PocketTable: Mobile Devices as Multi-Touch Controllers for
Tabletop Application Development

Stefan Hafeneger Malte Weiss

stefan.hafeneger @rwth-aachen.de

weiss @cs.rwth-aachen.de

Gero Herkenrath Jan Borchers

gero@cs.rwth-aachen.de borchers @cs.rwth-aachen.de

RWTH Aachen University, Germany

Abstract

We present PocketTable, a generic framework for send-
ing multi-touch events from external controllers to table-
top applications. QOur system supports the development
of multi-touch applications in a mobile context if no ta-
ble hardware is available. Since PocketTable represents an
abstraction layer between the device and the software, ex-
ternal devices can be interchanged without recompiling the
code of the application.

1. Introduction

Multi-touch interaction tabletops have become a very ac-
tive research area and many applications have been devel-
oped for them. However, writing tabletop applications still
requires the programmer to work directly at the table. In
the traditional setting, a computer renders the user interface,
which is output by a projector, whereas a camera in the ta-
ble provides multi-touch events, which are processed by the
computer. Testing tabletop applications outside this local
context was inconvenient to date.

PocketTable faces this issue by providing a framework
which abstracts multi-touch events from different external
devices and sends device-independent events to the appli-
cation. Unlike existing approaches, PocketTable especially
supports the mobile context since the small form factors of
mobile devices are taken into consideration.

For example, using our system the developer can run her
application on a laptop and use a multi-touch mobile de-
vice like the Apple iPhone for retrieving multi-touch events.
After establishing a connection between the device and the
laptop, the user determines the target area of the multi-touch
events. Then all multi-touch events that are performed on
the mobile device are directly sent to the remote applica-
tion. The mapping can be changed at any time.

Due to the abstraction of events, the multi-touch applica-
tion does not have to consider where the multi-touch events

come from, simplifying switching between local and mo-
bile context.

2. Related Work

[2] introduced the TUIO protocol, a network protocol
for sending input events from various multi-touch interfaces
to applications. This protocol provides independence from
platform and programming language. However, it is uni-
directional and therefore not suitable for the mobile context
because it does not communicate the target area of the touch
events.

Not many papers have been published on testing and de-
bugging multi-touch applications outside the table environ-
ment. Although multi-touch simulators exist, as the TUIO
simulator [1], they require the developer to use the mouse
and do not provide real multi-touch input.

3. System Design

As shown in figure 1, PocketTable consists of several
units that are responsible for communicating with the exter-
nal devices and translating their incoming data into unified
multi-touch events. These events are then dispatched into
the native event handling system.

This abstraction from the low-level multi-touch imple-
mentation provides an application programming interface
to the developer that does not differ for each input device.
Thus, she does not have to care about the actual input device
that will generate multi-touch events for the application.

With such a modular system we can use any mobile de-
vice with multi-touch capabilities during the development
process without having to sit beside a tabletop system. This
approach allows the programmer to develop multi-touch ap-
plications at any location.

On a multi-touch capable mobile device we need a client
application that is able to connect to a PocketTable server.
This client application then sends all multi-touch events to
the server via a wired or wireless connection. On the server

the data is interpreted and touch events are dispatched into
to the operating system.

3.1. Screen Size Mapping

There is an important downside with multi-touch capable
mobile devices: The size of the screen is very small com-
pared to multi-touch tables or screens in general. We face
this problem with a bidirectional client-server connection.
After it is established, the server sends its screen size and
optionally a current screenshot to the mobile device. The
client application then allows the user to define a “target
area” on the server’s screen for the touch events to occur.
Optical feedback to help with this calibration will be pro-
vided on the client device if possible. The client application
is responsible for converting the local touch events accord-
ing to the “target area”. With this approach the server re-
ceives unified touch events and does not need to know any
client device specific data. Since we need a bidirectional
communication the TUIO protocol is inappropriate, since it
does not consider arbitrary data. Extending the TUIO proto-
col to support this kind of additional data could be an option
for the future.

4. Prototype

To demonstrate our approach, we built a multi-touch
framework for Mac OS X that uses the native event han-
dling system and the responder chain to dispatch multi-
touch events to the applications. We wrote a client applica-
tion for the iPhone to use it as mobile controller device. The
connection is established via WiFi using Apple’s zero con-
figuration service discovery protocol Bonjour. Thus the pro-
grammer can create an ad-hoc network everywhere without
having to deal with the task of establishing a client-server
connection. Having examined the multi-touch architecture
of Apple’s multi-touch UI toolkit for the iPhone and iPod
touch, we decided to create a similar architecture for our
multi-touch extension. This way, the developer is work-
ing with a familiar application programming interface and
a transition to a potential future native multi-touch imple-
mentation from Apple is likely quite easy.

5. Future Work

Due to our modular system approach we can now imple-
ment an input unit for a FTIR / DI multi-touch table without
having to change the high level application programming
interface. A general purpose unit supporting TUIO compat-
ible devices would allow use of multi-touch devices that do
not run a specific client application themselves. Multi-pen
tablets could get their own unit as well.

=

b

MT Events

\i

Client Application

A
Screen Size MT Event Packets Video Signal
\J ™
[Mobile][TUIO | o
Events i
Multi-Touch Extension Multi-Touch
Application
| FTR/DI || ..]
X

Camera Signal

~~ Video Signal

Figure 1. System Design Overview

Besides developing new units, we will extend our ap-
proach with a live-stream capability, where appropriate.
This would allow the user to see the table activities directly
on the mobile device, making the interaction more direct.
Furthermore, we will conduct user studies for testing the
usability and efficiency of controlling tabletops using mo-
bile devices.

References

[1] M. Kaltenbrunner and R. Bencina. reacTIVision: a computer-
vision framework for table-based tangible interaction. TEI
"07: Proceedings of the Ist international conference on Tan-
gible and embedded interaction, pages 69-74, New York, NY,
USA, 2007. ACM.

[2] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO - A Protocol for Table Based Tangible
User Interfaces. Proceedings of the 6th International Work-
shop on Gesture in Human-Computer Interaction and Simu-
lation (GW 2005), Vannes, France, 2005.

