of localization. It measures whether the same point on the
skin was touched twice or whether two different points
were touched. Cholewiak [Cholewiak, 1999] noted that
the error of localization is generally lower or equal to the
two-point threshold; figure 2.3 shows these two values for
different parts of the human body.

As shown, different parts of the body offer different
spatial resolutions. This is also supported by the physi-
ological fact, that different areas of the body are mapped

2.3 Perception of Vibrotactile Stimuli 13

Figure 2.3: Two-point threshold and error of localization
for the human body - taken from [Cholewiak, 1999]

onto specific regions of the brain. The sizes of these
areas are proportional to the importance of the sensory
perception of that particular body part. Figure 2.4, often
called sensory homunculus, shows that, for example, hand,
fingers, and lips are mapped onto relatively large parts in
the brain, compared to trunk, legs or arms.

14 2 Background

Figure 2.4: Sensory humunculus - detailed view (left,
adapted from [Schiffman, 2000]) and 3-D overview (right,
copyright National History Museum, London)

2.3.4 Tactile Illusions

When the sensory system misinterprets the stimuli being
presented to it, sensory illusions occur.

These illusions affect vision, audition and the cutaneous
sense - well known are, for example, the Phi phenomenonTactile illusions are

misinterpretations of
tactile stimuli.

[Graham, 1965] or the Tau effect [Helson, 1930]. We are
focussing on illusions pertaining the cutaneous sense here:
tactile illusions.

One well known tactile illusion is called sensory saltation
(also called ”Cutaneous Rabbit”), discovered in 1972 bySensory saltation:

We perceive taps as
movement.

psychologist Frank Geldard [Geldard and Sherrick, 1972].
It occurs when a number of taps is being presented to
three spatially separated points on the skin and results in
the sensation of a continuous movement between the two
points as shown in figures 2.5 and 2.6.

Gerald discovered that the time between the taps can vary
- intervals between 25 and 200 ms delivered movement
sensations. Furthermore, the two tapping points could be
as close together as 2 cm or as far apart as 35 cm.

This phenomenon has been studied repeatedly since

2.3 Perception of Vibrotactile Stimuli 15

Figure 2.5: The cutaneous rabbit illusion - actual and per-
ceived stimuli as a temporal pattern

and results indicated that it applies equally to various Sensory saltation is
of great interest for
exploring tactile
feedback.

different parts of the body [Eimer et al., 2005]. When ex-
ploring vibrotactile feedback patterns, the sensory saltation
phenomenon can be of great interest.

Figure 2.6: The cutaneous rabbit illusion - actual and per-
ceived stimuli as locations one the forearm (below)

16 2 Background

2.4 Summary

The topics covered in this chapter are extensive and
innumerable literature is available on the human haptic
sense, its physiological requirements, and its capabili-
ties. Nevertheless, we presented the basic physiological
and perceptive principles that are relevant for designing
vibrotactile feedback patterns. These principles have to
be understood in order to generate realistic vibrotactile
feedback that is equivalent to real stimuli.

Table 2.4 summarizes the most important anatomical
requirements that are involved in researching vibrotactile
feedback.

Characteristic Relevant value
Tactile spatial resolution 1- 60 mm
Frequency range 1-2 mm
Optimal frequency 10 mm
Temporal distinction threshold 39 mm
Optimal stimulus distinction 45 mm

Table 2.4: Anatomical and perceptive characteristics rele-
vant for evaluating vibrotactile feedback

Devices engaging the sense of touch can be grouped in two
categories: tactile stimulators and haptic devices.

2.4.1 Haptic Devices

Haptic devices activate receptors in joints, muscles, and
tendons in order to stimulate the kinesthetic sense and al-
low users to touch, explore, or manipulate a virtual object.Haptic devices move

limbs or body parts. The best know example for haptic devices is the PHAN-
TOM range by SensAble Technologies1 , which includes
small haptic desktop devices as well as large haptic devices
(see figure 2.7).

1see http://www.sensable.com/products-haptic-devices.htm

http://www.sensable.com/products-haptic-devices.htm
http://www.sensable.com/products-haptic-devices.htm

2.4 Summary 17

Figure 2.7: Two haptic devices from the Phantom series
by SensAble Technologies - a Phantom Desktop device on
the left and large Phantom Premium device on the right;
photos from SensAble Technologies

We will not elaborate on haptic devices in detail here as
they are addressing the kinesthetic sense, which is not rel-
evant for the work in this thesis. Therefore we focus on
tactile stimulators in the following and give a brief sum-
mary of current technology in this field. A comprehensive
overview of haptic devices can be found in [Berkley, 2003]
and [Burdea and Coiffet, 2003].

2.4.2 Tactile Stimulators and Vibrotactile Technol-
ogy

Tactile stimulators typically stimulate the effect of the skin
touching a surface - often using vibrotactile stimulators, Vibrotactile devices

stimulate the skin
through vibration.

devices that are in contact with the skin and vibrate at
a certain frequency, as used for example, in Lindeman’s
TactaPack [2006] or TactaBoard devices. Others include
devices using a mechanism for skin deformation, such as
Mazzone’s SmartMesh [2004].

There is a wide range of vibrotactile devices available
- most common are so-called inertial actuators. These
actuators cause vibrations by moving an internal mass that
causes the entire case in which the moving mass is encased,
to vibrate. Two types of actuators can be distinguished:
cylindrical and coin/pancake vibration motors, see figure

18 2 Background

2.8 for examples of both types. One actuator is the VBW32
Tactor (Skin Transducer), which is commercially used in
the Tactaid devices2 , that offer tactile hearing aids.

For testing and evaluating our toolkit, we used vibra-
tion motors as used in the Nokia 3210 mobile phones.

Figure 2.8: Vibrotactile stimulators: A coin vibration motor
(left) and a Nokia 3210 cylindrical vibration motor - bare
(middle) and with cable attached (right)

These motors are comparably cheap and easy to get -We used Nokia 3210
vibration motors for
testing purposes.

approximately five dollars in designated electronic stores -
which makes them well suited for our intended purpose of
testing vibrotactile feedback patterns in the lab. Figure 2.8
shows a bare Nokia 3210 vibration motor (middle) and the
same motor with cable attached for easily connecting the
motor to a hardware board (right).

Jones [2004] gives an excellent survey of current vibrotactile
actuator technologies and evaluates these technologies in
regard to designing a vest containing vibrotactile actuators.

2see http://www.tactaid.com/

http://www.tactaid.com/

19

Chapter 3

Related Work

“Research is to see what everybody else has seen,
and to think what nobody else has thought.”

— Albert Szent-Gyorgyi (Hungarian Biochemist,
1937 Nobel Prize for Medicine, 1893-1986)

The field of haptic interface research is less developed than
its visual or auditory counterparts, yet it has become a
fast-growing and promising research area. Various projects
attempt to make the most of the potential, the haptic sense
offers.

In the first section of this chapter, we will examine
the research fields where haptic feedback has been used
recently. These include virtual reality, medical simulations,
and motor skill training.

Even though there are numerous works that explore
vibrotactile feedback patterns, only very few of those
mention ways of easily designing and testing those pat- Very few exisiting

tools to design
patterns

terns. The second section of this chapter examines systems
that allow for limited designing and testing of vibrotactile
patterns; although they are not fully suitable for the pur-
pose of this thesis, these systems still offer valuable ideas
and suggestion for an own design.

Beyond that, we will examine a few selected HCI toolkits

20 3 Related Work

to show how ideas from design and evaluation of these
toolkits can be adopted for our work.

Finally, we look at track-based editors from other fields of
application, such as music or video editing, to assess theTrack-based editors

as examples for our
GUI

extent to which we can adopt approaches from these fields
for our work presented here.

3.1 Haptic Feedback

In various research areas, haptic feedback is augmenting its
visual and auditory counterparts already - the ComTouch
device [Chang et al., 2002], for example, uses vibrotactile
stimuli to augment remote voice communication.

In virtual reality environments, haptic feedback is often
used to provide a more authentic experience - numerousHaptic feedback is

often used in virtual
reality.

examples exist here, but we refer to [Burdea, 1996] and
[Burdea and Coiffet, 2003] for more information on tactile
and force feedback in virtual reality environments.

Various medical training scenarios use haptic feed-
back for simulating surgical operations, among othersMedical training

scenarios often rely
on haptic feedback.

by Chen [1998], Eltaib [2003], and Schostek [2006], or
providing feedback for minimally invasive surgery, where
the surgeon has no ”natural” haptic feedback compared to
conventional, open surgery - see figure 3.1 for an example.

Riener et al. [2002] designed an orthopedic training
simulator that provides haptic feedback through a haptic
display, compare figure 3.2 (right).

Several research projects use haptic feedback devices to
assist users in training a certain skill:

Adams et al. [2001] deployed haptic feedback for trainingHaptic feedback
assists users in
training motor skills.

users in a manual assembly task while Morris et al. [2007]
explore the use of haptic feedback to teach an abstract
motor skill that requires recalling a sequence of forces.

3.1 Haptic Feedback 21

Figure 3.1: Sensor mounted on a grasper (left), grasping motion (center), pneu-
matic balloon actuator array that transmits haptic feedback to the surgeon’s hand
(right); adapted from CASIT [King et al., 2007]

Yano et al. [2003] designed a portable device that used a
haptic interface to guide a user’s movement of his body
and suggested this can be applied to sports training or
rehabilitation (see figure 3.2, left).

All of these projects showed that haptic feedback in-
creased the learning rate for the specific task - users that
received haptic feedback while training the skill showed
reduced learning times compared to users that received
training without haptic feedback or did not receive any
training at all.

Figure 3.2: Yano’s haptic interface (left) providing guid-
ance in body movement [2003]; multi-modal training sim-
ulator containing a haptic feedback display [Riener et al.,
2002]

22 3 Related Work

In some cases the haptic sense can even replace visual or
auditory feedback - as in situations where the visual andHaptic sense can

replace visual or
auditory channel.

auditory channels are occupied otherwise (while driving
a car or concentrating on a similar, mentally challenging
task).

There are situations where visual or auditory senses
are impaired and haptic feedback can provide a valuable
aid for the user, as in braille displays or similar devices.Braille displays
Numerous research projects cover the topic of haptic in-
terfaces for visually or auditory impaired users [Sjostrom,
2001].

For a detailed discussion on haptic feedback, see [Stone,
2000].

3.1.1 Perception of Haptic Feedback

Numerous works have discussed perception of haptic
feedback over the last 50 years - a comprehensive overview
can be found in [Loomis, 1981].

We will not go into too much detail about studies re-
garding the perception of vibrotactile feedback patterns
here - in chapter 2, we gave examples on perceiving vi-
brotactile stimuli already, such as the tactile illusion called
sensory saltation.

One interesting approach was pursued by Chan, MacLean
and McGrenere [2005], who tested how subjects perceived
haptic feedback while under workload.

3.2 Editors to Specify Haptic Icons

In this work we create a tool to design and test vibrotac-
tile patterns. Therefore we now review existing editors that
allow users to specify haptic content.

3.2 Editors to Specify Haptic Icons 23

3.2.1 Hapticon Designer, Editor and Displayer
(HDED)

Enriquez [2003] has developed the HDED (Hapticon
Designer, Editor and Displayer), a tool that allows the
user to create, edit, and display haptic icons (also called
”Hapticons”) in a simple and understandable manner
using a graphic display.

HDED is linked to one hardware device, a single de-
gree of freedom haptic device configured as a haptic Haptic force is

displayed as a
waveform.

knob. All haptic forces are displayed on this knob via a
single, direct-driven DC motor. Hapticons are displayed
as waveforms with time on the horizontal and vibration
frequency on the vertical axis (compare figure 3.3) and can
be edited by modifying the waveform via simple drag and
drop operations.

Figure 3.3: Hapticon Editor Main Screen

The main drawback of the Hapticon Editor is the very lim-
ited number of output devices it supports. Unfortunately, HDED only supports

one haptic output
device.

users can only send hapticons to one single output device,
the haptic knob. While Enriquez interface is appropriate
for his setting, we need a more variable setup - including
more than one hardware device that displays our haptic

24 3 Related Work

output. For our research into vibrotactile feedback pat-
terns, we want to connect multiple vibration motors at theHDED not suitable

for our research. same time and distribute those motors over the human
body, so using the Hapticon Editor is not an option.

Furthermore, the editor’s editing metaphor is based
on waveforms, which assumes, the user has at least a
basic understanding of waveforms and the underlying
mathematical principles. We propose a different editing
metaphor, based on switching motors on and off for certain
durations and at certain intensities. This on/off metaphor
is easier to understand and does not require any previous
knowledge.

3.2.2 VITAL

Khoudja and Hafez [2004] developed a vibrotactile display
system, composed of a 8x8 matrix of vibrotactile actuators
including a software interface to activate the display. TheirDigital black and

white images are
translated into tactile
figures.

main focus was translating digital black and white images
into tactile figures, where a white pixel corresponds to an
actuator being off and a black pixel to an on-state of the
corresponding actuator.

Using their software interface, which connected to the
vibrotactile matrix via a RS232 serial interface or USB,
Khoufia and Hafez could choose the motor to actuate and
specify wave form and frequency of the signal that repre-
sents a black pixel of the image.

The main advantage of the VITAL system is that it can ad-
dress each actuator of the array independently to display
haptic images. On the other hand, its editing capabili-Temporal dimension

of patterns is
neglected.

ties are too basic and limited (compare figure3.4) for our
purposes as vibrotactile stimuli are connected to black and
white pixels, which does not allow exploration of vibrotac-
tile patterns; the software interface focusses on spatial pat-
terns only and disregards the temporal dimension of tactile
feedback.

3.2 Editors to Specify Haptic Icons 25

Figure 3.4: Software Interface for VITAL - taken from
[Khoudja and Hafez, 2004]

3.2.3 Immersion Studio

Chan et. al [Chan et al., 2005] have used Immersion
Studio1 , a GUI-based haptic editor, to design and test a set
of haptic icons.

This editor contains predefined haptic effects and allows
the user to map those effects to standard devices such as Predefined haptic

effects can be
mapped to standard
haptic devices.

tactile feedback mice, joysticks, or gamepads. Immersion
Studio is mainly used for commercial purposes when
designing touch sensations that match certain gaming
events and environments.

Chu [2002] also used the Immersion SDK to add hap-
tic sensations to sound editing tasks and Evreinovea2

designed vibrotactile patterns for a haptic mouse.

Immersion Studio is the only commercially available
application to generate haptic feedback for standard haptic
devices. It provides a compound effect view (compare
figure 3.5), where different pre-defined haptic effects can

1see http://www.immersion.com
2see http://www.cs.uta.fi/∼e tg/Tactons.htm

http://www.immersion.com/developer/downloads/IStudio/HTML/ISTUDIO/Overview_of_Immersion_Studio.html
http://www.immersion.com/developer/downloads/IStudio/HTML/ISTUDIO/Overview_of_Immersion_Studio.html
http://www.cs.uta.fi/~e_tg/Tactons.htm

26 3 Related Work

Figure 3.5: Immersion Studio graphical user interface -
haptic effects library (top) and compound effect view with
timeline (bottom) - from Immersion Corp.

be arranged on a timeline-based view. Unfortunately,
Immersions APIs only work with selected hardware de-SDK aimed at game

developers designing
haptic content.

vices and are aimed at developers designing haptic content
for commercial computer games. Furthermore, the devel-
opment kit is only available for the Windows platform and
at a price of $299, which eliminates Immersion Studio for
our research purposes.

3.2 Editors to Specify Haptic Icons 27

3.2.4 VibeTonz

Immersion have also produced a system called VibeTonz
that adds haptics as a channel for mobile phone use, see
figure 3.6. The system includes an SDK containing VibeTonz
Studio, a haptic editor used to design haptic effects that can Haptic effects can be

assigned to mobile
phones.

be assigned to mobile phone handsets - similar to afore-
mentioned Immersion Studio. On this account, we will not
discuss VibeTonz any further here - more information on
the system can be found in [Immersion, 2008].

Figure 3.6: Immersion VibeTonez Studio - composition en-
vironment to design haptic effects for mobile devices - from
Immersion Corp.

3.2.5 Skinscape

Skinscape, Eric Gunther’s master thesis at MIT, includes
a software composition environment that allows a user to
design tactile compositions for a connected device along a
previously recorded audio track [Gunther, 2001]. Haptic
sensations are designed on one vibration track that dis-
plays the vibration as appropriate waveform information
with amplitude on the vertical and time on the horizontal
axis - just like Enriquez’s HDED.

Skinscape’s restrictions are similar to those with En-
riquez’ Hapticon Editor - haptic sensations are limited to
one haptic output device. For this reason, we cannot use

28 3 Related Work

this composition environment for designing and testing
vibrotactile patterns.

3.3 HCI Prototyping Toolkits

As this thesis introduces a toolkit to design and test vibro-
tactile feedback patterns, it makes sense to look at other
toolkits from the research area of human computer inter-
action.
Observing these toolkits may suggest useful ideas for de-
sign and evaluation of our system.

3.3.1 iStuff

iStuff (see figure 3.7), a toolkit consisting of physical de-
vices and a flexible software infrastructure, was designed
to simplify and facilitate the exploration of novel interac-
tion techniques [Ballagas et al., 2003].

Figure 3.7: Quartz Composer graphical user interface

The toolkit is aimed at HCI researchers to allow quick pro-
totyping of physical user interfaces without the need for
extensive wiring, soldering, or programming. Figure 3.7Toolkit allows rapid

prototyping of
physical user
interfaces.

(taken from [Ballagas et al., 2003]) shows sample physi-
cal input components for the toolkit. iStuff is a physical

3.3 HCI Prototyping Toolkits 29

Figure 3.8: Quartz Composer graphical user interface

toolkit, and therefore, the demands on hardware compat-
ibility and communication between devices are similar to
those demands for our work, although the application ar-
eas are quite different.

3.3.2 iStuff Mobile

iStuff mobile (see figure 3.8), an extension and refinement
of the original iStuff toolkit, supports rapid prototyping
of mobile phone interactions [Ballagas et al., 2007]. The
framework includes mobile phone software, sensor boards, Rapid prototyping for

mobile phone
interactions.

and a rapid prototyping framework that allows interaction
designers to quickly create and test functional prototypes
without the need for changing the phone’s hardware or
software components.

iStuff mobile allows rapid prototyping by providing a new
interface for physical prototyping that extends Apple’s Visual programming

environment based
on Quartz Composer

Quartz Composer (see figure 3.8), a visual programming
environment based on a cable patching metaphor instead

30 3 Related Work

Figure 3.9: Suede tool to design speech user interfaces - script mode (top) and state
transition mode (bottom)

of textual programming. This metaphor guarantees both
that the system for prototype construction is easy to learn
(low threshold) and that much can be achieved with the
system (high ceiling).

3.3.3 Suede

Suede, a tool for prototyping speech interfaces, allowsSuede allows rapidly
prototyping speech
interfaces.

designers to rapidly develop prompt/response speech
interfaces and enables user interface designers, even
non-experts, to easily create, test, and analyze speech user
interface systems [Klemmer, 2000], compare 3.9.

The tool offers an interesting approach to designing
alternative user interfaces that purely rely on auditory

3.3 HCI Prototyping Toolkits 31

Figure 3.10: d.tools editor using statecharts to develop interactive prototypes
(taken from [Hartmann et al., 2005]

input and output. Users can prototype speech user in-
terfaces based on concepts of example-based scripts or
prompt/response state transition graphs (see figure 3.9 for
an example).

3.3.4 d.tools

d.tools was developed at Stanford University as a design
tool for prototyping physical user interfaces [Hartmann
et al., 2005], compare figure 3.10. It enables designers to
quickly build functional, interactive prototypes without
special programming or engineering knowledge.

Prototypes are constructed using a visual authoring
environment that represents interaction models as state Interactive

prototypes are
designed using
statecharts.

transition networks (STN). Designers can lay out the
interaction model as a STN and then execute interaction
on the physical device that is connected to the computer
running the authoring environment. The interaction model

32 3 Related Work

Figure 3.11: Exemplar GUI

is ”live”, which means designers can test interactions with
the physical device while observing the model on the
screen (see [Hartmann et al., 2005] for details).

Figure 3.10 shows an interaction model represented
by a STN in d.tools.

3.3.5 Exemplar

Exemplar is a rapid prototyping tool that enables a wider
audience of designers to process raw sensor data. Figure
3.11 shows a screenshot of its user interface. The system
was developed at Stanford University by Hartmann et al.
[Hartmann et al., 2007] and allows designers to focus on
how interactions with sensors work instead of forcing them
to understand technical sensor signal processing details.

While the designer demonstrates a sensor-based interac-
tion to the system, sensor data is captured and thereuponSensor data is

displayed graphically. displayed graphically by Exemplar. The designer can then
edit that visual representation and review the result by
performing the interaction again.

3.4 Track-based Editors 33

3.3.6 Discussion

We reviewed the HCI prototyping toolkits mentioned
above to extract principles, concepts, and techniques for
our work. In the following, we will now briefly summarize
these points:

Exemplar, d.tools, Suede, and iStuff mobile all pro-
vide a visual programming metaphor to make their toolkits
amenable to non-expert users. These metaphors all Visual programming
include a meaningful graphical representation of under-
lying concepts such as state charts to model interactions
(d.tools), visualization of sensor data (Exemplar), or the
cable patching metaphor for mobile phone prototypes
(iStuff mobile). In this work, we aim to find such a strong
visual programming metaphor for designing vibrotactile
feedback patterns.

Another important paradigm that these toolkits im-
plement is direct manipulation. Objects can be manipulated
directly, which highly facilitates the user’s work. As Direct manipulation
an example, sensor visualizations in Exemplar can be
edited directly by clicking on the visualized sensor data
graph. For Tactile Editor, we aim to provide such direct
manipulation techniques as well to provide the user with
an easy-to-use graphical user interface.

3.4 Track-based Editors

In other application domains there are some track-based
editors, whose approaches can be transferred to our ap-
plication domain, tactile feedback. Music sequencing soft-
ware often relies on a track-based user interface and video
editing software also borrows from this paradigm. In the
following, we will briefly touch on these areas and give a
few examples of applications that realize track-based inter-
faces successfully.

34 3 Related Work

3.4.1 Music Sequencing Software

Most music editors such as Apple’s GarageBand3 , Fruity-
loops4 , or the open-soure project Audacity5 use a track-
based graphical user interface for creating, editing and mix-Track-based

paradigm is natural
analogy for music
editors.

ing songs or audio files (see figure 3.12 as an example).
This editing metaphor is a natural analogy for the music
domain, is well-known to most users, and can be adopted
easily for our purpose of editing vibrotactile feedback pat-
terns.

Figure 3.12: GarageBand - track-based GUI

3.4.2 Video Editing Software

A common feature in commercial video editing application
is an intuitive drag and drop timeline interface. This prin-
ciple can be found in professional, high-end products suchMost editors use

drag and drop
timeline interface.

as Avid’s Media Composer6 , Adobe’s Premier Pro7 , or Ap-
ple’s Final Cut suite8 , just as in open source products such

3see http://www.apple.com/ilife/garageband/
4see http://www.fruityloops.com/
5see http://audacity.sourceforge.net/
6see http://www.avid.com/products/732.htm
7see http://www.adobe.com/products/premiere/
8see http://www.apple.com/finalcutstudio/

http://www.apple.com/ilife/garageband/
http://www.fruityloops.com/
http://www.fruityloops.com/
http://audacity.sourceforge.net/
http://www.avid.com/products/732.htm
http://www.adobe.com/products/premiere/
http://www.apple.com/finalcutstudio/
http://www.apple.com/finalcutstudio/

3.5 Toolkit Evaluation 35

as Jahshaka9 or applications for non-professional users like
iMovie10 . Figure 3.13 shows an example for a track-based
video editing environment.

Figure 3.13: Jahshaka - track-based open source video edi-
tor

3.5 Toolkit Evaluation

While it is rather difficult to formally evaluate a toolkit,
there are certain properties that can measure the quality of
a toolkit. Brad Myers et al. [2000] identified, among others,
two key characteristics or ”themes” for evaluating toolkits
- threshold and ceiling of a system:

The threshold of a system defines how difficult it is to
learn using it, and the ceiling refers to how much can be
achieved by using the system. Most existing system are Threshold and ceiling

are measures for
toolkit evaluation.

either low-threshold and low-ceiling or high-threshold and
high-ceiling. However, Myers et al. emphasize that it is

9see
10see http://www.apple.com/ilife/imovie/

http://jahshaka.org/
http://www.apple.com/ilife/imovie/

36 3 Related Work

highly desirable to find a way to design systems with both
a low initial threshold and a high ceiling at the same time.

We will revisit these two themes in chapter 7, where
we evaluate this work and analyze, how our toolkit helps
users to create and test vibrotactile patterns.

3.6 Summary

We reviewed several editors and toolkits in this section and
pointed out the contributions and shortcomings of each ofThree dimensions to

classify existing
systems.

those systems for our own work. To conclude, we can clas-
sify these systems along three dimensions:

• To what extent can the system be used to design tac-
tile content? How suitable is the system for testing
tactile feedback prototypes?

• What number of input and output devices/media
does the system support? Is it possible to design for
multiple devices at a time?

• How easily can a first-time user start using the sys-
tem effectively? To what extent enables the system a
non-expert user to create and edit content? How fast
can a user design a working prototype with the sys-
tem?

When categorizing the systems presented in this chapter
along these three dimensions, we observe that none of the
systems meets all three requirements stated above - Figure
3.13 shows this graphically.

Tactile Editor, the tool we propose in this thesis, is the only
system occupying a spot in the upper left section of the
diagram.

Existing systems can only partially meet the demands, we
place on a toolkit to design and test vibrotactile patterns.
The Haptic Editors presented in section 3.2 were essentially

3.6 Summary 37

Figure 3.14: Comparison of exisiting systems - classified
along three dimensions

too specifically designed for one particular haptic device
and did not offer the range of possibilities, we expect from
our toolkit. While the HCI toolkits we discussed in section
3.3 supported a wide range of output devices, we cannot
use them to design vibrotactile patterns. Finally, music and
video editors we introduced in section 3.4 provide a well
designed interaction metaphor well worth investigating;
they were designed for different application areas though.

Tactile Editor should aim to provide the advantages
of all these benefits: support for multiple haptic output
devices, effective first-time use, and the possibility to
design haptic content. In the following chapters, we will
discuss, how this can be achieved.

39

Chapter 4

Requirements

“The beautiful rests on the foundations of the
necessary.”

—Ralph Waldo Emerson (American Poet, Lecturer
and Essayist, 1803-1882)

As outlined in the last section, there yet exists no toolkit
that allows end-users to rapidly design and test vibrotactile
feedback patterns. Existing systems are either too limited
regarding the tactile output devices they support or do
not allow for unrestricted editing of vibrotactile feedback
patterns.

In this chapter, we will now outline the requirements Requirements and
constraints for the
system

of the system we design and reveal the constraints that
affect its design and development process.

4.1 Overview

This section outlines the required characteristics of the tool
build for this thesis. It shows the objective of the tool, what
functionality it must encompass, and what constraints
must be taken into account during the design phase. Priorities assigned to

requirementsRequirements are ranked according to their priority for the
project; priorities are defined as either ”must”, ”should”,

40 4 Requirements

or ”could”.

Furthermore, this section characterizes the users of
the editor, gives details about development and testing
environments, and lists hardware platforms that are
supported.

4.2 Problem Definition and System Objec-
tive

Tactile feedback is still widely absent from today’s
communication channels as most interactions focus on ourMost modern

interfaces without
tactile feedback

visual and auditory senses. Even some modern devices
that use haptics as an input channel neglect haptics as an
output channel - thus focussing on the visual and auditory
senses for transmitting information to the user. The most
prominent example is Apple’s iPhone that purely reliesiPhone lacks system

for tactile feedback. on tactile input via the built-in touch-screen, but lacks a
system for tactile feedback. For details, compare [Hoggan
et al., 2008].

As mentioned above, the field of haptics is still widely aHaptics widely a
research area research area; for this reason we need efficient methods to

support testing the effects of haptic feedback. Therefore,
the toolkit we develop enables users to easily create
and test vibrotactile patterns on a variety of hardware
platforms.

4.3 Tactile Editor

To allow users rapid, fast, and effective design of vibrotac-
tile patterns, our toolkit needs to provide a suitable way
of achieving this - a tool that enables users to design and
test these patterns. Therefore, we designed Tactile Editor, aTactile Editor: GUI to

design and test
vibrotactile patterns

timeline-based editor including a graphical user interface
allowing users to create and modify vibrotactile patterns
via simple drag and drop operations.

4.4 Functionality 41

We need a suitable representation of the vibrating motors
within the editor and decide upon a track-based canvas Track-based canvas

with timelinewith a timeline along which representations of vibrating
motors can be arranged.

The canvas can contain one or more vibration tracks,
see figure 4.1. Each track can contain vibrotactile patterns
and consists of motor objects representing individual
motors that vibrate at specified times.

Figure 4.1: Canvas containing an empty track

Instances of vibrating motors are displayed as colored rect-
angles, where the properties of these rectangles correspond Motor vibrations

represented as
colored rectangles

to the properties of the motor vibration they represent:
each motor gets associated with a certain color - therefore,
the color of the rectangle represents a motor number. The
position of the rectangle along the timeline equals the
time at which the motor vibrates, rectangle width equals
vibration duration, and rectangle height corresponds to the
intensity with which the motor vibrates. Figure 4.2 shows
an example of two motor rectangles on a timeline:

Motor 1 vibrates with 100% intensity for 250 ms, starting at Sample pattern in
Tactile Editortime 250 ms; motor 2 vibrates with 50% intensity from time

750 ms to 1000 ms.

4.4 Functionality

Tactile Editor has to provide certain features to allow
users rapid and effective design of vibrotactile patterns.
This section states these requirements for Tactile Editor;

42 4 Requirements

Figure 4.2: Example of two rectangles representing motor
vibrations

we sort them by priority and define the following priorities:

PRIORITIES FOR REQUIREMENTS:

• ”Must”: Requirement is absolutely essential for the
system.

• ”Should”: Requirement should be fulfilled by the
final system that gets implemented.

• ”Could”: Requirement is nice to have, but no pri-
mary function of the final system.

Definition:
Priorities for
requirements

We will now elaborate more on the range of functions,
the editor has to provide and will group the properties
according to the priorities we defined above.

4.4.1 Necessary Properties

Most importantly, Tactile Editor has to provide basic edit-
ing functions to the user. This includes adding or removingBasic editing

functions an empty track and adding or removing a motor rectan-
gle. Besides that, users should be able to modify motor
rectangles by simple, intuitive drag and drop operations -
resizing the motor rectangle or dragging a motor from one
track to another are examples of those. Alternatively, users
can edit rectangle properties by selecting a rectangle and
providing the desired values via keyboard input.

4.4 Functionality 43

In addition to creating and editing vibrotactile pat-
terns, Tactile Editor has to provide a testing environment
for these patterns. On this account, users must be able Testing of vibrotactile

patterns with Tactile
Editor

to send the patterns to vibration motors connected to
hardware devices such as Arduino boards. User should
be presented the opportunity to choose between send-
ing selected tracks only or sending all patterns on all tracks.

Finally, Tactile Editor has to support standard file op- Standard file
operationserations such as saving a pattern or loading a previously

created pattern document. In addition, the editor has to
enable users to export the patterns to a format, that can be
read and processed by other devices.

As an example, it should be possible to create a pat-
tern using Tactile Editor, export the pattern to a file, send
the file to a mobile phone, and send the pattern from the
mobile phone to vibration motors.

4.4.2 Desirable Properties

Apart from basic, compulsory editing functions, Tactile Additional features
Editor should provide additional features that facilitate
working with the editor:

Multiple motors can be selected by drawing a selec-
tion rectangle around them or by holding down the
shift-key while selecting them - as customary for drag
and drop user interfaces. All basic editing functions can
be accessed through keyboard shortcuts to provide an Keyboard shortcuts
alternative interaction style that speeds up the editing
process for expert users. The editor should provide a copy
& paste function and a basic undo-functionality.

Tactile Editor should allow users to connect to multi-
ple hardware devices at the same time to allow scenarios
where patterns including a large number of motors are
required.

For our user tests to evaluate the tool, Tactile Editor
should also be able to communicate directly with sensors
that are connected to an appropriate hardware device.

44 4 Requirements

Although in practice, communication with sensors takes
place via a sensor environment such as Exemplar, we
want to provide users in our tests with a possibility to test
vibrotactile feedback patterns based on sensor input. Thus
users should be able to build prototypes using both sensor
data and motor control using Tactile Editor only.

4.4.3 Conceivable Requirements

Tactile Editor could allow users to select partial vibration
tracks by providing markers on the timeline that allowSelection of partial

tracks selection of a certain region of a track. We could clearly
mark the selected region and distinguish it from the rest of
the track.

For increased usability, the tool could provide an ex-
tended Undo/Redo functionality, a mechanism that coversUndo
all editing functions such as inserting, deleting, moving a
motor or track.

Furthermore, Tactile Editor could be accepting mes-
sages from sensing systems such as Exemplar [Hartmann
et al., 2007] and play selected vibration tracks upon receiv-
ing these messages.

Finally, we could provide a comprehensive help sys-
tem that explains usage of Tactile Editor in detail andHelp system
answers all questions a user might encounter while using
the system. The help system should be accessible from
within the editor.

4.5 User Characterization

The system is to be deployed in various areas in order to
allow users rapid, effective design and testing of vibrotac-Tactile Editor

designed for
end-users

tile feedback; primarily, the tool is to be used in research
environments to test the effects of vibrotactile feedback.
Therefore, the typical user is a designer or an end-user,
rather than a highly trained, specialized programmer.

4.6 Development and Runtime Environment 45

On this account, the tool provides a graphical user
interface that allows users to design vibrotactile icons
by direct manipulation and without the need for textual
programming. Users are not required to write down start
time, end time, duration, intensity, and motor number in
source code, but rather specify this parameters graphically
or via text fields in Tactile Editor’s graphical user interface.

4.6 Development and Runtime Environ-
ment

Tactile Editor was initially developed and tested under Mac
OS 10.4. Later on we modified and tested a version on Mac
OS 10.5 as well, though it doesn’t yet support connecting
Make Controller Boards via OSC.

4.7 Supported Hardware Platforms

In order to enable users to use Tactile Editor for effectively
developing and testing vibrotactile patterns, the system Tactile Editor

supports Arduino
and MakeController
platforms

supports several different hardware platforms. Tactile
Editor explicitly supports Arduino and Make Controller
Toolkits (see sections below).

These two toolkits are well-known and in wide-spread
use. Arduino also produces a bluetooth board, that allows
mobile and outdoor use.

The tool can easily be extended to support any hard-
ware platform that can be addressed via the OSC protocol.

46 4 Requirements

4.7.1 Arduino

Arduino1 is an open-source electronics prototyping plat-
form consisting of hardware devices (Arduino boards) and
a software development environment (currently Arduino
0011 Alpha). It can be integrated with a variety of sensorsArduino: electronics

prototyping platform and actuators such as lights or motors. Arduino’s onboard
micro-controller is programmed via the Arduino devel-
opment environment2 , that is based on the Processing
language3 and uses the Arduino programming language,
which is based on Wiring4 .

Output ports of Arduino boards can be addressed via
analog or digital commands. Analog signals just offer the
parameters 0 (”Off”) or 1 (”On”) for controlling devices
connected to the board’s output ports. Digital communi-
cation allows for a technique called pulse width modulationPWM
(PWM), that basically encodes analog signal levels digitally
by modulating the duty cycle of the signal, thus regulating
the amount of power that gets sent to an output port. As
an example, signal 1 is on for 20% of the time and off for 80
%of the time, signal 2 on for 50 %, off for 50 % and signal
3 on for 80% and of for 20 %. If the supply is 5V, signal
1 results in a 1V analog signal, signal 2 in a 2.5 V signal,
and signal 3 in a 4V analog signal, compare figure 4.1. A
comprehensive overview of PWM can be found in [Barr,
2001].

Devices connected to output ports can be addressed from
the Arduino programming language via ”digitalWrite”digitalWrite and

analogWrite (with parameters 0 and 1 for ”off” and ”on”) or ”analog-
Write” messages with PWM parameters ranging from 0
to 255. The command ”analogWrite (pin, 255)” means the
motor connected to port ”pin” vibrates with full intensity
at 5V, and ”analogWrite (pin, 128)” drives the motor with
only 50 % intensity. Thus we can adjust the intensity with
which the motors vibrate.

In this thesis, we focus on using the Arduino Blue-Arduino BT board

1see http://www.arduino.cc
2see http://www.arduino.cc/en/Main/Software
3see http://processing.org
4see http://www.wiring.org.co

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software
http://processing.org/
http://processing.org/
http://www.wiring.org.co/

4.7 Supported Hardware Platforms 47

Signal 1: 20% duty cycle

time

intensity

on

time

intensity

intensity

on

off

off

off

on

Signal 2: 50% duty cycle

Signal 3: 80% duty cycle

time

Figure 4.3: Three sample PWM signals

tooth board (Arduino BT) with several vibration motors
that are connected to the output ports of the board.

4.7.2 Make Controller Kit

Make Controller Kit from MakingThings5 contains an
input/output controller (Make Controller) and provides
software and electronics tools to create projects that inter-
act with the physical world. Various input devices (such
as sensors or pushbuttons) and output devices (such as
LEDs or DC motors) can be connected to the board and
communicate with each other.

Therefore, the Make Controller board supports the
Open Sound Control protocol (OSC), a message-based MakeController

supports OSC
protocol.

communication protocol that was designed as successor
of the MIDI protocol. The OSC protocol allows commu-
nication among computers, audio controllers, and other
multimedia devices.

5see http://www.makingthings.com

http://www.makingthings.com/products/KIT-MAKE-CTRL/

48 4 Requirements

OSC is designed as a simple client/server architecture,
where data units called packets get sent from a client to a
server. Basic data units in OSC are messages, which consist
of three parts: an address pattern, a type tag string, and a
parameter value. The address pattern defines the entity the
message is directed to, the type tag defines the data type of
the parameter, and the parameter defines the argument of
the OSC message. As an example, /server/port1 i 0Sample OSC

messages sends a message containing the parameter ”0” of data type
”Integer” to port1 of the receiving entity.

In chapter 6, implementation details, we elaborate further
on the OSC message format we are using to communicate
with Make Controller boards. A comprehensive summary
of the Open Sound Control communication protocol can be
found in [Wright et al., 2003].

For our purpose, we connect several motors to the
board’s digital outputs and communicate with the board
via simple OSC messages. While we tested Tactile EditorWe focussed on

working with Arduino
boards.

with Make Controller boards, we decided in later iterations
to focus on using Arduino Boards as these were signifi-
cantly smaller and lighter.

In addition, we could use a sensor/actuator box that
was built at our group, which saved us the work of
building the hardware ourselves. The box (see figure
4.4) contains an Arduino BT board with a custom built
motor shield connected to the board. The motor shield
can control six vibration motors that are connected to
the actuator connectors of the box (compare figure 4.4).
Furthermore, the box provides three connectors for sensors.

For our tests, we connected six pressure sensors (force-
sensitive resistors) to the board, three to the first and three
to the second connector. In addition, we connected six vi-
bration motors to the output connectors of the board, thus
providing a complete hardware set for testing vibrotactile
feedback patterns.

4.7 Supported Hardware Platforms 49

Figure 4.4: Arduino box designed at our group

51

Chapter 5

Conceptual Design

“A common mistake people make when trying to
design something completely foolproof is to

underestimate the ingenuity of complete fools.”

—Douglas Adams (1952 - 2001), ”Mostly
Harmless”

Now the requirements for the system to be implemented
are established, it is time to develop a suitable conceptual
design - this shall later on guarantee a smooth implemen-
tation. We will establish a concept for implementing Tactile Concept for Tactile

EditorEditor and elaborate on this in more detail in the following
section.

5.1 System Architecture

Fundamentally, the system to be developed consists of
four different layers: visual layer, data layer, logic layer, System consists of

four layers.and hardware. Figure 5.1 shows the relationships between
these layers and what function each layer is assigned in
our system architecture.

52 5 Conceptual Design

Visual

Haptic Editor Graphical User Interface

Data
Vibration tracks,

Motor representations as rectangles,
User input

Logic
Haptic Editor application logic,
Communication protocols for

hardware devices

Haptic
Editor

Hardware

Vibration motors attached
to hardware boards

Figure 5.1: System architecture: Layers

Visual Layer

Everything that is visible to the user when he inter-
acts with the system is combined into the visual layer
of our system; primarily this refers to the graphical userGUI as visual layer
interface of the editing tool in the toolkit - Tactile Editor.

The visual layer provides an accurate display of the
underlying data structures and ensures that all user-
created or modified data is displayed accordingly on
Tactile Editor’s ”center stage”, the canvas.

Data Layer

This layer includes internal representations of user in-
put or other data and all processes associated with those.
All user-created patterns have to be handled internally -
either to send them to connected vibration motors or to

5.1 System Architecture 53

permanently save them in files. Therefore each pattern file
gets stored as a two-dimensional array; every file contains
an array of tracks, each of which gets stored as an array of Data stored in

two-dimensional
array.

motor objects.

Each track contains one or more vibrotactile patterns,
consisting of different motors vibrating at certain times.
Motor vibrations are represented by motor objects con-
taining start time, duration, frequency, and motor number
of the vibration. Appendix A shows header files for
pattern files, tracks, and motor objects to illustrate the data
structures used in Tactile Editor.

Logic Layer

Two central parts are included in this layer: the ap-
plication logic for Tactile Editor and the protocols for
communication between Tactile Editor and suitable hard-
ware devices the toolkit supports.

Application logic
ensures consistency
between visual and
data layer.

Application logic will be defined as code in Tactile Editor’s
classes and ensure consistency between data and visual
layer.

The logic layer is also responsible for allowing Tactile
Editor to communicate with suitable hardware devices and
the other way round by providing appropriate protocols
for this communication. Thus, the logic layer ensures that
all data edited by a user in Tactile Editor gets converted to
the appropriate format and sent to the hardware devices
the user selects.

To ensure consistent execution of the commands Tac-
tile Editor sends to connected hardware devices, these
devices have to implement the communication protocols
as well (see hardware layer below).

Hardware Layer

This layer includes all hardware components of the
toolkit, such as hardware boards which communicate with Hardware

componentsTactile Editor or sensors and vibration motors which are
connected to these hardware boards.

54 5 Conceptual Design

All of these devices have to be configured properly in
order to integrate seamlessly with the software envi-
ronment; hardware devices such as Arduino or Make
Controller boards have to be equipped with suitable
firmware that allow for communication with the software
part of the toolkit. Therefore, as part of the toolkit, con-Firmware allows

communication with
Tactile Editor.

nected Arduino boards run a special firmware program
that enables them to receive and execute Tactile Editor’s
commands.

5.2 Concepts of Interaction

Users shall interact with the toolkit by using common andCommon, well known
interaction concepts well known interaction concepts. Thus the system uses

standard interaction metaphors based on mouse and key-
board input.

Mouse Interaction

Most interactions with the toolkit are based on mouse
interaction with Tactile Editor’s timeline-based interface
using an intuitive drag-and-drop concept as it is commonDrag-and-drop

mouse interactions in today’s direct manipulation tools. Motor vibrations,
represented by rounded rectangles on a track within the
canvas, can be created and modified using common, well
known interaction techniques:

Rectangles can be selected by clicking on them, moved by
dragging them along the timeline, and modified in shape
by clicking on the border and dragging them to the desired
size. If users require an alternative technique, properties ofMouse interactions

on motor rectangles motor vibrations and their rectangles can be specified by
keyboard input (see next section). The markers that specify
the selected region of a track can be selected and dragged
along the timeline as well.

All mouse interactions that are available to the user
should be clearly visible; the mouse cursor should indicateMouse cursor

indicates available
editing options.

the interaction that is available at the current cursor posi-
tion. If the user moves the cursor over a rectangle border,

5.2 Concepts of Interaction 55

the cursor shape should change into the shape indicating
the appropriate resizing option (upDownCursor for height
resizing or leftRightCursor for width resizing).

In addition all actions a user executes should be indi-
cated by instant and clearly visible feedback once they are
completed (see section Feedback below).

Keyboard Interaction

Several editing functions of the toolkit are provided by
keyboard commands. This allows users to access fre-
quently used commands faster and thus allows a more
effective use of Tactile Editor.

Furthermore users can specify certain properties of
motor vibrations and their rectangles via keyboard input,
which allows for an alternative way of specifying start
time, duration, or frequency of a certain motor vibration.
Users should be able to choose wether they prefer mouse
interactions or keyboard interaction for certain actions -
thus Tactile Editor should provide both methods of data
input for the user.

Feedback

All actions a user performs using Tactile Editor shall
be accompanied by instant, clear, and visible feedback.
Therefore all modifications to a rectangle representing a Instant and clearly

visible feedback for
all user actions

motor vibration shall be visible as soon as a user performs
them; this includes selection of a rectangle, dragging it
along the timeline, modifying its start time, duration, or
frequency, etc.

Tactile Editor shall provide several features that give users
feedback regarding the progress of their work. This in-
cludes tooltips when a user drags a motor along the time-
line (showing current start and end time) or resizes a
motor (showing current duration or current frequency, Tooltips
when changing width or height). Furthermore, moving
the mouse cursor over a motor rectangle should activate
a tooltip showing details about that particular motor vibra-

56 5 Conceptual Design

tion, see figure 5.2 for an example.

Figure 5.2: Feedback: User moves mouse over existing mo-
tor rectangle - tooltip showing motor vibration details

57

Chapter 6

Implementation Details

“Programming today is a race between software
engineers striving to build bigger and better

idiot-proof programs, and the Universe trying to
produce bigger and better idiots. So far, the

Universe is winning.”

— Rick Cook, fantasy author, in ”The Wizardry
Compiled”

The following chapter presents the tool we developed and
elaborates on Tactile Editor’s implementation in detail,
explaining the different parts of its graphical user interface
and how they were implemented. In addition, we will
give illustrated examples on how interactions with Tactile
Editor work.

We illustrate the iterative design approach taken
when developing the system and demonstrate how Tactile Iterative design

approachEditor’s design evolved over the different iterations.

6.1 Overview

The system is implemented as an editor that allows users
to design tactile feedback patterns before testing those Editor to design and

test patternspatterns with connected vibration motors. Therefore we

58 6 Implementation Details

needed a suitable representation of the vibrating motors
within the editor and decided, as mentioned in the previ-
ous chapter, on a track-based canvas with a timeline along
which representations of vibrating motors can be arranged.
We will now discuss the editor in detail, starting with the
structure of the underlying application, before going into
detail about the different parts of Tactile Editor’s graphical
user interface.

Finally, we will specify the communication protocolsWe need protocols
for communication
with hardware
devices.

for sending commands to address vibration motors from
Tactile Editor and for receiving commands from connected
sensors.

6.2 Model-View-Controller Paradigm

We designed Tactile Editor using the Model-View-Controller
paradigm (MVC), an architectural pattern from software en-MVC paradigm is an

architectural pattern
to isolate data, GUI,
and application logic.

gineering that isolates application data (model) from the vi-
sual presentation layer (View), usually the graphical user
interface, and the application logic (Controller) that con-
nects the two. Figure 6.1 illustrates the MVC paradigm
graphically.

The MVC paradigm originated back in 1979, when TrygveMVC originated
during Smalltalk
development.

Reenskaug was working on Smalltalk at Xerox PARC [May
1979] and has also been adopted as a recommended design
pattern for Cocoa applications1 .

We implemented the MVC by providing structures
to store the application data (model) and a custom view
to display this data (View). In addition, we wrote a viewWe apply MVC

paradigm to Tactile
Editor.

controller that provides the application logic and ensures
consistency between model and view of our application.
Figure 6.2 shows which classes implement the three com-
ponents of the MVC model.

The following section gives details about these com-
ponents and the other classes we implemented for Tactile
Editor.

1see Cocoa Fundamentals Guide, chapter 5, section 4

http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/chapter_5_section_4.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/chapter_5_section_4.html

6.3 Class Structure 59

Figure 6.1: Model-View-Controller paradigm - adapted to
Cocoa

6.3 Class Structure

Tactile Editor was implemented as a Cocoa application
comprising a set of Objective-C-classes, which we will Tactile Editor is

implemented as
Cocoa application.

briefly describe here. Figure 6.2 shows the editor’s main
classes and their relationships.

Main.m:

This is the main class of the application; it just returns the
NSApplication object.

CenterStageView.m:

The center stage is the most important part and largest
area of the user interface. CenterStageView.m displays the
center stage and handles mouse or keyboard events. The
view displays the application data

60 6 Implementation Details

CenterStageView.h

ViewController.h

Motor.h

TrackArray.h

Track.h

HUDWindow.hPolishedWindow.h

1

0...*

1

0...*

View - Level

Controller -
Level

Model - Level

Figure 6.2: UML class diagram - main Tactile Editor classes

ViewController.m:

This class serves as the controller for our application.
It provides motor and track data for display in the center
stage view and handles user interaction with the graph-
ical user interface by providing interface actions for the
application.

TrackArray.m

This class provides the structural foundation for a pattern
file and contains an array of track objects. In combination
with the the motor and track classes, TrackArray.m forms
the model of our application.

Track.m

One single track is defined in this class and consists
of an array of motor objects.

6.3 Class Structure 61

Motor.m:

A representation of a motor instance is defined within this
class, along with the properties of a motor instance within
the editor. Each motor has instance variables for start time,
end time, intensity, and motor number.

RoundedRect.m:

Rounded rectangles are used to display motors and
tracks in Tactile Editor. This class provides those rectangles
for motor and track display in the view that contains the
center stage.

ToolTip.m:

Tooltips are displayed, whenever a user drags a mo-
tor or one of the time indicators over the canvas. The
tooltip class is responsible for setting up these tooltips.

ToolTipTextField.m:

Tooltips are implemented as separate, rectangular
”mini” windows in Tactile Editor; they are displayed
to the upper-right of the mouse cursor using the class
ToolTipTextField.m.

HUDWindow.m:

Tactile Editor uses half-transparent, heads-up-display
(HUD) windows to display additional information within
its graphical user interface. These HUD windows are used
for setting the preferences of motor representations in the
canvas, when creating a new motor rectangle or when
setting up the preferences for communication with sensors.

Objective-C header files for some of these classes can
be found in appendix A.

In addition to these classes, I used source code pro-
vided by other programmers:

62 6 Implementation Details

PolishedWindow.m:

Tactile Editor uses a custom window interface called
”Polished Window”, which was written by Matt Gemell
and is provided by this class.

Serial Port additions (AM*.m):

These are a number of classes, the main class being
AMSerialPort.m, that provide serial port communication
for Tactile Editor. Originally these were written by Andreas
Mayer in 2001, but later on modified by several others.
Sean McBride updates the classes in late 2007 and made
the code 64bit compatible to allow use of the classes with
Mac OS 10.5. We modified these classes to allow Tactile
Editor bluetooth communication with Arduino devices via
serial ports.

6.4 Tactile Editor GUI

The Tactile Editor GUI consists of four main parts:

1. The ”center stage” or canvas - the main view of the
editor which shows the tracks the user has created
and editedGUI consists of four

main parts: center
stage, drawer, status
bar, main menu.

2. A ”drawer” on the left-hand side that can be toggled
via a button and contains controls to connect and con-
figure different hardware devices

3. A bar at the bottom of the window that contains but-
tons for accessing frequently used editing functions
and status information such as current time, con-
nected devices, or selected tracks.

4. A main menu bar, which contains all available com-
mands in several submenus

We will now discuss each of these parts in more detail and
show how they effect a user working with Tactile Editor. As
an overview, figure 6.3 shows Tactile Editor’s user interface
and how the different GUI parts are arranged.

6.4 Tactile Editor GUI 63

Figure 6.3: Tactile Editor graphical user interface: center stage/canvas (1), drawer
(2), status bar (3)

6.4.1 The Canvas

The central area of the application is called the center stage
or the canvas - all editing tasks are focussed here. Taking
in roughly 80 per cent of the editor’s screen space, the can- Central part of the

GUI is called canvas
or center stage.

vas shows, along a timeline, user-created tracks containing
motor representations as rectangles. As discussed in the
previous chapter, these rectangles have several properties
each representing a property of the associated motor: rect-
angle width representing time in milliseconds, height the
PWM intensity in per cent, and color the motor number.
Figure 6.4 shows Tactile Editor’s canvas while a user is
working with the editor.

We will focus on three typical editing tasks users will face Three principal
editing taskswhen using Tactile Editor and show how these can be

achieved by working on the canvas:

• Creating patterns

• Editing patterns

64 6 Implementation Details

Figure 6.4: Canvas while user is designing vibrotactile pat-
terns

• Sending patterns

Creating Patterns

New tracks can be added to the editor by copying
existing tracks or adding new tracks to the application. Ex-
isting tracks can be selected by clicking on the track in theAdding new tracks to

the view view and copied via keyboard shortcut (”Option - C”) or
menu item (”Edit - Copy”). Several tracks can be selected
at once by Shift-Click or dragging a selection rectangle
over the required tracks. New tracks can be inserted via
the ”Add new track” - button or via the corresponding
menu item.

Motors can be added by clicking the ”Create new mo-
tor” - button or via the ”Create new motor”- menu item. AAdding new motors

to the view transparent window appears, where motor number, start
time, length, intensity, and track number can be specified,
compare figure 6.5. Furthermore, motors can be added
by selecting existing motors and copying or pasting them
via keyboard shortcut or menu item respectively. Several
motors can again be selected at once via shift-click or by

6.4 Tactile Editor GUI 65

Figure 6.5: Creating patterns - buttons for adding/removing tracks and motors
(left); HUD window for creating a new motor object (right)

dragging a selection rectangle around the motors to be
copied.

Editing Patterns

Existing patterns can be modified using a range of
editing functions the system provides:

Motors can be modified by double-clicking on the
specified motor rectangle within the center stage. Upon Double-clicking a

motor opens
properties window.

double-clicking, a half-transparent HUD window appears,
in which the corresponding motor values can be specified
(see figure 6.6).

Motors can be moved along the timeline or from one track
to another by simply dragging and dropping the motor
rectangle. Width and height of a motor rectangle can be Motors can be

resized via drag and
drop.

resized by clicking on the appropriate border and dragging
it to the desired position.

As outlined above, new motors can be added by clicking
the ”Create new motor”-button, via the ”Create new
motor”-menu item or by copying and pasting selected
motors.

Sending Patterns

With Tactile Editor, there are two ways of sending Two ways to send
patterns: whole
tracks or selected
regions.

patterns to the vibration motors attached to connected
devices: Sending tracks as a whole or sending selected

66 6 Implementation Details

Figure 6.6: Editing patterns - HUD window for modifying
an existing motor vibration (first motor on track two was
double-clicked)

regions only:

The button ”Send selected tracks” sends all selected
tracks to the devices where the corresponding vibration
motors are connected. ”Send all tracks” makes sure that
all tracks within the center stage get sent to the vibration
motors.

For sending certain parts of certain tracks only, users
can delimit the area on the tracks by dragging the red andTwo markers indicate

selected area of a
track.

green markers along the timeline; the ”Send marked pat-
terns” button then sends the patterns within the selected
area to the appropriate vibration motors.

6.4.2 The Manage Devices Drawer

Hardware devices can be addressed from Tactile Editor via
the drawer button on the left side of the status bar. ThisDrawer contains

controls for
managing hardware
devices.

opens up a drawer to the left of the main window that
contains controls to connect new hardware devices and
disconnect or configure existing devices from Tactile Editor
as shown in figure 6.3 before.

6.4 Tactile Editor GUI 67

Connecting and Disconnecting Hardware Devices

Users can select a device they want to connect to
from the list within the popup button. If Tactile Editor is
connected to one device already, this device is shown in
the first popup and there appears another popup below
where users can select a second device, as shown in figure
6.7 (left) below. Once a device is connected via the Connect Tactile Editor opens

serial port for
communicating with
a device.

button, Tactile Editor opens a serial port for sending and
receiving messages between the editor and the connected
device. The Connect button gets grayed out and the Discon-
nect button becomes available.

Figure 6.7: Manage Devices drawer - upper part (left) with
controls for (dis-)connecting devices, lower part (right)
with status box and controls to address sensors

Disconnecting a device works similarly: For every device
connected to Tactile Editor, a Disconnect button becomes
available for that particular device. By clicking this button,
Tactile Editor closes the port for that device and terminates
the connection. The Disconnet button is greyed out and the
connect button for that device becomes available again (see
figure 6.7, left).

Status Information

The text box within the control panel gives status in- Text box gives
information about
device status.

formation when connecting or disconnecting devices or

68 6 Implementation Details

when sending patterns to vibration motors, compare
Figure 6.7 (right).

Configuring Sensors

Tactile Editor can receive data from connected sen-
sors. For our testing purposes, we configured Tactile Editor
to receive data from six pressure sensors, two bend sensors,
and one accelerometer. These sensors can be connected to
an Arduino board, which then streams the sensor values
to Tactile Editor. The editor can then trigger vibrotactile
patterns in response to certain sensor values it receives.

Figure 6.8 shows the window that opens, when a user
clicks the ”Configure sensors” button in the drawer (com-
pare figure 6.7, right).

Figure 6.8: HUD window to configure sensor details and
stream sensor data

In this window, users can calibrate all connected sensors
and start or stop streaming sensor data. In addition, pat-
terns that should be triggered upon certain sensor values
can be specified.

6.4 Tactile Editor GUI 69

How the Drawer Evolved

The drawer was added in a later iteration of Tactile
Editor’s design process: The first design put all controls Drawer was added in

a later iteration.related to connecting and disconnecting devices into a
control panel that was visible all the time, which led to a
rather crowded user interface and reduced the available
space for the center stage. Users could not easily locate
the individual controls, got confused by the many choices
the interface offered and had less space available to edit
patterns.

Compare Appendix B for earlier designs of Tactile
Editor’s graphical user interface.

As a result, we moved all controls related to manag-
ing hardware devices that Tactile Editor communicates
with, into the ”Manage Devices” drawer, that users can
open whenever they need to access any of its controls.
We deemed this appropriate, as these controls are used Functions in drawer

only needed
occasionally.

rather infrequently - probably just once during an editing
task, when users want to decide, which devices should
communicate with Tactile Editor.

6.4.3 The Status Bar

Located at the bottom of the screen is a status bar that
contains status information and gives users feedback about Status bar adds

feedback.the status of the current editing process, see figure 6.9.

This information includes the currently selected tracks,
start and end time of the currently selected region between
the red and green markers on the timeline, and the names
of all hardware devices that are currently connected to
Tactile Editor.

In addition, the bar contains buttons for opening the
Manage Devices drawer and for adding or removing tracks
and motors to or from the current pattern document.

70 6 Implementation Details

Figure 6.9: Status bar of Tactile Editor

6.4.4 The Menu Bar

As customary with Mac OS X applications, the main menu
bar is located at the top of the screen and contains all avail-
able commands in several submenus. Some of them areMenu bar contents

partly defined by
Apple’s HIG.

determined by Apples Human Interface Guidelines2 , oth-
ers are specific for the Tactile Editor. According to these
guidelines, ”...the ordering of application-specific menus in
the menu bar should reflect the natural hierarchy of objects
in your application.” As tracks contain motors, the order-
ing of menus from left to right is Apple, Tactile Editor, File,Cutoms menus:

Pattern, Track, and
Motor

Edit, Track, Motor, Window and Help Menu, as shown in
figure 6.10.

Figure 6.10: Tactile Editor’s menu bar

Most commands within the menu structure correspondKeyboard shortcuts
for most menu items to a keyboard shortcut in order to increase the usability

of the editor’s interface (see section ”Keyboard Shortcuts
below”).

We will not discuss the menu items in detail here and
just give a short summary of the submenus, Tactile Editor
provides:

Tactile Editor Menu

The Tactile Editor menu contains items that apply to
the application as a whole rather than to a specific doc-
ument or window, such as hiding or quitting the Tactile

2see Apple Human Interface Guidelines

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/XHIGMenus/chapter_17_section_4.html

6.4 Tactile Editor GUI 71

Editor application.

File Menu

Menu items in the file menu apply to one single pat-
tern file only; loading or saving a pattern file are examples
for file menu items.

Edit Menu

The Edit menu provides commands that allow users
to edit the contents of patterns and to share content via the
clipboard, such as Cut, Copy, or Paste.

Pattern Menu

The Pattern menu contains commands that allow users to
play or export patterns.

Track Menu

Important command for working with tracks, such as
playing all or selected tracks, are included in this menu.

Motor Menu

The Motor menu contains important command for
creating and editing motors; examples are adding or
removing motors in the canvas.

Window Menu

The Window menu contains commands for organizing and
managing Tactile Editor’s windows.

Help Menu

Tactile Editor’s help system (see section help book)
can be accessed from this menu.

72 6 Implementation Details

6.5 Undo Functionality

Tactile Editor offers an undo system that covers editing
functions such as adding objects, removing, or modifying
tracks and motors. At the beginning of every editing oper-Undo for editing

functions ation, the current editing progress is stored and the title of
the Undo menu item in the Edit menu is adjusted accord-
ingly, as shown in figure 6.11.

Figure 6.11: Undo String is adjusted - depending on the last
user action; user inserts motor (left) and user deletes motor
(right).

6.6 Tactile Editor Help System

In order to allow users to effectively use Tactile Editor, the
system provides several help features that illustrate how toSeveral help features

to assist the user. work with the editor. These include a complete help system
and tooltips for all interface elements such as buttons, text-
fields and sliders.

6.6.1 Tooltips

Tactile Editor provides two kinds of tooltips to increase the
usability of its interface: Tooltips for all interface elementsTwo kinds of tooltips

6.6 Tactile Editor Help System 73

Figure 6.12: Tactile Editor tooltips - standard OS X tooltips (left), custom tooltips
while dragging a motor (middle), motor tooltip when pointing at a motor rectangle
(right)

and tooltips that appear within the center stage, offering
users additional information about certain objects while
editing patterns.

Whenever a user points at a certain control, such as a
button or a slider, a short notice pops up that briefly
summarizes the function of the associated element in three
to eight words. These tooltips are implemented as OS Standard OS widgets
X standard tooltips, that are associated with each user
interface widget (see figure 6.12, left).

Within the center stage, every rectangle representing
a motor offers an associated tooltip (see figure 6.12, right).
When the user points at a motor rectangle, a tooltip dis-
plays motor number, length, intensity, and start time of the
motor. These tooltips were connected to cursor rectangles, CursorRects used for

motor tooltips.which we calculated in the resetCursorRects method
of our center stage

Every time the user drags a motor across the canvas
while editing a pattern, a tooltip displaying the start and
end time of the moving motor appears to the top-right of
the mouse cursor. When resizing a motor rectangle, the
tooltip shows the current size (intensity when resizing
the height, duration when resizing the width of a motor
rectangle). In the same way, tooltips displaying the current Dragging tooltips

implemented as
separate windows.

time in milliseconds appear when users drag one of the two
time markers along the time line (see figure 6.12, middle).
These tooltips were implemented as separate windows
that are connected to the mouseDragged method of out
view.

74 6 Implementation Details

6.6.2 Help Book

Tactile Editor contains a comprehensive help system that
explains how to use the toolkit. Help can be accessed fromHelp system can be

accessed from within
the editor.

Tactile Editor via the ”Tactile Editor Help” menu item from
the ”Help” menu or via the keyboard shortcut ”Command
- ?”.

As shown in figure 6.13, the help book is divided into
six parts:

HELP BOOK STRUCTURE:

1. Introduction - Illustration of what Tactile Editor of-
fers and how to get started

2. Basic Structures - How motors are represented in
Tactile Editor and how to access those representa-
tions

3. Hardware Devices - Essential information on how
to connect and access hardware devices from the
editor

4. Editing Patterns - How to create, modify, load, and
store vibration patterns with Tactile Editor

5. Sending Patterns - How to select the correct pat-
terns and send them to connected devices

6. Miscellaneous - Frequently asked questions

Definition:
Help book structure

6.6 Tactile Editor Help System 75

Figure 6.13: Tactile Editor help system - start page

6.6.3 Keyboard Shortcuts

All common editing functions can be easily accessed
via keyboard shortcuts, thus allowing users faster, more
efficient editing of vibrotactile patterns and improving
their workflow. By using a keyboard shortcut, experienced Keyboard shortcut

can speed up editing
tasks.

users can speed up execution times for most tasks of the
editor and reduce a series of mouse operations to just one
single keyboard shortcut.

Some of the commands are common Mac OS X key-
board shortcuts for accessing menu commands such as
”Command - C” for copying items (such as tracks or
motors in our application), ”Command - P” for pasting
items or ”Command - Q” for quitting the application.

Others are application-specific keyboard shortcuts to
access certain functions of the editor such as adding a new
track to the canvas (shortcut ”Command - T”), adding
a motor to an existing track within the canvas (shortcut Application specific

shortcuts”Command - Shift - M”) or playing all tracks within the
canvas (”Command - Shift - A”).

All functions that can be accessed via shortcuts are
listed in appendix B.

76 6 Implementation Details

6.7 Communication with Hardware Plat-
forms

In order to send the patterns designed with the editor to at-
tached hardware devices, we need a specified protocol for
communication between the software and the hardware de-
vices. As Tactile Editor explicitly supports the Arduino andSpecific protocol for

communication with
hardware devices.

the Make Controller hardware toolkits, we specified com-
munication protocols for these two hardware platforms.

6.7.1 Arduino

All communication with Arduino BT boards is established
via a Bluetooth connection. Tactile Editor opens a serialCommunication via

serial ports port for every Arduino to send commands and listen
for incoming messages from connected sensors or other
software tools.

We defined the following protocol for communication
with Arduino boards in order to turn motors on or off:

MESSAGE FORMAT ARDUINO:

To control motors:
M number [A|D] value \r\n

M = motor
number = 1..6 (Motor number, not pin number)
A = analogWrite (PWM)
D = digitalWrite
value = duty at which motor is driven:

0..255 for analogWrite: 0 = off, 1..255 = on;
0..1 for digitalWrite: 0 = off, 1 = on

To send delays:
D time

D = delay
time = delay length in ms

Definition:
Message Format
Arduino

6.7 Communication with Hardware Platforms 77

We used two slightly different formats for sending patterns
to Arduino devices: one for sending commands directly Two Arduino

protocolsto the board from Tactile Editor (just called simple Arduino
protocol) and for exporting the patterns to a file (called
Arduino with delays).

When using the simple Arduino protocol, we start a
timer within Tactile Editor and send the commands as the
timer reaches the time, when a motor should be switched
on or off. The Arduino protocol using delays on the other
hand sends all commands at time 0, inserting delays to
keep the motor vibrations synchronous with the patterns
the user created. In case the patterns to be sent contain
more than 16 commands, we have to buffer these com-
mands and send them in blocks of 16. This is due to the
buffer of the Arduino board being restricted to 128 Bytes -
roughly the size of 16 commands.

Figure 6.14 shows an example pattern and how the two
Arduino protocols send these patterns.

Figure 6.14: Comparison of the two Arduino protocols for
sending patterns (simple) and exporting patterns (with de-
lays)

78 6 Implementation Details

6.7.2 Make Controller Kit

As mentioned before, Tactile Editor communicates with
Make Controller boards via OSC messages. We realizedCommunication via

OSC messages the OSC protocol for Mac OS X using the OBJCOSC
framework3 , an Objective-C wrapper around the original
CNMAT Open Sound Control client code4 .

OSC messages sent from the tool to a Make Controller
Board have the following format:

OSC MESSAGE FORMAT FOR MAKECONTROLLER:

To control motors:

/pwmout/[number]/duty [value]

pwmout = PWM controller on Make Controller Board
number = 0..3 - motor number
duty = duty property of connected motor
value = 0..1023 - duty at which motor is driven

To activate/deativate PWM Out:

/pwmout/[number]/active [value]

pwmout = PWM controller on Make Controller Board
number = 0..3 - motor number
active = active state property of PWM Out
value = 0..1, 0 (false) = off, 1 (true) = on

Definition:
OSC message
format for
MakeController

To illustrate the use of these commands, we give a brief
example that shows, how a pattern is ”translated” into
commands that are send to Arduino or MakeController
boards.

3see http://www.mat.ucsb.edu/ c.ramakr/illposed/objcosc.html
4see http://archive.cnmat.berkeley.edu/OpenSoundControl/Kit/

http://www.mat.ucsb.edu/~c.ramakr/illposed/objcosc.html
http://www.mat.ucsb.edu/~c.ramakr/illposed/objcosc.html
http://archive.cnmat.berkeley.edu/OpenSoundControl/Kit/

6.7 Communication with Hardware Platforms 79

Table 6.1 below shows a simple sample pattern, along
with the Arduino and Make Controller commands belong-
ing to this pattern.

Time Arduino Make Controller Function
simple

0ms /pwmout/0/active 1 Enable PWM for
MakeController board

0ms M1A127 /pwmout/0/duty 512 Motor 1 on
250ms M1A0 /pwmout/0/duty 0 Motor 1 off
750ms M1A255 /pwmout/0/duty 1024 Motor 1 on
1000ms M1A0 /pwmout/0/duty 0 Motor 1 off
1000ms /pwmout/0/active 0 Disable PWM for

Make Controller board

Table 6.1: Protocol for Arduino and MakeController

81

Chapter 7

Evaluation

“Experience is that marvelous thing that enables
you to recognize a mistake when you make it again.”

—Franklin P. Jones, american satirist, (1853-1935)

We evaluated Tactile Editor in order to measure the value
and usefulness of the tool and in order to test and improve
the usability of its interface.

Therefore, earlier versions of the editor were tested Interface changed
repeatedlyand changes were made - primarily to the editor’s user

interface. As an example, we moved all controls related
to connecting and managing hardware devices that are
connected to the editor from the main window to a panel
that can be accessed via a button in the main window (see
figure 7.1). Likewise, certain infrequently used functions
were moved from buttons in the main window to items
in the main menu - thus freeing additional space for the
center stage of our application (see figure 7.1).

The evolution of Tactile Editor’s graphical user inter- Evolution of Tactile
Editor’s GUIface over the different iterations can be seen in appendix

D.

82 7 Evaluation

Figure 7.1: Changes made to Tactile Editor’s interface

7.1 User Testing

To further improve Tactile Editor, the tool was tested in
a first-use study in our Media Space Lab to determineFirst-use study in our

lab threshold and ceiling for novice users, as well as to mea-
sure usability.

As mentioned in section 3.5—“Toolkit Evaluation”, a
low threshold means, the tool is easy to use - especially
for first-time users that have not been exposed to the tool
before. The ceiling limits the complexity of the systems
and prototypes that are designed with the tool.

Our user tests included evaluating both the editor it-
self and the editor as part of a toolkit including Arduino
boards, various sensors, and vibration motors.

7.1 User Testing 83

Figure 7.2: Setup for the user test to evaluate Tactile Editor - hardware (left) and
work station (right)

7.1.1 Setup

Tests were conducted in the Media Space of our chair and User test sessions
scheduled to take 45 - 60 minutes per test. Participants
were seated at a workstation with a keyboard, a mouse,
and a screen, as shown in figure 7.2 (right). The hardware,
consisting of two Arduino boxes, a snowboard with
pressure sensors, and two barrel cuffs equipped with three Hardware used in

testsvibration motors each, was placed next to the workstation
(see figure 7.2, left).

We equipped the Arduino boxes with firmware pro-
grams that could process sensor data, stream the data
to Tactile Editor and control the vibration motors upon
commands sent from Tactile Editor. Users could focus on
designing and testing the patterns and did not have to deal
with technical implementation details.

All participants were given the same tasks they were
asked to complete. We explained task and setup of the
test to each user before the test to clarify the premises and
goals of the user test. Furthermore, we pointed out to all
participants that we tested the editor’s interface, not their
performance.

84 7 Evaluation

7.1.2 Users

The user group consisted of twelve students, all of which
were postgraduate students, but with various educational
backgrounds: four from Computer Science, four from
Technical Communication, two from Media Informatics,All participants had

basic HCI
knowledge.

and two from Engineering fields. All students had some
HCI experience and were familiar with interaction design
and the concept of prototyping.

Three of the students were female and the other nine
were male; participants’ ages ranged from 22 to 29 years.
Eight participants stated they had previous experience
using track-based editors.

7.1.3 Tasks

Users were given a short introduction about Tactile Editor
and the hardware they were about to use during the test
session. After being able to play around with the systemUsers were given

three tasks to
complete.

for five minutes, all users received three tasks they were
asked to complete during the test.

Two of these tasks were about reproducing and test-
ing predefined vibration patterns with the Tactile Editor
interface. Users were given these predefined patterns as a
table showing start times, durations, intensities, and motor
numbers of the different motor objects (compare figure
C.4 in Appendix C). A third task challenged users to come
up with own patterns for a given situation and test those
patterns for effectiveness.

The first task was creating and testing a simple, pre-First task
defined pattern that used just one track and two vibration
motors.

The second task involved creating and testing a moreSecond task
complex, predefined pattern that used several tracks and
all six motors, that were connected to an Arduino box.

7.1 User Testing 85

Figure 7.3: User working with Tactile Editor

The last task required participants to devise patterns that Third task: exploring
and creating own
patterns

alert a user that his weight is not distributed correctly, for
example during a snowboard ride.

Users were asked to think of a pattern that alerts the
user when his weight is shifted too much towards the left
foot and a pattern that tells a user his weight is shifted too
much towards the right foot.

Subsequently, users had to create these patterns using
Tactile Editor before finally testing the patterns using
the pressure sensors attached to the snowboard and the
vibration motors attached to their thighs (see figure 7.3,
left). Users could then adjust and refine their patterns
based on the vibrotactile feedback they received (compare
figure 7.3, right).

86 7 Evaluation

7.1.4 Results

After the test, we asked all participants to fill out a ques-
tionnaire to help us evaluating Tactile Editor (see Appendix
C). Questions were split into three parts: The first sectionQuestionnaire helps

evaluating feedback. covered questions regarding the completion of the three
tasks. The second section contained four questions (Q1 to
Q4) about the usefulness of Tactile Editor:

• Q1 asked whether Tactile Editor reduced prototyping
times.

• Q2 asked whether Tactile editor made users experi-
ment more.

• Q3 asked whether Tactile Editor reduced the time to
program individual vibration motors.

• Q4 asked whether Tactile Editor helped experiencing
and understanding tactile feedback.

The third part included questions about problems that
occurred during the test, features that participants found
particularly helpful, and possible improvements to the
toolkit.

We will briefly sum up the results for each of those
three parts.

Statistical analysis

All participants stated they had no problems complet-
ing the first task (mean = 4.7 on a five-point Likert scale,
median = 5, standard deviation σ = 0.47) and the secondCompletion of first,

second, and third
task

task (mean = 4.6, median = 5, σ = 0.49). The majority of
participants also completed the third task easily (mean =
4.3, median = 4.5, σ = 0.75), just two participants were
uncertain while designing and testing their patterns. The
results are displayed in figure 7.4 and figure 7.5.

When evaluating Tactile Editor itself and as part of a toolkit
to design vibrotactile patterns, participants rated it highly

7.1 User Testing 87

Figure 7.4: Statistical results for task completion

Figure 7.5: Questionnaire results for task completion

for understanding vibration motors and experiencing
tactile feedback (Q 4: mean = 4.33, median = 4, σ = 0.47).
For reducing the time it takes to build a working prototype
(Q1: mean = 4.25, median = 4.5) and the time to program
individual vibration motors (Q3: mean = 4.33, median = Evaluation of Tactile

Editor4.5), ratings were similar, but spread over a wider range
(Q1: σ = 0.83 and Q3: σ = 0.75 respectively). Results
were less conclusive when participants were asked if
Tactile Editor helped them experiment more (Q2: mean =
4, median = 4, σ = 0.71). Results for Q1 to Q4 are shown in
figures 7.6.

88 7 Evaluation

Figure 7.6: Questionnaire results for toolkit evaluation

Participants rated Tactile Editor’s user interface highlyGUI evaluation
in terms of intuitiveness (Q5: mean = 4.42, median = 4.5,
σ = 0.64), as shown in figure 7.7. Figure 7.8 summarizes
the statistical values for questions Q1 to Q5.

Figure 7.7: Questionnaire results for GUI evaluation

Suggestions and improvements

7.1 User Testing 89

Figure 7.8: Statistical results for toolkit evaluation (Q1 - Q4)
and GUI evaluation (Q5)

In addition to these statistical data, we gained valuable
feedback from the open ended questions in the third Valuable feedback on

improving Tactile
Editor from open
ended questions

part, both about what users liked and what should be
improved. Users appreciated the resemblance to known
track-based tools, the timeline metaphor, the drag and
drop interactions, and the self-explanatory user interface.

Furthermore, users suggested a few slight improvements
to Tactile Editor. Primarily, these regarded more intuitive
interaction metaphors and clearer visible feedback. Based
on these suggestions, we redesigned some parts of Tactile
Editor to implement the features, users requested. As an
example, we changed the properties window of a motor
rectangle responding to a double-click instead of a single
click as several users suggested this to be more intuitive.
We also added visible feedback about the available editing Users requested

clearer visible
feedback.

options at any moment: The mouse cursor shape now
indicates the editing option available; if, for example, a
users moves the cursor over a motor rectangle border, the
cursor shape changes to the appropriate resizing shape.

User-created patterns

We analyzed and compared the patterns, users cre-
ated during task three. Surprisingly, the resulting patterns
were quite similar among all participants of the test.

As our main focus during the test was to observe par-

90 7 Evaluation

ticipants using Tactile Editor, we only discuss these
patterns briefly here and give a few sample patterns that
users designed during the weight balance task (task three)
of the test.

All but one participant designed patterns, that gave
feedback on the side, where too much weight was shifted
to. The most common pattern can be seen in figure 7.9. The
first track contains the pattern moving up the right thigh
(motors 1, 2, and 3 were attached from top to bottom to the
right thigh), track 2 contains the pattern for the left thigh
(motors 4, 5, and 6 attached from top to bottom to the left
thigh).

Figure 7.9: Patterns created by users in task 3 - for weight
on the right side (Track1) and weight on the left side
(Track2)

Most users created a variation of these patterns - some
only using one vibration motor on each side to deliberately
keep the patterns simple.

Conclusions

There is an inherent bias in filling out post-test ques-
tionnaires like ours. Personal contact between tester andInherent bias in

questionnaires developer may result in a more positive result than anony-

7.1 User Testing 91

mous participation, for example by internet. Therefore, we
need to take special care when interpreting the results of
the survey.

Nevertheless, we are convinced, the predominantly Largely positive
feedbackpositive feedback to Q1, Q3, and Q5 suggests that Tactile

Editor is well suited to design and test vibrotactile feedback
patterns.

The fact that all users could instantly complete all three
tasks without prior exposure to Tactile Editor, suggests
that the tool offers a very low threshold for designers. This
was supported by several user comments, who mentioned
the timeline metaphor helped them design and test the
vibrotactile patterns.

93

Chapter 8

Summary and Future
Work

“The day after tomorrow is the third day of the
rest of your life.”

—George Carlin (American stand-up comedian,
actor, and author), ”Sometimes a Little Brain

Damage Can Help”, 1984

To conclude this thesis, we summarize the primary contri-
butions in this work before giving an outlook on the future
work that remains to be done.

8.1 Summary and Contributions

We introduced the field of haptics and, in particular, the
research area of vibrotactile feedback as an alternative or
supplementary communication channel. After outlining
the physiological and perceptual foundations for tactile
feedback, we reviewed previous work that had been done
and related to the work in this thesis.

In chapters four to six, we designed and implemented
Tactile Editor, our tool to design and test vibrotactile

94 8 Summary and Future Work

feedback patterns, and adopted the DIA cycle for our
work. Tactile Editor’s primary contributions are:Primary contributions

• Allow creating haptic content in the form of vibrotac-
tile patterns.

• Support multiple haptic output devices, address
them simultaneously or consecutively and thus allow
rapid prototyping of vibrotactile feedback systems.

• Provide a simple, track-based graphical user interface
that offers an intuitive interaction metaphor and easy,
intuitive drag and drop interactions to facilitate de-
signing and testing vibrotactile patterns.

Finally, we tested our design in a first-use study with
twelve participants in our Media Space Lab to evaluate andUser tests
further improve the usability of Tactile Editor. These user
tests gave us an insight on how users work with Tactile
Editor and provided us with valuable feedback on how to
improve the tool. We incorporated the suggestions for im-
provement gained from our user tests into the final version
of Tactile Editor and present any open issues in the follow-
ing section.

8.2 Future Work

Future work on Tactile Editor should focus on improving
Tactile Editor and integrating the tool into an environment
of hardware devices and software tools.

8.2.1 Export Function for Patterns

We started with this after evaluating the toolkit and added
a preliminary export function for patterns, that exports a
patterns to a file that contains commands according to the
protocol we specified in chapter six.

8.2 Future Work 95

8.2.2 Communication with Other Tools

Furthermore, Tactile Editor should be able to communicate
with other tools via OSC messages. As an example, a
sensor system such as Exemplar or iSense sends OSC
messages to Tactile Editor upon receiving certain sensor
values. Tactile Editor thereupon executes a certain pattern
on one of its tracks.

We are currently working on implementing this fea-
ture; our current idea is to send an OSC message to Tactile
Editor, for example /TactileEdit/KneesBent. The OSC messages

trigger patternseditor then searches for a track called ”KneesBent” and trig-
gers the pattern on that track. Alternatively, messages can
address track by numbers (e.g. /TactileEdit/Track1).

8.2.3 Control Points

Another idea to enhance Tactile Editor is to loosen the strict
mapping from rectangles to motor vibrations. Instead,
we could represent motor vibrations in Tactile Editor by Polygons
different polygons instead of rectangles only.

This approach would broaden the range of patterns
that can be created using Tactile Editor: users could create
patterns, that can not be designed out of rectangles only.
Whereas rectangles restrict changing the vibration intensity
in discrete steps, using polygons would allow changing the
intensity continuously, see figure 8.1 (top) for an example
of such a pattern.

Furthermore, we could define shapes as seen in 8.1
(bottom). This pattern can be easily defined with one
polygon instead of defining three rectangles.

Editing pattern becomes more complex, when we al-
low the mapping of motor vibrations to arbitrary polygons
instead of rectangles only. A common technique to solve Control points
this problem is used in graphical editors: so-called control
points.

96 8 Summary and Future Work

Figure 8.1: Two sample patterns using polygons instead of
rectangles. Control points are marked in blue.

Control points define the path of a shape. Lines, for
example, have two control points - one at the start, one at
the end - and rectangles are defined by four control points
at the corners. By adding or removing control points,
users can change the shape of, for example, a rectangle to a
triangle or an arbitrary polygon.

8.2.4 Perception of Tactile Patterns

During our user tests, we observed participants testing the
patterns they created with vibration motors that were con-
nected to Arduino boxes (see 7.1.1—“Setup”). Therefore,
we could gain insight on how participants perceived the
vibrotactile feedback patterns.

More work needs to be do done in this direction. In
particular, the question, whether humans instinctually
react to certain vibrotactile patterns or whether these pat-
terns have to be learned, remains an interesting research
field.

97

Appendix A

Basic Data Structures for
Tactile Editor

@interface TrackArray : NSObject
{

NSMutableArray* tracks ;
}
-(NSMutableArray*)tracks;
-(void)setTracks:(NSMutableArray*)tracks;

+ (TrackArray*)createTrack;
- (int)count;
@end

@interface Track : NSObject
{

NSMutableArray* motors ;
}
-(NSMutableArray*)motors;
-(void)setMotors:(NSMutableArray*)motors;

+ (Track*)newTrack;
- (int)count;
- (int)length;

@end

98 A Basic Data Structures for Tactile Editor

@interface Motor : NSObject
{

Motor* motor;
(int)startTime ;
(int)endTime ;
(int)intensity ;
(int)motorNumber ;

}
-(int)startTime;
-(void)setStartTime:(int)startTime;

-(int)endTime;
-(void)setEndTime:(int)endTime;

-(int)intensity;
-(void)setIntensity:(int)intensity;

-(int)motorNumber;
-(void)setMotorNumber:(int)motorNumber;

- (Motor*)initWithStartTime:(int)startTime
endTime:(int)endTime
intensity:(int)intensity
motorNumber:(int)motorNumber;

+ (Motor*)newMotorWithStartTime:(int)startTime
endTime:(int)endTime
intensity:(int)intensity
motorNumber:(int)motorNumber;

99

Appendix B

List of Keyboard
Shortcuts

100 B List of Keyboard Shortcuts

Table B.1: List of keyboard shortcuts

Keyboard Shortcut Description
Haptic Editor menu

Command - H Hide application
Command - Q Quit application

File menu
Command - N New file
Command - O Open saved file
Command - S Save current file
Command - Shift - S Save as...
Command -P Print current patterns

Edit menu
Command - Z Undo last editing action
Command - A Select all motors
Command - C Copy
Command - P Paste
Command - X Cut

Pattern menu
Command - Shift - P Play selected tracks
Command - Shift - A Play all tracks
Comand - E Export selected patterns
Command - Shift - E Export all patterns

Track menu
Command - T New track
Command - Delete Delete selected tracks
Command - Shift -Delete Delete all tracks

Motor menu
Command - M New motor
Command - Delete Delete selected motors

Help menu
Command - ? Open help book

101

Appendix C

Questionnaire and Task
List Tactile Editor User
Study

102 C Questionnaire and Task List Tactile Editor User Study

Age:

Gender: ! Male!! Female

Field of Study:

Have you had prior experience with vibro-tactile feedback?

never !! seldom sometimes often

Have you used track-based editors (such as GarageBand, Audacity, Final

Cut etc.) to edit audio or video tracks before?

never!!! seldom sometimes often

I could complete the first task easily

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

I could complete the second task easily

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

I could complete the third task easily

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

Questionnaire - User Test Haptic Editor - Markus Jonas

Page 1/3

Date/Time:

Part 1 - User Information

Part 2 - Completing Tasks

Figure C.1: Questionnaire user study Tactile Editor - page 1

103

The toolkit decreases the time it takes to build a working system including

sensors and vibration motors

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

The editor makes me experiment more

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

The editor reduces the time it takes to program individual vibration motors

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

The toolkit helps to understand how vibrotactile feedback works

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

The user interface of the editor was easy to use and self-explanatory

! ! ! ! ! ! ! ! ! ! ! !

strongly agree agree ! undecided disagree! strongly disagree

Did you encounter any serious problems while using the editor?

No Yes, the following:

Questionnaire - User Test Haptic Editor - Markus Jonas

Page 2/3

Part 3 - Toolkit Evaluation

Part 4 - GUI Evaluation

Figure C.2: Questionnaire user study Tactile Editor - page 2

104 C Questionnaire and Task List Tactile Editor User Study

What did you like about the editor interface?

Do you have any other comment and/or suggestions on improving the toolkit?

Thank you for your participation!

Questionnaire - User Test Haptic Editor - Markus Jonas

Page 3/3

Figure C.3: Questionnaire user study Tactile Editor - page 3

105

User Test Tasks

Task 1 - Design and test a simple vibrotactile feedback pattern
Design the following simple one-track pattern using Tactile Editor :

Motor Duration Start Time Frequency Track

Motor 1 250 ms 0 ms 100% Track 1

Motor 2 100 ms 250 ms 100% Track 1

Motor 1 200 ms 400 ms 100% Track 1

Motor 2 100 ms 650 ms 100% Track 1

Test the pattern using the motors connected to the first box!

Task 2 - Design and test a multi-track vibrotactile feedback

pattern
Design the following multi-track pattern using Tactile Editor :

Motor Duration Start Time Frequency Track

Motor 1 250 ms 0 ms 100% Track 1

Motor 1 250 ms 500 ms 100% Track 1

Motor 1 250 ms 1000 ms 100% Track 1

Motor 1 250 ms 1500 ms 100% Track 1

Motor 3 100 ms 0 ms 100% Track 2

Motor 2 100 ms 150 ms 100% Track 2

Motor 1 100 ms 300 ms 100% Track 2

Motor 4 100 ms 450 ms 100% Track 2

Motor 5 100 ms 600 ms 100% Track 2

Motor 6 100 ms 750 ms 100% Track 2

Test the pattern using the motors connected to the first box!

Task 3 - Develop and test a pattern for weight balance control
Think of a pattern that alerts the user when his weight is not distributed correctly, for example during a

snowboard ride. Use the three vibration motors connected to each of the user‘s thighs to provide tactile feedback

when the weight is shifted too much to the left or the right foot. The user should receive no feedback when the

weight is distributed evenly between both feet.

Test the pattern using the weight sensors and motors attached to the first box!

Now design an alternative pattern for this task!

Task List - User Test Tactile Editor - Markus Jonas

Figure C.4: Task list for the user study of Tactile Editor

107

Appendix D

GUI Development

108 D GUI Development

Figure D.1: Development of Tactile Editor’s GUI through the different DIA-cycle
iterations - figure 1/2

109

Figure D.2: Development of Tactile Editor’s GUI through the different DIA-cycle
iterations - figure 2/2

110 D GUI Development

Figure D.3: Tactile Editor GUI - final design

111

Bibliography

Richard J. Adams, Daniel Klowden, and Blake Hannaford.
Virtual training for a manual assembly task. Haptics-e, 2
(2):1, 2001.

R. Ballagas, M. Ringel, M. Stone, and Jan Borchers. istuff: A
physical user interface toolkit for ubiquitous computing
environments. Proceedings of CHI: ACM Conference on Hu-
man Factors in Computing Systems, pages 537–544, 2003.

Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan
Borchers. istuff mobile: Rapidly prototyping new mo-
bile phone interfaces for ubiquitous computing. CHI 2007
Proceedings - Mobile Kits and Stuff, 2007.

Michael Barr. Pulse width modulation. Embedded Systems
Programming, 14(10):103–104, 2001.

Jeffrej J. Berkley. Haptic devices. White Paper, May 2003.

Jan Borchers. A Pattern Approach to Interaction Design. John
Wiley & Sons, Ltd, 2001.

R.W.V. Boven, R.H. Hamilton, T. Kauffman, J.P. Keenan,
and A. Pascual-Leone. Tactile spatial resolution in blind
braille readers. Neurology, 54(12):2230–2236, 2000.

Grigore Burdea. Force and touch feedback for virtual reality.
John Wiley & Sons, Inc. New York, NY, USA, 1996.

Grigore Burdea and Phillipe Coiffet. Virtual Reality Technol-
ogy. Wiley-IEEE Press, 2nd edition, 2003.

Andrew Chan, Karon MacLean, and Joanna McGrenere.
Learning and identifying icons under workload. Proceed-
ings of the First Joint Eurohaptics Conference and Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, 2005.

112 Bibliography

Angela Chang, Sile O’Modhrain, Rob Jacob, Eric Gunther,
and Hiroshi Ishii. Comtouch: design of a vibrotactile
communication device. In DIS ’02: Proceedings of the 4th
conference on Designing interactive systems, pages 312–320,
New York, NY, USA, 2002. ACM. ISBN 1-58113-515-7.
doi: http://doi.acm.org/10.1145/778712.778755.

Elaine Chen and Beth Marcus. Force feedback for surgical
simulation. Proceedings of the IEEE, 86(3):524–530, 1998.

Roger W. Cholewiak. The perception of tactile distance: in-
fluences of body site, space, and time. Perception, 28(7):
851–875, 1999.

Lonny L. Chu. User performance and haptic design issues
for a force-feedback sound editing interface. Conference
on Human Factors in Computing Systems, pages 544–545,
2002.

Anrew M. Colman. A dictionary of psychology. Oxford Uni-
versity Press New York, 2001.

Martin Eimer, Bettina Forster, and Jonas Vibell. Cutaneous
saltation within and across arms: A new measure of the
saltation illusion in somatosensation. Perception & Psy-
chophysics, 67(3):458–468, 2005.

M. E. H. Eltaib and J. R. Hewit. Tactile sensing technology
for minimal access surgery - a review. Mechatronics, 13
(10):1163–1177, 2003.

Mario J. Enriquez and Karon E. MacLean. The hapticon ed-
itor: A tool in support of haptic communication research.
Proceedings of the 11th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, 2003.

Frank A. Geldard. Some neglected possibilities of commu-
nication. Science, 131(3413):1583–1588, 1960.

Frank A. Geldard and Carl E. Sherrick. The cutaneous rab-
bit: A perceptual illusion. Science, 178(4057):178–179,
1972.

E. Bruce Goldstein. Sensation & Perception. Cole Publishing
Company, 6th edition, 2002.

C.H. Graham. Perception of movement. Vision and visual
perception, pages 575–588, 1965.

Bibliography 113

Martin Grunwald and Lothar Beyer. Der bewegte
sinn. Grundlagen und Anwendungen zur haptischen
Wahrnehmung, 2001.

Eric Gunther. Skinscape tool for composition in the tac-
tile modality. masters of engineering thesis in the de-
partment of electrical engineering and computer science.
Master’s thesis, Massachusetts Institute of Technology,
2001.

International Society For Haptics. Interna-
tional society for haptics - what is haptics?
http://www.isfh.org/haptics.html, 2008.

Björn Hartmann, Scott R. Klemmer, Michael Bernstein, and
Nirav Mehta. d.tools: Visually prototyping physical uis
through statecharts. Extended Abstracts of UIST 2005,
2005.

Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R.
Klemmer. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. CHI 2007 Proceedings - Ubicomp Tools, 2007.

Harry Helson. The tau effect-an example of psychological
relativity. Science, 71(1847):536–537, 1930.

Ira J. Hirsh and Carl E. Sherrick. Perceived order in differ-
ent sense modalities. J Exp Psychol, 62:423–32, 1961.

Eve Hoggan, Stephen A. Brewster, and Jody Johnston. In-
vestigating the effectiveness of tactile feedback for mo-
bile touchscreens. CHI 2008 Proccedings - Tactile and Hap-
tic User Interfaces, 2008.

Immersion. Vibetonz. http://www.immersion.com/mobility/,
2008.

K. O. Johnson and J.R. Phillips. Tactile spatial resolution. i.
two-point discrimination, gap detection, grating resolu-
tion, and letter recognition. Journal of Neurophysiology, 46
(6):1177–1192, 1981.

Lynette A. Jones, Mealani Nakamura, and Brett Lockyer.
Development of a tactile vest. Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2004. HAPTICS ’04.
Proceedings. 12th International Symposium on, pages 82–89,
2004. doi: 10.1109/HAPTIC.2004.1287181.

114 Bibliography

Erich R. Kandel, James H. Schwartz, and Thomas M. Jessell.
Principles of Neural Science. Appleton & Lange, 2000.

Mohamed Benali Khoudja and Moustapha Hafez. Vital: A
vibrotactile interface with thermal feedback. Journee sci-
entiphique Internationale IRCICA, 2004.

C. H. King, A. T. Higa, M. O. Culjat, S. H. Han, J. W. Bisley,
G. P. Carman, E. Dutson, and W. S. Grundfest. A pneu-
matic haptic feedback actuator array for robotic surgery
or simulation. Stud Health Technol Inform, 125:217–22,
2007.

Scott R. Klemmer. Suede: A wizard of oz prototyping tool
for speech user interfaces. CHI Letters, The 13th Annual
ACM Symposium on User Interface Software and Technology,
2000.

Robert W. Lindeman, Yasuyuki Yanagida, Kenichi Hosaka,
and Shinji Abe. The tactapack: A wireless sen-
sor/actuator package for physical therapy applications.
Proceedings of the IEEE Virtual Reality Conference (VR
2006)-Volume 00, 2006.

Jack M. Loomis. Tactile pattern perception. Perception, 10
(1):5–27, 1981.

Andrea Mazzone. Deformable mechanical structure for physi-
cal generation of objects and provision of wide area haptic feed-
back. PhD thesis, Eidgenössische Technische Hochschule
Zürich, 2004.

Dan Morris, Hong Tan, Federico Barbagli, Timothy Chang,
and Kenneth Salisbury. Haptic feedback enhances force
skill learning. Proceedings of the 2007 World Haptics Con-
ference, Tsukuba, Japan, Mar, pages 22–24, 2007.

Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
present, and future of user interface software tools. ACM
Trans. Comput.-Hum. Interact., 7(1):3–28, 2000. ISSN 1073-
0516. doi: http://doi.acm.org/10.1145/344949.344959.

Ian Oakley, Marilyn Rose McGee, Stephen Brewster, and
Philip Gray. Putting the feel in ’look and feel ‘. Proceed-
ings of the SIGCHI conference on Human factors in computing
systems, pages 415–422, 2000.

Bibliography 115

Trygve Reenskaug. Thing-model-view-editor: an example
from a planning system. Xerox PARC Technical Note, May
1979.

Robert Riener, Jens Hoogen, Mattja Ponikvar, Rainer
Burgkart, Martin Frey, and Günther Schmidt. Or-
thopaedic training simulator with haptic feedback. at-
Automatisierungstechnik, 50(6/2002):296, 2002.

Gabriel Robles-De-La-Torre. The importance of the sense of
touch in virtual and real environments. IEEE MultiMedia,
13(3):24–30, 2006.

Harvey Richard Schiffman. Sensation and Perception: An In-
tegrated Approach. Wiley, New York, 5th edition, 2000.

Sebastian Schostek, Chi-Nghia Ho, Daniel Kalanovic, and
Marc O. Schurr. Artificial tactile sensing in minimally in-
vasive surgery–a new technical approach. Minimally In-
vasive Therapy and Allied Technologies, 15(5):296–304, 2006.

Calle Sjostrom. Designing haptic computer interfaces for
blind people. Signal Processing and its Applications, Sixth
International, Symposium on. 2001, 1:68–71 vol.1, 2001. doi:
10.1109/ISSPA.2001.949777.

Robert J. Stone. Haptic feedback: A potted history, from
telepresence to virtual reality. The First International Work-
shop on Haptic Human-Computer Interaction, pages 1–7,
2000.

Matthew Wright, Adrian Freed, and Ali Momeni. Open-
sound control: state of the art 2003. In NIME ’03: Pro-
ceedings of the 2003 conference on New interfaces for musi-
cal expression, pages 153–160, Singapore, Singapore, 2003.
National University of Singapore.

Hiroaki Yano, Masayuki Yoshie, and Hiroo Iwata. Develop-
ment of a non-grounded haptic interface using the gyro
effect. Haptic Interfaces for Virtual Environment and Tele-
operator Systems, 2003. HAPTICS 2003. Proceedings. 11th
Symposium on, pages 32–39, 2003.

117

Index

Adobe Premier Pro. .35
Apple Final Cut Suite . 35
Apple GarageBand. 34
Apple iMovie . 35
Audacity .34
Avid Media Composer . 35

braille displays .22

class structure .59
- Motor.m . 61, 98
- Track.m. .60, 97
- TrackArray.m . 60, 97

Cocoa design pattern. .58
communication protocols . 76

- Arduino. 76–77, 79
- Make Controller Kit . 78, 79

concepts of interaction . 54–56
- feedback . 55
- keyboard interactions . 55
- mouse interactions . 54
- tooltips . 55

contributions . 94
control points . 95

development environment . 45
DIA-cycle .3, 57
DIA-iteration . 4
direct manipulation . 34, 45, 54

error of localization see tactile spatial resolution
evaluation . 81–91

Fruityloops . 34
functionality . 41
future work . 94–96

- communication with other tools . 95
- Export function . 94
- perception of tactile patterns . 96

118 Index

haptic editors
- Hapticon Editor . 23, 28
- Immersion Studio . 25
- Skinscape . 27
- VibeTonz . 27
- VITAL . 24

haptic feedback . 3
- haptic devices . 16
- in training motor skills . 21
- in virtual reality . 20
- tactile stimulators . 17

haptics . 1
hardware platforms . 45

- Arduino . 46
- configuring sensors . 68
- connecting and disconnecting devices 67
- Make Controller Kit . 47

HCI toolkits
- Exemplar . 32, 33, 44, 95
- id.tools . 31, 33
- iStuff . 29
- iStuff mobile . 29, 33
- Suede . 30, 33

Human Interface Guidelines . 70

implementation details . 57–79
iPhone . 40

Jashaka . 35

model-view-controller-paradigm . 58
music editors . 34

patterns . 10, 64–66, 90
- creating patterns . 64
- editing patterns . 65
- sending patterns . 65

pulse width modulation. .46
PWM . see pulse width modulation

related work . 19–37
requirements . 39–49

- conceivable requirements . 44
- desirable properties . 43
- necessary properties . 42
- requirement priorities . 39

sense of touch . 6
- cutaeous perception . 6
- kinesthetic perception . 6
- mechanoreceptors . 7

Index 119

- perception . 8
- sensor physiology . 7
- tactile sense . 7

sensory homunculus . 14
Smalltalk . 58
somatic sensory system . 5
summary . 93
system architecture . 51–54

- data layer . 52
- hardware layer . 53
- logic layer .53
- visual layer . 52

system objective . 40

Tactile Editor GUI . 62, 81
- canvas . 63
- drawer . 66
- Help book . 71, 74
- help system . 72
- keyboard shortcuts . 75
- main menu . 70–71
- status bar . 69
- tooltips . 61, 72

tactile illusions . 14
- sensory saltation . 14

tactile spatial resolution . 11
toolkit evaluation . 35

- ceiling. .30, 36, 82
- threshold . 30, 36, 82

two-point-threshold see tactile spatial resolution

user testing . 81, 94
- results . 86–88
- setup . 83
- statistical analysis . 86
- suggestions . 89
- tasks. .84–86
- users . 84

users . 44

vibrotactile patterns . see patterns
video editors . 35
visual programming . 33

Typeset May 28, 2008

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Haptics
	Why Is Haptics Important?
	Haptic Feedback

	The DIA-cycle
	Thesis Structure

	Background
	The Somatic Sensory System
	The Sense of Touch
	The Cutaneous System and the Tactile Sense
	Sensory Physiology

	Perception of Vibrotactile Stimuli
	Temporal Order
	Vibrotactile Patterns
	Tactile Spacial Resolution and Tactile Acuity
	Tactile Illusions

	Summary
	Haptic Devices
	Tactile Stimulators and Vibrotactile Technology

	Related Work
	Haptic Feedback
	Perception of Haptic Feedback

	Editors to Specify Haptic Icons
	Hapticon Designer, Editor and Displayer (HDED)
	VITAL
	Immersion Studio
	VibeTonz
	Skinscape

	HCI Prototyping Toolkits
	iStuff
	iStuff Mobile
	Suede
	d.tools
	Exemplar
	Discussion

	Track-based Editors
	Music Sequencing Software
	Video Editing Software

	Toolkit Evaluation
	Summary

	Requirements
	Overview
	Problem Definition and System Objective
	Tactile Editor
	Functionality
	Necessary Properties
	Desirable Properties
	Conceivable Requirements

	User Characterization
	Development and Runtime Environment
	Supported Hardware Platforms
	Arduino
	Make Controller Kit

	Conceptual Design
	System Architecture
	Concepts of Interaction

	Implementation Details
	Overview
	Model-View-Controller Paradigm
	Class Structure
	Tactile Editor GUI
	The Canvas
	The Manage Devices Drawer
	The Status Bar
	The Menu Bar

	Undo Functionality
	Tactile Editor Help System
	Tooltips
	Help Book
	Keyboard Shortcuts

	Communication with Hardware Platforms
	Arduino
	Make Controller Kit

	Evaluation
	User Testing
	Setup
	Users
	Tasks
	Results

	Summary and Future Work
	Summary and Contributions
	Future Work
	Export Function for Patterns
	Communication with Other Tools
	Control Points
	Perception of Tactile Patterns

	Basic Data Structures for Tactile Editor
	List of Keyboard Shortcuts
	Questionnaire and Task List Tactile Editor User Study
	GUI Development
	Bibliography
	Index

