
Supporting Multi-device Interaction in
the Wild by Exposing Application State

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften genehmigte Dissertation

vorglegt von

Diplom-Informatiker Jonathan Diehl

aus Kiel, Deutschland

Berichter: Prof. Dr. Jan Borchers
Prof. James Eagan PhD

Tag der mündlichen Prüfung: 19. November 2013

ii

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

iii

Contents

Preface xi
Abstract . xi
Acknowledgements . xii
Conventions . xii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Approach . 7
1.3 Thesis Statement . 9
1.4 Thesis Overview . 11

2 Multi-device Interaction in the Wild 13
2.1 Understanding Multi-device Interaction in the Wild 14

2.1.1 Mobile Kits and Laptop Trays: Managing Multiple Devices in
Mobile Information Work . 14

2.1.2 It’s on my other Computer!: Computing with Multiple Devices 16
2.1.3 Working Overtime: Patterns of Smartphone and PC Usage in

the Day of an Information Worker 18
2.1.4 Mobile Taskflow in Context: A Screenshot Study of Smart-

phone Usage . 19
2.1.5 Summary . 21

2.2 Multi-device Interaction in the Wild . 22
2.3 Challenges . 27

3 Related Work 29
3.1 Interaction support . 30

3.1.1 Multi-Device Direct Manipulation 30
Pick-and-Drop . 30
Passage . 32
PaperWindows . 34
BlueTable . 36
PhoneTouch . 37
Deep Shot . 38

3.1.2 Remote Pointing . 39
Radar View . 39
Hyperdragging . 40
Drag-and-Pop and Drag-and-Pick 42
Pantograph and Slingshot . 43
Superflick . 44

iv Contents

TractorBeam . 45
PointRight . 45
Perspective Cursor . 46
ARIS . 47

3.1.3 Synchronous Gestures . 48
Bumping . 48
SyncTap . 49

3.1.4 Proxemic Interaction . 49
Group Together . 53
Gradual Engagement . 54

3.1.5 Taxonomy of Multi-device Interaction 55
Taxonomy Dimensions . 55
Classification of multi-device interaction techniques 60

3.2 System Support . 61
3.2.1 Ubiquitous Computing and Roomware 61

Interactive Workspaces Project 62
Interactive Landscape for Creativity and Innovation 64

3.2.2 Instrumental Interaction . 66
Ubiquitous Instrumental Interaction 68
Shared Substance . 69

3.2.3 Runtime Program Migration and Distribution 71
Virtual Machines . 71
Distributed Objects . 73
Automatic Application Partitioning 74
Software Agents . 75
Recombinant Computing . 76

3.2.4 Model-based Migration and Distribution 77
Model Transformation . 77
Modeling Distribution . 79
CAMELEON-RT . 80

3.2.5 User Interface Migration and Distribution 81
Display Replication . 82
Pixel Replication . 82
Web Application Migration . 83

3.2.6 Legacy Application Support . 85
Pebbles . 85
Activity-based Computing . 86
CoWord . 87
Legacy Applications in Ubicomp Systems 87

3.2.7 Logical Framework for Multi-Device User Interfaces 88
3.3 Discussion . 91

4 Interacting with State 93
4.1 Conceptual Model . 94
4.2 The File . 95

Contents v

4.2.1 Properties of the File . 97
4.3 Application State . 99

4.3.1 Properties of Application State 101
4.4 Multi-device Interaction in the Wild with Application State 103
4.5 Validation . 104

4.5.1 Design Workshop . 105
4.5.2 Tangible Windows . 106

System Design . 107
Evaluation . 110

4.5.3 SketchIt . 113
System Design . 113
Evaluation . 116

4.5.4 Nomadic Whiteboard . 117
System Design . 117
Evaluation . 119

4.5.5 NoteCarrier . 121
System Design . 122
Evaluation . 123

5 The State Exchange Architecture 125
5.1 Requirements . 126
5.2 First Iteration of the State Exchange Architecture 128

5.2.1 System Design . 129
5.2.2 Implementation . 132

State Management Library . 132
Communication Library . 133

5.2.3 Example Applications . 134
5.2.4 Discussion . 136

5.3 Final Iteration of the State Exchange Architecture 137
5.3.1 System Design . 137

State I/O Programming Interface 138
State Exchange Programming Interface 141
State Exchange Service . 142

5.3.2 Implementation . 143
State Exchange Service . 144
State I/O Support Library . 145

5.3.3 Example Applications . 146
TextEdit . 146
Skim . 150

5.3.4 Example Clients . 152
Web Control Center . 152
Application Integration . 152
MagicPad . 153

5.3.5 Discussion . 154
5.4 Validation . 156

vi Contents

5.4.1 Requirements Validation . 156
5.4.2 Limitations . 157

6 Integrating State Exchange into Legacy Systems 161
6.1 State I/O Support Library . 161
6.2 State Object . 162
6.3 Automatic Document Extraction . 163
6.4 Automatic User Interface State Extraction 164
6.5 Automatic State Extraction via Resume 167
6.6 Enabling Third-party State I/O Integration 169
6.7 Example Implementation . 171

6.7.1 NomadicApps ScriptingAddition 171
6.7.2 NomadicApps Library . 172
6.7.3 NomadicDesktop . 173

6.8 Discussion . 174

7 Conclusion 177
7.1 Multi-device Interaction in the Wild . 177
7.2 Exposing Application State . 178
7.3 System Architecture . 179

A External Resources 181

Bibliography 183

Index 195

Curriculum Vitae 201

vii

List of Figures

1.1 Multi-device workspace . 2
1.2 Cloud services keep digital content synchronized across multiple de-

vices . 4
1.3 Example for the interaction inconsistency caused by application-level

solutions for multi-device interaction 6

2.1 Daily routine of a mobile information worker 15
2.2 Device collection of the average user 17
2.3 Multi-device interaction matrix . 26

3.1 The Pick-and-drop interaction technique 31
3.2 Applications for the Pick-and-drop interaction technique 33
3.3 The Passage interaction technique . 34
3.4 Interacting with Paper Windows . 35
3.5 The BlueTable interaction technique 36
3.6 The PhoneTouch interaction technique 37
3.7 The Deep Shot interaction technique 38
3.8 Radar view interaction technique . 40
3.9 The Hyperdragging interaction technique 41
3.10 The Drag-and-pop and Drag-and-pick interaction techniques 42
3.11 The Slingshot and Pantograph interaction techniques 43
3.12 The Superflick interaction techniques 44
3.13 The iconic map used in ARIS . 47
3.14 Bumping as an interaction technique 49
3.15 The SyncTap interaction technique . 50
3.16 Proxemic Interactions . 50
3.17 F-formations . 53
3.18 The Gradual Engagement design pattern 54
3.19 First part of the multi-device classification 58
3.20 Second part of the multi-device classification 59
3.21 Third part of the multi-device classification 60
3.22 iROS Subsystems . 63
3.23 The design dimensions of the BEACH application model 66
3.24 Data-oriented programming . 69
3.25 Standard structure of Shared Substance environments 70
3.26 State transformation between the user interfaces of a nomadic appli-

cation . 78
3.27 The CAMELEON-RT architecture reference model 80
3.28 Partial migration of web applications via a migrations server 84

viii List of Figures

3.29 The Pebbles Architecture . 86
3.30 Architecture to reuse existing applications in Ubicomp environments 87

4.1 Conceptual model . 95
4.2 Conceptual model of the file . 96
4.3 Properties of the file . 97
4.4 Concept model of application state . 100
4.5 Tangible Windows concept . 106
4.6 Tangible Windows Prototype . 109
4.7 Example arrangement of Tangible Windows 113
4.8 Mobile SketchIt prototype . 114
4.9 SketchIt prototype on a large display 115
4.10 Nomadic Whiteboard prototype . 118

5.1 Example state of a text editor . 131
5.2 Example text editors . 134
5.3 Example PDF viewers . 135
5.4 The State Exchange System Architecture 137
5.5 Example Sequence of the State Exchange Service 143
5.6 State synchronization between TextEdit and WebTextEdit 149
5.7 State synchronization between Skim and SkimRemote 152
5.8 Screenshot of the web control center 153
5.9 The Magic Pad . 154

6.1 NomadicDesktop menu . 173
6.2 NomadicDesktop prototype . 174

ix

List of Tables

2.1 Common device classes and their properties 24

3.1 Classification of systems supporting multi-device user interface . . . 89

5.1 The State I/O programming interface 138
5.2 The State Exchange programming interface 142

6.1 List of supported applications of the NomadicDesktop prototype . . . 175

xi

Preface

Abstract

We are at the verge of living in a world where computing has become ubiquitous.
However, ubiquitous computing has not developed as expected, where computing
devices are embedded in the things that surround us making them smart. Instead,
computing capabilities are accessed ubiquitously through a manifold of small in-
teractive devices that people carry with them at all times and use and combine
opportunistically. In consequence, the need to interact with multiple devices arises
in unexpected ways, or as called in this thesis “in the wild”.

The main goal of this thesis is to raise awareness of the unique properties of multi-
device interaction in the wild and the misalignment between these properties and
current efforts in academia and industry. To this end, the thesis classifies possi-
ble types of multi-device interaction as simultaneous or sequential use towards a
common or distinct tasks. To support these types of interaction in the wild, sys-
tems must enable the opportunistic rearrangement of devices where transitions are
robust and can be performed in ad-hoc situations.

The second part of the thesis explores how application state can serve as a concep-
tual model for users and designers to enable multi-device interaction in the wild.
The concept supplies users with a first-class interactive object representing the state
of applications, similar to how the file represents the state of information, which can
be manipulated with tools that are separated from the task. It is this separation that
allows application state to be used in unexpected situations, making it a good fit
for multi-device interaction in the wild.

The final part of the thesis elaborates on how the concept of application state can be
integrated into current interactive systems. A simple programming interface was
developed that separates state extraction from state sharing: The task applications
provide the functionality needed to extract and restore their state into a standard-
ized container, which is then managed and shared through designated state man-
agement tools. After describing the state exchange system architecture, the thesis
explores how to support legacy applications in implementing state extraction and
restoration up to complete automation. There is, however, a trade-off between au-
tomating state extraction and providing a semantically meaningful state that can be
shared between different applications of the same type to transition tasks between
device classes.

xii List of Tables

Acknowledgements

I want to thank all the people who were somehow involved in the creation pro-
cess of this thesis, whether it be directly through concentrated discussions or in-
directly by supporting and pushing me to make the most out of this thesis. This
work would not have been possible without you! In particular, I want to thank the
following people who had a grave impact on my work: My advisor Jan Borchers
has always supported me in my long journey towards this thesis and contributed
greatly by always leading me in the right direction with the right questions asked at
the right time. My secondary advisor James Eagan has patiently lent me his exper-
tise numerous times and greatly contributed to the main arguments and structure
of the thesis. Joel Brandt has been a great source of inspiration and motivation and
eagerly shared his extensive knowledge of scientific and technical practice with
me. Ying Zhang, Mario Fraikin, Sören Busch, Stefan Plücken, and Ahsan Nazir
contributed to this thesis with the dedicated work on their own theses. Thorsten
Karrer, Malte Weiß, and Jan-Peter Krämer have been of great assistance shaping
the main contributions of the thesis with their numerous insights. Vera Klautke al-
ways stood behind me and pushed me to go further than I thought I could. Finally,
I want to thank my parents and my family who have always been there for me.
Thank you!

Conventions

The thesis is written in American English. Technical terms or jargon that appear for
the first time are in italics. Some of the material covered in this thesis has been pre-
viously published by me and students that I worked with – these passages always
include a reference to the related work.

1

Chapter 1

Introduction

Users have an
increasing number of
interactive devices at
their disposal

People have access to an increasing number of personal in-
teractive devices during their daily routine. 81% of all Ger-
man households owned a computer in 2012 (Source: Statis-
tisches Bundesamt [2012]), and 61% of all German employ-
ees used a computer at work in 2011 (Source: BITKOM
[2011]). At the same time, portable interactive devices such
as smartphones and tablet computers are rapidly gaining
popularity. 36% of all Germans owned a smartphone in
2012, corresponding to an increase of 8% over 2011 (Source:
comScore [2012]). Additionally, 13% of all Germans have
purchased a tablet computer since its first wide-spread
commercial release in 2010 (Source: BITKOM [2012]). Con-
sequently, a large part of the German population already
has regular access to at least two interactive devices, and
more are becoming multi-device users every year.

Several independent
studies show that early
adopters make active
use of this device
diversity in their daily
routine

Several studies have established that early adopters who
have regular access to multiple devices employ this device
diversity for their everyday tasks. Oulasvirta and Sumari
[2007] interviewed and observed mobile office workers af-
ter a company-wide introduction of a new smartphone
about their usage and management of multiple devices in
their daily routine. Dearman and Pierce [2008] interviewed
knowledge workers who own on average more than six in-
teractive devices about their strategies to manage these de-
vices for their everyday tasks. Karlson et al. [2009] recorded
the times when information workers use their personal
computers and their smartphones to determine typical us-
age patterns and strategies of these two devices. Figure 1.1
illustrates this multi-device usage by example of the desk of
a knowledge worker containing several personal comput-
ers that are used in combination to work on complex tasks.
All of these studies confirm that early adopters make ac-
tive use of a large diversity of devices to work on the tasks
that arise during their daily routine. In particular, users fre-

2 1 Introduction

Figure 1.1: One of
the test participants’
workspace with several
laptop computers that
are all included in the
user’s work flow. Picture
taken form Dearman and
Pierce [2008].

quently switch between devices to adjust to changes of the
situation and combine multiple devices to multitask or to
work on complex tasks.

Switching between
devices allows users to
optimize their device
usage according to the
given situation

All of the above studies reported users frequently switch-
ing between devices either to address a different task or to
continue the ongoing task on a different device. The most
important reason to switch devices that was mentioned by
participants was the ability to adjust the device usage to the
situation. In this context, the appropriateness of a device
for a situation is defined by the suitability of its input and
output modalities, the time and effort needed to set up the
device, the portability of the device, its social unobtrusive-
ness, and the personal preference of the user. For example,
many participants prefer to check and answer emails on a
laptop computer over a smarthpone because of the better
input and output capabilities. When in a meeting or in tran-
sit, however, the smartphone is preferred because it can be
accessed quicker and interacting with it is less disturbing
to others. Additionally, users often have to switch between
devices because a device lacks the functionality or data to
perform a task. For example, many companies have strict
security policies that require users to employ specific com-
puters for security-related tasks such as accessing data on
the company’s file servers. In consequence, switching be-
tween devices can improve a user’s efficiency and satisfac-
tion and enable work that would otherwise be impossible.

Combining devices
improves the users’
ability to perform
complex tasks or to work
on multiple tasks at once

In addition to switching between devices, users also expe-
rience benefits from using multiple devices simultaneously.
Users can improve their ability to multitask by designat-
ing tasks to devices. Typically, users assign secondary tasks
to auxiliary devices, allowing them to perform these tasks

1.1 Problem Statement 3

without interfering with their primary task on the primary
device. For example, many users have a web browser and
email client open on a separate device while working on
other tasks on their primary device. Additionally, users can
divide tasks among multiple devices by assigning each de-
vice a role within the task. This division allows users to
address complex tasks where any single device cannot pro-
vide all the functionality needed for the task. For example,
one user reported to use one computer to write source code
and another computer to test the source code, allowing the
primary computer to stay up-to-date while the secondary
computer maintains a consistent state. Either way, combin-
ing multiple devices allows users to perform their everyday
tasks more efficiently.

Multi-device interaction
in the wild describes the
evolving behavior of
employing multiple
devices to work on
everyday tasks

As the studies show it is beneficial for users to employ mul-
tiple devices in their daily routine. By switching between
devices users can adapt and optimize their device usage
according to the situation. By combining devices users can
improve their ability to multitask and work on complex
tasks. Thus, users benefit from being able to use multi-
ple devices sequentially and simultaneously to work on a
common or distinct tasks. This benefit increases if these
multi-device interactions can be performed seamlessly and
spontaneously to allow users to quickly adjust to sudden
changes of the situation. In the context of this thesis this
evolving behavior is called multi-device interaction in the
wild, which is introduced in more detail in chapter 2.

1.1 Problem Statement

The main problem that is addressed in this thesis can be
summarized as following:

Problem StatementThere are no interaction and no system solu-
tions that provide adequate support for multi-
device interaction in the wild and consequently
hinder users from making optimal use of the
available device diversity in their daily routine.

As observed in the studies described above users increas-
ingly have access to multiple devices for their everyday
tasks and benefit from using these devices in a coordi-
nated fashion. However, the design of current devices does
not consider multi-device relationships and consequently
places the burden of coordinating these devices on the user.

4 1 Introduction

Figure 1.2: Cloud shar-
ing services synchronize
local copies of digital
content by propagat-
ing changes between
all connected devices
“through the cloud”.

Cloud Service

At the same time, research efforts to improve multi-device
interaction are largely focused on collaborative settings,
and the solutions cannot be directly transfered to the ad-
hoc situation of everyday use. To effectively support multi-
device interaction in the wild, interactive devices must al-
low users to seamlessly and spontaneously change the ar-
rangement of devices and tasks to adapt to sudden changes
of the situation.

Cloud services have
enabled ubiquitous
access to digital content
from all of the user’s
devices

One of the major challenges that was identified in all of the
above-mentioned studies was the inability of current de-
vices to make digital content ubiquitously accessible from
all of the users devices. Since the studies were conducted,
this shortcoming has been somewhat mitigated with the
introduction of cloud sharing services. Cloud sharing ser-
vices synchronize digital content across multiple devices by
storing the content locally on each device and synchroniz-
ing the local copies through an Internet repository “in the
cloud” (see Figure 1.2). There are two different kinds of
cloud sharing services: File-based cloud services replicate a
part of the user’s file system across multiple devices, allow-
ing users to synchronize digital content independent of the
editing application. Examples of these services are Drop-
box1, Google Drive2, and Own Cloud3. Application-based
cloud services are integrated into special purpose applica-
tions and replicate the digital content of these applications
across all instances of the application running on various
devices. Examples of application-based cloud services are
IMAP Email services, Evernote4 (synchronize notes), or any

1http://dropbox.com
2http://drive.google.com
3http://owncloud.org
4http://evernote.com

http://dropbox.com
http://dropbox.com
http://drive.google.com
http://owncloud.org
http://evernote.com
http://dropbox.com
http://drive.google.com
http://owncloud.org
http://evernote.com

1.1 Problem Statement 5

Mac or iOS application using iCloud5. Marshall and Tang
[2012] interviewed early adopters of cloud sharing services
and confirmed that these services are frequently used and
that their users are generally satisfied with the services.

Ubiquitous content
access is not sufficient
to support multi-device
interaction in the wild

Ubiquitous access to digital content enables users to switch
devices without losing access to the relevant task data.
However, it does not make the switch seamless and pro-
vides only limited support for the coordination of multiple
devices towards a common task. When switching devices,
users must manually recreate the task on the new device
by opening and configuring the required task applications.
This process can be laborious because users need to find
and open the related content in the cloud storage and con-
figure the user interface to match the previous state. Sim-
ilarly, cloud sharing services can be used to coordinate the
usage of multiple devices by synchronizing the digital con-
tent underlying a task. However, since the task applications
remain unaware of other devices participating in the same
task working on synchronized content often yields conflicts
that typically must be resolved by the user. As a conse-
quence, ubiquitous information access makes it possible to
use multiple devices in the everyday routine, but it does
not make the experience seamless or coordinated.

Synchronizing task state
through the cloud
improves the
seamlessness of
transitions at the cost of
user control

Cloud services can be used to synchronize the interaction
state of multiple devices. For example, Amazon Kindle6

synchronizes the user’s books and the furthest page read
in these books across multiple devices. This synchroniza-
tion allows users to switch between devices and continue
reading where they left off with little overhead. Similarly,
some applications store aspects of the interaction state, like
the current cursor position, alongside the edited file. When
synchronizing these files across devices, this interaction
state is preserved and can result in a more seamless tran-
sition between devices. However, these solutions enforce a
certain multi-device behavior because the interaction state
is always synchronized across all devices. This enforce-
ment can lead to unwanted behavior due to the manifold
of different user strategies that exist. For example, always
synchronizing all books on multiple devices to the furthest
page read is annoying for users who share some of these
devices with others, especially if two users are reading the
same book at the same time. Similarly, when sharing com-

5http://icloud.com
6http://amazon.com/kindle

http://icloud.com
http://amazon.com/kindle
http://icloud.com
http://amazon.com/kindle

6 1 Introduction

Figure 1.3: Application-
level solutions for multi-
device interaction suffer
from low interaction con-
sistency. For example,
tabs from other devices
are accessed differently
in each web browser: (a)
In Google Chrome the
tabs are accessed from
the bottom of the start
screen; (b) in Apple Sa-
fari a tool bar button is
used; (c) in Mozilla Fire-
fox the “History” menu is
used.

a)

b)

c)

plex documents, collaborators might miss some content of
the document because the cursor position is not as expected
at the beginning of the document. While synchronizing ad-
ditional task state across devices can be beneficial in some
cases, it decreases user control over how information and
tasks are distributed across their devices.

Multi-device interactions
that are embedded in
applications suffer from
low interaction
consistency and a lack
of cross-application
compatibility

Other solutions operate at the application level to explic-
itly offer multi-device capabilities to the user. For exam-
ple, many web browsers offer to synchronize the settings
and the browsing history across all of the users devices.
Users can then inspect and open the browsing tabs that
are currently open on all connected devices. Using this
mechanisms, users can almost seamlessly transition a web
browsing task from one device to another by selecting the
desired tab from a list of open tabs on the target device.
However, these application-level solutions come with sev-
eral drawbacks for the user. First, users cannot rely on
all applications to support multi-device interaction. This
means that whenever they are confronted with an appli-
cation that does not support multi-device interaction, they
will be forced to use another application or abstain from us-
ing multiple devices while working with that application.
Second, the multi-device interactions provided by applica-
tions are not consistent across different applications and de-
vices. In above example, open tabs on remote devices are
accessed differently in all major web browsers that support

1.2 Approach 7

this feature as illustrated in Figure 1.3. Finally, multi-device
interactions are constrained to a set of specific applications,
typically from the same vendor. None of the web browsers
from the previous example allow accessing the open tabs
from one of the other web browsers. This restriction pre-
vents users from selecting the optimal set of applications on
their devices and can lead to some devices being excluded
from multi-device interaction due to a lack of software sup-
port.

Most research efforts in
the area of multi-device
interaction focus on
collaborative settings
and augmented
environments, not the
daily routine

There is a large body of HCI literature concerned with
multi-device interaction, which is discussed in more de-
tailed in chapter 3. However, most research projects in
this area focus on collaborative settings in augmented en-
vironments called Active Spaces or Multi-displays Envi-
ronments. These augmented environments provide a well-
defined physical space where multi-device interaction is
supported. When the users leave this space, multi-device
interactions are typically no longer available. Due to this re-
striction the interaction concepts and system architectures
developed in this area are very hard to transfer to the ev-
eryday situation where the need to conduct multi-device
interaction can arise anywhere. To support multi-device
interaction in the wild, a solution must be able to adapt to
a frequently changing setup of devices and infrastructure
and allow users to manage multiple device in an ad-hoc
way.

1.2 Approach

The file enables users to
interact with content
independent of task
applications, including
the ability to share
content between devices

As argued above sharing content across multiple devices
works relatively well compared to sharing tasks across de-
vices. The major technical difference between content and
tasks in this context is that content can be made persistent
in the form of files, while tasks cannot. Users can gener-
ally store any content that they work on in files indepen-
dent of the applications used to edit the content. These files
can then be organized and shared using a variety of file
manager applications. In consequence, the file has become
a first-class interactive object that allows users to manage
their content independent of specific task applications. In
computing, a first-class object is an entity that can be con-
structed at runtime and passed between different comput-
ing methods. Applying this concept to interactive objects,
i.e., objects that can be manipulated by the user, yields the

8 1 Introduction

following definition:Definition: First-class
interactive object

A first-class interactive object is an en-
tity that users can construct and pass between different pro-
cesses including those running on different devices at run-
time.

The thesis explores
turning the state of
applications into
first-class interactive
objects

The approach pursued in this thesis is to turn the state of
applications into first-class interactive objects and explore
how these objects enable multi-device interaction in the
wild. Turning application state into first-class interactive
objects allows users to store the state of individual appli-
cations at runtime and transfer the state between different
devices. The stored application state includes everything
that is needed to reconstruct the application at a later point
in time, including the complete state of the user interface
and any content that is being accessed. Based on this con-
ceptual model designers can create multi-device interaction
techniques that operate on application state independent of
any task applications. Similar to file management, diverse
applications can be created to manage application state, in-
cluding all forms of sharing that exist for files today. Users
can then chose the most appropriate of these state manage-
ment applications for any given situation and task to tran-
sition and synchronize application state between devices.

Application state enables
support for multi-device
interaction in the wild

Making application state accessible as a first-class inter-
active object enables the development of interaction tech-
niques that address the challenges of multi-device interac-
tion in the wild. Tasks can be migrated between devices
by transferring the state of all applications involved in the
task between the devices. This task migration via appli-
cation state can be done as long as the two devices can
communicate with one another and the transferred appli-
cations run independent of the original devices, allowing
the opportunistic rearrangement of tasks and devices that
is core to multi-device interaction in the wild. At the same
time, task execution can be coordinated across multiple de-
vices by synchronizing the state of the involved applica-
tions across these devices. The synchronized state provides
task applications with a communication channel that cre-
ates awareness of other participating devices and can be
used to assign and coordinate different roles among these
devices. The concept of application state and how it can be
applied to the setting of multi-device interaction in the wild
is described in detail in chapter 4.

1.3 Thesis Statement 9

The second part of the
thesis explores how
application state can be
exposed in current
interactive systems

In addition to exploring the benefit of application state as
a conceptual model for users and designers, the thesis also
explores how application state can be exposed in modern
operating systems to allow the tight integration of multi-
device interactions into these systems. To this end, a system
architecture that integrates support for application state
into common operating systems is described in chapter 5.
The proposed system architecture enables the separate de-
velopment of state extraction capabilities in task applica-
tions and multi-device interaction techniques, which com-
municate with one another through state objects. Chapter 6
finally explores how application developers can be sup-
ported in integrating support for state extraction into their
applications. Using advanced features available in modern
operating systems, this integration can be fully automated.
However, this automation comes at the cost of reducing the
semantic structure of the extracted state. In summary, auto-
mated methods to extract state are promising for integrat-
ing support for state exchange into legacy applications, but
cannot replace the extraction mechanism of a skilled appli-
cation developer.

1.3 Thesis Statement

The main contributions of this thesis can be summarized in
the following three statements:

S1 We need new interaction
and system support for
multi-device interaction
in the wild

The thesis describes the properties of multi-device in-
teraction in the wild to raise awareness of the mis-
match of current trends in the industry and academia
in contrast to this evolving behavior.

S2 Application state is an
interaction concept that
addresses multi-device
interaction in the wild

The thesis introduces application state as a conceptual
model where the state of ongoing tasks is made avail-
able as first-class interaction objects that can be trans-
ferred between devices to enable multi-device inter-
action in the wild.

S3 Application state can be
integrated into current
interactive systems

The thesis describes a system architecture that inte-
grates the concept of application state into common
operating systems and explores different approaches
to support this integration.

10 1 Introduction

These statements leads
to three research
challenges: identify
challenges of
multi-device interaction
in the wild, describe and
analyze the interaction
concept, describe and
discuss the integration

These statements describe three individual research chal-
lenges that must be addressed: First, the behavior of multi-
device interaction in the wild must be identified and the
underlying challenges for interaction solutions must be de-
veloped. Second, the concept of application state must be
described with an argument that explains how it addresses
the identified challenges of multi-device interaction in the
wild. Finally, the integration of the application state con-
cept into existing interactive systems must be described
and analyzed. These challenges are reflected in the follow-
ing set of research questions, which will be addressed in
this thesis:

RQ1 What is multi-device interaction in the wild? What
are the unique challenges of providing support for
multi-device interaction in the wild? How do cur-
rent approaches fail to address these challenges?

RQ2 How can application state be exposed to the user
as a first-class interactive object? What operations
allow users to migrate and coordinate tasks across
multiple devices via application state? How does
this concept support multi-device interaction in the
wild?

RQ3 How can the concept of application state be inte-
grated into common interactive systems? What as-
pects of modern operating systems can be exploited
to simplify the integration of application state?

RQ1 sets the frame of
this thesis by describing
how users employ
multiple devices for their
everyday tasks

By answering the first research question the desirable user
behavior of using multiple device for everyday tasks is de-
scribed and differentiated from multi-device interaction as
addressed in the literature. Chapter 2 describes a classifica-
tion of multi-device interaction in the wild, which is used
to derive the unique challenges of this behavior. Chapter 3
then summarizes related work from the literature that ad-
dresses multi-device interaction in general and analyzes the
differences between the investigated scenarios and multi-
device interaction in the wild.

RQ2 addresses the
interaction solution
proposed in this thesis
and how it solves the
challenges of
multi-device interaction
in the wild

The answer to the second research question represents the
main contribution of this thesis: A novel interaction con-
cept that addresses the challenges of multi-device interac-
tion in the wild is introduced and evaluated. The intro-
duction of the interaction concept is done in abstract terms
to guarantee platform independence. The concept is then
evaluated by presenting the results of a workshop where

1.4 Thesis Overview 11

students designed new ways of interacting with multiple
devices based on application state. Furthermore, four pro-
totype systems are described that apply the concept of ap-
plication state to different usage scenarios. This research
question is addressed in chapter 4.

RQ3 investigates how
the concept of
application state can be
integrated into current
interactive systems and
how this integration can
be simplified for the
application developers

The last research question pushes the focus of this thesis a
bit further into the technical domain by investigating how
the concept of application state can be enabled in current in-
teractive systems. To this end, chapter 5 describes a system
architecture that separates state extraction and restoration
from the actual interaction techniques based on application
state. The chapter describes how this system architecture
is integrated into a typical interactive systems and how it
fulfills all of the requirements to enable support for multi-
device interaction in the wild. Chapter 6 then analyzes how
certain system functions can be exploited to automate the
process of integrating state extraction and restoration into
legacy applications. This automation is demonstrated with
a prototype, and the trade-off between automatism and se-
mantic structure is discussed.

1.4 Thesis Overview

Chapter 2: Multi-device
Interaction in the Wild

The next chapter introduces multi-device interaction in the
wild as the opportunistic combination of multiple devices
to address tasks in the everyday routine. The behavior is
developed based on the findings of several studies from the
literature which are summarized. Finally, the novel chal-
lenges for the design of interactive systems aim at support-
ing this evolving behavior are discussed.

Chapter 3: Related
Work

The third chapter describes previous solutions for multi-
device interaction that are related to the work presented in
this thesis. The chapter describes existing interaction tech-
niques and system architectures for multi-device interac-
tion and analyzes their application for multi-device inter-
action in the wild. Based on this analysis, the need for a
new approach that is tailored to the unique challenges of
multi-device interaction in the wild is developed.

Chapter 4: Interacting
with State

The forth chapter introduces the interaction concept of ex-
posing application state as a first-class interactive object
and discusses how it addresses the challenges of multi-
device interaction in the wild. The interaction concept is
evaluated in two ways: First, the results of a workshop to

12 1 Introduction

uncover new interaction techniques based on application
state show that application state can be used effectively as
a design tool. Second, the design and evaluation of sev-
eral prototype implementations that apply the concept of
application state in diverse situations demonstrate the ap-
plicability of the conceptual model in realistic situations.

Chapter 5: The State
Exchange Architecture

The fifth chapter explains how exposing application state
can be integrated into common interactive systems. The
chapter develops the requirements to implement the state
operations from the previous chapter and describes a sys-
tem architecture that extends interactive systems to imple-
ment these requirements. A prototype implementation of
this system architecture demonstrates that common inter-
active systems can be extended with the necessary func-
tionality to make application state a first-class interactive
object. Finally, the validity of the system architecture is ana-
lyzed by verifying the fulfillment of the initial requirements
and discussing the technical limitations of the approach.

Chapter 6: Integrating
State Exchange into
Legacy Systems

The sixth chapter explores how to expose the state of legacy
applications to allow them to participate in multi-device
interaction. In some cases, the state of a legacy applica-
tion can be exposed automatically based on the knowledge
of the application that is inherent in current operating sys-
tems. The chapter describes what frameworks can be used
to extract this knowledge and how the knowledge can be
used to expose the application’s state. Additionally, legacy
applications can be supported by giving third-party devel-
opers the means to implement custom support to expose
the application’s state. Both approach are demonstrated
with a prototype on Mac OS X and the limitations and chal-
lenges of the approaches are discussed.

Chapter 7: Conclusion The final chapter concludes the thesis by discussing the po-
tential impact of exposing state on our daily usage of in-
teractive devices. Finally, the chapter describes several op-
portunities for future work to improve support for multi-
device interaction in the wild.

13

Chapter 2

Multi-device Interaction in
the Wild

Previous multi-device
interaction research has
focused on collaborative
environments

In the past, most of the HCI research concerning multi-
device interaction has focused on collaborative meeting-
room scenarios. In this context, multi-device interaction
takes place in a multi display environment (MDE), which
is a dedicated physical space to support synchronous, co-
located collaboration. MDEs typically provide multiple
shared interactive devices, such as large wall screens, table-
top displays, or other embedded devices. In addition, most
MDEs allow users to integrate their own devices into the
room’s infrastructure. All devices in the room are then
interconnected to form a coherent virtual workspace that
matches the physical workspace.

A new form a
multi-device interaction
is evolving: users
employ multiple devices
in their daily routine

With the wide-spread adoption of mobile interactive de-
vices, a new form of multi-device interaction is evolving.
Users are no longer confined to augmented environments
to interact with multiple devices. Instead, they do so op-
portunistically with the devices available to them in any
given situation. For example, Oulasvirta and Sumari [2007]
have found that mobile workers frequently switch between
a smartphone and a desktop computer to adjust to situ-
ational changes: When mobility and quick access to ba-
sic functionality is essential, the smartphone is preferred.
When efficient input and output capabilities are important,
the desktop computer is used.

Multi-device interaction
is not well-supported by
everyday interactive
devices

Despite this incipient adoption of multi-device usage users
face many challenges when they are combining devices in
their daily routine. For example, transitioning tasks be-
tween devices requires users to recreate the task manually
on the new device, even if the underlying data is synchro-
nized: When transitioning devices while writing an email
the user must save the current text as a draft, open the email
client on the second machine, find and open the text in

14 2 Multi-device Interaction in the Wild

the drafts folder, and browse to the appropriate position in
the text. A better solution requires a task to migrate be-
tween devices seamlessly, i.e., while preserving all work
state. However, solutions from the literature that enable
this kind of seamless multi-device interaction do not trans-
fer well to the everyday situation because they are typically
embedded in a specific environment.

Chapter outline This chapter first describes several studies from the litera-
ture that report how users with access to multiple devices
use this device diversity in their daily routine. Based on
these studies the evolving user behavior of multi-device in-
teraction in the wild is developed. The next chapter then
analyzes existing multi-device interaction techniques and
system architectures in light of this new behavior.

2.1 Understanding Multi-device Interaction in
the Wild

Several studies have been published in the literature that
examine multi-device behavior of early adopters in every-
day situations. Oulasvirta and Sumari [2007] found that
mobile information workers switch frequently between de-
vices. Dearman and Pierce [2008] discovered that knowl-
edge workers own many diverse devices and assign differ-
ent roles to them. Karlson et al. [2009] uncovered typical us-
age patterns of smartphone and computer usage including
many transitions between the two devices. Karlson et al.
[2010] listed barriers to mobile task flow and strategies to
continue suspended tasks including transitioning the task
to a different device.

2.1.1 Mobile Kits and Laptop Trays: Managing
Multiple Devices in Mobile Information Work

Study goals: understand
how mobile information
workers use and
manage multiple devices

Oulasvirta and Sumari [2007] conducted a field study of
multi-device usage among mobile information workers
with two goals: First, they wanted to investigate how work-
ers use multiple devices and what benefits they see in hav-
ing multiple devices. Second, they wanted to understand
how workers handle their multi-device management, i.e.,
the activities needed to prepare and maintain multiple de-
vices for productive work.

2.1 Understanding Multi-device Interaction in the Wild 15

Email at the desk
(laptop, smartphone,

headset, printer)

Attending an R&D steering group meeting
(laptop, smartphone, headset, paper

notebook, projector)

Lunch
(smartphone)

Attending a smaller meeting
(smartphone, headset, paper notebook)

Figure 2.1: Typical device usage during the daily routine of a mobile information worker at Nokia.
Picture taken from Oulasvirta and Sumari [2007].

Study setup: eleven
mobile workers from
Nokia were interviewed
about their multi-device
usage and two of them
were observed closely
during a regular work
day

The study took place in 2005 at Nokia in Finland after
a company-wide introduction of a business smartphone.
Eleven participants holding various positions at Nokia
(executive, customer-facing employee, subject matter ex-
pert) were recruited for the study. All of the participants
regularly employed multiple devices for their work, one
of which being the newly introduced smartphone. Data
was collected by interviewing the participants about their
multi-device usage. In addition, two participants were cho-
sen based on the interview results for a close observation of
one work day (seven hours).

Mobile information
workers switch
frequently between
devices for various
reasons

The findings of the study confirm that users often switch
between devices during their work. Device switching hap-
pens in various situations (when attending a meeting, go-
ing to lunch, sitting at a workstation, in transit) and with
various devices (laptop, mobile phone, smartphone, head-
set, projector, paper). Figure 2.1 demonstrates this behav-
ior with the log of one of the closely observed study par-
ticipant’s daily routine. The participants expressed various
social, personal, and work-related reasons for switching de-
vices:

• Depending on the task some devices are preferred
over others because of more suitable input or output
modalities (larger screen, keyboard).

• Devices that take only little time and effort to set up
and thus become ready for use quicker are preferred
for simple tasks.

• For some tasks no single device has all the function-
ality needed to accomplish the task.

16 2 Multi-device Interaction in the Wild

• Some devices serve as fall-back devices for important
tasks.

• Devices might be preferred or avoided for personal
reasons (a tendency to forget a device).

• In social situations a device might be preferred be-
cause interacting with it is acceptable, while interact-
ing with another device is not (mobile phone vs. lap-
top computer in a meeting).

• Organizational practices impose restrictions on which
devices can be used for a given task.

Using multiple devices
imposes extra work on
users in the form of
multi-device
management

When dealing with multiple devices, users must decide
which device to use for each task and prepare it for the task.
User strategies that cope with this process revolve around
three central aspects: reduce the effort of managing multi-
ple device; have the right data and functionality available
at the right time; align these efforts with their context of
use.

There is a lack of
commercial and
academic support for the
multi-device usage
observed in the study

Oulasvirta and Sumari [2007] conclude that current sys-
tems and efforts in HCI are misaligned with the behav-
ior observed in their study. Even though today’s systems
provide very limited support for multi-device interaction,
workers still manage and use multiple devices for their
daily work. Future efforts should focus on improving sup-
port for multi-device interaction by reducing the overhead
of having multiple devices (data synchronization and de-
vice setup), reducing the difficulty of planning future de-
vice usage, propagating information usage across devices,
and sharing resources across devices.

2.1.2 It’s on my other Computer!: Computing with
Multiple Devices

Study goal: understand
how users employ
multiple devices

Dearman and Pierce [2008] studied how users make use
of multiple devices for their personal and work activities.
They were especially interested in activities that span mul-
tiple devices and how users cope with the challenges of
managing information and activities across these devices.

Study setup: 27
researchers were
interviewed about what
devices they own and
how they use them

The study was conducted in 2007 with 27 participants from
IBM Research and Stanford university. The participants
were interviewed in their regular work environment us-
ing semi-structured interviews. First, each participant was
asked to list all devices where the participant is the primary

2.1 Understanding Multi-device Interaction in the Wild 17

Figure 2.2: On average, participants reported using different devices at work, at home, and when
transitioning between places. Picture taken from Dearman and Pierce [2008].

user. Then the configuration of these devices and their in-
terrelationships when working on tasks were inquired.

Users employ on
average almost six
devices for various
reasons

Based on the results Dearman and Pierce [2008] could es-
tablish that users employ multiple devices to work on their
everyday tasks. On average, each user was the primary
users of 5.96 devices consisting of one computer at work,
one or two at home, and three to four intermediate devices
like smartphones, digital cameras, and laptop computers
(see Figure 2.2). The participants reported the following
reasons for having this device diversity:

• Different devices have different form factors that
make them more or less suitable depending on the
situation.

• Portable devices allow users to freely choose the set-
ting where to perform a task.

• Different devices have different levels of efficiency
(set-up time, task completion time) such that the op-
timal device for a given task varies with the situation.

• Some users prefer to separate work from personal ac-
tivities by employing different computers.

• Some tasks are bound to specific devices for technical
reasons.

• Some devices are highly specialized in a single task
(digital camera), making them very efficient at that
task.

• When transitioning to a new device, the old device
is sometimes kept around because it is not trivial to
migrate all data to the new device.

18 2 Multi-device Interaction in the Wild

When devices are
combined, they take on
different roles within a
workflow

The study participants reported that they often spread out
tasks across multiple devices and assign a designated role
to each device. These roles can be highly interconnected
such that the users interact with several devices on the
same data to accomplish the task. Other roles are dedicated
to perform secondary tasks that are related to the main task
but do not require a tight connection of the devices.

Multi-device interaction
is hindered by
information dispersion

The main inhibitor for effectively combining multiple de-
vices for a task that was reported by the study partici-
pants is the difficulty of keeping information in synchro-
nization across these devices. Even though users had mul-
tiple strategies to cope with this challenge, none of them
succeeded to the users’ full content. Specifically, users com-
plained that interaction histories cannot be shared between
devices. Automatic synchronization services were not em-
ployed by the participants because they do not trust these
services.

Information and activities
are tied to devices which
are unaware of their
roles

Dearman and Pierce [2008] conclude that the design of cur-
rent devices exacerbates multi-device usage in two ways:
First, devices tie information and activities to the device
making it hard to transition between devices during an on-
going activity. Second, devices are unaware of a multi-
device setup and their role in this setup, leaving all coor-
dination activities between these devices to the user.

2.1.3 Working Overtime: Patterns of Smartphone and
PC Usage in the Day of an Information Worker

Study goals: understand
how users perform tasks
that span smartphones
and other devices

Karlson et al. [2009] studied how information workers use
their smartphones and desktop computers in a typical day.
To this end, they extracted patterns of smartphone and
desktop usage from a record of all activities performed on
either device.

Study setup: logging
study of 16 information
workers with 4 follow-up
interviews

The study was performed in 2008 with 16 information
workers from a technology company. All participants in-
stalled special software on their smartphones and desktops,
which logged the current activity (window titles and ap-
plications) and user activity (keyboard and mouse). Af-
ter gathering log data for 5-30 days four of the partici-
pants who demonstrated varying usage patterns were in-
terviewed in their usual work environment. During these
interviews the participants were questioned about the ac-

2.1 Understanding Multi-device Interaction in the Wild 19

tivities that occurred in the logs with a special focus on in-
terleaved and concurrent smartphone-desktop usage.

Email was the most
employed activity on
both devices

The analysis of the logs revealed that the most used appli-
cation on both the desktop and the smartphone was the cor-
porate email client. On the desktop other frequent activities
were file browsing and web browsing. On the smartphone
email was done substantially more than any other activi-
ties.

Usage patterns vary
among users with
several device
transitions happening
during the day

The participants demonstrated a wide range of different
behavior when interacting with their desktops and smart-
phones. These differences range from using the smart-
phone almost exclusively to using the desktop almost ex-
clusively. At the same time, several common patterns were
identified that reflect frequent device transitions during the
day. For most users the smartphone was the first device
used in the morning and the last device used at night, and
the desktop was used primarily during the day. Addition-
ally, many users switched from the desktop to the smart-
phone before lunch and back to the desktop afterwards.
In the interviews the following reasons for preferring the
smartphone over a desktop were uncovered:

• Smartphones are always with the user and provide
continuous access to important activities (email).

• Smartphones are immediately ready for use.

• Smartphones can serve as an ultra-portable substitute
for desktops.

Transitioning between
desktop and smartphone
is hindered by a lack of
information access

When switching between smartphone and desktop, users
did not express the desire to continue a previously begun
activity on the new device. Instead, users desired ubiqui-
tous access to their data from all devices to improve their
experience with multiple devices.

2.1.4 Mobile Taskflow in Context: A Screenshot
Study of Smartphone Usage

Study goal: understand
barriers of mobile task
flow and user strategies
that address these
barriers

In a subsequent study Karlson et al. [2010] focused on
mobile users with two primary goals: First, they investi-
gated what kind of barriers users encounter that prevent
the completion of a mobile task. Second, they inquired user
strategies to follow up with these tasks at a later time and
whether users were content with their strategies.

20 2 Multi-device Interaction in the Wild

Study setup: 24
participants took and
annotated screen shots
of task disruptions on
their smartphones

The study took place in 2009 with 24 participants who were
recruited from a software company. Half of the users were
iPhone users, and the other half were Windows Mobile
Pocket PC users. They were asked to capture all disrup-
tions they encountered on their smartphones during a typ-
ical day by making a screen shot. At the end of the day all
users were asked to annotate these screen shots and explain
the cause of the disruption, how they followed up on the
disrupted task, and how frustrating the overall experience
was.

Many different types of
barriers can impede
mobile task flow

The study uncovered the following barriers to mobile task
flow:

• The smartphone lacks functionality needed for the
task.

• The smartphone’s screen is not sufficient for the task.

• The task could not be completed due to network
problems.

• The task was too complex to finish on the smart-
phone.

• The task requires too much time or work for too little
benefit.

• Environmental factors prevented the task completion.

• The smartphone’s input capabilities were insufficient.

Some of these barriers like missing functionality and net-
work problems are likely an effect of the relative infancy
of smartphone technology. Other barriers, however, are
caused by aspects that are inherent in mobility such as envi-
ronmental factors, device properties, and task complexity.

The experience of
following-up a task on a
different device suffers if
there is no cross-device
task migration support

The most common method to follow-up on a disrupted task
was to finish the task on a desktop computer. For email ac-
tivities, following up was not a major source of frustration
because users can access their email data from all devices
allowing a more or less seamless transition between the de-
vices. Other activities that lack this kind of cross-device
support show higher frustration ratings when transitioning
between devices to finish a disrupted task. Karlson et al.
[2010] conclude that users transition tasks between devices
for strategic reasons and that these transitions should be
supported by more activities on the smartphone and the
desktop.

2.1 Understanding Multi-device Interaction in the Wild 21

2.1.5 Summary

Oulasvirta and Sumari
[2007]: users frequently
switch between devices
for various reasons
employing various
strategies

Oulasvirta and Sumari [2007] were the first to establish that
users frequently switch devices during a typical day. They
uncovered several user benefits that motivate the use of
multiple devices and various user strategies for selecting
the most appropriate of all available devices. In their con-
clusion, they argue for better synchronization of informa-
tion between devices including device setup (available data
and applications) and task information (email flags).

Dearman and Pierce
[2008]: users have
multiple devices for
various reasons, devices
are assigned roles when
used in concert

Dearman and Pierce [2008] confirmed that users employ
several devices during their everyday routine and ex-
tended the list of user benefits for having multiple devices.
In addition, they observed users designating specific roles
to specific devices to combine them for a complex task.
To support this behavior, they suggested making devices
aware of their roles and interrelationships with other de-
vices and untying information and activities from devices.

Karlson et al. [2009]:
users employ different
patterns for smartphone
and desktop usage

Karlson et al. [2009] observed several distinct patterns of
smartphone and desktop usage, ranging from almost exclu-
sive use of either device to frequent switching between the
devices. When switching between devices, ongoing tasks
are rarely continued, which is likely caused by the high
overhead of task migration in current devices.

Karlson et al. [2010]:
there are many barriers
to mobile task flow,
which often cause users
to finish their tasks on a
different device

Karlson et al. [2010] examined typical barriers that prevent
users from completing a task on the smartphone, which
are often inherent in the mobility of the smartphone and
thus not affected by new technology. The most common
strategy to follow up on a disrupted task was to finish the
task later on a desktop. However, this transition between
smartphone and desktop was a high source of frustration,
as many activities do not support a seamless migration be-
tween devices.

Cloud sharing services
have enabled seamless
data synchronization
across devices

All of the above studies emphasize the need for better data
synchronization across devices. By now, advances in cloud
synchronization have addressed this need to some extent.
Marshall and Tang [2012] verified that early adopters fre-
quently use these services and are very satisfied with them.
However, ubiquitous data access is not sufficient to support
all aspects of multi-device interaction. In particular, it does
not allow users to seamlessly switch between devices dur-
ing an ongoing task, and it does not make devices aware of
their roles when used in combination with other devices.

22 2 Multi-device Interaction in the Wild

Users employ multiple
devices sequentially

All studies found that users switch frequently between de-
vices, or in other words, they employ multiple devices se-
quentially. These switches can occur between tasks (the
new device is used for a new task) or during ongoing tasks
(the new device is used for the same task). Especially in the
latter case, switching devices can cause a large overhead for
the user to recreate the work state of the task on the new de-
vice.

Users employ multiple
devices simultaneously

At the same time, the studies have found that users also
use a device, while another device is still operating, or in
other words, they employ multiple devices simultaneously.
Again, users can employ these devices simultaneously for
distinct tasks (each device is used for a separate task) or
for the same task (all devices operate on the same task).
In both cases today’s systems are ignorant of their roles in
this multi-device setup: For distinct tasks devices running
in the background are unaware of their status and the pri-
mary task, such that they demand attention at inappropri-
ate times. For a common task the coordination of devices
is typically left to the users, creating a significant task man-
agement overhead for them.

User behavior is evolving
from employing a single
device to employing
multiple devices for their
daily routine

The studies show an evolution of user behavior in their ev-
eryday routine from employing a single interactive device
to employing multiple devices. In the scope of this thesis,
this new behavior is called multi-device interaction in the
wild. The remainder of this chapter describes this behav-
ior in detail and develops guidelines for the evaluation and
design of interactive systems that support this behavior.

2.2 Multi-device Interaction in the Wild

Users employ multiple
devices in their everyday
routine by combining
them opportunistically to
work on distinct or
common tasks

Throughout the day users strive to use the most appropri-
ate of the available devices depending on the task, situa-
tion, and personal preference to accomplish their goals. The
choice of devices can be any combination of the available
devices, which may be used to each work on an individ-
ual task or to work on a common task together. When in-
teracting with the chosen devices, users may do so sequen-
tially (move attention from one device to another) or simul-
taneously (split attention between devices). This setup is
constantly challenged by the changes of device availabil-
ity, the task, and the general situation, resulting in frequent
changes of the employed device combinations.

2.2 Multi-device Interaction in the Wild 23

The most appropriate
device(s) are selected
depending on the
situation and task

The most appropriate device is selected by assessing the
properties of all available devices in the context of the cur-
rent situation and task and the cost of transitioning against
each other. The most distinguishing properties of a device
are rooted in the class of the device. The following is a list
of device classes that are typically encountered in a mod-
ern workplace and their properties. See Table 2.1 for an
overview of these properties.

• Desktop computer: most
efficient input

The desktop computer provides one or more large
screens, a full-size keyboard, and a mouse for pre-
cise and efficient input and output. It can be used to
work collaboratively on a task in small groups. Using
a desktop computer during on ongoing conversation
is typically not well-received.

• Laptop computer:
portable with good input

The laptop computer provides smaller and less effi-
cient input and output modalities than the desktop
computer. In return, the laptop computer is portable
and can be carried with the user but not used effi-
ciently while being carried. It can be used in collab-
orative settings like a desktop computer but not as
efficiently. Like the desktop, the laptop computer in-
terrupts social interactions.

• Tablet: usable while
mobile

The tablet provides a medium-sized screen with
touch input, which is sufficient for many tasks but
not suitable for complex tasks such as extended text
entry. It is highly portable and well-suited to be used
in mobile situations. It can be used collaboratively in
small groups by passing it around or interacting with
it from multiple sides. Due to its smaller size and col-
laborative features, it is somewhat acceptable to use
during social interactions.

• Smartphone: always
carried with the user

The modern smartphone provides a small screen with
touch input. The small screen is sufficient for sim-
ple tasks but lacks screen space and efficient input for
moderate to complex tasks. It is the most portable de-
vice, designed to be always carried with the user and
used while mobile. Because of its small size, it is not
suitable for collaboration. At the same time, it does
not raise much attention and thus is quite acceptable
to be used during ongoing social interactions.

• Wall screen / projector:
largest output, most
appropriate for
collaboration

The wall screen or projector provides a very large but
typically low-resolution screen. Even if the screen is
augmented with touch capabilities, interacting with

24 2 Multi-device Interaction in the Wild

Device Class Output Input Mobility Collab. Social accept.
Desktop computer + ++ −− 0 −−
Laptop computer 0 + 0 − −−
Tablet 0 0 + + 0
Smartphone −− − ++ −− +
Wall screen ++ −− −− ++ −−
Tabletop screen ++ − −− ++ −−

Table 2.1: The device classes that today’s users are confronted with offer various properties, making
them more or less appropriate depending on the situation.

a large screen is strenuous, inefficient, and imprecise.
Instead, it is designed for collaborative use, especially
to visualize large amounts of data. Due to its large
size, interacting with a large screen is very disrupting
to an ongoing social interaction.

•Tabletop screen: large
output with better input
than the wall screen

The interactive tabletop screen provides a large hori-
zontal screen with touch capabilities. It is less strenu-
ous to interact with a large horizontal surface than a
vertical surface, but table input is nevertheless ineffi-
cient and imprecise compared to other devices. Sim-
ilar to wall screens, tabletop screens are designed for
collaborative use and typically very distractive dur-
ing ongoing social interactions.

Devices can be shared
among multiple users,
which imposes
additional challenges for
the design of these
devices

Some of these devices are shared among multiple users. Al-
lowing shared devices to seamlessly integrate themselves
into multi-device interaction in the wild just like personal
devices introduces additional challenges for the design of
these devices: First, user data and applications should be
accessible from the shared device without imposing a secu-
rity risk on the user. Second, users should be able to pick up
and interact with a shared device without a lengthy setup
process. Similarly, a shared device should reset itself when
it is left behind. It is important to note that all devices may
be used as shared devices, independent of the device class.
Therefore, it is generally not sufficient for the design of a
device to focus only on single user operation.

The cost of transitioning
includes the effort to set
up a device, access data
and applications, and
configure the device’s
appearance

The cost of transitioning is determined by the effort it takes
to set up the new device to start, continue, or participate in
the task. This effort includes the effort needed to set up the
device itself, access the relevant data and applications on
the device, and configure the device’s appearance to match
the current state of the task. By reducing the cost of tran-
sition, users are encouraged to switch devices more often

2.2 Multi-device Interaction in the Wild 25

resulting in a better match of task, situation, and employed
devices.

Devices are used
sequentially and
simultaneously

The chosen devices can be used sequentially or simultane-
ously. During sequential operation the user stops interact-
ing with a device and starts interacting with another de-
vice. This transition can be immediate or delayed (occur
after a pause where other interactive devices may be used).
After the transition the user is no longer aware of the origi-
nal device. During simultaneous operation the user sets up
multiple devices to operate in parallel. The user does not
necessarily interact with the devices in parallel but instead
switches attention between the devices. The difference to
sequential operation is that the user has intentionally set
up multiple devices and is always aware of these devices
and their interplay.

Devices are used to
work on a common or
distinct tasks

At the same time, the chosen devices can be used to work
on a common task or to work on multiple distinct tasks.
When working on a common task, all participating de-
vices must be coordinated to work on the task in concert.
This typically requires that task activities are synchronized
across all devices and the effect of changes from one device
is propagated to all other devices. On the other hand, when
working on distinct tasks, the use of each device is sepa-
rated from all other devices. Actions performed on sepa-
rated devices should have no impact on each other. Never-
theless, separated devices can still benefit from being aware
of the overall setup. For instance, devices can suppress po-
tentially distracting messages while users are focused on a
different task that is executed in parallel.

The multi-device
interaction matrix
classifies multi-device
interaction in the wild as
the sequential or
simultaneous use of
multiple devices towards
a common or distinct
tasks

This device usage can be expressed as a 2 × 2 matrix (see
Figure 2.3): The first dimension of the matrix expresses the
timing of device usage, which is either sequential or simul-
taneous. The second dimension of the matrix expresses the
task affinity of the device usage, which can be to perform
distinct or common tasks on the devices. The following list
describes the four possible modes of multi-device interac-
tion expressed by this matrix:

• Sequential use,
distinct tasks

Devices are used sequentially to perform distinct
tasks. In this mode the user stops working on a task
on one device and starts working on another task on
a new device. In consequence, the user transitions be-
tween devices and tasks at the same time and after the
transition the original device is no longer in use. An

26 2 Multi-device Interaction in the Wild

Figure 2.3: The multi-
device interaction matrix
describes the different
ways of employing mul-
tiple devices in the wild:
Users interact with multi-
ple devices sequentially
or simultaneously while
working on a distinct
task on each device or
combining devices to
work on a common task.

A

A
A

A A

B
A

B

sequential / distinct tasks simultaneous / distinct task

sequential / common task simultaneous / common task

Timing

Ta
sk

example of this mode of operation is to finish a task
(write a report) on the desktop and subsequently start
a new task (read a document) on the tablet. The de-
vice change is primarily motivated by the properties
of the new device and the cost of starting (or restor-
ing) the new task on the new device.

•Sequential use,
common task

Devices are used sequentially to perform a common
task. In this mode the user stops interacting with
one device and starts interacting with another device
without changing the task. Thus, the user transitions
between devices during an ongoing task. An exam-
ple of this mode of operation is to interrupt a task
(write an email) on the desktop and resume the in-
terrupted task on the smartphone. Reasons for this
device change are often changes of the current situa-
tion. For example, the need to reach a different loca-
tion may result in a switch from a non-portable to a
portable device.

•Simultaneous use,
distinct tasks

Devices are used simultaneously to perform distinct
tasks. In this mode the user interacts with multiple
devices at the same time, each of which is set up to
work on a distinct task. Each device is dedicated to a
distinct task allowing the user to remain aware of all
tasks and frequently switch between them by switch-
ing devices. An example of this mode of operation
is to watch television while simultaneously browsing
the web with a smartphone.

2.3 Challenges 27

• Simultaneous use,
common task

Devices are used simultaneously to perform a com-
mon task. In this mode the user sets up multiple de-
vices to work on the same task in concert. Typically,
different devices are assigned specific roles within
the task and thus represent different aspects of the
task. During task execution, the user can switch be-
tween these different aspects of the task by switch-
ing between the associated devices. An example of
this mode of operation is to designate one computer
to writing source code and another to testing source
code. Once set up this way, the user can switch be-
tween the writing and testing activities by switching
between the different computers. At the same time,
changes to the source code from the computer used
for writing must be reflected on the computer used
for testing, illustrating the tight relationship between
the devices.

2.3 Challenges

As above studies have shown, current systems do not sup-
port multi-device interaction in the wild very well. To im-
prove support for multi-device interaction in the wild, the
following challenges must be addressed:

• Support all work modesAll of above work modes must be supported: Users
must be able to sequentially or simultaneously use
multiple devices towards a common or distinct tasks.

• Support opportunistic
rearrangement of
devices and tasks

Users must be able to switch between these work
modes opportunistically as the situation changes.
They must be able to frequently reconfigure the ar-
rangement of tasks and devices. Additionally, it is
important that the overhead of changing this arrange-
ment is kept as low as possible to encourage optimal
use of the available device diversity.

• Transitions must be
robust

Due to the volatile nature of device availability, it is
important that all transitions between tasks and de-
vices are robust, i.e., the task can be continued on a
device after a transition even if the original device
becomes unavailable. Solutions that rely on an ac-
tive network link between devices that goes beyond
the moment of task transition are inappropriate for
multi-device interaction in the wild. Similarly, solu-
tions that require a constant connection to a fixed in-

28 2 Multi-device Interaction in the Wild

frastructure including Internet servers are unaccept-
able, as users must sustain their ability to work on
tasks under a complete loss of connectivity.

•Support ad-hoc
situations (rely on the
infrastructure that the
devices provide)

Solutions for multi-device interactions can make use
of sophisticated environments to enable powerful
multi-device interactions. However, it is important
that these solutions also consider ad-hoc situations
where no such infrastructure is available and only the
capabilities included in the devices can be used. The
basic work modes must be supported independent of
any external infrastructure other than basic connec-
tivity.

Before introducing application state as a conceptual model
that addresses these challenges, the next chapter will de-
scribe the various approaches to multi-device interaction
that have been pursued in the past and discuss how they
influenced the design of the conceptual model presented in
this thesis.

29

Chapter 3

Related Work

Research in multi-device
interaction has focused
on interaction support
and system support

In the literature, there are two main perspectives concerned
with multi-device interaction: interaction support and sys-
tem support. Most of this research has evolved from the
domain of multi-display environments, where a physical
space like a meeting room is augmented with multiple in-
teractive displays to facilitate group collaboration. Even
though this situation is very different from the situation
considered in this thesis where multi-device interaction oc-
curs in the wild, many of the insights from both perspec-
tives can be readily transferred.

Multi-device interaction
techniques are the
drivers of multi-device
interaction in the wild

Multi-device interaction techniques enable users to span
and coordinate their activities across multiple devices. Ap-
plied to the domain of multi-device interaction in the wild,
these techniques enable the bottom half of the multi-device
interaction matrix: sequential and simultaneous use of
multiple devices towards a common task. Thus, it is im-
portant to understand the diversity of existing multi-device
interaction techniques and observe this diversity when de-
signing systems for multi-device interaction in the wild.
Section 3.1 will take a closer look at multi-device interac-
tion techniques.

Existing system
approaches that support
multi-device interaction
provide many useful
insights for multi-device
interaction in the wild

Many different systems have been proposed in the litera-
ture that support multi-device interaction. Even though
none of these systems provides a complete solution for
multi-device interaction in the wild, they solve many of
its issues. Thus, it is important to understand the diver-
sity of existing approaches and identify the aspects that can
be transferred to multi-device interaction in the wild. Sec-
tion 3.2 will analyze existing system approaches to this end.

30 3 Related Work

3.1 Interaction support

Numerous ways of supporting multi-device interaction
have been proposed in the literature. These solutions range
from complete interaction frameworks that define concep-
tual models for user interaction to concrete interaction tech-
niques.

3.1.1 Multi-Device Direct Manipulation

Direct manipulation A direct manipulation interface, as introduced by Shneider-
man [1983], allows users to directly manipulate digital ob-
jects similar to how physical objects are manipulated. In
particular, direct object manipulations are incremental, re-
versible, and provide continuous feedback. This way, users
can evaluate their actions while performing them and com-
pensate for mistakes before finishing the action.

Pick-and-Drop

Pick-and-drop is a
multi-device direct
manipulation technique

Rekimoto [1997] applied the concepts of direct manipula-
tion to multi-device interaction and designed an interac-
tion technique called Pick-and-drop. He observed that users
struggle with exchanging information between computers
that are physically close to each other because of a lack of
simple interaction techniques for multiple-devices interac-
tion that make use of the spatial arrangement of the de-
vices.

Pick-and-drop has
evolved from
Drag-and-drop

The Pick-and-drop technique has evolved from applying
the Drag-and-drop technique to a pen input device. Drag-
and-drop is a direct manipulation technique that allows
users to move information by “holding” it with the mouse.
The user grabs an object by clicking on it and holding
the mouse button. Afterwards, the object can be moved
by dragging the mouse cursor to the desired destination,
where the mouse button is released. Applying this inter-
action technique directly to a pen is problematic because
users find it difficult to drag a pen over a distance with con-
stant contact to the surface.

Pick-and-drop allows
users to “pick up” and
object by tapping it and
“drop” it by tapping the
destination

The Pick-and-drop technique was designed to overcome
this problem. Instead of dragging the pen over the surface,
the user “picks up” an object by tapping the pen on the ob-
ject and drops it by tapping the pen somewhere else. While

3.1 Interaction support 31

)c()b()a(

Figure 3.1: Pick-and-
drop applies Drag-and-
drop to a pen: Tapping
the pen on an objects
picks up the object (a).
The object is associ-
ated with the pen and
appears under it while
hovering (b). When the
pen is removed from the
display, the object dis-
appears (c). The object
is dropped by tapping
the pen on the destina-
tion. Picture taken from
Rekimoto [1997].

moving the pen, the attached object appears close to the
pen as long as the pen remains close to a display. If the pen
is moved away from the screen, the object disappears but
remains associated with the pen. Upon dropping an object,
the object is moved to the location where the pen touched
the screen. Figure 3.1 illustrates the basic interaction with
Pick-and-drop.

Pick-and-drop can span
multiple devices

Since pens are not tethered to devices they can be used on
multiple devices. Thus, Pick-and-drop can be used as a
multi-device interaction technique: Users can pick up an
object from one device and drop it on a different device. To
maintain the mapping between peens and picked-up ob-
jects, each pen on the network receives a unique identifier.
The association between objects and pens is then managed
by a central service on the network. Once a Pick-and-drop
action is complete, this service initiates the object transfer
from the source to the target device.

Pick-and-drop
applications

Similar to Drag-and-drop, Pick-and-drop is a generic inter-
action technique that can be applied to various situations.
Rekimoto [1997] demonstrates this versatility with several
example applications (see also Figure 3.2):

• Information exchange
between devices

Pick-and-drop can support information exchange be-
tween devices. Users can tap on an information ob-
ject on any device to pick it up and transfer the ob-
ject to another device by dropping it there. This way,
users can transfer data from a colleague’s tablet de-
vice to their own when they meet physically. Alter-
natively, users can exchange information by placing

32 3 Related Work

it on a shared screen, where they or others can pick it
up later.

•Combining large display
and tablet devices

The unique pen identifiers used for Pick-and-drop
can be used to augment large displays with personal
tablets. For example, when sketching on a large dis-
play, the tablet can show colors and clip-art graphics
that can be selected by tapping on them with the same
pen used for drawing.

•Anonymous displays Pick-and-drop can also serve to transfer data between
a desktop computer and multiple tablet computers,
which are reachable from the desktop. These tablets
then act as “temporary work buffers”, which users
can freely use to temporarily store work objects for
later reuse.

•Information exchange
between interactive and
static objects

Finally, Pick-and-drop can be used to transfer objects
between a static object and a digital device. For ex-
ample, users can pick up an object from a piece of pa-
per by tapping on a printed icon representing the ob-
ject. This object can then be dropped on an interactive
device by dropping the object on the device. To this
end, physical artifacts (icons) can be detected through
a ceiling-mounted camera and printed markers.

Pick-and-drop uses
physical mappings for
multi-device interaction

The underlying design philosophy of Pick-and-drop is that
current workspaces are a fusion of physical and virtual
spaces. Despite this fusion, traditional information ex-
change methods take place entirely in the virtual space
based on symbolic representations of the physical devices.
Pick-and-drop, on the other hand, includes the physical
space in multi-device interaction by allowing users to iden-
tify physical devices by their physical representation.

Passage

Passage associates
digital information with
physical objects

Konomi et al. [1999] introduce a similar interaction tech-
nique called Passage, which makes use of real-world objects
to transport digital objects. Users connect digital informa-
tion with a real-world object, called passenger, by placing
the passenger on a Bridge. As soon as the Bridge identi-
fies the passenger, the user can drag information onto the
screen area reserved for the Bridge to associate the informa-
tion with the passenger. Finally, the physical object can be
carried to a different location and placed on another Bridge,
where the linked information is recovered and shown.

3.1 Interaction support 33

Figure 3.2: Pick-and-drop has various application areas: Users can exchange information between
personal tablets (top left) or through a shared display (top right). Interacting with a wall screen can be
augmented with a tablet display (bottom left). Objects can be picked up from a printed representation
of the object (bottom right). Pictures taken from Rekimoto [1997].

To identify physical objects as passengers, the authors sug-
gest the following two methods:

• Identify a passenger by
weight

The weight of a physical object as measured by an
electronic scale can serve as an identifier for the ob-
ject. This allows users to employ any physical object
as a passenger. However, if two objects have the same
weight they are treated by the system as a single ob-
ject, which will likely lead to confusion. Additionally,
if the weight of an object changes, the link to the data
will get lost. Thus, identification by weight is very
useful to quickly transport data from one device to
another but should not be used to store data over a
longer time.

• Identify a passenger
through an electronic tag

Alternatively, an electronic tag can be used to identify
a physical object. Electronic tags can be sensed over a
short distance and contain a unique code, which can

34 3 Related Work

Figure 3.3: Passage
links digital objects to
physical passengers,
which can be trans-
ported between bridges,
e.g., connected to desk-
top computers (left),
tabletop displays (mid-
dle), or wall screens
(right). Pictures taken
from Konomi et al.
[1999] and Streitz et al.
[1999].

be used to identify the object. However, the tag must
be embedded in the physical object, which limits the
number of objects that can serve as passengers. Since
the identifier transmitted by an electronic tag is guar-
anteed to be unique, these objects can be used to store
data reliably for a long time.

Passage and the i-LAND
environment

Passage was integrated into the i-LAND interactive envi-
ronment presented by Streitz et al. [1999]. The i-LAND
environment is an interactive environment that combines
a virtual work space with a physical work space by com-
plementing either space with artifacts from the other: The
arrangement of the physical work space is integrated into
the virtual work space and the information from the vir-
tual work space is visualized in the physical work space.
In this context, the passage technique serves as the main
information exchange mechanism for bringing information
into the room, transporting information among the various
components of the room, and extracting information from
the room. To this end, the individual components are each
equipped with a bridge, allowing information to be added
to and removed from the components through a passenger
as shown in Figure 3.3.

PaperWindows

PaperWindows allows
users to manage digital
content on sheets of
paper through natural
gestures

PaperWindows by Holman et al. [2005] is a set of direct ma-
nipulation interaction techniques that augment paper dis-
plays with interactive capabilities to manage the arrange-
ment of digital content on multiple displays. These in-
teraction techniques make use of the natural properties of
the paper to drive the operations underlying a classic win-
dow manager. By mixing paper and digital information

3.1 Interaction support 35

1. Hold 2. Collocate 3. Collate 4. Flip

5. Rub 6. Staple 7. Point 8. Two-handed Pointing

Figure 3.4: Paper Windows turns regular paper into interactive displays and allows users to interact
with digital content through gestures performed on the actual paper: (1) Holding paper marks the
content as active, (2, 3) collocating and collating paper organizes the content, (4) flipping paper navi-
gates longer content, (5) rubbing paper transfers content between different sheets, (6) stapling paper
links the underlying content, and (7, 8) pointing or two-handed pointing interacts with the content on
the paper. Picture taken from Holman et al. [2005].

users benefit from the advantages of both worlds: They can
handle information as paper and distribute it in the envi-
ronment. At the same time, they can easily replicate and
archive digital copies of the information.

PaperWindows defines
several interaction
techniques for managing
applications across
multiple sheets of paper

PaperWindows defines the following interactions on paper
(see also Figure 3.4):

1. Hold: Holding a sheet of paper marks the content on
the paper as active.

2. Collocate: Paper Windows can be arranged and dis-
tributed in the environment just like regular paper to
organize the content or reflect relationships between
different information.

3. Collate: Collating paper into stacks groups the infor-
mation on the paper together.

4. Flip: Flipping a sheet of paper is used to navigate a
multi-page document on a single sheet of paper.

5. Rub: Rubbing on a sheet of paper that is placed on
another sheet of paper or an external device transfers
the information from the topmost paper to the paper
or device below.

36 3 Related Work

Figure 3.5: BlueTable
detects and identifies
mobile phones that are
placed on an interactive
tabletop display. Once
identified, the mobile
phone can exchange
data with the table. Pic-
tures taken from Wilson
and Sarin [2007].

6. Staple: Two sheets of paper can be linked to the same
document by pressing them against each other in a
stapling gesture.

7. Point: Users can interact with the content on a sheet
of paper by pointing and tapping the content on the
paper.

8. Two-handed Pointing: Pointing is not restricted to a sin-
gle target but can be performed with multiple hands
to allow disjoint selection.

PaperWindows adapts
common functions of
window managers to
interacting with paper

Through these interactions, the most important functions
of a typical window manager become available on a multi-
screen system based on paper screens. Using these interac-
tions, users can migrate information between paper and de-
vices and organize information that spans multiple sheets
of paper.

BlueTable

BlueTable automatically
connects physically
close interactive devices

Wilson and Sarin [2007] investigated the use of a mobile
phone as a physical medium to connect to other devices
and exchange information. The BlueTable system can detect
and identify mobile phones placed on top of a tabletop dis-
play. This connection can be used to exchange information
between the phone and the tabletop display. For example,
users can share their photos by simply placing their phones
on the tabletop display. The BlueTable system then detects
the phones, extracts the photos, and displays them around
the phone on the table. The photos can be distributed fur-
ther by dragging them between different mobile devices
also placed on the tabletop display.

BlueTable uses a
camera to detect and
identify mobile phones

The system visually detects a mobile phone through a cam-
era that is mounted above the table. As soon as a new
phone is detected, the system initiates a connection to all

3.1 Interaction support 37

(a) (b) (c)

Figure 3.6: PhoneTouch allows users to drop information on a surface by touching it with a phone
(a), manipulate the information on the surface (b), and finally pick it up by touching it again with the
phone (c). Pictures taken from Schmidt et al. [2010].

available BlueTooth devices and initiates a visual signal on
these devices. By matching this visual signal with the ini-
tial phone detection, the system can associate the device on
the table with a BlueTooth connection and exchange data
with the device.

PhoneTouch

PhoneTouch allows
users to use a mobile
phone as a stylus

PhoneTouch by Schmidt et al. [2010] is an extension of above
technique that allows the mobile device to be used as an in-
put device in addition to a transport medium. With Phone-
Touch user can use a phone to directly interact with a sur-
face by treating the phone as a stylus. For example, a user
can share photos by selecting the photos to be shared on
the phone and tapping the phone on an interactive table.
The photos are then displayed on the table and can be ma-
nipulated through the interactive capabilities provided by
the table. In addition, others can transfer photos to their
phones by tapping the photos they like.

PhoneTouch uses event
correlation in time to
associate devices and
touches

When a phone touches the tabletop display, the touch area
can be distinguished from the touch area of regular finger
touches. At the same time, the phone can detect the time
of the touch by detecting peaks in its device acceleration.
By matching the touch events on the phone and the table
a connection between the phone touching the table and the
touch point can be created.

38 3 Related Work

Figure 3.7: Deep Shot
allows users to migrate
a task between a mo-
bile phone and a desk-
top computer by taking
a picture of the desk-
top computer’s screen
with the mobile phone’s
camera. The task can
be migrated to the mo-
bile phone using deep
shooting as depicted in
the figure, or it can be
migrated to the desk-
top computer using
deep posting. Picture
taken from Chang and Li
[2011].

Deep Shot

Deep Shot makes use of
a camera picture taken
from a mobile device to
identify the source or
target of a migration

Deep Shot by Chang and Li [2011] uses the camera of a mo-
bile phone to identify the source or the target for multi-
device interaction. It allows users to migrate a task from
a desktop computer to a mobile device or vice versa by
taking a picture of the desktop computer’s screen with the
mobile device. Deep shooting migrates the task that is rep-
resented by the window in the picture from the personal
desktop to the mobile device (see Figure 3.7). Deep posting
conversely migrates the active task from the mobile device
to the photographed location on the desktop computer.

Deep Shot matches the
pictures taken from the
mobile devices with
screen shots of all
desktop computers to
identify the
photographed computer
and screen area

Upon taking a picture Deep Shot matches the picture with
the screen content of all connected desktop computers and
thus identifies the target computer and screen area. For
deep shooting, the targeted window and consequently the
application is identified based on above data and queried
for its state. This state is then transferred to the mobile de-
vice and restored in an appropriate application that restores
the previously extracted state. Deep posting is done by ex-
tracting the state from the active application on the mobile
device and restoring it on the desktop computer.

State is encoded as
unified resource
identifiers, which can be
accompanied by a file

Deep Shot uses unified resource identifiers (URIs) to store
the state of applications for migration. The data stored in

3.1 Interaction support 39

a URI includes a unique identifier for the application and
versatile data in the form of a path (list of keywords) and
named parameters. In addition, a file can be attached to
the URI, which is also included in the state. For web ap-
plications, a URI is a natural representation of their state
because URIs are already used to represent the navigation
state of the web application. Other applications can use
custom schemes and the named parameters to encode their
state.

A framework helps
integrate support for
Deep Shot into
applications

Chang and Li [2011] developed a framework for JavaScript
and Java to ease the integration of Deep Shot into custom
applications. The framework defines a callback for Deep
Shot events and a method to trigger deep posting. The call-
back is called when a device on the network is attempting
to send a state to the application, which should be restored.
The posting method is called with the state as its parame-
ter to allow users to take a picture of the target device and
migrate the state to that device.

3.1.2 Remote Pointing

Remote pointing extends
the user’s reach to
remote devices

Remote pointing interaction techniques extend the user’s
reach beyond the currently used device. They are typically
designed to be used in multi-display environments, where
users often need to interact with screens that are not in
reach. Instead of physically moving to the remote screen,
users can extend the range of their pointing device to in-
clude the remote device.

Radar View

Radar views visualize
the work areas of all
participants in an
overview of the entire
workspace

Gutwin et al. [1996] propose an interaction technique called
Radar view, which displays a miniature overview of the en-
tire workspace. The user’s and all collaborator’s current
work areas are highlighted with colored rectangles in this
overview. The overview can also be used for navigation by
dragging the rectangle representing the user’s work area to
a different location. Additionally, users can point to remote
targets or interact with remote objects by interacting with
the miniature representation of the target in the overview.

Radar views can be
used to visualize
collaborative activities

In collaborative settings Radar views can be augmented
with portraits or other personalized information to link the
various work areas in the overview with the collaborators

40 3 Related Work

Figure 3.8: The
Radar view displays
an overview of the en-
tire workspace with the
active work areas of all
participants highlighted.
Picture taken from
Gutwin et al. [1996].

(see Figure 3.8). The user’s awareness of the collaborators’
activities can be increased further by showing the individ-
ual pointer positions of all participants.

Radar views can be
applied to multi-display
environments by
arranging the individual
device spaces in a
virtual workspace

In a multi-display environment Radar views can be used
to access remote displays by arranging the visible areas of
all displays in a virtual environment, which is then shown
in the overview of the Radar view. This way, users can ac-
cess and interact with all displays from a personal device
by either dragging their own view port to the miniature
representation of the display or by directly interacting with
the remote device through the miniaturized version in the
overview.

Hyperdragging

Hyperdragging allows
users to drag objects
beyond the boundaries
of an interactive display
onto the surrounding
surfaces

Hyperdragging by Rekimoto and Saitoh [1999] allows users
to exchange information between multiple devices by mov-
ing it through the physical space between the devices.
Dragging objects beyond the boundaries of a device is en-
abled by augmenting the surrounding surfaces with pro-
jected screens. Users can then drag objects from an interac-
tive device to the surrounding Augmented surface using the
mouse. The dragged objects can be left on the surface or
dragged further to another device located adjacent to the
same Augmented surface. Figure 3.9 shows two users em-

3.1 Interaction support 41

Figure 3.9: Hyperdrag-
ging allows users to drag
objects from an interac-
tive device through the
surface surrounding the
device to other devices.
Picture taken from Reki-
moto and Saitoh [1999].

ploying Hyperdragging to collaborate on and exchange in-
formation via an Augmented surface on a desk.

Hyperdragging is used
to navigate the spatially
continuous workspace
created by Augmented
surfaces

Hyperdragging was designed to navigate a spatially con-
tinuous workspace that is spanned across multiple de-
vices by creating Augmented surfaces between the devices.
Through this continuous workspace, multiple interactive
devices are connected and can exchange information with
one another and the augmented workspace. To this end,
users use hyperdragging to access all parts of the aug-
mented workspace and transfer information to the environ-
ment and other devices through Drag-and-drop.

42 3 Related Work

Figure 3.10: Drag-and-pop (left): By dragging an object towards other, compatible objects, these
objects are replicated close to the cursor and can be targeted by releasing the mouse button on
the replication. Drag-and-pick (right): By dragging the mouse cursor without selecting an object, all
objects in the direction of the mouse motion are replicated close to cursor and can be actuated by
releasing the mouse button on the desired object. Pictures taken from Baudisch et al. [2003].

Hyperdragging was
extended with several
design concepts to
facilitate information
sharing collaboration

To facilitate collaboration and information sharing, hyper-
dragging was extended with several design concepts. The
anchored cursor visualizes the connection between a re-
mote cursor and the interactive device from which it is con-
trolled with a line from the device to the cursor. Users can
use this visual cue to identify their own cursor and distin-
guish it from the collaborators’ cursors. Augmented sur-
faces can be used to hold and share information. Objects
placed on a shared surface can be accessed and manipu-
lated by all collaborators. Finally, digital objects can be as-
sociated with physical objects that are placed on the Aug-
mented surface, similar to how the passage technique as-
sociates digital objects with physical artifacts. The linked
objects can then be transferred to a remote location by car-
rying the physical object to the desired location.

Drag-and-Pop and Drag-and-Pick

Drag-and-drop can be
extended to allow
remote interaction

Baudisch et al. [2003] present two interaction techniques for
transferring objects on large displays to locations that are
beyond the user’s reach. Both techniques are extensions
of the commonly used Drag-and-drop, where objects are
moved by dragging them with a mouse or, in this case, an
interactive pen. Upon starting a dragging motion the ap-
propriate remote objects in the direction of the motion are
brought close to the cursor. Drag-and-pop uses this tech-
nique to allow users to drag objects to unreachable loca-

3.1 Interaction support 43

3

2

1
Tablet PC

Table
3

1

2

sling pantograph

Figure 3.11: Slingshot
and Pantograph allow
users to move objects
to remote locations by
dragging a pen from the
object towards (Pan-
tograph) or away from
(Slingshot) the remote
location. The pen move-
ment is then amplified
to allow reaching re-
mote objects. Picture
taken from Nacenta
et al. [2005].

tions. Drag-and-pick allows users to actuate remote objects.
Figure 3.10 illustrates these interaction techniques.

Drag-and-pop and
Drag-and-pick can be
used as multi-device
interaction techniques

Drag-and-pop and Drag-and-pick can be utilized to access
remote objects or transfer objects to remote devices. To this
end, the objects that are brought close to the cursor also
include objects from remote devices that are located in the
direction of the dragging motion. By dragging the touch
pen on the tablet towards icons on the computer screen,
these icons are replicated on the tablet display and can be
actuated by releasing the pen on them.

Pantograph and Slingshot

Pantograph and
Slingshot amplify pen
movement to reach
distant targets

Pantograph and Slingshot by Hascoet [2003] are similar in-
teraction techniques that translate short pen dragging into
long object movement. Pantograph follows the metaphor
of throwing an object: the pen is dragged from the ob-
ject towards the destination. Slingshot, on the other hand,
follows the metaphor of a physical Slingshot: the pen is
dragged from the object away from the destination. Both
techniques are initiated by tapping the pen on the target ob-
ject that should be moved. The distance of the object move-
ment is then defined by a multiple of the distance of the pen
movement. Additionally, users can control the direction of
the object movement by moving the pen sideways. To aid
aiming, the system gives constant feedback about the pro-
jected destination of the object. Figure 3.11 illustrates the
two interaction techniques.

Pantograph and
Slingshot support
multi-device interaction

The Pantograph and Slingshot interaction techniques sup-
port multi-device interaction similar to how Drag-and-pop
and Drag-and-pick allow users to bridge multiple devices.

44 3 Related Work

Figure 3.12: Superflick
allows users to “flick” a
digital object to a remote
location by applying
inertia to it. To enhance
precision, users can
move the object after the
flick by moving the pen.
Picture taken from Reetz
et al. [2006].

By moving the pen towards (Pantograph) or away from
(Slingshot) another interactive device, the destination can
jump onto that device allowing users to transfer objects be-
tween devices. Multiple devices can be distinguished by
direction and distance.

Superflick

Superflick allows users
to “flick” objects to their
destination

Superflick by Reetz et al. [2006] is an interaction technique
that allows users to roughly “flick” objects to remote loca-
tions and subsequently position the object precisely. A flick
is initiated by holding the pen on the object and dragging
and releasing the pen in a quick motion towards the desired
destination. The object continues to move towards the des-
tination with decreasing speed, just like a physical object
would continue to move because of inertia. The user can
adjust the final position of the object after the flick by hold-
ing and moving the pen on the now empty surface next to
the user. The Superflick interaction technique is illustrated
in Figure 3.12.

Objects can be “flicked”
to remote devices

Superflick can be used to transfer objects to remote devices
by flicking the object in the direction of the device. When
the object reaches the boundary of a device with some in-
ertia left, it jumps to the next remote device in the direction
of movement and continues its trajectory there. Once the

3.1 Interaction support 45

object stops, the user can position it precisely on the remote
device by dragging the pen on the local device.

TractorBeam

TractorBeam augments
a pen’s touch interaction
with remote pointing

TractorBeam by Parker et al. [2005] is a hybrid point-touch
interaction technique that allows users to switch between
touch and pointing to interact with objects. TractorBeam
is controlled with a pen, which is used as usual to interact
with objects in reach. Additionally, when lifting the pen
above a certain threshold, users can point at remote objects
to interact with them. Thus, the user can decide whether to
use the pen as a touch device or as a pointing device.

TractorBeam supports
multi-device interaction

TractorBeam supports multi-device interaction by allowing
users to point at objects located on remote devices. Even
though the initial design of TractorBeam only considers tar-
get acquisition, it can be easily augmented with physical
buttons on the pen to enable moving or actuating remote
objects. Additionally, since users can point at reachable tar-
gets as well as remote targets, they can use TractorBeam to
move unreachable objects into reach. After moving an ob-
ject this way, it can be manipulated via direct touch with
the pen. Later, the object can be moved back to its original
position using TractorBeam.

PointRight

PointRight allows users
to redirect their input to
other devices by moving
the mouse cursor
beyond the boundaries
of the local screen
towards another device

PointRight by Johanson et al. [2002b] is a peer-to-peer in-
put device redirection system that allows users to dynami-
cally control remote devices with the keyboard and mouse
of their personal device. The available devices are arranged
in a virtual space, where each screen is connected to up to
four neighboring screen via the sides of the device. The vir-
tual arrangement of the devices should be chosen to match
the physical layout of the displays. Users can then trans-
fer their input from one device to a neighboring device
by moving the mouse pointer beyond the boundary of the
screen in the direction of the target device. Upon reaching
the screen boundary, the cursor immediately jumps to the
next device and all input is redirected to that device.

PointRight transfers the
established interaction
technique of operating
multiple displays on a
single computer to a
multi-display
environment

The PointRight interaction technique reflects how today’s
personal computers give users access to multiple connected

46 3 Related Work

displays: Moving the mouse cursor beyond the bound-
ary of the primary display in the direction of the sec-
ondary display transfers the mouse cursor to the second
display. PointRight uses this well-established interaction
technique to connect the multiple devices of the iRoom (see
section 3.2.1) to form a coherent system that can be oper-
ated from a single mouse and keyboard.

Perspective Cursor

The Perspective cursor
allows users navigate a
single mouse cursor
across multiple displays
under consideration of
the user’s perspective

Similar to PointRight, the Perspective cursor by Nacenta et al.
[2006] enables multi-device interaction by allowing users to
traverse multiple devices with a single cursor. However,
the Perspective cursor addresses the misalignment that oc-
curs when users control this cursor on a remote device that
is viewed from an angle. Instead of keeping the mapping
between mouse movement and cursor movement constant,
the Perspective cursor adjusts this mapping according to
the perspective of the user. Through this adjustment, the
cursor movement appears consistent from the user’s per-
spective.

Perspective correction is
achieved by simulating
the work environment in
a 3D space

To enable the adjustment of the cursor movement to the
user’s perspective, the position of the user and all em-
ployed devices are tracked in a 3D space. In this space,
the cursor is represented by a vector that originates from
the position of the user. Moving the mouse controls the
direction of this vector: horizontal movement changes the
horizontal angle and vertical movement changes the ver-
tical angle of the vector. The actual cursor position is lo-
cated at the intersection of the vector and one of the de-
vices’ screens.

The Perspective cursor
remains static upon user
movement, adjusts its
size to the user
perspective, and is
visualized on all devices

The design of the Perspective Cursor includes several fea-
tures that improve its overall visibility. To avoid accidental
cursor movement, the cursor is fixed to its current position
when the user moves. In other words, the origin of the vec-
tor is adjusted, while the point of interception is fixed. Fur-
thermore, the size of the cursor is kept constant in the per-
spective of the user by adjusting the cursor size based on
the distance between the device and the user. Finally, the
off-screen cursor position and distance is visualized on all
devices that do not show the actual cursor by drawing the
part of the circle with the cursor position at its center that
intersects the edges of the screen similar to the Halo tech-
nique by Baudisch and Rosenholtz [2003]. This technique

3.1 Interaction support 47

Figure 3.13: ARIS uses
an iconic map to rep-
resent the available in-
teractive devices and
their arrangement in
space. The walls of the
room and any devices
hanging on the walls are
projected onto the floor.
The map also includes
non-interactive but char-
acteristic objects such
as tables and doors to
assist user orientation.
Picture taken from Biehl
and Bailey [2004].

helps users locate the cursor by allowing them to estimate
the cursor position when it is located in between devices.

ARIS

ARIS uses an iconic
map that enables users
to relocate running
applications within an
active space

The Application Relocator for Interactive Spaces (ARIS) by
Biehl and Bailey [2004] is an application manager for in-
teractive spaces. It allows users to relocate running applica-
tions to devices within the interactive space by selecting the
target device from an iconic map as shown in Figure 3.13.
To relocate an application, the user opens the iconic map
from a special button on the application’s main window.
Then, the user selects the target of the relocation by clicking
the icon representing the target device. The position of the
application on the remote device’s screen can be adjusted
after the transfer by dragging the mouse on the icon of the
remote device.

The iconic map
visualizes the available
devices and their spatial
arrangement

The iconic map used by ARIS shows all available devices
in the space with an iconic representation. The device icons
are arranged the same way as the physical devices, allow-
ing users to apply their knowledge of the physical space
to navigate the virtual space. To provide additional cues,
characteristic artifacts of the physical environment such as
tables and doors are also included even though they are not
interactive.

48 3 Related Work

ARIS allows input
redirection by hovering
the mouse cursor over
the device to be
controlled

In addition to relocating application, ARIS also allows redi-
recting input to remote devices. Input redirection is en-
abled by opening the iconic map and hovering the mouse
cursor over the target device for a short time. All input
is then redirected to the indicated device. To stop input
redirection, the user opens the iconic map on the currently
controlled device and hovers briefly over the own device.
Input redirection is automatically initiated after an applica-
tion relocation.

3.1.3 Synchronous Gestures

Definition of
Synchronous gestures

Synchronous gestures are “patterns of activity, contributed
by multiple users (or one user with multiple devices),
which take on a new meaning when they occur together
in time, or in a specific sequence in time” [Hinckley, 2003,
p.149]. In other words, interaction gestures obtain a new
meaning when they are conducted in parallel or sequen-
tially on different devices or by different users. For exam-
ple, shaking one device can have a different meaning than
shaking two devices at the same time.

Bumping

Bumping uses a physical
collision of two devices
to initiate a multi-device
operation between the
devices

Bumping by Hinckley [2003] is an interaction technique
based on physically colliding or “bumping” two objects
against each other. For example, portable devices such as
tablets or smartphones can be bumped against each other
or against a fixed surface such as a tabletop display or a
wall screen to initiate an operation that affects both devices.
Such a collision can be detecting with an accelerometer by
watching for time-synchronous acceleration peaks in op-
posing directions on both affected devices. Figure 3.14 il-
lustrates the interaction technique by example of bumping
two tablet computers against each other.

Bumping can be used to
address versatile tasks:
extend a display,
mutually exchange
information, or transfer
content

Hinckley [2003] suggests several examples that use Bump-
ing to enable multi-device interactions. Dynamic display
tiling allows users to combine multiple tablet computers
to form a large display. To this end, the master device
is placed on a horizontal surface and additional devices
are bumped against the master device to extend its dis-
play. Mutual sharing allows devices to exchange informa-
tion with one another. The devices are simply bumped

3.1 Interaction support 49

Figure 3.14: Bumping
allows users to extend
the display of a device
or exchange information
between multiple de-
vices by bumping them
against each other. Pic-
ture taken from Hinckley
[2003].

against each other to trigger the information exchange.
One-way sharing allows a device to transfer information to
another device. This is done by tilting the device that the in-
formation should be sent from while performing the bump.

SyncTap

SyncTap enables multi-
device interaction by
synchronously pressing
a key on multiple devices

SyncTap by Rekimoto et al. [2003] enables users to initi-
ate network connections by synchronously tapping a des-
ignated key on two devices. These network connections
can be used to exchange content between the devices or to
perform automated tasks depending on the devices. For ex-
ample, coupling a digital camera with a desktop computer
this way transfers all images from the camera to the desk-
top. Figure 3.15 illustrates how SyncTap can be deployed
on various device combinations.

3.1.4 Proxemic Interaction

Proxemic interactions
augment interaction
techniques with
knowledge about the
proxemics of people and
objects

Ballendat et al. [2010] describe Proxemic interactions as in-
teraction techniques based on a shared knowledge of sur-
rounding people and objects that includes their position,
identity, movement, and orientation. The sensed objects in-
clude fixed and portable interactive devices as well as com-
mon household objects like furniture, books, kitchenware,
and newspapers. The knowledge of the proxemic relation-
ships between people and objects can be exploited to design
implicit and explicit interaction techniques that can antici-
pate user intentions to some extend and adapt their func-
tionality accordingly.

50 3 Related Work

(a) (b)

(c) (d)

Figure 3.15: SyncTap allows users to initiate network connections between digital devices by syn-
chronously tapping a key on both devices. SyncTap can be used in various situations: (a) Transfer
images from a digital camera to a PC, (b) connect two PCs with each other, (c) print a document from
a PDA, or (d) display a presentation on a wall screen. Pictures taken from Rekimoto et al. [2003].

Figure 3.16: Proxemic
interactions augment
interactive devices with
knowledge about sur-
rounding people and
objects. Picture taken
from Ballendat et al.
[2010].

3.1 Interaction support 51

Proxemics can be used
to augment interactive
systems with implicit
actions that anticipate
user needs

Interactive systems can be improved by adapting their be-
havior implicitly to the proxemics of devices, users, and
their directed attention. For example, a media player can
adapt its information density to the distance between the
media player and the user, revealing more content and
background information about the media as the user comes
closer. However, when the user starts doing something else
like reading a newspaper, the media player can stop offer-
ing content to that user.

The transitions initiated
by these implicit actions
can be continuous or
discrete

The transitions between these different modes of opera-
tions caused by implicit actions based on proxemics can
be either continuous or discrete: A continuous transition
scales the content change uniformly to the movement of the
user. A discrete transition, on the other hand, switches be-
tween different visualizations for different distance zones.
Such a discrete switch is especially beneficial for switching
between awareness and direct attention. When a user en-
ters the room, the media player senses awareness and offers
content to the user. However, if the user does not direct
attention to the media player, it goes back to sleep after a
short while.

52 3 Related Work

Proxemics, especially
between different
physical objects, can
also be used to trigger
explicit interactions

Explicit interactions can be designed based on the proxemic
relationships between different physical objects. For exam-
ple, a portable object can be used to trigger an interaction
on a static device, e.g., by pointing at the device. By sensing
the proxemic relationships between the user, the portable
object, and the direction of the object, this pointing ges-
ture can be turned into an explicit interaction. Similarly,
the device-to-device proxemics of two objects can be used
to exchange information between these devices. For exam-
ple, when bringing a camera close to a media player, the
media player can display the photos taken by the camera.

The Proximity toolkit
provides developers with
tools to sense, monitor,
and debug Proxemic
interactions

A major challenge of enabling Proxemic interactions is to
determine proxemic relationships from raw sensor data. To
this end, the Proximity toolkit by Marquardt et al. [2011]
provides designers with fine-grained proxemic information
about people and objects in a room-sized environment. The
proxemic information is sensed via customizable tracking
plug-ins on a server and is made accessible through an
event-driven programming interface for all clients in the
room. This programming interface allows tracking the ori-
entation, location, identity, and motion of individual ob-
jects and people, as well as the distance between all mea-
sured entities. All of this information can be monitored vi-
sually using the included monitoring tool. Finally, a spe-
cific situation can be simulated by recording and playing
back desirable proxemic sequences.

Proxemic knowledge can
improve many of the
previously discussed
multi-device interaction
techniques

A shared knowledge of the proxemic relationships of peo-
ple and objects can be very beneficial for many of the pre-
viously discussed interaction techniques. Techniques that
associate digital content with physical objects can use prox-
emics to determine where and how to display the content
held by the object. The virtual workspaces used by Radar
view and PointRight can be configured automatically to
match the spatial arrangement of their physical counter-
parts. Directed techniques such as Drag-and-pop, Drag-
and-pick, Pantograph, Slingshot, and Superflick can use the
proxemic relationships to determine the appropriate target
device for their interaction. Synchronous gestures can give
good estimations to resolve conflicts when multiple users
trigger the same gesture at the same time if the proxemic
relationships between devices and users is known. In con-
sequence, Proxemic interactions provide many opportuni-
ties for application in the area of multi-device interaction.

3.1 Interaction support 53

Figure 3.17: An f-
formation is a group of
people standing together
while being engaged in
a joint activity. It defines
three distinct areas for
the group: The O-space
is the area of collabo-
ration, the P-space is
reserved for the collabo-
rators, and the R-space
is excluded from the col-
laboration. Picture taken
from Marquardt et al.
[2012b].

Group Together

Group Together senses
sociological concepts of
people in groups to
facilitate interaction

Group Together by Marquardt et al. [2012b] explores the ap-
plication of F-formations and Micro-mobility for Proxemic
interactions. F-formations are two or more persons col-
laborating by standing in a group. The spatial arrange-
ment of collaborators defines three distinct areas: The in-
ner space (O-space) is reserved for group activities. The
ring space (P-space) is where the collaborators stand. The
surrounding region (R-space) is excluded from the collab-
oration. Figure 3.17 illustrates the three spaces of the f-
formation. Micro-mobility describes how people share in-
formation on devices by tilting them towards each other
to ease group visibility. These sociological constructs can
be exploited to design systems that facilitate group interac-
tion.

Group Together
introduces four
interaction techniques
that leverage common
group behavior

Four interaction techniques were designed based on com-
mon behavior that groups show when collaborating in F-
formations. Tilt-to-preview allows users to share content
with collaborators standing in a group by tapping on the
content to be shared and tilting the device within the in-
ner area of the F-formation. The temporary copy of the in-
dicated content then appears on all devices within the F-
formation. Face-to-mirror enables users to mirror all con-
tent on their device onto all other devices by tilting the de-
vice to a vertical position. Portals are tinted indicators that
appear at the edge of a table when it is slightly tilted to-
wards another tablet. Users can use these Portals to trans-
fer content to other tablets by dragging the content across
the indicator. Cross-device pinch-to-zoom extends the display
of a tablet with other surrounding tablets opportunistically.

54 3 Related Work

Figure 3.18: Gradual Engagement traverses three stages: (1) Users are made aware of available
devices and how they can be connected; (2) Content that can be exchanged between these devices
is revealed; (3) Content is transferred between the devices in a way that is tailored to the participating
devices and possible user tasks. For each stage, several interaction techniques for engaging shared
and personal devices are listed. Picture taken from Marquardt et al. [2012a].

When zooming an object, it is shown on other tablets in the
same F-formation that are close by and held similarly.

Gradual Engagement

Gradual Engagement is
a design pattern to
gradually transition
between awareness and
actuation of information
exchange based on
proxemics

Gradual Engagement by Marquardt et al. [2012a] is a de-
sign pattern for exchanging information between devices
based on Proxemic interactions. The pattern describes how
to gradually engage the user to convey the capabilities of
two devices to exchange information based on their prox-
imity. As users approach a typically fixed device like a wall
screen with a portable device, the fixed device reveals more
and more information about what information can be ex-
changed between the two. For example, when approach-
ing a media center’s screen with a camera, it first displays
a camera icon indicating that information exchange is pos-
sible. As the user moves the camera closer to the media
center, photos appear around the camera icon.

Gradual Engagement
traverses three stages:
(1) devices convey
awareness, (2) devices
reveal exchangeable
content, (3) devices
exchange content

The Gradual Engagement pattern suggests that conveyed
information exchange capabilities flow across three stages:
In the first stage, the device convey to the user that it is
possible to exchange information between them creating
awareness. In the second stage, the devices reveal the con-

3.1 Interaction support 55

tent that can be exchanged. In the final stage, the devices
offer interaction methods for transferring the content. The
device transitions between these stages from the first to the
third gradually as the distance between the device and the
trigger decreases.

3.1.5 Taxonomy of Multi-device Interaction

Under the supervision of the author Zhang [2012] created a
taxonomy of multi-device interaction techniques. The tax-
onomy is an extension of the taxonomy presented by Na-
centa et al. [2009], which organizes multi-device interaction
techniques in three dimensions: the referential domain, the
relationship between input space and display configura-
tion, and the control paradigm. Zhang [2012] developed
seven more classification dimensions to reflect more subtle
aspects of multi-device interaction in the taxonomy.

Taxonomy Dimensions

Input method: input
modalities of an
interaction technique

Input method describes the input modalities used to per-
form the interaction technique. The possible options are
organized in five categories: (1) includes commonly used
pointing devices, such as the mouse or a stylus pen, as well
touch-based systems; (2) includes devices based on physi-
cal buttons, such as keyboards or other special purpose in-
terfaces; (3) includes techniques that employ physical to-
kens to represent digital information, such as RFID tags or
other objects that can be uniquely identified; (4) includes
vision-based techniques that use mounted or environmen-
tal cameras to observe the execution of the interaction tech-
nique; (5) includes techniques that employ other kinds of
sensors to track objects or people, such as a 3D depth cam-
era. The choice of input method describes the technical re-
quirements underlying a system, which mostly influence
how easily the system can be installed in different locations.

Positional mapping:
spatial mapping between
input and output

Positional mapping describes the mapping between input
position, movement, and system action. The positional
mapping can be absolute, relative, or rate-based. When
absolute mapping is used, the physical position detected
by the input device is directly mapped to a virtual posi-
tion (e.g., touch-screen). For relative mapping, the abso-
lute physical position is ignored and instead changes of

56 3 Related Work

the physical position are mapped to changes of the virtual
position (e.g., mouse). Rate-based systems map the abso-
lute physical position or manipulation of the input device
to changes of the virtual position (e.g., joystick). Abso-
lute mappings are arguably more natural to use than other
mappings, however, relative and rate-based systems can be
more precise and also easier to use if indirect control mech-
anisms with a high power of working area are employed
(see below).

Replace-ability of input
devices: the extent to
what an input device can
be replaced

Replace-ability of input devices describes to what extent an in-
put device can be replaced at runtime. Four different types
of replace-ability are distinguished: (1) The input device
cannot be replaced. (2) The system can be used with a va-
riety of input devices of a specific kind, but the replace-
ment device must be configured prior to its use. (3) Any
input device of a specific kind can be used without prior
configuration. (4) Any object can be used as input without
prior configuration, including non-interactive objects. The
higher the replace-ability is, the easier it is for the user to
appropriate the system by using diverse input devices.

Power of working area:
distance between the
user’s hand and the
furthest reachable virtual
position

Power of working area refers to the distance between the
user’s hand and the furthest possible virtual destination
that can be reached. Three different levels of power are dis-
tinguished: (1) Within hand’s reach (high power) refers to
systems that allow users to control distant devices without
moving their arm significantly (e.g., wireless mouse and
keyboard). (2) Within arm’s reach refers to systems that re-
quire the user to use up to the full length of the arm to reach
or point to remote devices (e.g., remote control). (3) Be-
yond arm’s reach refers (low power) to systems where the
user needs to physically move to a distant device to manip-
ulate it (e.g., direct touch or stylus-based systems). While
designing for high power of working area is desirable to re-
duce the effort needed to interact with remote devices, low
power systems benefit from a more natural spatial mapping
between the physical layout and the virtual space.

Referential environment:
reference method to
identify target devices

Referential environment describes the reference method used
to indicate the target of a multi-device operation. The refer-
ence methods can be coarsely divided into two categories:
spatial and non-spatial methods. Non-spatial methods or-
ganize the possible target devices in a way that does not re-
flect the spatial arrangement of the physical devices. A dis-
crete referential environment is such a non-spatial method
that uses some discrete list or hierarchy of names to give

3.1 Interaction support 57

access to all possible targets of the environment. A vir-
tual space that arranges devices spatially but does not re-
flect the spatial arrangement of the physical devices is also
a non-spatial referential environment. Spatial methods, on
the other hand, reflect the physical arrangement of devices
in their organization. A virtual environment that resembles
the arrangement of the physical devices in its virtual coun-
terpart is considered a spatial method. Finally, the physical
environment itself can also be used as a spatial referential
environment. Spatial methods can be easier and more nat-
ural to use because they make use of the existing physical
arrangement of devices to identify a target and thus elim-
inate the need to learn a different mapping. Non-spatial
methods, on the other hand, can facilitate different proper-
ties of the available devices to give access to them by need
(e.g., list all objects that can print), and methods with high
power can benefit from a hierarchical organization to re-
duce the space needed.

Input model type:
mapping between
devices in the physical
and virtual space

Input model type describes the mapping between the physi-
cal and the virtual arrangement of devices. It only applies
if a spatial referential environment is used to identify tar-
get systems. The input model can be planar, perspective,
or literal. In a literal model, the physical environment itself
is used as the virtual space and no mapping is performed.
In the planar and the perspective model, the 3-dimensional
environment must be mapped to a 2-dimensional plane to
allow the visualization of the virtual space on current dis-
play technology. In the planar model, this mapping ig-
nores the user’s position and typically uses a simplified
representation of the arrangement of devices and key ob-
jects in the environment. In the perspective model, the
mapping is based on the user’s perspective and attempts
to present the virtual environment in a way that closely
resembles the user’s current view of the physical space.
While the perspective model is a more natural representa-
tion of the space, it requires knowledge about the user’s po-
sition, which can be challenge in a multi-user environment,
and it reduces the user’s ability to learn the spatial arrange-
ment of the virtual space as it changes with the position of
the user.

Feed-forward: ability to
see and influence the
target of an operation
during its execution

Feed-forward describes the extend to which a system allows
a user to manipulate the final destination of multi-device
operations during their execution. An open-loop system
can visualize the final destination of an operation during

58 3 Related Work

Input Method Positional Mapping Replace-ability of input device Power of Working Area

Mouse/
Pen/Finger

Token-
based

Tracking
s./Motion
sensing/
Sensor-
based

Button-
based

Vision -
based

Relative Absolut
e

Rate-
based

Dedicat
ed

Alterna
tive

Compa
tible

Use
anythin

g
as

Input

Within
Handʼs
Reach

Within
Armʼs
Reach

Beyond
Armʼs
reach

Radar View

Hyperdragg
ing

Passage

Perspective
Cursor

Drag-and-
Pop/Pick

Superflick

Pantograph
and

Slingshot

Deepshot

IM-based
Techniques

TractorBea
m

Pick-and-
Drop

SyncTab

Synchronou
s Gesture

Figure 3.19: Classification of 13 multi-device interaction techniques according to the Input method,
Positional mapping, Replace-ability of input devices, and Power of working area. Picture taken from
Zhang [2012].

the planning phase of the operation but provides no con-
trol over the destination once the operation was executed.
A closed-loop system, on the other hand, enables the user
to adjust the final destination of an operation at all times
during its execution. While closed-loop systems give users
finer-grained control over multi-device operations, they of-
ten require the user to pay attention during the entire ex-
ecution phase and cannot display the target and conse-
quently the impact of the operation before execution.

Feedback: sensory
channels used to notify
the user about the
impact of operations

Feedback describes how the system informs the user about
operations and their impact. This information can be pro-
vided in the form of visual, audible, or haptic feedback. Vi-
sual feedback is the most common type of feedback and
should always be included. Audible and haptic feedback,
however, are valuable extensions to visual feedback that do
not require the user to pay direct attention to the system to
be perceived. On the downside, audible and haptic feed-
back can be disruptive.

3.1 Interaction support 59

Referential Environment Input Model Types Feed-forward Feedback

Spatial Non-spatial Planar Perspec
tive

Literal Open-
loop

Closed-
loop

Visual Audio Haptic

Coupled virtual and
physical space

Physical space Discrete/
No

topology

Virtual
space

Radar View

Hyperdragg
ing

Passage

Perspective
Cursor

Drag-and-
Pop/Pick

Superflick

Pantograph
and

Slingshot

Deepshot

IM-based
Techniques

TractorBea
m

Pick-and-
Drop

SyncTab

Synchronou
s Gesture

Figure 3.20: Classification of 13 multi-device interaction techniques according to Referential environ-
ment, Input model type, Feed-forward, and Feedback. Picture taken from Zhang [2012].

Parallelism: ability to
support multiple users
and operations in
parallel

Parallelism describes the ability of the system to be used
in parallel. Parallel use can be performed by a single or
multiple users, resulting in four distinct cases to be con-
sidered: Single-user, single-operation restricts the interac-
tion with the system to a single operation at a time. Single-
user, multi-operation allows a single user to perform mul-
tiple operations in parallel, while restricting the use of the
system to a single user at a time. Conversely, multi-user,
single-operation allows multiple users to interact with the
system in parallel but restricts each user to perform a single
operation at a time. Multi-user, multi-operation is the most
flexible solution that allows multiple users to each perform
multiple operations in parallel. Supporting increased par-
allelism can pose a significant challenge for the technical
design of a system as each parallel operation and user must
be identified as such and performed independent of any
other operations that are currently active.

60 3 Related Work

Multiple Users Single User Identification

Parallel
Operation

Serial
Operation

Parallel
Operation

Serial
Operation

Distributed
User ID

Centralized
User ID

No User ID/
Device ID

Visual
labeled

System
identified

Radar View

Hyperdragging

Passage

Perspective
Cursor

Drag-and-
Pop/Pick

Superflick

Pantograph
and Slingshot

Deepshot

IM-based
Techniques

TractorBeam

Pick-and-Drop

SyncTab

Synchronous
Gesture

Figure 3.21: Classification of 13 multi-device interaction techniques according to Parallelism and
Identification. Picture taken from Zhang [2012].

Identification: method to
manage the ownership
of operation for multiple
users

Identification describes how the system manages the owner-
ship of operations if multiple users perform operations in
parallel. Users can be identified in two distinct ways: A
distributed user identifier allows users to specify their own
identify, which is then distributed as needed in the environ-
ment. A centralized user identifier, on the other hand, is
specified beforehand in the system and each participating
device must authenticate with the identity server prior to
using the system. Additionally, the system can ignore user
identities and instead only identify devices as owners of
operations. The choice of identification method largely de-
pends on the tasks and the integration of the multi-device
environment into other systems that might prescribe cer-
tain identification methods.

Classification of multi-device interaction techniques

13 interaction techniques
were classified using the
presented taxonomy

Figures 3.19, 3.20, and 3.21 show how 13 interaction tech-
niques are classified in the taxonomy presented in this

3.2 System Support 61

section. All of these techniques, except for “IM-based
Techniques”, are described in the text above. IM-based
techniques are interaction techniques that use an instant-
messaging protocol such as Jabber1 to communicate and
transfer data between different devices.

The classification can be
used to identify
appropriate interaction
techniques for specific
multi-device scenarios

Since the appropriateness of the characteristics of the dif-
ferent dimensions often depends on the usage scenario, it
is impossible to deduce an abstract rating of the “good”-
ness of these interaction techniques from the classification.
However, the classification can be used to identify appro-
priate interaction techniques for a given multi-device sce-
nario. If, for example, it is important to use a perspective
input model type that is within-hands reach, then the Per-
spective cursor can be quickly identified as an appropriate
interaction technique.

3.2 System Support

3.2.1 Ubiquitous Computing and Roomware

Ubiquitous computing
aims at making the
computer disappear,
allowing us to focus our
attention on the tasks
and goals instead of the
interaction

Most of the research in multi-device interaction was moti-
vated at least in part by Mark Weiser’s vision of Ubiquitous
computing. In his seminal article, Weiser [1991] juxtaposes
computer technology with writing technology: Writing has
become almost invisible in our world, allowing us to use it
for versatile tasks without paying attention to the writing
technology itself. Computing, on the other hand, remains
to be very visible, drawing our attention to the technology
instead of allowing us to focus on the tasks and goals that
we are using it for. Ubiquitous computing aims at resolving
these shortcomings by removing the computer from our di-
rect attention and instead embedding it in the environment,
where it assist us with our tasks and goals when needed but
without demanding our attention while doing so.

Three device classes
make up the interaction
space of Ubiquitous
computing: tabs, pads,
and boards

Weiser [1991] identified three fundamental sizes for ubiqui-
tous computers: Tabs are small, location-aware interactive
devices similar to today’s smartphones that people carry
around with them as personal devices. Pads are scrapbooks
the size of a piece of paper similar to today’s tablet com-
puters that anyone can pick up and use when needed and
discard afterwards. Boards are large displays similar to to-

1http://jabber.org

http://jabber.org
http://jabber.org

62 3 Related Work

day’s wall screens and table-top displays mainly used for
sharing information with others.

Ubiquitous computing
requires a seamless
transition between
multiple devices

Three major technologies play an essential role in the re-
alization of this vision of coordinated device usage: (1)
It must be possible to create cheap and low-powered de-
vices in great quantities; (2) There must be extensive and
high-speed wireless network coverage for these devices; (3)
Software systems must support a seamless experience that
spans multiple devices. While the first two technologies are
becoming more and more reality today, the third demand
remains an unsolved challenge.

Roomware connects
multiple devices in a
room to form a coherent
space

Roomware systems address the third challenge of ubiqui-
tous computing by exploring how software can span an
entire room by combining the available devices to form a
coherent workspace called interactive space. Many techni-
cal solutions for roomware systems have been developed,
which differ mostly in the technical aspects of the infras-
tructure. Two influential systems are discussed in the next
two sections: the iRoom, and i-LAND.

Interactive Workspaces Project

The iRoom is an
interactive space that
was designed according
to several guiding
principles

The Interactive Workspaces project (or iRoom) by Johan-
son et al. [2002a] investigates the design and use of multi-
display environments (MDEs) that combine multiple inter-
active devices, including portable devices brought by the
users, into a coherent system. The iRoom consists of sev-
eral wall-sized displays, a tabletop display, and the devices
that users bring with them into the room. The guiding prin-
ciples of the iRoom project are:

•The iRoom was used
actively by the group

Practice what we preach: The iRoom was used actively
by the group to conduct meetings.

•Focus on co-located
cooperative work

Emphasize co-location: The iRoom focuses on co-
located collaboration in a shared physical space.

•Provide simple means to
adjust the environment
to the user

Reliance on social conventions: Instead of reacting to
users intelligently, the iRoom makes it easy for users
to adjust the room to their needs while using it.

•Design for general use Wide applicability: The design of the iRoom strives for
the room to be as flexible as possible, allowing it to be
used in many different situations.

3.2 System Support 63

Figure 3.22: iROS consists of three subsystems: The Event Heap facilitates dynamic application
coordination through decoupled event propagation via a tuple space. The Data Heap acts as a
central data storage for distributed applications. The iCrafter provides advertisement and remote
invocation capabilities for distributed services and supports on-the-fly user interface generation for
these services. Picture taken from Johanson et al. [2002a].

• Keep the UI and the
system design simple

Keep it simple: The UI design and software develop-
ment interfaces should be as simple as possible.

The iRoom was
designed to support
moving data and control
across all devices and a
dynamic coordination of
diverse applications

The iRoom was designed to support three basic task char-
acteristics: Moving data between devices and applications.
Moving control between devices such that any input device
can be used to control any application running in the space.
Dynamic application coordination allows diverse task applica-
tions to be coordinated in manifold ways. These tasks are
executed in a dynamic and heterogeneous environment (a
changing variety of diverse devices is used), where users
interact with multiple devices and applications in parallel.

The iRoom is driven by
the middleware
infrastructure iROS,
which consists of three
major subsystems

The middleware infrastructure underlying the iRoom is
called the Interactive Room Operating System (iROS). It ties
together the devices included in the interactive workspace,
which all have their own low-level operating system. The
design of iROS follows three general design principles:
iROS applications are decoupled from one another allow-
ing the dynamic rearrangement of devices and applica-
tions. Any devices that fail during operation of the room
can be reset by simply restarting the device. Web technolo-
gies are used to render user interfaces where possible. The
following three subsystems make up iROS (see Figure 3.22
for an overview):

• The Event Heap
coordinates applications
through shared events

The Event Heap is a coordination infrastructure for the
applications running in the iRoom. It is based on a
shared tuple space, where ordered collections of values
called tuples can be posted to and read from a shared

64 3 Related Work

space. Tuples are queried by providing a tuple tem-
plate, which defines the fields of the tuple that the re-
turned tuples must match. This read operation can be
instructed to “consume” the tuple after retrieval, i.e.,
remove it from the shared space. A detailed descrip-
tion of the Event Heap is given by Johanson and Fox
[2002].

•The Data Heap allows
applications to store and
exchange data

The Data Heap provides a centralized data storage
for the iRoom. Any application can request to store
data in the Data Heap, which can subsequently be re-
trieved independent of the device. The stored data is
organized with a custom set of attributes, which can
be used to query and retrieve the data later on.

•iCrafter provides an
interface to available
room services and
allows the dynamic
combination of these
services

The iCrafter system is a framework for services in ubiq-
uitous computing environments. It facilitates ser-
vice discovery and invocation, which is done via the
Event Heap. Additionally, it allows users to select
one or more services and service usage patterns to
generate an adapted user interface. This generated
user interface gives access to the service functional-
ities or combines services through a predefined pat-
tern, e.g., move data from a data provider to a data
consumer. For a detailed description of the iCrafter
system, please refer to Ponnekanti et al. [2001].

Interactive Landscape for Creativity and Innovation

i-LAND is an interactive
space with integrated
information and
architectural spaces and
support for dynamic,
flexible, and mobile
group cooperation

The interactive Landscape for Creativity and Innovation (i-
LAND) by Streitz et al. [1999] is an interactive workspace
for dynamic teams. It consists of a wall-sized display, a
tabletop display, and several mobile chairs with built-in
tablet-sized displays. The environment was designed to in-
tegrate information and architectural spaces by augment-
ing furniture and other architectural artifacts with com-
puting technology. Furthermore, i-LAND was designed to
support a high degree of dynamics, flexibility, and mobility
in group cooperation.

The BEACH application model by Tandler [2004] defines
the high-level structure of ubiquitous computing applica-
tions in i-LAND. It consists of three design dimensions:

•Separating basic
concerns

Separating basic concerns organizes applications into
five models that pursue well-defined purposes: The
application model and data model specify what tasks can

3.2 System Support 65

be performed on what types of data. The environment
model encapsulates the available context information
of the physical environment. The user interface model
defines the user interface to access the tasks from the
application model based on the provided context in-
formation from the environment model. The interac-
tion model relies on all other models to specify the in-
teraction styles of the environment.

• Coupling and sharingCouping and sharing denotes the distribution of ap-
plications across multiple devices by operating on
shared data and coupling the state of applications.
In the BEACH model, this notion is applied to the
separation of concerns into five models: Each model
can be shared among other devices and applications
in the room: Sharing the data model enables multiple
applications to work on the same data. Sharing the
application model enables the tight coupling of appli-
cations and their user interfaces through their state.
Sharing the user interface model enables distributed user
interfaces that are spread out across multiple devices.
Sharing the environment model enables multiple de-
vices to share a common understanding of the envi-
ronment. Sharing the interaction model enables interac-
tion styles that span multiple devices, such as Passage
(see section 3.1.1).

• Conceptual levels of
abstraction

The implementation of each of above models can
be considered at four different levels of abstrac-
tion: The core level encapsulates the low-level
handling of the platform-dependent functionality.
The model level defines application-, domain-, and
platform-independent abstractions of low-level tasks.
The generic level provides reusable functionality in
the form of application-independent but domain-
dependent components. The task level implements tai-
lored support for the tasks of the application.

Figure 3.23 illustrates how the three dimensions of the
BEACH application model can be utilized to structure ap-
plications for ubiquitous environments: First, the applica-
tion is split up into components according to the models of
the separation of concerns dimension at a given level of abstrac-
tion. Then, for each component the appropriate degree of
coupling and sharing is determined, depending on the level
of collaboration that is desired.

66 3 Related Work

Figure 3.23: The design dimensions of the BEACH application model: Applications are separated
into five models representing different concerns; For each model, the appropriate degree of coupling
and sharing must be determined; Support for these models can be implemented at four levels of
abstraction. Picture taken from Tandler [2004]

Roomware systems are
tailored to a specific
environment and cannot
be used outside this
environment

Roomware solutions are designed to augment a defined
workspace with computing technology to improve collab-
oration and other work activities. Even though these so-
lutions allow multiple devices to be used in a coordinated
fashion, they cannot be readily applied to multi-device in-
teraction in the wild. The main restriction of Roomware
solutions is that they are typically bound to a specific en-
vironment with services that are tailored to this environ-
ment. These services drive the multi-device coordination
and they become unavailable once the user leaves the en-
vironment. Consequently, Roomware solutions cannot ad-
dress the opportunistic nature of multi-device interaction
in the wild.

3.2.2 Instrumental Interaction

Instrumental interaction by Beaudouin-Lafon [2000] is an in-
teraction model for graphical user interfaces. In this context
an interaction model is defined as:

Definition: Interaction
Model

An interaction model is a set of principles, rules
and properties that guide the design of an in-
terface. It describes how to combine interaction
techniques in a meaningful and consistent way

3.2 System Support 67

and defines the “look and feel” of the interac-
tion from the user’s perspective. Properties of
the interaction model can be used to evaluate
specific interaction designs. [Beaudouin-Lafon,
2000, p446]

In instrumental
interaction users
manipulate domain
objects with instruments

Instrumental interaction is an interaction model that ex-
tends and generalizes the principles of direct manipulation,
based on how we naturally use tools, called instruments, to
manipulate objects of interest, called domain objects. Do-
main objects are the data that applications operate upon.
They are the primary focus of the user and form the basis
and purpose of the interaction. Interaction instruments are
mediators between users and domain objects. They decom-
pose interaction into two layers: (1) the physical action of
the user on the instrument, and (2) the command sent to
the domain object and its response (feedback). An Interac-
tion instrument is the reification of one or more commands.
Instruments can themselves be domain objects, which are
operated upon using meta-instruments.

The instrumental interaction model can be used to describe
and compare existing interaction techniques, and facilitate
the process of generating new interaction techniques. To
this end, Beaudouin-Lafon [2000] suggested the follow-
ing three metrics to describe and compare interaction tech-
niques:

• Degree of indirection:
spatial and temporal
offset between
instrument and domain
object

The Degree of indirection measures the 2-dimensional
offset (spatial and temporal) between an instrument
and a domain object. The spatial offset is the dis-
tance between the logical part of the instrument and
the domain object it operates upon. The temporal off-
set is the time difference between actuation of an in-
strument and the response of the object, or its feed-
back. In general, the smaller the degree of indirection
is, the more direct and responsive a user interface is
and consequently the more desirable it is.

• Degree of integration:
ratio between the
degrees of freedom of
the instrument and the
input device

The Degree of integration measures the ratio between
the degrees of freedom of the instrument and the in-
put device. A degree of one is typically most desirable
as it corresponds to a natural mapping between input
and output. If the ratio is above one, more degrees of
freedom are controlled with an input device than the
device provides, which often results in a complicated
mapping. If the ratio is below one, the input device is

68 3 Related Work

not used towards its full potential as some of its de-
grees of the freedom are ignored.

•Degree of compatibility:
similarity of physical
actions and their
response

The Degree of compatibility measures the similarity be-
tween physical actions on the instrument and the re-
sponse of the domain object. Direct manipulation ac-
tions have a high degree of compatibility as the ac-
tions have a direct and corresponding response of the
object that is manipulated. Indirect manipulation ac-
tions, such as specifying changes via commands and
values, have a low degree of compatibility as the ac-
tions that lead to the specification of the command are
unrelated to the manipulation of the object.

Ubiquitous Instrumental Interaction

Ubiquitous instrumental
interaction makes
domain objects and
instruments into freely
exchangeable among
people and devices

Klokmose and Beaudouin-Lafon [2009] extended the in-
strumental interaction model to explicitly consider multi-
device interaction. This extension, called Ubiquitous instru-
mental interaction, turns instruments into explicit constructs
that can be exchanged between users and devices. With
this extension the authors pursued two major goals: The
first goal is to enable distributed interfaces with fluid in-
teraction across stationary and mobile devices. The second
goal is to allow the dynamic configuration of those inter-
faces according to the available devices and user needs.

The VIGO architecture
implements the concepts
of ubiquitous
instrumental ineraction

Based on this extension of the instrumental interaction
model, Klokmose and Beaudouin-Lafon [2009] developed
the VIGO architecture (Views, Instruments, Governors, Ob-
jects). In this architecture objects are passive data contain-
ers that expose their state through well-defined properties,
which are synchronized across all devices in the environ-
ment. Views are device-dependent translations of these ob-
jects into modalities that are perceivable by the users but do
not contain any form of interaction. Instead, instruments
embody the possible interactions with objects and act as
mediators between users and objects. At the same time, in-
struments are not coupled with specific objects but instead
provide general functionality that can be dynamically at-
tached to any existing objects and distributed among the
devices of the environment. Finally, governors implement
the application logic of objects by moderating and reacting
to changes to the object properties from instruments. They
are separate from objects and instruments to facilitate reuse
of governors among different objects.

3.2 System Support 69

B/D

B/D

B/D

B/D

Object
Oriented

D

DD

D D

B

B

B

B

B

Data
Oriented

Figure 3.24: In object-
orientated programming,
data (D) and behavior
(B) is merged into Ob-
jects. In data-oriented
programming, data and
behavior are separated
and loosely coupled, al-
lowing flexible coupling
of data and behavior at
runtime. Picture taken
from Gjerlufsen et al.
[2011].

Shared Substance

Shared Substance is a
programming framework
for distributed
applications based on
data-oriented
programming

Shared Substance by Gjerlufsen et al. [2011] is a program-
ming framework to support the development of interac-
tive applications that can span multiple devices. It is based
on a flexible notion of sharing that is achieved by decou-
pling data from behavior and sharing both data and behav-
ior across distributed devices. These sharing mechanisms
are implemented close to the programming language in the
form of a data-oriented programming framework called Sub-
stance. Through data-oriented programming, sharing and
distribution of data and behavior across multiple devices is
enabled at the lowest possible level, making it as transpar-
ent as possible for developers.

Data-oriented
programming separates
data from behavior

Data-orientation is a programming model that pursues the
fundamental separation of data from behavior. Figure 3.24
shows a comparison between object-oriented program-
ming and data-oriented programming. In data-oriented
programming, data is stored as properties of nodes and be-
havior is stored in facets. Nodes are organized in a tree such
that each node can be uniquely identified by its path. Facets
can be dynamically added to and removed from nodes at
runtime to have the behavior associated to or dissociated
from the data. As such, facets resemble aspects in aspect-
oriented programming (see Kiczales et al. [1997]). How-
ever, aspects are typically applied globally to all instances
of a class, while facets are applied only to specific data in-
stances.

Substance is a reference
implementation of
data-oriented
programming in Python

Substance is a reference implementation of the data-
oriented programming model in the programming lan-
guage Python. Nodes are simple data structures that may
contain only values, representing the properties of the data.

70 3 Related Work

Figure 3.25: A Shared
Substance environment
contains four specific
subtrees at the root level
(circles are nodes and
triangles are facets):
App contains the appli-
cation logic, resource
contains references to
local resources, local
contains the local con-
figuration, and world
contains references to
all discovered environ-
ments. Picture taken
from Gjerlufsen et al.
[2011].

environment

resource

net
osc

discovery

bonjour

local

bearers

worldapp

Application
subtree

Facets are Python objects that may contain handlers, pub-
lishers, and errors. Handlers are the equivalent of object-
oriented methods, which can be called to trigger specific
behavior. Publishers are used to emit events, which other
facets can listen to and respond. Since facets are simple ob-
jects, they can inherit functionality from any public class,
including graphics toolkits such as Qt2.

Shared Substance is a
distributed application
model that organizes
applications in
environments and
facilitates
communication via
shares

Shared Substance employs Substance to implement a dis-
tributed application model. A distributed application com-
prises several environments, which are remotely discover-
able Shared Substance processes running on different de-
vices. These environments communicate with one another
and other applications through shares, which are publicly
available subtrees.

Shared Substance
environments follow a
standard organization

Every Shared Substance environment contains four specific
subtrees at the root level (see also Figure 3.25) The app
subtree contains the application logic. The resource sub-
tree contains representations of all locally available phys-
ical resources. The local subtree contains the local configu-
ration of the environment. The world subtree contains ref-
erences to the other discovered environments. Develop-
ers build Shared Substance applications by creating nodes,
facets, and instruments inside the app subtree and connect-
ing them with local and shared resources.

Shares can be accessed
from remote
environments in two
ways: mounting and
replication

Since everything in Substance is represented by trees, ev-
erything including nodes, facets, and resources can be
shared. Shares are automatically discovered and appear in

2http://qt-project.org

http://qt-project.org
http://qt-project.org

3.2 System Support 71

the world subtree of every connected environment. Devel-
opers can access shares in two different ways: mounting and
replication. Mounting a share gives an environment direct
access to the remote data and functionality, similar to re-
mote procedure calls. Replicating a share creates a synchro-
nized copy of the shared subtree inside the environment.
Providing two different sharing methods allows develop-
ers to select the most appropriate method for their tasks.

Instrumental interaction
can drive multi-device
interaction in the wild but
is not compatible with
today’s application and
system architectures.

At its core, Instrumental interaction suggests splitting in-
teractive applications into instruments and domain objects.
If this split is done, domain objects and instruments can
be combined independent of one another. Using the ap-
proaches described in this section, both domain objects and
instruments can then be made accessible across multiple
devices. Thus, the principles of Instrumental interaction
can lead to support for multi-device interaction in the wild.
However, current applications and system cannot be split
up into domain objects and instruments, which makes ap-
proaches based on Instrumental interaction incompatible
with today’s technology.

3.2.3 Runtime Program Migration and Distribution

The approaches in this section employ program migration
at runtime to migrate or distribute an application across
multiple devices. A program is migrated between devices
by transferring the program and its current state to the tar-
get machine, where its operation is resumed.

Virtual Machines

Definition: Virtual
Machine

A virtual machine is a software implementation of a ma-
chine. Originally, a virtual machine was defined as an “ef-
ficient, isolated duplicate of the real machine” [Popek and
Goldberg, 1974, p. 413]. Today, this connection between
physical and virtual machines is deprecated, and there are
many virtual machines that have no direct correspondence
to any physical hardware. Instead, the efficient execution
of isolated processes has become the main application area
for virtual machines.

72 3 Related Work

System virtual machines
execute multiple
processes via an
operating system;
Process virtual
machines execute a
single process

There are two types of virtual machines: A system virtual
machine implements a complete system platform, allowing
the installation of an operating system (OS) that is then
used to execute applications. The main benefit of employ-
ing system virtual machines is that multiple OS environ-
ments can be executed on a single physical machine, which
is often used to create multiple virtual servers on a single
physical server to increase redundancy and optimize re-
source usage. A process virtual machine or language virtual
machine implements only the aspects of a machine to exe-
cute a single process or program without the need to install
an operating system. Process virtual machines are mainly
used to execute programs written in a high-level program-
ming language like Java. To this end, the machine code cre-
ated by the compiler is adjusted for and executed in the
virtual machine as opposed to the physical machine, which
can be used to make the program hardware-independent.
Smith and Nair [2005] describe different architectural ap-
proaches to implement these two types of virtual machines.

Virtual machines can be
migrated between
different physical hosts
at runtime

Liu et al. [2009] describe how system virtual machines can
be migrated between different hosts a runtime. First, the
system is checkpointed, i.e., the system state including the
memory and the virtual disks of the virtual machine are
stored persistently. This state is then transferred to the
new host and restored in a compatible virtual machine. To
minimize system downtime during migration, they sug-
gest transferring the system state iteratively while the orig-
inal system is still running. This process can also be used
to migrate process virtual machines, as demonstrated by
Suezawa [2000].

Virtual machines
migration supports
legacy applications but
cannot not be adapted to
the target device or
distributed across
multiple devices

Migrating virtual machines is probably the most generic
way of migrating tasks between devices. There are no re-
strictions on what applications are supported other than the
existence of a virtual machine for the hosting platform. Ad-
ditionally, the applications do not need to be changed in
any way. However, it is also the most inflexible approach
to migrate tasks. The applications are restored at exactly
the same state on the target device because essentially the
memory area containing the application program is simply
replicated on the target device. This inflexibility makes it
unclear how to support distribution or to adapt the user
interface of an application to the target device.

3.2 System Support 73

Distributed Objects

Distributed objects are
objects residing in
different processes that
can communicate
transparently with one
another

In object-oriented software, distributed objects are program
objects that can transparently communicate with one an-
other even though they are not located within the same
process or physical machine. The communication between
remote objects relies remote method invocation (RMI), which
gives the developer the illusion of calling a method on a lo-
cal object while in fact the invocation occurs on the remote
object. An RMI is initiated by calling a method on a proxy
object, which forwards the invocation to the remote process,
where it is executed.

Distributed objects are
implemented in various
programming languages,
including a standard for
cross-language
distribution

Distributed objects can be implemented on top of object-
oriented programming languages to assist the develop-
ment of distributed systems. For example, Wollrath et al.
[1996] describe an implementation of distributed objects in
Java that tightly integrates into the Java object model. Inte-
grating distributed objects into the language makes the dis-
tribution transparent but cannot be used to communicate
between applications written in heterogeneous program-
ming languages. To this end, the Common Object Request
Broker Architecture (CORBA) by Vinoski [1997] defines a
standard for language-independent distributed objects.

An application’s user
interface can be
distributed by turning UI
objects into distributed
objects

Distributed objects can be used to drive toolkits that enable
the development of distributed applications. For example,
Melchior et al. [2009] present such a toolkit that turns all UI
objects (widgets) contained in the toolkit into distributed
objects. This way, the user interface of applications created
with this toolkit can be distributed at the widget level, with-
out the need to implement this distribution explicitly in the
application. Applications created with the toolkit follow
a three-layer architecture: The top layer is the application
layer, which contains the custom application logic. The
middle layer provides the migration and adaptation fea-
tures in the form of an extension of the Tcl/TK3 graphical
user interface toolkit that augments standard widgets with
distribution functionality. The lower layer implements dis-
tributed objects and additional support for live migration
through the Mozart/OZ programming system (see van Roy
[2004]).

3http://tcl.tk

http://tcl.tk
http://tcl.tk

74 3 Related Work

Distributed objects assist
the development of
distributed applications
but do not include
mechanisms to
configure or change this
distribution at runtime

Distributed objects enable developers to partition applica-
tions into parts that can be distributed transparently across
multiple devices. Toolkits, such as the one described above,
can then make the distribution of the user interface and
other well-defined objects transparent for the application
developer. However, to benefit from these toolkits, the
application must be developed with the toolkit, making a
wide-spread adoption unlikely.

Automatic Application Partitioning

J-Orchestra augments
compiled Java programs
with distribution
capabilities

Tilevich and Smaragdakis [2009] describe a system for au-
tomatic application partitioning of Java applications called J-
Orchestra. Automatic application partitioning is the process
of augmenting existing programs with distribution capabil-
ities without changing the source code of the program or
the application runtime. Instead, the distribution mecha-
nisms are integrated into the program by changing the pro-
gram binaries. This approach enables the transformation of
legacy applications without access to source code into dis-
tributed applications.

J-Orchestra partitions a
program into parts that
can be distributed while
preserving their ability to
communicate with one
another

The automatic partitioning process employed by J-
Orchestra can be summarized as following: The tool
queries the user for the parts of the program’s code that
should be augmented with distribution capabilities and
then divides the program such that the indicated parts can
run on distributed machines. In the case of Java applica-
tions, these parts are identified by selecting classes that are
then augmented to become distributed. Any communica-
tion between the separated parts of the program is auto-
matically turned into remote communication. To this end,
any method calls between Java classes that are located in
different parts of the program are replaced with remote
method calls via proxy objects. Direct access to remote ob-
ject properties is replaced by getter/setter method calls. In
addition to program objects, all UI framework objects are
augmented with distribution capabilities.

J-Orchestra allows users
to turn legacy
applications into
distributed applications
but does not support UI
adaptation

Using J-Orchestra users can turn legacy applications into
distributed applications and configure the distribution at
runtime. However, it is unclear how the distributed user
interface can be adapted to different device form factors
or modalities as the distributed objects cannot be easily
replaced by adapted objects. Nevertheless, “hacking” the
runtime of applications is a promising approach to extend

3.2 System Support 75

legacy applications with new behavior, which is also pur-
sued in chapter 6 to integrate state extraction into legacy
applications.

Software Agents

Software agents are
programs that can
migrate between
systems but do not
include a user interface

Software agents are non-interactive programs that can be mi-
grated at runtime between different systems. To migrate
an agent from one system to another, the agent’s program
code is transferred to the new system, where it is executed
by the local agent server. The state of an agent is stored in
a suitcase and transmitted alongside the agent. In addition
to the suitcase, the agent also receives a briefing, describing
the new system where it is launched.

Migratory applications
are interactive agents
that can be migrated like
Software agents

Bharat and Cardelli [1995] present a programming model
called Migratory applications that allows interactive appli-
cations to be migrated between devices based on Software
agent migration. To support interactive applications, the
Software agent paradigm is extended to support the migra-
tion of user interfaces. The resulting procedure uses the
following five steps to perform a program migration:

1. Verify with the agent server that the migration can
occur.

2. Extract the state of the user interface into migratable
objects.

3. Destroy the user interface and remove any links to the
underlying application.

4. Remove any links to the local runtime (e.g., event
handlers).

5. Add all migratable objects to the suitcase and execute
the migration.

At the destination, the suitcase is extracted and the user in-
terface is reconstructed by the agent server based on the in-
formation stored in the suitcase. During this reconstruction
the links to the application and the local runtime are re-
stored. In summary, the interactive application is migrated
by migrating application logic separately from the user in-
terface.

76 3 Related Work

Visual Oblique is a
distributed scripting
language that includes
mechanism to design
user interfaces that can
be migrated

The suggested procedure assumes that the application logic
of the interactive application is developed as a Software
agent, which can already be migrated. To this end, Bharat
and Cardelli [1995] used Visual Oblique, an extension to the
distributed scripting language Oblique (see Cardelli [1995])
that adds mechanism to create user interfaces for Software
agents. Visual Oblique was created to facilitate the creation
of interactive distributed applications as demonstrated by
Bharat and Brown [1994]. It includes an editor that is used
to visually design the user interface and generate custom
Oblique code that creates the specified user interface at run-
time. Additionally, Visual Oblique implements the mecha-
nisms needed to inspect, store, and reconstruct a user inter-
face for migration.

Approaches based on
Software agents enable
application migration but
fundamentally challenge
how applications are
built

The presented approach enables the development of ap-
plications that can be migrated between multiple devices.
Supported applications, however, must be developed as
Software agents which is fundamentally different from
how interactive applications are developed today. Thus, a
wide-spread adoption of this technique appears unlikely.

Recombinant Computing

Recombinant computing
strives at improving
interoperability through
three premises

Edwards et al. [2002] describe Recombinant computing as an
approach to support interoperability among heterogeneous
devices that requires minimal a priori knowledge of one an-
other. The approach is based on the following three funda-
mental premises:

1.Agree on a small, fixed,
and generic set of
interfaces

Devices should agree on a small set of interfaces that
are known by all parties and generic enough to serve
multiple purposes.

2.Rely on mobile code to
extend these interfaces

Mobile code, i.e., small programs that can be mi-
grated between devices, can extend these interfaces
with new behavior and turn them into domain-
independent interfaces.

3.The user must be in
control of how devices
are connected

Due to the dynamic nature of domain-independent
interfaces, it is impossible to predict how devices are
combined in the future. Thus, the user must become
the ultimate arbiter and control how and when de-
vices are connected.

3.2 System Support 77

The idea of
Recombinant computing
has inspired the flexible
state exchange between
applications discussed in
the next chapter

Recombinant computing challenges the fixed interfaces
predominant in today’s systems. The main argument un-
derlying the approach is that it is impossible to predict how
devices, applications, and services are combined, and thus
this combination should be as flexible as possible and ulti-
mately controlled by the user. In this thesis, this thought
is reflected in the open nature of application state as dis-
cussed in the next chapter, which can be migrated between
different applications to support greater flexibility when
migrating tasks between devices.

3.2.4 Model-based Migration and Distribution

In Model-driven
engineering software
development is guided
by domain models

In Model-driven engineering software is developed based on
an abstract representation of the application domain in the
form of one or more domain models. A domain model pro-
vides a structural view of the key concepts and the relation-
ships between all aspects of a particular problem domain.
Since models are abstract representations of the software,
they are independent of a specific device. Therefore, mod-
els can be used to develop multiple versions of the same
application that are adapted to different devices.

Model Transformation

TERESA is a
programming
environment that offers
automatic
transformations between
different levels of
abstraction of an
application’s user
interface

The Transformation Environment for inteRactivE Systems
representAtions (TERESA) by Mori et al. [2003] is an in-
tegrated development environment (IDE) that integrates
the creation of user interaction models at different lev-
els of abstraction into the development process. The ab-
straction levels that are considered by TERESA are: (1)
Task models, identifying logical activities, (2) abstract
(device-independent) user interfaces, (3) concrete (device-
dependent) user interfaces, and (4) source code. The IDE
also provides automatic transformations between these ab-
straction levels, which can be used to generate a user in-
terface in a multi-step process. Each transformation in this
process and the intermediate results can be customized to
accommodate for different device properties.

TERESA aids the
development of nomadic
applications that can be
adapted to different
device modalities

Mori et al. [2003] describe how TERESA can be used to im-
plement the user interface of a nomadic application, i.e., an
application that can be executed on different devices with
an adapted user interface. To this end, the developer first

78 3 Related Work

Figure 3.26: To trans-
form the state between
two potentially different
user interfaces of a no-
madic application, their
properties are matched
against each other and
the active page is deter-
mined. Property match-
ing is done via a special
algorithm that considers
the runtime state and
platform data. The ac-
tive page is determined
from the aspect of the
task model that the last-
used user interface ele-
ment represents. Picture
taken from Bandelloni
and Paternò [2004].

specifies which parts of the task model can be executed
on which target platform. Then, user interfaces for these
platforms are generated using TERESA’s transformations,
which can be further adapted to the circumstances of the
specific device. At runtime, the application environment
then selects the most appropriate user interface to be dis-
played on the device.

A nomadic application
can be migrated
between different
devices by inspecting,
transforming, and
recreating the user
interface

Bandelloni and Paternò [2004] extended above approach to
allow users to seamlessly transition a nomadic application
between different devices at runtime. To this end, a mi-
gration service was developed that performs the transition
of the nomadic application. First, the service captures the
runtime state of the nomadic application. Then, a new in-
stance of the application is spawned on the target device.
Finally, the application is configured to resume operation
at the captured state.

The UI state of a
nomadic application
must be transformed
during a transition to
match the adapted user
interface

Since the user interface of a nomadic application is adapted
to its host device, the UI of a nomadic application can
change significantly during a device transition. Conse-
quently, the UI state of the nomadic application must be
transformed to match the adapted UI. This transformation
is enabled by the models that were previously used to gen-
erate the different UIs. In particular, the UI elements are
matched against each other by identifying the aspects of the

3.2 System Support 79

task model that they represent. This process is illustrated in
Figure 3.26.

Model transformations
can be used to quickly
generate diverse UIs but
maintaining these model
to reflect manual
changes of the UI can be
laborious

Automatic model transformations allow developers to
quickly generate multiple models and concrete user inter-
faces for different devices. However, generated UIs often
suffer from low usability. To address this issue, TERESA
offers different ways to customize the UI at each level of
abstraction. Yet, it is not clear how the different models can
be maintained to reflect these customizations and enable
the matching of widgets in different version of the UI.

Modeling Distribution

The development of
distributed user
interfaces can be
assisted by a model of
the distribution

Melchior et al. [2011] extended above approach by explic-
itly modeling the distribution scenario alongside the other
domain models. This distribution scenario is created based
on a model of the users and the environment, as well as
a concrete user interface model for each supported device.
These models are then connected using the following dis-
tribution primitives, which represent the basic operations
to configure the distributed user interface:

• Set the value of a widget property.

• Display a widget on a given device.

• Copy a widget onto a different device.

• Move a widget, possibly to another device.

• Replace a widget with another widget.

• Merge multiple widgets into a composite widget.

• Separate a composite widgets into its parts.

• Switch the position of two widgets, possibly on differ-
ent devices.

• Distribute multiple widgets into multiple containers
by means of an external algorithm.

The distribution model
alongside the concrete
user interface models
can be used to generate
distributed applications
and to configure the
distribution at runtime

To demonstrate the application of distribution scenarios
for the development of distributed systems, Melchior et al.
[2011] developed a toolkit that automatically generates user
interfaces and distribution capabilities from above models.
Additionally, the distribution modeling language is made
available as a console to the user to customize the configu-
ration of the distributed user interface at runtime.

80 3 Related Work

Figure 3.27: The CAMELEON-RT architecture reference model is structured into three layers of ab-
straction: The interactive system layer contains the applications that users interact with including the
meta-UI. The DMP layer contains the middleware that maintains diverse models of the environment
and supports dynamic formation of heterogeneous clusters including UI adaptation. The Platform
layer includes the hardware and operating systems of the available devices. Picture taken from Balme
et al. [2004].

CAMELEON-RT

CAMELEON-RT is an
architecture reference
model for that guides the
design of systems
supporting multi-device
interaction

CAMELEON-RT by Balme et al. [2004] is an architecture
reference model for solutions supporting distributed, mi-
gratable, and adaptive (plastic) user interfaces. It consists
of three layers of abstraction as illustrated in Figure 3.27.
The most important layer is the middle layer called
Distribution-Migration-Plasticity (DMP) layer, which pro-
vides support for multi-device interaction in the form of
three services:

•Context infrastructure:
maintain a model of the
physical space

The context infrastructure creates and maintains a
model of the physical space based on the information
gathered from physical sensors and available devices.

•Platform manager and
interaction toolkit:
support resource
discovery, platform
independence, and UI
distribution and
migration

The platform manager provides a layer of abstraction
for the available devices to exchange information be-
tween each other. It provides automatic device dis-
covery and hides the heterogeneity of the different
devices from each other. The interaction toolkit pro-
vides a collection of interactive widgets that support
UI distribution and migration.

3.2 System Support 81

• Open-adaptation
manager: trigger and
support UI adaptation

The open-adaptation manager determines when and
how running applications should be migrated be-
tween or distributed across the available devices
based on the information provided by the context in-
frastructure. This adaptation can be performed auto-
matically according to learned or preset rules, or ini-
tiated by the user through the meta-UI.

Two principles guide the
design of interactive
applications for
CAMELEON-RT:

Coutaz [2010] introduced two additional principles for the
development of the interactive applications that make up
the interaction layer:

1. Close-adaptiveness
must cooperate with
open-adaptiveness

The first principle suggests that close-adaptiveness
(the ability of the application to adjust to situational
changes) must cooperate with open-adaptiveness
(adaptation beyond the ability of the application). To
this end, the open-adaptation manager should have
access to the models and mechanics used in the de-
sign process of the application to generate variations
of the user interface.

2. Interactive applications
are composed of graphs
of models

This requirement leads to the second principle, which
suggests that interactive applications must be repre-
sented as graphs of models that are related by map-
pings and transformations. These models are then
used to generate any missing user interfaces for adap-
tation.

Model-based
approaches challenge
the way software is
developed

Like the approaches based on Software agents, model-
based approaches fundamentally challenge the way soft-
ware and particularly user interfaces are developed. In-
stead of shaping the final product directly, models of the
product are created at varying levels of abstraction. Today’s
applications are typically designed the other way around:
First, a concrete representation of the user interface is cre-
ated to test and evaluate the proposed interactions. Then,
the application is designed to match the proposed user in-
terface. Even though it is not impossible to combine these
two approaches, it is not straight-forward to do so effi-
ciently.

3.2.5 User Interface Migration and Distribution

Approaches presented in this section do not attempt to mi-
grate or distribute the application process like the previous
section but instead only migrate the application’s user in-
terface. To the user, migrating the user interface makes no

82 3 Related Work

difference to migrating the application as the user interface
is the only point of interaction that the user encounters.

Display Replication

The X Window System is
a windowing system with
transparent access to
networked user
interfaces

The X Window System (or X11) by Scheifler and Gettys
[1986] is a windowing system for that provides a basis for
rich, networked, and device-independent graphical user in-
terfaces. Applications built with X11 can transparently ac-
cess and utilize networked graphics displays, such that the
application can run on a different device than its user inter-
face. The communication between the application and the
display server is defined by the X Window System core pro-
tocol. Through this protocol applications can create win-
dows and draw graphics and text inside these windows.
The display server visualizes these windows and forwards
all user events, like mouse clicks and keyboard events, to
the application.

User interace façades
allow users to replicate
and rearrange an
application’s graphical
user interface

Stuerzlinger et al. [2006] presented a system called User in-
terface façades that allows users to adapt and combine the
user interfaces of X11 applications. User interface façades
are created by selecting one or more existing user inter-
face components to be replicated on a designated window.
These replicated components can be freely arranged in the
designated window to shape the UI to the current need.
Through the replicated components the original applica-
tion can be controlled as if operating directly on the appli-
cation’s UI.

Pixel Replication

Virtual Network
Computing replicates a
desktop environment at
the pixel-level over the
network

Virtual Network Computing (VNC) by Richardson et al.
[1998] gives users access to an entire desktop environment
from a remote computer. VNC implements a simple re-
mote display protocol that replicates the rendered graph-
ical user interface of the desktop environment over the net-
work. This replication is done at the pixel-level, making
it independent of the underlying operating system and de-
vice platform. Users interact with the replicated user in-
terface through their local input devices, which generate
events that are forwarded to the remote machine.

3.2 System Support 83

WinCuts enables users
to replicate and share
areas of the screen
through pixel replication

WinCuts by Tan et al. [2004] uses pixel replication to allow
users to create copies of parts of a graphical user interface.
To create a WinCut, the user selects a region of the screen to
be replicated in a new window. The WinCut window can
be move freely on the screen without affecting the linked re-
gion. Users can use WinCuts to rearrange and combine user
interfaces of one or more running applications on a single
computer. In addition, WinCuts can be distributed across
networked devices, allowing users to display and arrange
parts of a user interface on remote devices.

IMPROMPTU uses pixel
replication to augment
regular applications with
collaboration features

IMPROving MDE’s Potential to support Tasks that are gen-
Uine (IMPROMPTU) by Biehl et al. [2008] is an interaction
framework for group collaboration in multi-display envi-
ronments (MDEs). It uses pixel replication to replicate ap-
plications windows across multiple devices. These repli-
cated windows are used to share access to an application
among multiple workers and to visualize an application to
the entire group by projecting it onto a large shared display.

Web Application Migration

Web applications are
distributed applications
that are accessed via a
web browser

Web applications are applications that are hosted on a web
server and accessed by one or more clients via a web
browser. They are structured in three layers: presentation,
application, and storage. The presentation layer is sent to
the client and displayed in the web browser. It consists of
a user interface specification in HTML that is often aug-
mented with interactive elements specified in the scripting
language JavaScript. The application layer runs on the web
server and generates the user interface that is then sent to
the web browser. The storage layer serves as a persistent
storage for the application layer, typically in the form of a
database.

Web applications can be
migrated by transferring
their URL, but not all of
the application’s state is
preserved this way

Web applications are accessed via a uniform resource loca-
tor (URL), which consists of the web server’s Internet ad-
dress and a path and query string that identifies the ap-
plication and its state. This URL can be used to open the
same web application from diverse clients. Consequently,
a web application can be migrated between different de-
vices by transferring its URL and reopening it in a local
web browser. However, the URL cannot store all of the ap-
plication’s state. In particular, local storage (e.g., cookies),
form data, UI manipulations that occurred at runtime, and
JavaScript state are not or only partially captured by the

84 3 Related Work

Figure 3.28: A web
application can be mi-
grated from a desktop to
a mobile device in nine
steps: (1) Devices are
discovered. (2-5) The
desktop client requests
the user interface of the
web application from
the application server,
which is mediated by
a proxy server that in-
jects code for tracking
state. (6-7) To initiate a
migration, the desktop
client requests the logi-
cal structure of the web
application from the or-
chestrator and presents
it to the user to select
the parts of the user in-
terface that should be
migrated. (8) The state
of the web application
is extracted through the
previously injected code.
(9) The redesigned web
application is sent to the
mobile device. Picture
taken from Ghiani et al.
[2010].

Migration Server

Reverse
Semantic Redesign

State Mapper
Generator

Partial Migration

Orchestrator

Application
Server

Proxy Server

(1)

(6)

(7)
(8)

(2)

(5)

(3)

(4)

Mobile DeviceDesktop Device
!

(9)

URL. This state is lost if a web application is migrated via
its URL, which can break the seamlessness of a transition
between devices.

Additional state can be
considered in the
migration of web
applications by capturing
key user interactions

Ghiani et al. [2010] created a system that allows users to
migrate web applications while preserving more state in-
formation than is contained in the URL. In addition, users
can restrict the migration to a specific part of the user inter-
face, which allows users to focus on the essential task when
migrating a large web application to small device such as
a smartphone. The system uses a migration server to de-
duce the logical structure of the web application’s user in-
terface and extract its state. The deduced logical structure
serves two purposes: It is presented to the user to select
the parts that should be included in the migration and it is
used as a basis to redesign the partial website and adapt it
to the target device. The state is extracted via code injec-
tion, i.e., the web application’s user interface is augmented
with inspection code that captures and transmits the state

3.2 System Support 85

of all elements upon request. The captured state includes
mainly user-entered form data, such as entered text and se-
lected check boxes. The migration process is described in
Figure 3.28.

JavaScript StateThe migration server was extended by Bellucci et al. [2011]
to preserve more state in the migration. The migration fol-
lows the same steps as described in Figure 3.28. However,
step 8 is extended to transfer the complete program state
of the user interface. This program state is composed of
all global JavaScript variables, the complete document ob-
ject model (DOM) tree, and special objects such as timers.
These program objects are serialized including individual
references between objects and transferred to the target de-
vice to perform the migration. Here, the state is restored by
reconstructing all stored objects and connections. This mi-
gration of the complete JavaScript state is possible because
of the open nature of JavaScript, where all objects can be
inspected and most system functions can be overridden to
track some of the inner workings of a JavaScript applica-
tion.

3.2.6 Legacy Application Support

Several solutions have been proposed that integrate multi-
device capabilities into existing applications. These solu-
tions make use of a mix of techniques to query and control
the state of legacy applications.

Pebbles

Pebbles supports the
development of mobile
user interfaces to control
legacy applications

The Pebbles project by Myers [2001] allows users to control
legacy applications on Microsoft Windows from a mobile
device. Figure 3.29 gives an overview of the Pebbles ar-
chitecture. One example application is the SlideShow Com-
mander, a mobile application that can be used to control a
Microsoft PowerPoint presentation running on a connected
desktop computer. The mobile user interface displays the
current slide and provides navigation buttons to jump to
the next or the previous slide. Pebbles uses the Microsoft
Windows Common Object Model interface to access and ma-
nipulate the state of Microsoft PowerPoint A different ex-
ample allows users to scroll any system window by moving
the finger on the touch screen of the mobile device. Pebbles

86 3 Related Work

Figure 3.29: Pebbles
supports the develop-
ment of mobile user
interfaces to control
legacy applications on
a desktop computer. To
this end, the mobile ap-
plications communicate
with legacy applications
through different servers
that simulate user events
or utilize special pro-
gramming interfaces
that the applications pro-
vide. Picture taken from
Myers [2001].

Slideshow
client

PebblesPC

Microsoft
PowerPoint

On various PDAs On the PC

Scroller
client

Other
clients

Slideshow
server

Scroller
server

Other
servers

serial cable, infrared, or wireless network

DLL calls or network socket keystrokes, mouse clicks, Windows messages

COM interface

Any PC
 app.

translates the finger movement into scroll events that are
emitted to the currently active window.

Activity-based Computing

Activity-based
computing extends the
desktop environment
with activity-based
capabilities

Activity-based computing by Bardram et al. [2006] augments
the Microsoft Windows desktop with activity-based capa-
bilities. These capabilities allow users to organize their
work according to activities, which can span multiple ap-
plications and documents. Activities are managed from
the activity bar, which is located at the top of the win-
dow. Here, all running activities are listed, and the user
can switch between different activities by clicking on them.
Switching an activity suspends the current activity by clos-
ing all windows and applications and resumes the new ac-
tivity by restoring the windows and applications of that ac-
tivity.

The state of legacy
applications is accessed
via the COM interface or
by changing the source
code

To enable a seamless transition when resuming a task, the
system extracts and stores the state of all applications as-
sociated with the task upon task suspension. This stored
application state is then user to restore the applications to
the stored state upon task resumption, making the transi-
tion seamless. The system employs two different methods
to access and store the state of legacy applications: If the
application implements the COM interface, a custom ap-
plication wrapper can be developed to extract the applica-
tion’s state via this interface. If full access to the applica-
tion’s source code is available, the state extraction can be
implemented directly in the application.

3.2 System Support 87

Figure 3.30: The Uni-
versal Interaction system
allows users to con-
trol legacy applications
from mobile devices by
transferring their user
interfaces and generat-
ing user events based
on mobile input. Picture
taken from Nakajima
[2006].

CoWord

CoWord augments
Microsoft Word with
collaborative editing
capabilities

CoWord by Xia et al. [2004] extends the word process-
ing software Microsoft Word with collaborative document-
editing capabilities. Multiple authors can use CoWord each
on their own device to edit a document collaboratively such
that any changes to the document on any of the connected
devices are reflected on all other devices.

CoWord implements
oOperation
transformation on top of
Word’s COM interface

CoWord synchronizes documents across multiple devices
through an implementation of the Operational transforma-
tion algorithm by Ellis and Gibbs [1989]. The algorithm en-
sures that concurrent editing operations yield a consistent
result by transforming the operation parameters according
to preceded operations. CoWord implements concurrent
document editing on top of an abstract representation of
the live Word document, which is based on Word’s COM
interface.

Legacy Applications in Ubicomp Systems

Nakajima [2006] describe an approach to reuse existing
interactive applications in ubiquitous computing environ-
ments. The approach allows users to employ mobile de-
vices as input and output devices for legacy applications.
This dynamic assignment of input and output to applica-
tions is enabled through a middleware that mediates be-
tween mobile devices and legacy applications by convert-
ing input and output channels between the different device
modalities.

88 3 Related Work

The Universal Interaction
system controls legacy
applications by
replicating the UI and
simulating user events

Figure 3.30 gives an overview of the system architecture
that was implemented following the proposed approach.
For each legacy application a UniInt server is created to me-
diate between legacy applications and the UniInt proxy via
the Universal Interaction Protocol. The different servers act as
gateways to the applications, forwarding rendered user in-
terfaces to the proxy and user events to the application. The
proxy is responsible for maintaining the mapping between
devices and applications, and for mediating and converting
input and output between mobile devices and the UniInt
servers. In particular, it forwards the rendered user inter-
face to mobile devices with appropriate output capabilities
and user events from these devices back to the legacy ap-
plications.

Approaches that
replicate the user
interface can be
improved by augmenting
the UI representation
with meta-data

Dixon et al. [2011] show how pixel-based approaches, such
as Universal Interaction system, can be improved by aug-
menting the pixel representation of the user interface with
additional meta-data. They present a method to deduce the
type and properties of a visible widget based on its pixel
representation. Chang et al. [2011] improve this method
by also considering the accessibility information underly-
ing a user interface to improve text recognition and the ex-
traction of non-visible user interface elements. Accessibil-
ity information is provided by the application developers
through a standard programming interface that is used to
drive assistive applications like screen readers. These ap-
proaches offer great potential to improve the reuse of legacy
applications for multi-device interaction by allowing the
middleware to gain a better understanding of the structure
of the legacy application’s user interface.

3.2.7 Logical Framework for Multi-Device User
Interfaces

Paternò and Santoro [2012] presented a classification frame-
work for systems supporting multi-device user interfaces.
They have identified the following ten dimensions to reflect
the various aspects of multi-device user interfaces:

•UI Distribution: Is it
possible to distribute the
UI across multiple
devices?

UI Distribution analyzes whether the user interface of
the system can be distributed across multiple devices.
The distribution id dynamic if it can be changed at run-
time. Otherwise, it is static.

3.2 System Support 89

aaaaaaa
Aspect

Tool Web
Migration1

DeepShot2 Myngle3 P2P Dis-
trib. UIs4

Dygimes5 Multimod.
Distrib.6

Distribution – – – Dynamic Dynamic Dynamic

Migration UI Elem.,
Func.

UI Elem. History UI Elem. – UI Elem.

Granularity Entire UI,
Groups

Entire UI,
Groups

Entire UI Entire UI,
Groups

Entire UI,
Groups

Entire UI,
Groups

Trigger Mixed User System User System System

Sharing Moving – – Moving – –

Timing Immediate Mixed Mixed Immediate Immediate Immediate

Modalities Transmod. Monomod. Monomod. Monomod. Monomod. Multimod.

Generation Runtime Mixed Runtime Runtime Mixed Mixed

Adaptation Transduc.,
Transfor.

Scaling Scaling Transduc. Transduc.,
Transfor.

Transduc.,
Transfor.

Architecture Client-
Server

Client-
Server

Client-
Server

Peer-to-
Peer

Client-
Server

Client-
Server

Table 3.1: Classification of different approaches for multi-device user interface: (1) Ghiani et al. [2012]
(2) Chang and Li [2011] (3) Sohn et al. [2011] (4) Melchior et al. [2009] (5) Vandervelpen and Coninx
[2004] (6) Blumendorf et al. [2010] Table taken from Paternò and Santoro [2012].

• UI Migration: Is there
some continuity when
changing devices?

UI Migration analyzes to what extent ongoing inter-
actions can be seamlessly continued when changing
devices. This continuation extent is described with
the number of elements that are preserved when the
UI is migrated.

• UI Granularity: At what
granularity can the UI be
distributed or migrated?

UI Granularity analyzes at what level of granularity
a UI can be distributed or migrated. Possible values
are: Entire UI, Groups of UI elements, Single UI elements,
Components of UI elements

• Trigger Activation Type:
Is the cross-device
interaction triggered by
the user or the system?

Trigger Activation Type analyzes how multi-device in-
teractions are triggered. If the trigger originates from
the user, it can occur from the source device (push)
or from the destination devices (pull). Otherwise, the
system deduces appropriate times for transitions and
executes them automatically. If the system approach

90 3 Related Work

relies on the user for a final decision, the trigger is
called mixed.

•Timing: Is the effect of a
transition immediate or
deferred?

Transition Timing analyzes when the device change oc-
curs after triggering a transition. If there is no de-
lay between the effect and the trigger, the transition
is immediate. Otherwise, the user can specify a target
device ahead of time and the transition is deferred. If
both immediate and delayed transitions are available,
the timing is called mixed.

•Interaction Modalities
Involved: Are devices
with different modalities
supported?

Interaction Modalities Involved analyzes whether the
system supports transitions between devices with dif-
ferent interaction modalities. Mono-modality means
that all devices must employ the same interaction
modality. Trans-modality means that devices can em-
ploy different interaction modalities, but each de-
vice can employ only one modality at a time. Multi-
modality means that devices can employ multiple in-
teraction modalities at the same time.

•UI Generation Phase:
When is the user
interface generated?

UI Generation Phase analyzes when the distributed or
migrated user interface is generated. The UI can be
generated at design-time when implementing the sys-
tem, or it can be generated dynamically at runtime. A
mixed mode generates the UI dynamically at runtime
based on information that was prepared at design-
time.

•UI Adaptation Aspects:
How is the user interface
adapted to different
devices?

UI Adaptation Aspects analyzes how the user interface
is adapted to a new device. There are three differ-
ent approaches to UI adaptation: Scaling adapts the
size of the UI to the new device without changing
anything else. Transducing adapts individual UI ele-
ments without changing the overall structure of the
UI. Transforming modifies both the UI elements and
the overall structure.

•Architecture: What
architectural strategy is
pursued?

Multi-device System Architecture analyzes the strategy
with regard to the migration or distribution architec-
ture that is pursued. A client-server architecture em-
ploys a central unit that manages all cross-device re-
quests. A peer-to-peer architecture relies on the indi-
vidual devices to negotiate the distribution and mi-
gration among themselves without a central unit.

Table 3.1 classifies six different approaches to multi-device
user interfaces according to the presented ten dimensions.

3.3 Discussion 91

3.3 Discussion

Systems designers must
acknowledge the
diversity and
evolutionary nature of
multi-device interaction
techniques

The excerpt of interaction techniques for multi-device in-
teraction presented in this thesis can only give a small in-
sight into the available diversity of interaction techniques.
In addition, there is a stable growth of this diversity con-
sisting of several novel and creative interaction techniques
that are suggested every year. The main lesson that can be
learned from this list is to acknowledge the existing diver-
sity and the evolutionary nature of multi-device interaction
techniques. In consequence, systems must not only support
as many of the existing techniques as possible but provide
ways to extend and adapt the system to support new ways
of interacting with multiple devices.

Previous system
solutions were not
designed to address the
unique challenges of
multi-device interaction
in the wild

The analysis of previous approaches to enable multi-device
interaction has revealed that none of them constitutes an
ideal solution for the unique challenges of multi-device in-
teraction in the wild. This is not surprising as none of the
approaches were developed to address these challenges but
instead focus on systems research, multi-device environ-
ments, or collaborative use. However, they all solve the
core problem underlying multi-device interaction: to en-
able the migration and distribution of tasks across multi-
ple devices. Thus, it is important to study and understand
these approaches to extract successful and recurring pat-
terns and adapt them to the domain of multi-device inter-
action in the wild.

A recurring pattern to
enable multi-device
operations is to use
program or UI state as a
representation of
ongoing tasks

One such recurring pattern is the use of state to enable the
seamless transition of tasks across multiple devices: Migra-
tory applications transmit the state of the Software agent
and the user interface in the suitcase. Model-based tech-
niques extract and map the state across different versions
of a user interface. Deep Shot relies on an explicit program-
ming interface to access the state of a third-party applica-
tion. In all of these approaches the state of a program or
user interface is used as a snapshot representation of the
ongoing task. The task is then migrated by extracting the
state, transferring it to the target device, and restoring it in
a new application process, potentially with an adapted user
interface.

92 3 Related Work

Similar to how state is
used to represent tasks,
the file is used to
represent content, which
has lead to a separation
of authoring and
management tools for
content

This concept of using state as a persistent container for on-
going tasks is similar to the how the file is used as a con-
tainer for user content. The file, however, has evolved be-
yond a mere technical means – it has become a ubiquitous
conceptual model that aids designers and users alike when
creating or using interactive systems. In particular, the file
facilitates the separation of content authoring from content
management: Many of today’s tools for the consumption,
authoring, and editing of content are completely separated
from the tools to organize and share this content. For ex-
ample, the Microsoft Office4 suite provides versatile tools
to edit documents of various types but does not include
many facilities to organize and share these documents. In-
stead, users save the documents to files and use external
tools, such as the Windows Explorer or Dropbox5, to or-
ganize and share their content. This separation is possible
because users understand that content is stored and conse-
quently represented by files.

Applying the properties
of the file to state offers
compelling opportunities
for the domain of
multi-device interaction
in the wild

A separation between using task applications and manag-
ing task applications is also beneficial for multi-device in-
teraction in the wild. This separation would allow design-
ers to create and evolve task applications separate from task
management applications and vice versa. At the same time,
it would allow users to select the most appropriate combi-
nation of task applications and task management applica-
tions independent of one another. The next section explores
how this separation can be conceptualized using applica-
tion state as a conceptual model to represent tasks.

4http://office.microsoft.com
5http://dropbox.com

http://office.microsoft.com
http://dropbox.com
http://office.microsoft.com
http://dropbox.com

93

Chapter 4

Interacting with State

There is a lack of
support for migrating
and distributing tasks
across multiple devices

As established in chapter 2 users are confronted with more
and more interactive devices and benefit from using them
in concert to work on their everyday tasks. However, cur-
rent interactive systems do not provide any general con-
cepts for combining multiple devices towards a common
task. If multi-device operations are not explicitly consid-
ered by an application, users must manually coordinate the
employed devices to address the given task.

Digital content can be
transferred and
distributed across
devices via the file

Digital content, on the other hand, can be distributed across
multiple devices independent of the application used to au-
thor or gather the content. Most of the applications used to
gather or create digital content can save this content to files.
These files can then be organized and distributed through
other applications dedicated to managing files. The file acts
as a general concept for handling digital content by sepa-
rating the acquisition and consumption of content from its
management.

The properties of the file
can be applied to tasks
by making task state
persistent

This chapter investigates the use of application state as a
container to make the state of a user task persistent. Ap-
plication state captures the interaction state of an applica-
tion in a way that it can be stored persistently and trans-
ferred to other devices. Similar to how the file acts as a
general concept for managing digital content, application
state serves as a general concept to manage running appli-
cations by separating the execution of the application from
its management including cross-device operations.

Chapter outlineThe chapter starts with a description of the conceptual
model as a design tool. Then the conceptual model of the
file and its interaction properties are described in detail. Af-
terwards, the chapter describes the conceptual model of ap-
plication state and discusses how it addresses the needs of
multi-device interaction in the wild. This effectiveness of
the conceptual model as a design tool is evaluated in two

94 4 Interacting with State

ways: First, the results of a brainstorming session with stu-
dents shows how designers can develop innovative interac-
tion techniques based on application state. Second, a pro-
totype called Tangible Windows that reflects the properties
of application state at the window level is described and
evaluated in four scenarios.

4.1 Conceptual Model

Definition: Conceptual
model

Norman [1986] defines a conceptual model as a mental
model that is formed by humans to explain how a system
works. Conceptual models are used to predict possible ac-
tions of a system and explain their impact on the environ-
ment. Having an accurate conceptual model of a system al-
lows users to quickly find desirable actions and accurately
predict their effect, leading to almost intuitive usage of the
system. Having an inaccurate conceptual model, on the
other hand, leads to user frustration because desirable ac-
tions are hard to find or mixed up with other actions lead-
ing to erroneous and confusing results. Thus, it is one of the
most important tasks of a system designer to communicate
a good conceptual model of the system to the users.

Three different conceptualizations must be considered in
the design of interactive systems:

•Design model The Design model is the designer’s conceptualization
of the system. It describes the true capabilities of the
system and how the system functions as a whole.

•System image The System image is the image that is transmitted by
the physical aspects of the system to its users. It is
shaped by the physical appearance of the system, its
documentation and other instructional materials, and
the nature of the interaction.

•User model The User model is the model of the system that is
constructed by the user. This model is based on the
user’s interpretation of the System image. It describes
how the user understands the system and shapes the
user’s predictions and assumptions about the system.

The conceptual model
accompanies the design
and usage of an
interactive system

Figure 4.1 illustrates the interplay between these different
conceptualizations of an interactive system. The designer
first develops the Design model of the system. Based on
this model the designer then creates the system and with
it the System image. When the system is used for the first

4.2 The File 95

System
Image

Design
Model

User
Model

Designer UserSystem with
documentation

Figure 4.1: A concep-
tual model of a system
consists of the Design
model, the System
image, and the User
model.

time, the user interprets the system by means of the System
image and creates the User model. This model is then used
to guide all user actions when using the system.

User models are reused
for systems that appear
similar

When users have formed a User model for a system, this
model is often applied to similar systems. Designers can
use this fact to ease the introduction of a new system by
grounding its Design model in a previous system and em-
ploying a similar Design model. Through this similarity,
users can apply their known User model to the new system
and are likely to understand the system quicker.

The conceptual model introduced in this chapter is in-
tended as an aid for designers to build systems that sup-
port multi-device interaction in the wild. This model helps
designers build consistent systems that users have to learn
only once and can subsequently apply their model to the
other systems following the same model.

4.2 The File

The basic conceptual
model of current
systems: Users
manipulate digital
content via task
applications and
manage and distribute it
via the file

In typical interactive systems today users perform tasks by
interacting with digital content through digital tools. These
tools are manifested in applications, which can be launched
and interacted with through the application’s user inter-
face. Digital content, on the other hand, is manifested in
files. Typically, users can instruct applications to save the
active digital content into a file, which stores the digital
content persistently. Later, users can instruct the same or
a different application to load the content from the file and
restore the digital content. Figure 4.2 illustrates this con-
ceptual model.

96 4 Interacting with State

Figure 4.2: In current
systems users perform
tasks by interacting with
digital tools to view and
manipulate digital con-
tent. These tools are
manifested in applica-
tions and digital content
is manifested in files.
Tasks are not mani-
fested in this system.

Applications Files

Task

Tools Content
edit/view

Conceptional

Physical
open

History of the file The term file originates from the domain of clerical work,
where physical files are used to organize paper documents.
In the context of computing the file was first mentioned in
an advertisement in Popular Science magazine [1950] to re-
fer to a mechanism to store digital information in a mem-
ory tube. Later, the hardware used to store information,
such as punch cards and physical drives, were sometimes
called files. Since then, the file has become the predomi-
nant concept to represent stored information in almost all
computing platforms.

A file in computing isDefinition: File in
computing

“a collection of data, programs, etc.
stored in a computer’s memory or on a storage device un-
der a single identifying name” (File in computing, Oxford
English Dictionary Online. Oxford University Press, n.d.
1st December, 2013) As such, a file can be used as a univer-
sal container for digital content: Any type of digital content
can be stored in a file and later restored with the guarantee
that the restored content is the same as the stored content.

The file turns the
concept of digital content
into a first-class
interactive object

In addition to these technical properties, a file acts as a reifi-
cation of digital content: It turns the abstract concept of
content into a first-class interactive object. Since this con-
ceptual model is used in most computing systems today,
many users have gained a profound understanding of the
model by now: Experienced computer users understand
that the file contains digital information, which can be re-
stored by opening the file with an application. In particular,
users are aware of the distinction between applications and
files, allowing them to open a file selectively in the most
appropriate application for any given task. Additionally,
users can organize and distribute their digital content by
organizing and distributing files.

4.2 The File 97

Application A

Application B

Application C

File

File

Application A

Application B

Application C

File

File

File

Device 1

Device 2

Device 3

File

2. Separation of authoring
and management

3. Content distribution1. Application integration Figure 4.3: Files offer
three distinct proper-
ties: First, they integrate
applications into task
flows by allowing multi-
ple applications to work
on the same content.
Second, they separate
content authoring from
content management.
Third, they allow content
to be distributed across
devices and people.

Changes to files and file
systems can be
observed through file
system events

Modern file systems allow third-party applications to ob-
serve files and receive notification events when files are
changed. These events are triggered, when files are re-
located, copied, or deleted, or when content is written to
a file. Through these events, applications can respond to
changes to specific files or collections of files organized in
folders. For example, cloud synchronization tools make use
of file system events to synchronize files located in specific
folders with a cloud representation of these folders. This
way, all changes to files contained in the folder can be repli-
cated on all devices connected to the cloud, making these
folders appear synchronized on all devices.

4.2.1 Properties of the File

The file offers several
unique properties for
users and designers

Files offer many unique properties, which help users in per-
forming their everyday tasks and ease the development of
interactive applications: First, files allow users to work on
digital content with multiple applications. This allows de-
signers to design applications for specific aspects of a task
and rely on other applications for supplemental functions.
Second, files allow digital content to be organized in a cen-
tral system independent of the source of the content. In
consequence, designers do not need to explicitly consider
how content is organized in the application and users can
store everything in one place. Finally, files allow content to
be distributed across multiple devices and shared among
multiple people. Based on the file designers can create in-
novative systems that enhance digital content access for
various situations, which users can directly benefit from.
Figure 4.3 illustrates these properties.

98 4 Interacting with State

Files allow multiple
applications to work on
the same digital content

Files can be accessed by any application running on the
same device. Therefore, files can be used to share content
between multiple applications and work collaboratively on
the content. This has lead to the design of many small
applications that are dedicated to perform very specific
tasks, which are combined with other applications to cre-
ate a complete task flow. A good example of such a spe-
cific application is OmniGraffle1, which allows users to vi-
sually layout a diagram. OmniGraffle can open files con-
taining vector graphics, e.g., created in Adobe Illustator2

and then export a diagram to be embedded in a document,
e.g., authored with LATEX3. These small applications are eas-
ier to create and maintain than complex systems that try
to address all aspects of the task. At the same time, users
can selectively pick the most appropriate applications for
any given aspect of a task and combine these applications
opportunistically. For example, when editing images for
a presentation in some cases a vector-based application is
preferable to a pixel-based application, while in other cases
the situation is reversed. Allowing applications to be in-
terchanged this way gives users greater flexibility when
choosing the tools for their tasks.

Files separate content
management from
content authoring

Applications that are designed to visualize or manipulate
digital content typically do not include mechanisms to or-
ganize this content. Instead, the content is saved as a file
and organized in other applications, which are specifically
designed to organize files. This way, designers do not need
to consider the organization of content when designing ap-
plications, which eases the overall development of appli-
cations. At the same time, designers can create innovative
new ways to organize content by creating applications that
organize files. An example of such an application is Yo-
jimbo4, which lets users organize files with tags, labels, and
collections. These applications can then be used to orga-
nize all content that users already have in the form of files.
Users benefit from this separation because they can orga-
nize their digital content in a single system, allowing them
to keep content together that is semantically related inde-
pendent of its type.

1http://omnigroup.com/omnigraffle
2http://adobe.com/illustrator
3http://latex-project.org
4http://barebones.com/products/yojimbo

http://omnigroup.com/omnigraffle
http://adobe.com/illustrator
http://latex-project.org
http://barebones.com/products/yojimbo
http://barebones.com/products/yojimbo
http://omnigroup.com/omnigraffle
http://adobe.com/illustrator
http://latex-project.org
http://barebones.com/products/yojimbo

4.3 Application State 99

Files can be used to
distribute content across
people and devices

Files can also be used to transmit digital information to
other devices. This transmission is done through special
communication applications. For example, many email
clients allow users to attach files to an email and send them
alongside the email. Another example is a network drive,
which can be accessed from remote devices to exchange
files with other devices. Nowadays, cloud sharing services
are becoming more and more common, which transmit files
to a central server “in the cloud” and distribute the file
from there to all connected devices. Through the file, de-
signers have created and are likely to continue creating in-
novative ways of sharing everyday content among people
and devices. Users directly benefit from these innovations,
because they can employ these new techniques with their
existing content.

The properties of the file
facilitate multi-device
interaction in the wild

The listed properties of the file are especially useful for
multi-device interaction in the wild. Files can be trans-
ferred between different devices using a large variety of
tools, giving users the flexibility to arrange content and de-
vices as needed. In addition, the separation of digital con-
tent from authoring tools enabled by the file allows multi-
device interaction techniques for distributing content to be
developed independent of the applications used to view
and edit the content. Finally, the ability of different applica-
tions to work on the same content through the file facilitates
the use of applications that are adapted to the new device
when changing devices.

4.3 Application State

The conceptual model
introduced in this thesis:
Users migrate and
coordinate tasks across
multiple devices by
transferring and
distributing the state of
task applications

In the conceptual model of the file, there is no manifesta-
tion of tasks. There is no concept that allows users to sus-
pend an ongoing task and store its state persistently. Files
only store the state of the digital content, and applications
only store the tools of interaction, not their state. The con-
cept introduced in this thesis fills this gap by providing a
manifestation of tasks in the form of a persistent container
called application state. Application state enables the extrac-
tion, storage, and restoration of the state of a task that is
performed in a single application including the state of the
application’s user interface and the digital content included
in the task. Similar to how the file can be used to store digi-
tal content, application state can be used to store the state of
a task: Users save the state of a task by saving the state of all

100 4 Interacting with State

Figure 4.4: Applica-
tion state extends the
conceptual model of cur-
rent systems by giving
tasks a concrete repre-
sentation in the form of
application state. Users
can manage application
state by interacting with
tools designed to man-
age application state.

Application State

Applications Files

Task

Tools Content
edit/view

Conceptional

Physical

open

Tools

Applications

manage

manage

applications included in the task and subsequently restore
the task by restoring all applications. Figure 4.4 illustrates
the conceptual model of application state.

Definition: Application
state

In the context of this thesis application state is defined as
a persistent container for the aspects of an application that
represent the state of an ongoing user task. In particular,
application state contains the state of the user interface and
the related user content at the time of extraction.

Application state is
different from program
state

The definition of application state in this thesis is different
from the concept of program state in the computer science
literature. Program state includes all stored information,
including the stack, the hash, and all program pointers.
Consequently, program state also captures all aspects of ap-
plication state. However, program state is tightly coupled
with the application and its underlying operating system,
making it hard to migrate the state to another application or
platform. In addition, program state contains no semantic
knowledge about the program and thus does not support
breaking down the state into those aspects related to spe-
cific tasks. Application state, on the other hand, captures
everything that is relevant to the user because it stores all
aspects of the task, while potentially preserving indepen-
dence of a specific system and application by storing the
state in a semantically meaningful way.

Application state turns
the concept of a running
task into a first-class
interactive object

Similar to how the concept of the file turns digital content
into a first-class interactive object, application state turns
the state of an ongoing task into a first-class interactive ob-
ject. At any point in time, users can store the state of a run-
ning application into a persistent container. This container
can be managed through special state management tools,
similar to how files are managed through special tools. In
particular, these tools allow users to organize application
state in an organizational system and transfer it between

4.3 Application State 101

multiple devices. At a later point in time, the application
state can be restored from the information stored in the per-
sistent container, allowing the user to resume operation at
the exact point where the task was interrupted.

Tasks can span multiple
applications and
applications can span
multiple tasks

Since tasks can span multiple applications and applications
can be used to work on multiple tasks in parallel, it is im-
portant to consider application state at different levels of
granularity. Multiple application states can be aggregated
to represent tasks that span multiple applications. These
aggregated application states act as a composite, i.e., they
allow the same operations as a basic application state. At
the same time, application state can be broken down into
the parts of the state that reflect individual tasks that are
currently executed in the application. This way, users can
extract only the part of the application’s state that repre-
sents the task that they are currently concerned with. These
partial application states can then be aggregated to form a
composition of states representing a task that spans multi-
ple applications unexclusively.

Changes to application
state can be observed
through state change
events

State management tools can register to receive change
events for specific application states. These events inform
the tool about changes to the state of the running applica-
tion, which can be used to maintain a synchronized, per-
sistent copy of the application state. Like application state,
state change events can be transferred to remote devices,
allowing application state to be synchronized across these
devices. Additionally, state change events can be used to
synchronize one application with multiple replicas of that
application running on different devices: First, the state of
the original application is extracted, transferred, and re-
stored on the devices that should host the replicas. Then,
all changes to the original application are forwarded to the
connected applications.

4.3.1 Properties of Application State

The previously
mentioned properties of
the file can be applied to
application state

The properties of the file discussed in the previous section
can be applied to the concept of application state. First, sim-
ilar to how the file allows combining applications to work
on the same digital content, application state can be used
to combine applications to work on the same task. Based
on application state designers can create applications that
perform only a specific aspect of a task and seamlessly inte-
grate into other applications that address the other aspects

102 4 Interacting with State

of the task. Second, similar to how files allow the separation
of managing and editing digital content, application state
can be used to separate working on tasks from managing
tasks. Designers can create special applications that main-
tain the states of tasks and allow task switching and mi-
gration independent of the applications used for the task.
Third, similar to how files allow content to be distributed
among multiple devices and people, application state can
be used to distribute tasks among devices and people. By
transferring the state of a task to another device, the task
can be migrated to that device. By synchronizing the state
across multiple devices, multiple devices can be combined
to work on a common task in parallel.

Multiple applications can
be combined to work on
the same task by
sharing application state

Similar to how files can be used to employ multiple appli-
cations to work on digital content, application state can be
used to seamlessly combine multiple applications towards
a common task. Application state can be restored in di-
verse applications if the applications share an understand-
ing of the stored state. Application state can be shared in
two ways: sequentially and simultaneously. In the sequen-
tial case, the state is extracted from one application and re-
stored in another application, allowing the user to transi-
tion between the two applications without loosing the task
state. In the simultaneous case, multiple applications oper-
ate on a shared, synchronized state such that any change to
any application is reflected in all other applications.

Application state
separates task
management from
working on tasks

Application state enables the separation between task ap-
plications and task management. With application state
users employ their typical applications to work on their
tasks. To manage their tasks, however, they use specialized
task manager applications, which operate on the applica-
tion state extracted from the task applications. Based on
this separation designers can develop task applications sep-
arate from task management applications, allowing them
to ignore aspects of task management in the former and as-
pects task execution in the latter. Users, on the other hand,
can opportunistically combine task applications with task
managers according to their needs.

Tasks can be distributed
among devices and
people by distributing
application state

Finally, application state enables ongoing tasks to be trans-
ferred between different computing devices. To this end,
the state of the original application is extracted and stored
in the persistent application state container. Then, the per-
sistent container is transferred to the target device and re-
stored in an appropriate application. Since the state of the

4.4 Multi-device Interaction in the Wild with Application State 103

task is conserved during the transfer, users can seamlessly
continue working on the task on the target devices. Addi-
tionally, tasks can be synchronized across multiple devices
by also transferring change events to the remote devices.
This way, the states of applications running on multiple de-
vices can be kept in synchronization allowing the applica-
tions to be coordinated to work on a common task.

4.4 Multi-device Interaction in the Wild with
Application State

Application state
addresses all work
modes and challenges
of multi-device
interaction in the wild

Application state can be used to enable support for multi-
device interaction in the wild. As usual, users can employ
their devices individually to work on distinct tasks sequen-
tially or simultaneously. Users can migrate tasks between
devices by migrating application state to work with multi-
ple devices on a common task sequentially. Users can co-
ordinate applications running on multiple devices through
a shared and synchronized application state to work with
multiple devices on a task simultaneously. With applica-
tion state these multi-device interactions are supported in
a matter that addresses the additional challenges of multi-
device interaction in the wild as described in chapter 2:
Multiple devices can be opportunistically rearranged, tran-
sitions are robust, and they can be performed in ad-hoc sit-
uations.

Application state enables
the opportunistic
rearrangement of
devices and tasks

Based on application state, designers can create innova-
tive interaction techniques that seamlessly integrate into
the work situation of users and adapt to their needs. Since
state managers can initiate and perform the entire process
of migrating applications between multiple devices, the
user does not need to be involved in this process. At the
same time, application state captures everything that is rel-
evant to restore the appearance of the application at a later
time, making a device transition seamless because the ap-
plication can resume operation with the same appearance.
In consequence, interaction techniques based on applica-
tion state can be used efficiently, and a device migration
appears seamless to the user. These two properties of ap-
plication state eliminate the typical barriers for users that
keep them from opportunistically rearranging their devices
and tasks.

104 4 Interacting with State

Device transitions based
on application state are
robust

When an application is migrated between devices, there
must be an active network link between these devices to
transfer the application state. Once the application state
is transferred and restored, however, this network link is
no longer needed. The target application runs independent
of the original device and application, allowing the user to
designate that device to other tasks or remove it from the
setup entirely. The transition between devices based on ap-
plication state is robust.

Application state
transitions can be used
in ad-hoc situations

Interaction techniques based on application state that
initiate and control application migration can derive a
large benefit from having access to contextual information
through designated infrastructure as it exists, e.g., in active
spaces. However, this contextual information is only op-
tional. To migrate an application between devices, there
are only two basic requirements: It must be possible to dis-
cover the target device, and both devices must be able to
communicate with one another. These requirements can
be realized with technologies that are entirely embedded in
the devices, such as Bluetooth or Ad-hoc wireless network-
ing. Thus, task transitions based on application state can be
performed independent of any external infrastructure and
effectively support ad-hoc situations.

4.5 Validation

The effectiveness of the
conceptual model of
application state was
measured in two ways:
as a tool for designers
and as a an aid for users

The conceptual model presented in this chapter pursues
two main goals: First, it serves the designer as a tool to
shape novel interaction concepts in a way that users can
easily understand and use. Second, it serves as an effective
and reusable model for users to enabling multi-device in-
teraction in the wild. To evaluate the conceptual model, its
effectiveness towards these two goals is measured. To this
end, the effectiveness conceptual model of application state
was evaluated in two ways: First, a workshop was con-
ducted to evaluate the ability of designers to understand
and use the conceptual model to design new multi-device
interaction techniques for current systems. Second, several
prototype systems have been implemented and evaluated
with users to test the conceptual model in realistic situa-
tions with users.

4.5 Validation 105

4.5.1 Design Workshop

To measure the effectiveness of application state as a de-
sign tool, a student design workshop was organized. In
the workshop, 20 students from computer science were in-
troduced to the conceptual model of application state and
encouraged to conceive new interaction techniques based
on application state.

In the design workshop,
students were asked to
brainstorm new
interaction techniques
based on application
state

The conceptual model of application state was introduced
in a ten minute presentation held by the author at the
beginning of the workshop. The presentation included
a demonstration of the Nomadic Desktop prototype de-
scribed in chapter 6. After the presentation, the students
were asked to form groups of 4-6 participants and brain-
storm new ways of using interactive systems based on ap-
plication state.

The students showed a
solid understanding of
application state and
were able to conceive
several novel interaction
techniques based on
application state

All of the student groups quickly understood the presented
concept and were able to conceive diverse and novel ways
of interacting with tasks through application state. For ex-
ample, one group suggested a gesture similar to Super-
flick (see 3.1.2), which was used to transition the active
task from a mobile device to another device in the direc-
tion of the gesture. Another group suggested allowing
users to “pull” a task from a previously used device to the
current device and thus continue the task that was inter-
rupted on the other device. The term “application state”
was quickly adopted by the students in their discussions,
which strengthens above observation that the concept was
readily understood and accepted by the students.

The students also
conceived new ways of
managing tasks on a
single or across multiple
devices

The students also raised several ideas for ways of managing
tasks by means of application state. For example, one group
suggested using application state as a template to capture
a desirable initial state of an application to be reused as a
starting point for recurring activities. Another group sug-
gested allowing users to move dialogs from complex soft-
ware products to external devices and thus enable quicker
optimization of parameters by removing the steps needed
to confirm and reopen the dialog. In total, more than 20
ideas were presented during the design workshop, many
of which extending our existing interactive systems with
novel ways of managing devices and tasks that enable new
ways of operating our devices. In conclusion, the workshop
showed that application state has the potential to generate
new ideas for single and multi-device interaction.

106 4 Interacting with State

Figure 4.5: Tangible
Windows are portable
devices that represent
virtual windows in the
physical world

May

May

4.5.2 Tangible Windows

Tangible Windows turn
windows into first-class
interactive objects that
are manifested in
portable devices

Tangible Windows is a multi-device interaction concept that
was developed based on application state. Tangible Win-
dows turn the virtual windows of a window-based operat-
ing system into first-class interactive objects that users can
exchange between devices. The window becomes tangible
once it is transferred to a mobile device, where the device it-
self becomes the manifestation of the window. The concept
is illustrated in Figure 4.5.

Virtual windows allow
users to arrange multiple
applications on a single
screen

In a window-based operating system applications are visu-
alized in windows, which are rectangular areas on the com-
puter screen that contain the application’s user interface.
Multiple applications can be active in parallel by showing
one or more distinct windows for each application on the
screen. Users interact with the applications through their
user interfaces inside the windows. Each window also con-
tains a frame that allows users to move, resize, and mini-
mize the window.

Tangible Windows
embody the state of an
application that is related
to a single virtual window

Many applications distribute their user interface into multi-
ple virtual windows that are logically organized. For exam-
ple, most word processors use one window for each open
document, enabling users to open and arrange multiple
documents in parallel on their screen. Tangible Windows
make use of this implicit organization of the application
by allowing users to transfer the aspects of an application
that are related to a single window to a separate device.
In terms of application state, Tangible Windows capture,
transfer, and restore the application state related to a single
window.

With Tangible Windows
portable devices become
the manifestation of
virtual windows

Technically, most mobile operating systems, including An-
droid and iOS, are window-based, but they can show at
most one window at a time. This window possesses no

4.5 Validation 107

user interface and thus cannot be moved or resized. In-
stead, the window size is fixed to the screen size such that
each application always uses the entire screen of the device.
In consequence, when transferring a virtual window from
a desktop computer to a mobile device, the window user
interface disappears and the application user interface fills
the whole screen. Instead of showing a virtual window,
the portable device becomes a tangible manifestation of the
window.

Tangible Windows
explores the use of
tablet-sized displays in
an office environment

The Tangible Windows prototype was designed to simu-
late an office environment where tablet-sized displays are
ubiquitously available and can be opportunistically used
as Tangible Windows. The prototype design and evalua-
tion focuses on exploring multi-device interaction between
tablet-sized displays in the form of sequential and simul-
taneous use. To this end, the prototype introduces six op-
erations to facilitate the arrangement and coordination of
Tangible Windows, which are accessible from a designated
bar at the side of the device.

The Tangible Windows
operations were
evaluated in a user study

The understanding and utility of these operations was eval-
uated in a user study, where 14 participants performed a
planning task with the prototype. The prototype outper-
formed a reference setup on a desktop computer in terms
of user satisfaction and revealed interesting strategies for
dealing with Tangible Windows. The prototype and the
study are described in detail in a technical report by Diehl
and Borchers [2013].

System Design

The Tangible Windows prototype provides six operations
to allow users to coordinate their applications across multi-
ple tablet-sized devices:

• Copy/Retrieve transfers
applications between
devices

Copy replicates the active application on another de-
vice while preserving the application’s state. Retrieve
represents the inverse of copy – it allows the user to
replicate a remote application on the active device.
The target device is selected by holding the Target but-
ton on that device.

• Link synchronizes the
appearance of two
devices

Link replicates the active application on the target de-
vice and synchronizes the appearance of both devices
by keeping the application state synchronized. Users

108 4 Interacting with State

can interact with the application running on either de-
vice and see the changes reflected on the other de-
vice. Tapping Target on either device or transferring
another application state cancels the link.

•Back/Forward gives
users quick access to
previously used
applications

Back reveals the previously used application on the
same device. Forward reverts the back command.
These commands are included to allow users to
quickly undo a multi-device operation.

•Home allows users to
launch new applications

Tapping home resets the application to the home
screen, showing a list of all available applications,
which can be launched by tapping on them. This
command serves as the entry point to launching new
applications, similar to the home button of many pop-
ular smartphones and tablet computers. The built-in
home button could not be used as it would close the
Tangible Windows application.

•Target is used to specify
the target device for a
multi-device operation

Holding the Target button marks the active device as
a target for a multi-device operation. The operation is
initiated by tapping copy, retrieve, or link on another
device. Additionally, target can be used to initiate a
remote operation. By holding target while perform-
ing a compatible operation in an application running
on a separate device, the application is transferred to
the target device and the application operation is ex-
ecuted there. This operation allows users to interact
with an application and see the effect on a different
device, similar to the “open link in new window” op-
eration that exists in many web browsers.

The Tangible Windows
prototype is an iPad
application that shows
various task applications
next to the Tangible
Windows bar

The Tangible Windows prototype was implemented as an
Apple iPad application. After launching the Tangible Win-
dows application, the home screen is shown on the main
part of the screen. From the home screen, users can launch
any of the included task applications by tapping on the ap-
plication icon. Once an application is launched, the home
screen is replaced with the user interface of the application,
and the user can operate the application. The Tangible Win-
dows bar, which is always located at the side of the device,
provides several buttons to access the multi-device opera-
tions discussed above. Figure 4.6 shows the Tangible Win-
dows prototype with the home screen active.

4.5 Validation 109

Figure 4.6: The Tangible Windows prototype shows a bar next to any task applications that is used
to trigger multi-device operations.

Several task applications
with limited functionality
were integrated into the
prototype

The following task applications were developed: A maps
application based on http://maps.google.com5, a notes ap-
plication, an email client, and a calendar application. Addi-
tionally, several popular web sites were directly accessible
from the home screen. The applications were only imple-
mented as far as necessary to support the tasks of the user
study: The maps application has two different icons, which
focus the map onto a different area of the world. The notes
application can only show a single note document. The
email and calendar applications consist of several screen
shots of the native iOS applications that were adapted to-
wards the study.

The task applications
are integrated as web or
custom views into the
prototype

All of the task applications except for the maps application
were implemented as web applications to ensure a consis-
tent state across all accessing devices. The maps applica-
tion was realized with a custom implementation to give it
a native feeling and improve support for linking maps in

5GoogleMaps

Google Maps

110 4 Interacting with State

multiple devices with each other. All task applications are
represented by a URL. The task application is rendered in-
side the Tangible Windows prototype by opening its URL
in a web view or by showing the built-in maps application
at the coordinates encoded in the URL.

Multi-device operations
are mediated by a server

All multi-device operations are coordinated through a
server that also hosts the web applications. Each device
maintains a permanent connection to the server and all
communication between the devices is done through the
server. In particular, the server is kept up to date about
the state of each device, including the current URL and
whether the target button was pressed. When the user
initiates a multi-device operation, the device sends a re-
quest containing the active URL to the server, which then
forwards the request to all currently targeted devices. If
the operation establishes a link between two devices, the
server remembers this link and keeps either device in-
formed about changes to the state of the other device.

Evaluation

The Tangible Windows
prototype was evaluated
by measuring the Task
Load Index of a planning
task

The prototype was evaluated with 14 participants (2 fe-
male, 12 male, mostly students with an average age of 24.5
years) in a user study. Each participant was given 6 Ap-
ple iPads with the prototype pre-installed and an introduc-
tion explaining the multi-device operations and the avail-
able task applications. The task was to identify interesting
sights to visit in an unknown city (Sidney or Buenos Aires)
by means of a Wikipedia article, and to plan a route around
these sights in the maps application. All users planned
routes for both cities, one on the prototype and one on a
reference system consisting of a desktop computer, with
the order of cities and systems randomized. At the end
of the test, each participant was asked to fill out a ques-
tionnaire and rate the system performance according to the
Task Load Index.

During the planning task
all participants were
interrupted

All participants were informed before the test that they
should respond to any emails they might receive during the
test. This interruption was scheduled for all participants
some time during the planning task on each system. In the
email the user was instructed to determine the postal code
of a distant city and to find a free time for an appointment.
The first task is easily solved with the Google Search ap-
plication or web site, and the second task was solved with

4.5 Validation 111

the calendar application. After the interruption, the partic-
ipants continued with the planning task.

Participants were able to
employ the Tangible
Windows operations
easily, efficiently, and
comfortably

For the planning task, the participants rated the ease-of-
use, efficiency, and comfort slightly higher for the Tangi-
ble Windows prototype than for the reference setup. How-
ever, this difference is not significant between the test con-
ditions. Still, the comparable performance of the Tangi-
ble Windows prototype with the desktop computer demon-
strates the high potential of the Tangible Windows concept:
All participants were very familiar with desktop computers
and use them regularly to address various tasks. The pro-
totype system, on the other hand, was completely new to
all participants and still allowed them to match the perfor-
mance of the desktop computer with only minimal train-
ing. The high rating of the usefulness of having Tangible
Windows available as extra information screens and the
good usability of the Tangible Windows operations sug-
gests that the concept can have great value for its users.

The interruption was
handled with ease on
both systems

All participants were easily able to cope with the interrup-
tion on both systems. On the desktop computer, most par-
ticipants opened a new tab in the browser to address the
interruption and closed the tab afterwards to resume the
planning task. On the Tangible Windows prototype, partic-
ipants addressed the interruption by taking a new device
or reusing the device that appears least important for their
current task. After the interruption, the participants re-
sumed their original task by switching their attention back
to the previously used Tangible Windows. One participant
explicitly commended the Tangible Windows system for
helping the resumption of the previous task because of the
spatial arrangement of devices. In summary, the strategies
for addressing an interruption and resuming work after the
interruption were very similar on both systems with the
added benefit that tablets can be arranged spatially which
appears to help task resumption.

The measured Task
Load Index was smaller
for the Tangible Windows
prototype than the
reference setup

The Task Load Index (TLX) is a multidimensional assess-
ment tool developed by Hart and Staveland [1988] that
measures the user-perceived workload of a task. It consists
of the weighted average of the following six dimensions:
mental demand, physical demand, temporal demand, per-
formance, effort, and frustration. For the Tangible Win-
dows prototype, the average TLX across all participants
was with 4.81 slightly lower than the TLX for the reference
system with 5.43. On average, participants rated the tem-

112 4 Interacting with State

poral demand, performance, and effort as the most impor-
tant dimensions and physical demand as the least impor-
tant dimension. Interestingly, frustration was rated second
highest in the reference condition and second lowest in the
test condition. At the same time, with the exception of a
single outlier the average score in frustration was signifi-
cantly higher in the reference condition than the test condi-
tion (µref = 8.00, µtest = 4.46, p < .05). Thus, it appears
that the Tangible Windows prototype was able to meet the
high efficiency of the well-known desktop system, while
creating less cause for frustration, reflected in the better rat-
ing and the lower awareness.

The questionnaire
yielded three significant
findings: With Tangible
Windows it is easier to
replicate a window,
notice the interruption,
and find open
applications

In the questionnaire all participants were asked to rate the
overall ease-of-use, efficiency, and comfort of using either
system, and additional questions regarding the performed
task and interruption. In particular, the questionnaire in-
quired the ease of handling multiple windows and how
well the system assisted them in switching between the task
and the interruption. Most of the ratings were high for both
systems (≥ 4 on a 7-point Lickert scale) with a slight prefer-
ence towards the Tangible Windows prototype. A Wilcoxon
Signed-rank test, however, reveals only three significant
differences between the ratings of both systems: First, in
the Tangible Windows system it was easier to configure a
new window to show the same content as another window
(Mref = 4, Mtest = 7, p < .05), which was directly sup-
ported by the Copy and Retrieve operations and not sup-
ported on the reference machine. Second, in the Tangible
Windows system, users found it easier to notice the inter-
ruption (Mref = 5, Mtest = 7, p < .05), which was much
more invasive than on the reference system. Finally, users
found it easier to find the window containing a specific
application on the Tangible Windows system (Mref = 5,
Mtest = 6, p < .05). While the first two results are unsur-
prising, the last result strengthens the claim that the spatial
arrangement of tablets is beneficial for task resumption.

The study of Tangible
Windows has shown that
an interaction concept
based on application
state can encourage
users to pursue creative
and effective new ways
of operating multiple
portable devices

Most of the participants arranged multiple Tangible Win-
dows devices spatially to reflect a logical meaning. For ex-
ample, devices placed next to each other showed related
contents like a map and a description of a sight as seen in
Figure 4.7. One user even stacked devices on top of each
other to memorize the order in which he wanted to visit
the sights. Thus, the participants made use of the tangi-
bility and the spatiality of the available device to address

4.5 Validation 113

Figure 4.7: An example
arrangement of multiple
Tangible Windows from
the user study. Each
group of three devices
represents two identi-
fied sights: two devices
show the Wikipedia ar-
ticles about the sights,
and the third device
shows a map that can
be switched between the
sights via the back and
forward operations.

their tasks. In this context the multi-device operations pro-
vided by the prototype worked very well, as reflected in
the high ratings of the questionnaire. In conclusion, the
study of Tangible Windows prototype has shown that an
interaction concept based on application state can be intro-
duced into portable devices and by doing so reveals new
and compelling ways of interacting with portable devices.

4.5.3 SketchIt

SketchIt is a sketching
application that
facilitates group
brainstorming through a
combination of Tangible
Windows and a shared
display

Fraikin [2011] developed the sketching application SketchIt
with support for Tangible Windows interactions under the
supervision of the author. SketchIt demonstrates how the
Tangible Windows interaction concept can be applied to fa-
cilitate collaborative activities by example of brainstorm-
ing. During a brainstorming session with SketchIt, each
participant uses a personal device to create sketches, which
are shared by transferring them using the Tangible Win-
dows multi-device operations to the shared display.

System Design

The mobile SketchIt
prototype visualizes the
active sketch on the
main part of the screen,
which is manipulated via
direct touch

The SketchIt application was developed for the Apple iPad
and a Mac OS X computer connected to a large touch-
screen. Figure 4.8 shows a screen shot of the mobile
SketchIt version. The main area of the screen is used to
show and edit the sketch. If the brush tool is selected, the
user can draw with the selected color on the sketch canvas

114 4 Interacting with State

39%
30%

31%

IDEA COLLECTION:
How to increase

- acquire new customers
- retain existing customers
- extend our PRODUCT
 PORTFOLIO

the MARKETSHARE

what are their strengths?
& weaknesses

- improve marketing

- ANALYSIS:
 Who are our competitors?

iPad 4:11 PM

Figure 4.8: The mobile SketchIt prototype running on the Apple iPad. The main area of the screen
is used to draw sketches via direct touch. From the bar at the bottom, the user can manage their
sketches, configure the drawing brush, activate the annotation tool, and initiate multi-device opera-
tions.

by dragging the finger on the screen. If the annotation tool
is selected, tapping the screen creates a text annotation that
is edited using the on-screen keyboard. The appropriate
tool is selected from the bottom bar, which is also used to
manage all user sketches, configure the brush settings, and
initiate multi-device interactions.

The multi-device
operations in SketchIt
include the Copy and
Target operations of the
Tangible Windows
system

The multi-device operations “Send” and “Receiving” work
similar to the “Copy” and “Target” operations of the Tan-
gible Windows system described above. Tapping the “Re-
ceiving” button toggles the receiving status of the device,
marking it as a target for multi-device operations of all
other devices. Tapping the “Send” button initiates a copy of
the active sketch to all devices currently marked as target.
The intended mode of operation for a brainstorming sce-
nario is to activate the “Receiving” function on the shared
display and send sketches from the participant’s devices to

4.5 Validation 115

Figure 4.9: The SketchIt prototype running on a large shared display. Sketches are shown in virtual
windows, which can be arranged freely on the screen. Users can edit the sketches and annota-
tions via the touch-screen and configure the drawing brush from a special window at the side of the
screen. The two buttons at the bottom of the screen trigger the multi-device operations “Receiving”
and “Send”.

the shared display via the “Send” function. However, it is
also possible to mark any of the mobile devices as targets
and thus distribute sketches to more than one target. This
way, it is also possible to transfer a sketch from the shared
display to a portable device.

SketchIt on the large
shared display shows
multiple sketches in
virtual windows that ca
be arranged on the
screen

On the large display sketches are opened and visualized in
virtual windows. Figure 4.9 shows a screen shot of SketchIt
running on a shared screen. Each sketch that is sent to the
large display is opened in a new virtual window. The win-
dows can be moved freely by dragging the title bar and re-
sized, which resizes the sketch contained in the window.
Similar to the mobile version, users can edit the sketches
by drawing on them via the touch-screen and annotate
sketches with the annotation tool. Users switch between
these tools and configure the drawing brush from a special
window at the side of the screen. A small window at the
bottom of the screen shows two buttons to toggle the “Re-
ceiving” function and initiate a “Send” from the shared dis-

116 4 Interacting with State

play. Finally, sketches can be exported as PDF documents
to allow users to archive and reuse sketches created during
the brainstorming session.

Evaluation

SketchIt was evaluated
in a brainstorming
session with seven
employees of a private
company

The SketchIt system was evaluated with 7 employees at a
small software company. They used the system to facili-
tate a brainstorming session and gather ideas how the mo-
tivation and productivity of the employees can be increased
with an imaginary budget. The study was conducted in a
meeting room at the company’s site using 6 tablet comput-
ers and a touch-sensitive wall-screen.

The brainstorming
session was observed
silently

At the beginning of the study, the SketchIt application and
its multi-device interactions were explained and demon-
strated. Then, the participants were silently observed dur-
ing the actual brainstorming session. Six of the seven par-
ticipants used the tablets to draw sketches of their ideas.
The final participant acted as a moderator and facilitated
the process of sharing ideas via the wall-screen. All par-
ticipants presented their ideas at some point by transfer-
ring the idea sketch to the wall-screen and explaining the
idea. Sometimes during this idea presentation other par-
ticipants had sudden insights and generated new ideas on
their tablets, which were shared and discussed immedi-
ately after the presented idea.

Participants were
satisfied with the
brainstorming session
and the system support
provided by SketchIt

After the study, all participants were asked to fill out a
questionnaire to rate their experience with the system on
a Lickert scale from 1 (worst) to 5 (best). Overall, all partici-
pants were satisfied with the structure of the brainstorm-
ing session (M = 4), the quantity (M = 4) and quality
(M = 3) of their contribution, and their own overall brain-
storming performance (M = 4). In addition, participants
rated the integration of the multi-device operations “Re-
ceiving” and “Send” as very useful for the brainstorming
activity (M = 5). In summary, the participants received the
SketchIt application and its brainstorming capabilities via
the offered multi-device interactions very well.

The study of SketchIt
showed that multi-device
interaction via
application state has
potential for collaborative
activities

The participants showed interesting new behavior during
the user study that was caused by the introduction of the
prototype system. One user marked his device as a tar-
get for all multi-device operations early on to receive all of
the sketches that were passed around and keep an archive

4.5 Validation 117

of them on his personal device. Another user held up his
tablet at one point to present his idea to the group instead
of transferring it to the large display. Several users com-
mended the system for its ability to efficiently edit sketches
after they had been transferred to refine or leapfrog of
ideas. In addition, the participants suggested many other
application domains for the SketchIt application, especially
in training and teaching situations. The diversity in which
users did or imagined they could use SketchIt as a Tangible
Window in a collaborative scenario illustrates the versatil-
ity of the underlying multi-device operations based on ap-
plication state. In conclusion, having multiple devices and
being able to inter-operate between these devices using ap-
plication state can pose a great benefit for collaborative ac-
tivities, such as the demonstrated brainstorming session.

4.5.4 Nomadic Whiteboard

The Nomadic
Whiteboard system
allows users to
exchange virtual
windows between a
desktop computer and a
large display

In parallel to SketchIt and also under the supervision of the
author Busch [2011] developed the Nomadic Whiteboard sys-
tem. This system allows users to exchange virtual windows
between a regular desktop computer and a large display.
It is related to Tangible Windows in that the “Copy” and
“Receive” operations are used but not to transfer content
between portable devices but to transfer virtual windows
between two devices, which both run a window-based op-
erating systems. The goals of the Nomadic Whiteboard and
its study were to show that the multi-device operations in-
troduced for Tangible Windows can be integrated into reg-
ular operating systems and that they can be beneficial in a
single-user work scenario.

System Design

The desktop version of
the Nomadic Whiteboard
allows users to
exchange application
windows from the
desktop computer with
remote devices including
large displays

The Nomadic Whiteboard system was developed to run on
a regular Mac OS X desktop computer and on a large touch-
sensitive display. The desktop version resides in the menu
bar of the operating system, where it can be accessed from
any running application. Through the menu, users can ac-
cess the multi-device operations needed to transfer a win-
dow to or from the device. The multi-device operations al-
ways apply to the front-most window, i.e., the application
window that is currently in use. Other than the new menu,
there are no changes to the desktop operating system.

118 4 Interacting with State

Figure 4.10: The Nomadic Whiteboard prototype running on a large touch-screen. The applications
on the screen are organized in virtual windows with a special canvas that allows the user to trigger
a window transfer directly from the window’s frame. In addition, the multi-device operations can be
triggered from a special window at the bottom of the screen.

The Nomadic
Whiteboard prototype on
the large display shows
the multi-device
operations in a
designated window and
augments the standard
window borders with an
option to trigger the
“Send” operation on that
window

On a large display, the Nomadic Whiteboard prototype
shows the multi-device interactions in a designated win-
dow at the bottom edge of the screen. Showing the op-
erations directly on the screen is preferable to a menu in
this setting because operating a menu via direct touch is of-
ten inconvenient. Additionally, the prototype replaces the
standard window borders of supported applications with a
special border that gives users direct access to the “Send”
operation for the window. Figure 4.10 shows a large dis-
play running the Nomadic Whiteboard prototype with two
open windows.

The Nomadic
Whiteboard allows users
to transfer a window to
another device via the
Copy and Retrieve
commands or by
selecting the target from
all discovered devices

The Nomadic Whiteboard supports two different modes of
exchanging windows between devices: Just like SketchIt
users can transfer a window by marking a device as a target
and initiating a send from the sending device. Addition-
ally, users can directly send a window to a remote device
by selecting the device from a list of discovered devices,
i.e., devices on the same network. These different ways of

4.5 Validation 119

initiating multi-device interactions were included to sup-
port two different ways of using the system: The first way
of transferring windows is preferred for exchanging win-
dows between devices that are in reach in a very natural
way. The second way was added to support sending win-
dows to remote devices that cannot be easily reached.

The desktop prototype
integrates legacy
applications via
AppleScript

The desktop prototypes supports several legacy applica-
tions through the AppleScript scripting interface. Apple-
Script is a technology included in Mac OS X, which allows
third-party applications to interface with running applica-
tions and extract useful information such as open docu-
ments and window properties. The Nomadic Whiteboard
prototypes makes use of this interface to identify the docu-
ment that is shown in the front-most window and the po-
sition and size of the window. This information, including
a copy of the document, is then transferred to the target
device, where the document is opened in the same appli-
cation and the window is configured to match its original
appearance. This approach fails if the application does not
support AppleScript and it contains only a small part of the
state in the form of the window configuration. However,
the approach can give the impression of an almost seamless
transition between multiple devices in many cases, which
suffices for a study of the appropriateness of the technol-
ogy.

The Nomadic
Whiteboard system
includes a custom
version of SketchIt and a
simple text editor that
both support a seamless
transition between
devices by providing
additional state
information

The Nomadic Whiteboard prototype also includes a spe-
cial version of the SketchIt application described above,
which can be transferred between devices without losing
any state. Additionally, a simple text editing application
was developed that also supports a seamless transition by
preserving the scrolling and cursor position. These custom
applications communicate their state through a special Ap-
pleScript interface, which is used by the Nomadic White-
board to collect the extra state. On the large display, these
two applications also include the special frame that allows
users to directly send the window from a button inside its
header.

Evaluation

The Nomadic
Whiteboard was
evaluated in a contextual
study with two users

The Nomadic Whiteboard was evaluated in a contextual
study with two participants for two weeks each. The goal
of the study was to explore if and how the participants
would make use of a large display in their daily routine that

120 4 Interacting with State

is connected to their regular work devices via the multi-
device operations provided in the Nomadic Whiteboard
system. Both participants were male students between 20
and 30 years of age. Before the study, a 40” display was in-
stalled in the office of each participant and configured with
the Nomadic Whiteboard prototype. Additionally, each
participant received a copy of the desktop prototype to be
installed on their personal devices. At the beginning of the
study, the usage of the large display and the software pro-
totype was explained to both participants. Other than that,
no instructions were given as to how to use the system, nor
were any tasks given to be performed during the two-week
period. At the end of the testing period, both participants
were interviewed about how they used to system.

The first user employed
the Nomadic Whiteboard
mostly for collaboration
in small groups, where
he transfered information
to the large display and
sketches back to his
personal device

For the first participant the large display included a touch-
screen and was placed on a stand next to his desk. Even
though in this position he could not look at the large dis-
play from his sitting position, he preferred it at that place
because it allowed him to comfortably stand in front of it
and work on it collaboratively. During the testing period
he mostly used the large display to collaborate in small
groups. When a student enters his office, he transfers a
window containing the current work topic to the screen
and creates sketches about the topic with the SketchIt ap-
plication collaboratively. After the meeting, he transfers the
sketches back to his personal device to archive them. With-
out the prototype, he had to take pictures of the sketches on
a paper whiteboard, which he felt was a nuisance. Addi-
tionally, he commended the ability to prepare meetings on
his personal device and quickly transfer the windows to the
large display when the meeting started. Overall, the partic-
ipants regarded the Nomadic Whiteboard as valuable sys-
tem to quickly visualize information for collaborative use
and transfer sketches created on the large display back to
his personal device.

The second user used
the system to
temporarily store
windows that should
remain in sight but out of
focus

The second user had the large display set up at the side of
his desk such that he could see and reach it from his regular
sitting position. He preferred operating the large display
with a mouse and a keyboard and thus no touch-screen
was installed for him. The participant mostly used the large
display as a storage space for windows that he wanted to
remain aware of but should not interfere with his current
work. The participant sent these windows from his desk-
top computer to the large display and arranged them there

4.5 Validation 121

as reminders of future activities. During a typical day the
user had a project plan and several web pages on the large
display. The project plan reminded him of the work he still
needed to do and the web pages were reminders to read
the content at a convenient time. To resume his work on
one of these “parked” windows, he transfered the window
back to his desktop computer. In summary, the participant
used the large display mostly as a passive display to keep
information in sight but out of focus.

The Nomadic
Whiteboard prototype
demonstrates how
multi-device interactions
based on application
state can be integrated
into a user’s everyday
routine

The two very different behaviors that the study participants
exhibited demonstrate the flexibility of the multi-device
interactions provided by the Nomadic Whiteboard proto-
type. At the same time, the tight integration of the system
into the regular work devices of both participants shows
that these multi-device operations can be implemented on
top of existing interactive devices and facilitate a seam-
less exchange of applications between these devices. Thus,
the design and study of the Nomadic Whiteboard proto-
type show that multi-device interaction based on applica-
tion state are compatible with the user’s every routine and
everyday devices.

4.5.5 NoteCarrier

NoteCarrier is an
interactive classroom
system that employs
Tangible Windows to
allow students to follow
and communicate with a
presenter during a
lecture

NoteCarrier is an interactive system that aims at assist-
ing students in following a lecture. It was developed by
Nazir Sheikh [2012] under the supervision of the author.
The main goals of NoteCarrier are to support the learning
process of students and to enable students to ask questions
and give feedback about the presented materials during a
lecture. Each student uses a Tangible Window to view and
annotate the slides and to communicate with the presenter
in a subtle way during the lecture. By means of these Tan-
gible Windows, NoteCarrier transforms the conventionally
one-sided communication during a lecture from the presen-
ter to the audience into a bi-directional conversation.

NoteCarrier facilitates
bi-directional,
anonymized
communication between
students and lecturer, is
compatible with legacy
software, and can be
setup with little overhead

The system was designed with several key issues in mind:
First, students are often hesitant to ask questions during a
lecture because they feel embarrassed or they do not want
to interrupt the presentation. NoteCarrier addresses this is-
sue by allowing anonymous communication from the stu-
dents to the lecturer in a non-invasive way. Second, lectur-
ers are reluctant to switch to new presentation software or
hardware because all of their materials have already been

122 4 Interacting with State

created for the known systems. Consequently, NoteCarrier
was tightly integrated into existing presentation software,
similar to how the Nomadic Whiteboard system is inte-
grated into common operating systems. Finally, it is im-
portant that the presenter and the students can quickly and
conveniently use the system without any lengthy prepara-
tion. To this end, the multi-device operations offered by
Tangible Windows where extended to support synchroniz-
ing multiple student devices with the presenter device in
an opportunistic fashion.

System Design

The NoteCarrier service
extends the presentation
software with
multi-device operations
to enable support for
Tangible Windows

The NoteCarrier system consists of a service running on
the presentation device that extends the presentation soft-
ware with multi-device support and two mobile applica-
tions, one for the students and one for the presenter. The
service runs on any Mac OS X computer and interfaces with
the presentation software http://apple.com/keynote6 via
AppleScript. Keynote’s AppleScript interface provides all
the necessary functions to access and remote control a pre-
sentation: It can be used to determine the slide set and the
current slide of a presentation and can be used to advance
the presentation or switch to a specific slide.

Students can follow the
presentation or browse it
manually on their
Tangible Windows and
take notes or provide
feedback directly on the
slides

Using the mobile application the students and the presen-
ter can request a linked copy of the presentation on their
mobile device, which is kept in synchronization with the
presentation software through the NoteCarrier service. The
student version of NoteCarrier allows students to browse
the slide set in two ways: In the synchronized mode the
mobile device always shows the slide that is currently pre-
sented. In the off-line mode the student can browse the
slides manually. At any time, students can take notes di-
rectly on a slide by drawing on it with their finger. Fi-
nally, the mobile client gives students two options to pro-
vide feedback to the presenter during a lecture: First, they
can mark a slide as unclear, indicating to the lecturer that
they would like additional clarification about the presented
topic. Second, they can enter a question related to a specific
slide. All feedback generated via NoteCarrier is anony-
mous.

6AppleKeynote

Apple Keynote

4.5 Validation 123

The presenter uses
NoteCarrier as a
presentation remote that
also keeps the presenter
informed about pending
questions and
clarification requests

The presenter version of NoteCarrier always shows the pre-
sentation’s current slide on the device and allows the pre-
senter to go forward or backward in the presentation via a
simple gesture. In addition, the lecturer is notified with a
subtle visual hint about questions or clarification requests
raised by the students. The presenter can chose to directly
read and respond to these questions or postpone them to
the end of the presentation where they are summarized
again.

Evaluation

NoteCarrier was
evaluated in a lecture
held by a university
professor in front of 22
students

NoteCarrier was evaluated in an actual computer science
lecture with a university professor and 22 students. The
lecturer installed the NoteCarrier service on his laptop
computer and received an Apple iPhone running the lec-
turer version of the mobile NoteCarrier application. Two
iPhones and three iPads were given out to the students, all
of which running the student version of the NoteCarrier ap-
plication. Since not enough devices were available for ev-
eryone, the students were asked to share the devices during
the lecture. After the lecture, the lecturer and the students
were interviewed individually about their experience with
the prototype.

The lecturer was able to
exploit the new
technology of the
prototype immediately in
his presentation

The lecturer commended and made use of all of the features
provided by the NoteCarrier system. He appreciated hav-
ing a mobile device to control the presentation and review
feedback from the audience. Especially the clarification re-
quests from students that appeared on his device were a
new experience for him, which he was able to successfully
integrate into his presentation style. Overall, he was very
positive about the system and the provided functions.

Most of the students
used the prototype to
follow the slides and
indicate unclear topics to
the presenter

Each student used the mobile devices to follow the presen-
tation when it was their turn. Some students were so fo-
cused on the device that they rarely made eye contact with
the presenter, which is arguably not a desirable outcome
for the presenter. At the same time, it demonstrates the stu-
dents’ engagement in the technology. Many of the students
marked one or more slides as unclear and appreciated that
their signal to the presenter was received and the topic was
clarified. Other students did not see any value in this fea-
ture as they preferred asking the presenter in person. Over-
all, the majority of students found the systems useful.

124 4 Interacting with State

NoteCarrier
demonstrates how
multi-device interactions
based on application
state can be integrated
into legacy systems and
augment these with
useful new functionality

NoteCarrier demonstrates how the concept of Tangible
Windows and thus an interaction technique based on ap-
plication state can be applied to aid the communication be-
tween students and lecturer. The evaluation shows that the
lecturer is able to quickly adapt his style of presentation to
the new technology because of the tight integration of the
system into his typical work environment. Likewise, the
students were able to immediate draw a benefit from the
system Thus, NoteCarrier highlights the ability of multi-
device interactions based on application state to integrate
into legacy systems and augment them with new and use-
ful functionality.

125

Chapter 5

The State Exchange
Architecture

Today’s systems lack
support for multi-device
interaction

Today’s operating systems have very limited technical sup-
port for developing multi-device interaction techniques
based on application state. As discussed in chapter 2 the
user content that is authored and edited in running appli-
cations can be extracted and shared via the file. However,
the file is not sufficient to represent the task itself because it
typically does not preserve the interaction state that is em-
bodied by the application. Many operating systems also
support a standard programming interface, such as Apple-
Script, for extracting information about applications at the
programming level. However, this mechanism was not de-
signed to enable application state and consequently does
not provide all the information needed to ensure a seam-
less transition of the application between devices.

This thesis proposes
that the operating
system should provide
the means to extract and
restore application state,
which is then used by
third-party interaction
techniques to implement
different ways of
migrating and
distribution applications

To address this issue, this thesis proposes an extension to
common operating systems that provides a well-defined
way to extract and restore the state of applications. The
extracted state can be stored in a container, which inherits
the properties of the file. In particular, it serves as a first-
class interactive objects that resembles that state of a task.
Through this state object users can capture, store, transfer,
and resume a task. These multi-device interactions are en-
abled through special interaction techniques that are de-
signed based on application state. The operating system
provides the mechanisms to capture and restore as well as
a persistent container to hold the application state, while
the interaction techniques provide the interactions needed
to migrate or distribute the state between different systems.

Chapter outlineThis chapter describes the design process that lead to the
state exchange architecture, which illustrates how support
for application state can be implemented on top of a com-
mon operating system. First, the requirements for such

126 5 The State Exchange Architecture

a system are derived from the challenges of supporting
multi-device interaction in the wild and the analysis of the
application state conceptual model. Then, a first version of
the state exchange system architecture that addresses most
of these challenges with a strong focus on the mobile oper-
ating system Android is described. Finally, the second and
final version of the state exchange architecture is described,
which fulfills all of the given requirements in a way that
can be implemented on top of most common operating sys-
tems.

5.1 Requirements

Application state is a
conceptual model that
addresses the
challenges of
multi-device interaction
in the wild through
several unique
properties

As discussed in chapter 4, the conceptual model of appli-
cation state addresses the challenges of multi-device inter-
action in the wild by providing a first-class interactive ob-
ject to represent tasks, which can be migrated between and
distributed across multiple devices. The key properties of
application state that enable multi-device interaction in the
wild are: First, application state enables the seamless com-
bination of multiple application towards a common task by
allowing users to switch between applications while pre-
serving state. Second, application state separates manag-
ing tasks from actually working on tasks. Third, tasks can
be migrated and distributed by migrating and distributing
application state.

The requirements in this
section guide the design
of system solutions

The following set of system requirements summarize the
capabilities a system must include to enable these proper-
ties of application state:

R1 State Extraction: It must be possible to extract the state
of a running application into a state object. The state
object contains all the information needed to seam-
lessly resume the task that is currently being executed
in the application at a later point.

R2 State Persistence: State objects can be stored persis-
tently. It is possible to create a copy of a stored state
object, and stored state objects can be transferred over
the network using common transfer protocols.

R3 State Restoration: State objects can be restored in an
application. Restoring a state object configures the
application in a way such that the user can seam-
lessly resume the task that was executed when the

5.1 Requirements 127

state object was extracted. The restored application
must be able to run autonomously, i.e., without need-
ing to communicate with the application where the
state was extracted, after state restoration.

R4 State Composition: In the case that multiple tasks are
performed with an application, it is possible to apply
above state operations only to a one specific task. This
can be realized in two ways: Either it is possible to
only extract the part of the application’s state that is
related to the specified task or it is possible to extract
only one specific task from a state object that contains
multiple tasks.

R5 State Sharing: State objects can be shared between dif-
ferent applications. Multiple applications can be de-
signed to work with the same state such that users can
extract the state in one application and restore it in
another application while preserving the overall task
state.

R6 Platform Interoperability: State objects can be trans-
ferred between diverse computing platforms. The
state objects preserve their ability to restore a compat-
ible application at the stored task state independent of
the computing platform.

R7 State Synchronization: Multiple copies of state objects
can be kept in synchronization including state ob-
jects that are distributed across multiple devices con-
nected by a network connection. Synchronized state
objects maintain a consistent state by forwarding each
change as it occurs to all replicated state objects. Con-
flicts must be resolved automatically.

R8 Separation of Control: Operations on the state of an ap-
plication including state extraction, restoration, and
synchronization can be executed from third-party ap-
plications.

R1 - R4 enables the
sequential use of
multiple devices for a
common task

R1, R2, R3, and R4 ensure that it is possible to employ mul-
tiple devices for a common task sequentially: The state of
the task is captured by extracting state objects of all appli-
cations participating in the task (R1). These state objects are
then transferred to the target device (R2) and restored (R3),
allowing the user to continue operating the application on
the new device. R4 ensures that the system can distinguish
between multiple tasks that are executed in a single appli-

128 5 The State Exchange Architecture

cation, such that the user can select the task that should be
transferred.

R5 and R6 ensure that
multi-device interaction
can occur between
diverse applications and
devices

R5 and R6 guarantee that users can switch between di-
verse applications running on diverse devices without los-
ing task state. R5 describes that it is possible to design ap-
plications that share a common state, which can be used to
seamlessly switch between these applications using the ca-
pabilities described by R1 - R3. In addition, R6 describes
that state objects can be transferred between different com-
puting platforms, allowing the development of systems for
each platform that can exchange state objects and thus per-
form cross-platform state exchange.

R7 enables the
simultaneous use of
multiple devices for a
common task

R7 ensures that there is a mechanism to keep multiple state
objects in synchronization across different devices. Each
application is informed when and how a connected appli-
cation changes its state. This information is sufficient to
keep the appearance of multiple applications in synchro-
nization. In addition, this communication channel can be
used to control certain aspects of an application from a re-
mote device. The synchronization and remote control via
a synchronized state are demonstrated at the end of this
chapter.

R8 ensures that task
management
applications can be
developed separately
from the actual task
applications

Finally, R8 ensures that all of the multi-device interactions
can be executed from external applications. This separa-
tion enables the separate development of task management
applications from task applications. Task applications can
be extended with new functionality and new state capabili-
ties independent of the tools used to migrate and distribute
them. At the same time, new task management tools can
be developed that represent new ways of interacting with
multiple devices independent of the task applications. In
consequence, the separation of control enables the devel-
opment of a diversity of task and task management appli-
cations, from which the user can always chose the most ap-
propriate combination depending on the situation.

5.2 First Iteration of the State Exchange
Architecture

Under the supervision of the author, Plücken [2012] devel-
oped a system that enables support for multi-device inter-
action between a mobile and a desktop operating system.
He describes the main goals of his system in four scenarios:

5.2 First Iteration of the State Exchange Architecture 129

1. Allow users to continue
work that was started on
a fixed computer on a
mobile computer

When working on a computer, it is not always pos-
sible to finish all the work in time, before one has to
leave. The system proposed in this thesis should al-
low users to continue the left-over work when they
are in transit on a mobile device. Therefore, the solu-
tion should be able to transfer one or more documents
and their editing state from a desktop computer to a
mobile device.

2. Facilitate combined use
of whiteboards and
tablet computers in a
collaborative setting

In meetings whiteboards are often used to create and
capture notes and sketches. The system should allow
meeting participants to transfer these sketches to their
personal devices, edit them, and later transfer them
back to the whiteboard to share their contributions
with the group.

3. Enable seamless
switching of music
players

Many users enjoy listening to music on their smart-
phones when they are in transit. When they arrive
at home, however, most users prefer to employ their
home stereo. The proposed system should provide a
seamless transition of music playback between these
two devices such that users can switch between the
devices without interrupting their listening experi-
ence.

4. Enable seamless
switching of devices
while reading

When reading a book, the reader wants to share an in-
teresting passage with a friend. The system should al-
low the reader to transfer the book at its current page
to a device that belongs to another person.

All of these scenarios have in common that users want to
switch between different devices while preserving the state
of their interaction across this switch. Thus, a solution
based on application state should be a good fit to enable
these scenarios. This section describes the design and im-
plementation of the system proposed by Plücken [2012] and
analyzes its effectiveness to support multi-device interac-
tion in the wild with respect to the requirements described
above.

5.2.1 System Design

The system employs a
background service that
applications can use to
initiate and respond to
state transfers

The system consists of a service that runs in the background
of a device and allows applications to initiate and respond
to state transfers. To initiate a state transfer between mul-
tiple devices, a state object is created and transferred to

130 5 The State Exchange Architecture

the target device, where it can be restored in a compat-
ible application. The state object is configured from the
application by setting all needed attributes via an inter-
process communication interface provided by the service.
The service then either transfers the constructed state di-
rectly to the target device or stores the information in a
file, which can be transferred using third-party file sharing
applications. When a state object is received, the service
determines an appropriate application to restore the state,
launches the application, and passes the state object to it.
If multiple installed applications fit the state, the user can
decide which application to open.

State objects must
contain all the
information needed to
seamlessly continue the
captured task

State objects include all information that is needed to seam-
lessly resume operation of the application at the state of ex-
traction. Consequently, state objects must include all vis-
ible settings, i.e., the configuration of all widgets that are
currently shown on the screen, and any additional custom
information that is needed to restore operation at the given
state. State objects should not include any information that
is implicitly defined in the application, such as the layout
of the user interface or bundled resources like icons.

State objects are stored
in trees, where each
branch is identified by a
named key

State objects are organized as trees with each branch iden-
tified by a named key. This allows values to be logically
grouped by placing them in the same subtree. At the same
time, each value can be unambiguously referenced by a
path, which is an ordered list of all keys that are traversed
to reach the value. The tree structure was chosen because it
is very flexible and there are several standardized human-
readable formats available for this type of structure.

State trees are
organized in five levels:
context, group, object,
attribute, value

Plücken [2012] suggests the following standard scheme for
state trees: At the top level, each state object contains one or
more context branches. Each included context defines the
type of application state that is stored in the branch. At the
next level, the application can use any number of groups to
structure the different aspects of the application state into
semantically coherent groups. The next level describes the
name of the object that is stored. Each object is then stored
using one or more attributes that have a name and a value.
Figure 5.1 shows an example state tree of a text editor.

A context can define a
standard format for the
subtree, which serves
state sharing

Each application can use one or more context keys to store
its state in one or more ways. These context keys define
the standard structure of the subtree and its groups, ob-
jects, and attributes. Each context represents a specific class

5.2 First Iteration of the State Exchange Architecture 131

TextEditors

EditingValues

TextPosition

Position

10

CurrentFont

FontName

Arial

FontSize

12

CurrentTextFormatting

Bold

true

Italic

false

Underline

false

Figure 5.1: Example
state of a text editor:
In the context “TextEd-
itors”, there is only one
group named “Editing-
Values”, containing three
attributes: “TextPosi-
tion”, “CurrentFont”, and
“CurrentTextFormat-
ting”. Picture taken from
Plücken [2012].

of applications that share a common functionality. For ex-
ample, “TextEditors” can be a standard context for appli-
cations that include text editing functionality. It defines
the group “EditingValues” with the objects “TextPosition”,
“CurentFont”, and “CurrentTextFormatting”, which are all
common aspects of text editors. If multiple text editors sup-
ply their state in this context, they can interpret the state
of each other, allowing users to seamlessly switch between
different applications using state objects. At the same time,
the context does not limit the subtree structure to the de-
fined values. Text editors with extended capabilities can
add their own groups and objects to the existing context,
as long as they do not interfere with the default structure.
These custom extensions are simply ignored by other ap-
plications upon restoration.

Documents are included
in the state in the form of
references that can be
resolved as needed

Many tasks include authoring and editing documents or
consuming media. These documents must be included in
a transition or otherwise the task cannot be resumed. At
the same time these documents can be large in size and
stored on diverse storage drives, including cloud services.
To prevent slow and redundant transfer of these documents
when transferring state, the state object includes references
to documents instead of copies of the documents. A doc-
ument reference consists of the document’s system path,
type, and a checksum, which can be used to verify the in-
tegrity of the document after a transfer.

State objects are
transferred as a bundle
including all documents
or separately

State objects can be transferred in two different ways: If
the communication channel between the devices supports
only asynchronous communication, such as email, the state
object and all referenced documents are stored and into an
archive, which is then transferred. If the communication
channel support synchronous communication, such as a

132 5 The State Exchange Architecture

socket network connection, only the state object is trans-
ferred initially and the referenced documents are sent only
on request.

5.2.2 Implementation

The implementation
consists of two services
(Android and
Windows/Linux) that
share a common state
object management
library

Two services were implemented in the programming lan-
guage Java to demonstrate above design. The first service
was implemented as a background service on the Android
operating system. The second service was implemented as
a platform-independent application, which can be executed
on Microsoft Windows, Linux, and Mac OS X machines.
Both services share common functionality in the form of a
library for creating and managing state objects and a sec-
ond library for communicating between different devices.

State Management Library

The state management library contains the necessary func-
tions to create, manipulate, and export state objects. The
provided functions are used by applications via inter-
process communication to extract their state into state ob-
jects and later restore their state from a state object. In par-
ticular, the library provides the following functionality:

•Create state object and
retrieve its ID

A state object is created and assigned a state ID, which
can later be used to manipulate the state object.

•Assign state attributes
via the state object ID,
the path, and the
attribute value

The attributes of a previously created state can be set
by providing the state ID, the path to the attributes,
and its value. Intermediate branches (context, group,
object) are created automatically. Acceptable value
types are integers, booleans, strings, and files.

•Read state attributes via
the state object ID and
the path

State attributes can also be read by providing the state
ID and the path to the attribute.

•Create a state file that
contains a finished state
object

A finished state object can be stored into a state file.
This file can be transferred via the networked or ac-
cessed directly to transfer it using third-party appli-
cations.

•Create a state archive
that contain the state file
and all referenced
documents

A state archive can be created that contains the state
file and all referenced documents. The state archive
is used to store a persistent copy or to transfer state
asynchronously between devices.

5.2 First Iteration of the State Exchange Architecture 133

State attributes are
stored in the file system

While state objects are constructed, their values are stored
in the file system following the branch structure of the
state: An attribute value is stored in a file located at
/context/group/value/attribute.attrib inside a unique folder for
each state ID. The state file is generated by traversing the
file structure for the state ID and reading all attribute val-
ues from the attribute files. File attributes are stored in spe-
cial files called attribute.file, which contain the referenced
document. When generating a the state file, for each file at-
tribute a reference to the stored document is created instead
of including the document data.

State archives are tar
archives with the state
file at the top of the
archive followed by the
referenced documents

State archives are creating using the Java Gnutar1 library.
The created tar archive contains the state file at the head
of the archive, followed by the referenced documents. This
way, the receiver can extract the state file first and decide
based on the contained information whether the remaining
files need to be extracted from the archive.

Communication Library

The communication
library enables state files
and referenced
documents to be
transferred between
devices

The communication library provides the functions needed
to transfer state objects and referenced documents to re-
mote devices. It was designed to support synchronous,
bi-directional communication between two devices using
a variety of transport technologies, including wireless net-
working and Bluetooth. In addition, the communication li-
brary automatically discovers all available devices that can
be the target of a state transfer.

The communication
library supports various
communication channels
to discover peers and
exchange data

The library supports discovering peers and establishing a
network connection via TCP networking and Bluetooth.
The TCP networking support uses multicast DNS2 to dis-
cover other services on the network. For data transfer,
standard network sockets are used which allow devices
to exchange data synchronously over a network link. The
Bluetooth support uses the built-in device discovery mech-
anism and transfer protocols to enable discover and data
transfer. The library can be extended to support additional
communication channels, such as near-field communica-
tion.

The best communication
channel is automatically
selected for a state
transfer

The communication library automatically selects the best
available communication channel to perform state trans-

1http://code.google.com/p/javagnutar
2http://multicastdns.org

http://code.google.com/p/javagnutar
http://multicastdns.org
http://code.google.com/p/javagnutar
http://multicastdns.org

134 5 The State Exchange Architecture

Figure 5.2: Example text editor on Android (left) and Microsoft Windows (right). On Android the main
screen is used to view the text, which can be edited via an on-screen keyboard. On Windows the text
is shown in a window and can be edited via the keyboard. The state transfer operations are accessed
via the context menu (Android) or the window menu (Windows). Pictures taken from Plücken [2012].

fers. Upon discovery, each discovered service is queried for
a unique ID that is used to associative the available commu-
nication channels with a single service. From then on, each
service can decide based on the priority setting of the dis-
covered communication channels, which channel to use for
a state transfer.

State is migrated by first
transferring the state file
followed by all document
files upon request

The library defines a simple communication protocol,
which allows each service to send a file to the other end or
a request a specific file. To migrate a state from one device
to another, the sending device simply transfers the state file
to the receiving device. The receiving device then analyzes
the state file and sends requests for each referenced docu-
ment file that it is missing. These requests are answered by
another file transfer containing the requested file.

5.2.3 Example Applications

Two example applications have been developed on each
platform to demonstrate how to implement support for
state extraction and restoration in a task application. The
example applications are a text editor and a PDF viewer.
These task applications are also responsible for initiating a
state transfer.

5.2 First Iteration of the State Exchange Architecture 135

Figure 5.3: Example PDF viewer on Android (left) and Microsoft Windows (right). On both operat-
ing systems existing open source PDF viewers were extended to support extracting, restoring, and
initiating state transfer. Pictures taken from Plücken [2012].

A text editor that
supports state transfer
was developed from
scratch on Android and
Windows

The text editor allows users to open, view, and edit text
files. On Android the text is shown on the main screen
of the device, where it can be edited via an on-screen key-
board. On Windows the text is shown in a window and
edited with an attached keyboard. Both applications offer
the current state of the application to be transferred to an-
other device from a built-in menu. On Android the context
menu accessible through a hardware button is used, while
on Windows the application menu at the top of the window
is used. Figure 5.2 shows a screen shot of both applications.

Existing open source
PDF viewers were
extended to support
state transfer on
Windows and Android

The second example application that was developed is a
PDF viewer. Both on Windows and on Android an ex-
isting open source PDF viewer was extended to support
state transfer using the proposed system. On Android the
MuPDF viewer3 was used, and on Windows the SwingLabs
PDF Renderer4 was used. Both applications were aug-
mented with capabilities to extract the current state includ-
ing the visible page in the PDF document and a mechanism
to initiate a state transfer similar to the text editor. Fig-
ure 5.3 shows a screen shot of both PDF viewers.

The example
applications include
three different ways of
transferring state: send
via file, send to device,
and send directly

Three ways of sending state were implemented in above
example applications. First, users can store the state in

3http://mupdf.com
4https://java.net/projects/pdf-renderer

http://mupdf.com
https://java.net/projects/pdf-renderer
https://java.net/projects/pdf-renderer
http://mupdf.com
https://java.net/projects/pdf-renderer

136 5 The State Exchange Architecture

a file and transfer the file to the target device using any
means they deem appropriate. There, the file is restored
by opening it directly with the service, which launches the
appropriate application and configures it to resume oper-
ation from the stored state. Second, users can transfer the
state to a target device by selecting the target from a list of
discovered devices. The service then extracts and transfers
the state to the target device, where it is immediately re-
stored. Finally, users can configure a service as “receiving”
and then send a state directly to this service by initiating a
“direct send”.

5.2.4 Discussion

The system architecture
presented in this section
fulfills many of the
requirements for system
support for multi-device
interaction based on
application state

The presented architecture enables users to migrate tasks
between mobile and desktop devices by transferring the
state of applications between these devices and resuming
operation of the task stored inside the application state
(R1-R3). The approach has a strong focus on supporting
state sharing between different applications via a sophisti-
cated tree structure that allows the definition of standards
for common application classes (R5). Finally, the entire ar-
chitecture was developed in Java, which ensures platform
interoperability (R6).

The architecture does
not provide sufficient
support for state
composition, state
synchronization, and
separation of control

The other requirements, however, are not fulfilled entirely.
The architecture supports multiple documents to be refer-
enced in a single state but it is not clear how the state should
be structured to reflect a relationship between open docu-
ments and state attributes. Thus state composition (R4) is
not explicitly supported in the current version of the archi-
tecture. Similarly, there is no explicit mechanism for state
synchronization (R7). Two applications running on differ-
ent devices can be kept in synchronization with some de-
lay by continuously transferring and restoring their states.
However, this mechanism is slow and prone to conflicts. Fi-
nally, the architecture does not consider separation of con-
trol (R8) but instead integrates the interaction technique to
trigger multi-device operations into the task applications.

The proposed system
successfully
demonstrates how
multi-device interaction
can be integrated into
modern operating
systems

Despite these shortcomings, the proposed system success-
fully demonstrates how multi-device interactions can be
integrated into current operating systems with only small
changes to the task applications. For example, the adapta-
tion needed to make the PDF viewer on Android took only
70 lines of code. Additionally, the exploration of standard

5.3 Final Iteration of the State Exchange Architecture 137

DeviceDevice

State Exchange

Application

Multi-device Interaction Techniques

State I/O
Application
State I/O

Application
State I/O

State Exchange

Figure 5.4: The state
exchange system ar-
chitecture: The State
I/O programming inter-
face exposes the state
of running applications.
The State Exchange
programming interface
exposes the states of all
supported applications
to network clients im-
plementing multi-device
interaction techniques.

state formats and the mechanism to reference and transfer
files independent of the application state had a strong im-
pact on the next iteration of the system, presented in the
next section.

5.3 Final Iteration of the State Exchange
Architecture

The final version of the state exchange architecture was
designed and implemented based on the first iteration of
the system architecture described in the previous section.
Its goal was to fulfill all of the requirements listed in sec-
tion 5.1. Special focus was placed on those requirements
that the previous approach did not fulfill: supporting state
composition, state synchronization, and separation of con-
trol.

5.3.1 System Design

The state exchange
architecture employs a
service to manage the
communication with
other devices and the
State I/O programming
interface

Similar to the previous design, the state exchange architec-
ture also employs a service called state exchange service to
coordinate the communication between different devices.
In addition, two programming interfaces are defined for
the communication between the service and task applica-
tions and the service and other services or multi-device in-
teraction techniques. State I/O defines the methods needed
for the service to extract, restore, and synchronize the state
of a task application. State Exchange defines the methods
needed to exchange state across devices and initiate multi-
device interaction techniques. This architecture is illus-
trated in Figure 5.4.

138 5 The State Exchange Architecture

Method & Parameters Description
register(application) Registers an application with the state exchange service.

The parameter contains various information about the ap-
plication, including a unique identifier.

extractState(path, include-
Documents, observe)

Extract and return the current state of the application
including the user interface state and open documents.
The path parameter describes the location for a partial
state extraction. The includeDocuments parameter defines
whether document copies should be included in the state.
The observe parameter adds an observer to the extracted
state.

restoreState(state, path,
observe)

Restore the application to the given state. The path pa-
rameter describes the location for a partial state restora-
tion. The observe parameter configures the application to
emit state change events.

stopObservingState(path) Remove a state observer from the location described by
the given path.

Event Description
stateChanged(path, state) This event is triggered when the state changes after the

caller has registered as a state observer. The path pa-
rameter describes the location of the change and the state
object describes the actual change.

Table 5.1: The methods of the State I/O programming interface to expose the state of an application.

State I/O Programming Interface

The State I/O programming interface exposes the interac-
tion state of a single running application. This interaction
state is comprised of everything that is needed to restore
the tasks that are currently executed in the application, in-
cluding all open documents and the configuration of the
user interface. Through the State I/O interface a third-party
application can trigger state extraction, restoration, and ob-
servation on the task application. Table 5.1 lists the meth-
ods defined in the State I/O programming interface.

Applications maintain a
persistent connection
with the state exchange
service

Each task application running on the system that supports
state exchange maintains a persistent connection with the
state exchange service also running on the device. After
connecting, the application registers itself as a task appli-
cation by providing various information about the applica-
tion including a unique identifier. The state exchange ser-
vice maintains a list of all connected applications and initi-
ates the other State I/O operations as needed.

5.3 Final Iteration of the State Exchange Architecture 139

Upon state extraction the
application collects and
stores the current state
in a state object

When state extraction is triggered, the application collects
the information needed to make the current interaction
state of the application persistent. What is included in the
state of an application is left at the discretion of the ap-
plication developer. At a minimum, an application’s state
should always contain the user content that is currently ac-
cessed by the application and the state of the application’s
user interface. The extracted state is stored in a state object
and returned to the caller.

The state object is
represented by a tree
with key references to
individual branches

The state object is structured as a tree with each branch
identified by a key, such that individual subtrees or leafs
can be described by a path that lists all keys on the way
from the root to the subtree. The tree contains three specific
keys at the root level to represent different aspects of the
state. The remaining structure of the tree is flexible such
that applications can add their own keys as needed. The
standard root-level elements are:

• Application contains
information about the
application that was
used to extract the state

The application element contains information about
the application that created the state. This informa-
tion serves the purpose to identify the type of the
state, aiding the decision of how to use the state. At
a minimum, the application identifier and type iden-
tifier of the state must be set. Other useful keys in-
clude the path of the application’s name and an Inter-
net URL where the application can be obtained.

• Global elementThe global element contains the global state, i.e., the
application state that does not depend on any open
document. The state is stored as a subtree, which
is defined by the application developer. It is recom-
mended to use meaningful key names and organize
the state in a semantic way.

• Documents elementsThe documents element contains a list of all open user
documents and their associated state. Each document
must be referenced with a unique identifier as the key
to its subtree and a document element that describes
the document. A typical document description con-
tains the document name, path, and a modification
time stamp or checksum. Other than that, the struc-
ture of the state tree associated with the document is
up to the application developer just like the global
state subtree.

The service can request
copies of the user
documents when
extracting application
state

The state extraction can be configure to include a copy of
all referenced documents alongside the state object. If doc-

140 5 The State Exchange Architecture

ument copies are requested, the application must create the
copies of the document and make them somehow available
to the service. This can be done by returning the document
data or a reference to the documents alongside the state ob-
ject.

It is possible to extract a
partial state by providing
the path to the subtree
that should be extracted

Additionally, the state extraction can be configured to ex-
tract a specific subtree identified by a path. If this path is
passed to the application, it is the responsibility of the ap-
plication to create a state object that represents the subtree
at the given path. This option was added to allow appli-
cations to request only the part of the state that is needed
to potentially reduce the transmission overhead. Addition-
ally, this option is used when synchronizing state, which is
described below.

When extracting
application state, the
service can request to
stay informed about
changes to the part of
the state that was
extracted

Finally, the state extraction can be configured to add an ob-
server for the extracted state. This observer then informs
the service about changes to the state as they arise by send-
ing change events that include the path where the change
occurred and an object describing the change. If the state
extraction was performed on a part of the state, the ob-
server is only added for that part as well. The path and state
objects that are included in the change events are compati-
ble with the state restoration method described below. Pre-
viously added observers can be removed later on by pro-
viding the path that was used during state extraction.

State objects can be
made persistent and
transferred over the
network

Extracted state objects can be stored persistently such that it
is guaranteed that the information stored in the state is not
lost. It is also possible to duplicate state objects and transfer
them over a network connection. Additionally, state objects
can be inspected and manipulated. In particular, it is pos-
sible to read the different root-level elements and extract a
specific document or other subtree from a state object and
store it in a new state object. This way, a state object con-
taining multiple tasks can be divided into individual state
objects for each task.

A previously extracted
state object can be
restored

When an application is requested to restore the state con-
tained in a state object, the application should configure it-
self to resume operation of the task at the time when the ap-
plication state was created. After the restoration, the state
of the application should reflect the state stored in the state
object. A state restoration can also only affect a part of the
application state: By providing an optional path the state
object is applied to the subtree that is located at the path.

5.3 Final Iteration of the State Exchange Architecture 141

If appropriate, the application state is extended with a new
branch where the state object is inserted. This way, a new
document window can be opened and restored to the state
stored in the state object. Finally, the application can be
configured to emit state change events after a restoration.
This way, two applications can be synchronized in both di-
rections by forwarding state change events from either end
to the other.

State Exchange Programming Interface

The State Exchange programming interface allows third-
party clients to access and manipulate the state of the ap-
plications running on the device. Clients of the State Ex-
change interface are typically applications that implement
a multi-device interaction technique based on application
state. The State Exchange interface includes all of the meth-
ods of the State I/O interface with an additional parame-
ter that describes the application that is affected. Addition-
ally, the interface provides methods to launch and termi-
nate running applications and events to keep the remote
end informed about which applications are currently run-
ning. Table 5.2 lists all of the methods included in the State
Exchange interface.

The State Exchange
interface provides clients
with a list of running
applications and
methods to start and
stop applications

When a client connects to the State Exchange interface, it
must first register with a unique identifier. The service
then sends a list of running applications, which is updated
via events every time a new application launches or a run-
ning application is terminated. The client can also directly
launch and terminate applications on the device. This way,
clients can be kept informed about running applications,
allowing them to access their states as needed.

All State I/O methods
can be initiated via State
Exchange by providing
an additional application
parameter

State exchange offers all of the methods of the State I/O
interface but each method call is extended with an appli-
cation parameter that identifies the application that is af-
fected by the method. Similarly, all events are replicated by
adding the application parameter that identifies the appli-
cation where the event originated from. The application pa-
rameter is compatible with the list of applications and the
application launch or terminate events that are transmitted
to the client. The service implementing state exchange also
ensures that observer events are forwarded to the appro-
priate clients. To this end, it must remember which client

142 5 The State Exchange Architecture

Method & Parameters Description
register(client) Register a new client with the service. The client

parameter describes the client application, which in-
cludes at least a unique identifier.

startApplication(application) Launch the application that is represented by the ap-
plication parameter.

stopApplication(application) Terminate the application that is represented by the
application parameter.

extractState(application, path, in-
cludeDocuments, observe)

Extract and return the current state of the specified
application. If no application parameter is given, the
top-most application is used. The path, includeDoc-
uments, and observer parameters are used as de-
scribed in the State I/O interface.

restoreState(application, state,
path, observe)

Restore the application to the given state. If no ap-
plication parameter is given, an appropriate applica-
tion is determined from the state object If the appli-
cation is not running, it is launched before restora-
tion. The path and observe parameters are used as
described in the State I/O interface.

stopObservingState(application,
path)

Remove a state observer for the given path from the
specified application.

Event Description
applicationStarted(application) This event is send when a new application is started.
applicationStopped(application) This event is send when an application was stopped.
stateChanged(application, path,
state)

This event is sent when the state of the given ap-
plication changes after an observer was added to
that application. The application parameter identi-
fies the application, the path describes the location
of the change, and the state object represents the
updated state.

Table 5.2: The methods and events of the State Exchange programming interface.

added which observer and forward the events from the ap-
plication to the appropriate clients.

State Exchange Service

The state exchange service mediates between external
clients via the State Exchange interface and applications
running on the same system as the service via the State I/O
interface. All applications that support state exchange con-
nect to the local service and register with their credentials.
The service maintains a list of connected applications and
also identifies other applications installed on the system,
which can be launched if necessary. This list is shared with
every client that connects to the service via the State Ex-

5.3 Final Iteration of the State Exchange Architecture 143

Application Service Client
register(ID)

DISCOVER

register()

[ID, ...]

extractState(ID, observe)

{…}

extractState(observe)

{…}

restoreState(ID, {…})
restoreState({…})

stateChanged({…})
stateChanged(ID, {…})

<<State Exchange>><<State I/O>>
Figure 5.5: Sequence
diagram of a typical
communication se-
quence between ap-
plications, clients, and
the state exchange ser-
vice. First, the applica-
tion registers with the
service. Then, a client
discovers and regis-
ters with the service.
Afterwards, the client
requests that the state
of a specific application
is extracted, which is
forwarded by the service
to the application. The
application responds
with a state object and
state changed events,
which are forwarded to
the client. Finally, the
client requests a state
to be restored, which is
again forwarded to the
application.

change interface. All State I/O requests that are initiated
by any of the clients are forwarded to the appropriate ap-
plication and the response, including change events from
observers, are sent back to the client. Figure 5.5 illustrates
a typically message flow between task applications, clients,
and the state exchange service.

5.3.2 Implementation

The state exchange
service was
implemented in Node.js

The state exchange service was implemented as a Node.js
application. Node.js is a software platform based on
Chrome’s JavaScript runtime. Distributions of Node.js exist
for all major platforms including Windows, Mac OS X, and
diverse Linux distributions. It was chosen because of its
extensive support for socket networking and asynchronous
behavior, which makes it a prime candidate for any service-
oriented application.

Applications are
supported in their
implementation of State
I/O with a shared library

In addition, a shared library was developed that supports
application developers in implementing the State I/O in-
terface. This library manages the connection to the state ex-
change service and defines the application state data struc-

144 5 The State Exchange Architecture

ture. Two versions of the library were implemented: one
for Mac OS X and iOS applications and a second for web
applications.

State Exchange Service

The service creates two
servers that wait for
connections from
applications and clients

The state exchange service was developed with Node.js ver-
sion 0.8.16 from December 13th, 2012. Upon launching,
the state exchange service creates two servers, each host-
ing a socket and a web socket (using the ws package ver-
sion 0.4.23). The first server accepts connections from local
applications, which communicate with the service via the
State I/O interface. The second server accepts connections
from local and remote clients, which communicate via the
State Exchange interface.

Device discovery is done
via Bonjour

Before a remote client can connect to the state exchange ser-
vice, it must discover the service and the device over the
network. To this end, the service is advertised using Bon-
jour5. Clients can discover the service if they are running
on a device that is connected to the same network. Once
discovered, a client can connect to the service and commu-
nicate via the state exchange interface.

The state exchange
message protocol is
based on JSON

Both servers of the state exchange service use a simple
protocol to exchange messages via the socket connection
with applications or clients. These messages are encoded
as UTF-8 strings, and individual commands are terminated
by a \0 character (ASCII code 0). The messages themselves
are formatted using the JavaScript Object Notation (JSON).
There are three different types of messages: requests, re-
sponses, and events. A request is used to execute a com-
mand. It is always followed by a response that can be as-
sociated with the original request via a unique ID number.
An event describes an event that occurred and does not ex-
pect a response. The following listing shows an example of
a request message:

1 { "id": 1,
2 "request": "registerApplication",
3 "object": {
4 "identifier": "com.example.app" } }

This request is sent by an application after connecting to
the service to register the application with the service. As-

5http://www.apple.com/support/bonjour

http://www.apple.com/support/bonjour
http://www.apple.com/support/bonjour
http://www.apple.com/support/bonjour

5.3 Final Iteration of the State Exchange Architecture 145

suming that no error occurs, the service will answer with
the following response:

1 { "id": 1,
2 "response": "OK" }

Using the ID number, the response can be associated with
the original request. The following listing shows an exam-
ple of an event:

1 { "event": "applicationLaunched",
2 "object": {
3 "identifier": "com.example.app" } }

This event is sent when a new application was launched
while a client is connected to the service. The object de-
scribes the launched application with a unique identifier.

Both servers also offer a
web socket connection
to serve web
applications and web
clients

In addition to the socket, both of the servers included in
the state exchange service also offer their services via a web
socket. This web socket was added to allow web applica-
tions and web clients to easily participate in state exchange.
A web socket uses the connection of a web request as a bi-
directional communication channel by keeping the connec-
tion open after the original web request has terminated. It
employs a communication protocol that is very similar to
the one described above and thus compatible with the mes-
sage types employed by the state exchange service.

State I/O Support Library

The State I/O support library can be loaded by a task appli-
cation to assist with the implementation of the State I/O
interface. It creates and maintains the connection to the
state exchange service running on the same machine and
provides an abstraction of the State I/O interface to be im-
plemented by the application. Additionally, it defines the
state object that can be configured and sent in response to
state extraction requests.

The support library
maintains the connection
to the service and
forwards messages to
the application in the
form of callbacks

The library is initiated with a unique application identifier
and an application type. Once initiated the library creates
a connection to the local service and uses the identifier to
register the application. As long as the connection is estab-
lished, any requests from the service are forwarded to the
application via two callback functions: extractState is called

146 5 The State Exchange Architecture

when a request for state extraction was sent. restoreState is
called when a state to be restored was received from the
service. Both callbacks include all of the parameters from
the State I/O methods except for the observing flag.

The application can use
a special state object to
create, configure, and
inspect application state

The application can make use of a special state object to
create and configure its current state. The state object re-
flects the tree structure described in the previous section.
The applications element is automatically configured with
the identifier and type used to initialize the application and
information gathered from system frameworks. The global
element can be freely configured by the application. The
documents element can be filled with one or more states that
must contain a document reference. The finished state ob-
ject is simply returned by the appropriate callback, which
transforms the stored state into a JSON object and transmits
it to the service. Similarly, a received state is transformed
into a state object and passed on to the application for in-
spection and restoration.

State observation is
supported by calling a
library method every
time the application state
changes

To support state observation and thus synchronization, the
application must call a method defined by the library every
time its state changes with a state object representing the
changed state. The support library remembers which parts
of the state have been extracted with the observing flag en-
abled and forwards the matching state change events to the
service.

5.3.3 Example Applications

To demonstrate how State I/O can be implemented in mod-
ern applications based on above implementation, two open
source applications have been augmented with State I/O
support: TextEdit and Skim. In addition, custom applica-
tions were created that share the state with these applica-
tions to demonstrate state sharing and synchronization.

TextEdit

TextEdit is the default text editor included in Mac OS X. It
is implemented in Objective-C using the Cocoa framework.
Its source code is available at the Apple Developer Library6.
TextEdit contains 3, 324 source lines of code (ignoring com-
ments) in 14 classes.

6http://developer.apple.com/library/mac/#samplecode/TextEdit

http://developer.apple.com/library/mac/#samplecode/TextEdit
http://developer.apple.com/library/mac/#samplecode/TextEdit

5.3 Final Iteration of the State Exchange Architecture 147

The state of TextEdit
contains all open
documents, the window
configuration of these
documents, and the
cursor position and text
selection

Text edit allows users to open text files and display their
contents in a separate window for each open text file. To
edit the text, users navigate the text cursor to the appro-
priate position in the text and start typing. Users can also
select a portion of the text to highlight and quickly manip-
ulate that portion of the text. All of this state information
is dependent on the active document. Thus, the complete
state of TextEdit is stored under the documents element and
the global element is left empty. The state information that
is stored for each document is:

• file: the document file

• selectedRange: the range of the current selection – the
cursor position is the starting index of the selection
range

• windowFrame: the location and size of the window

• scrollingRect: the visible portion of the document in
the window

TextEdit also allows text to be formatted and stored in the
rich text format. For the sake of simplicity this advanced
behavior was ignored in the implementation of State I/O.
The following listing shows an example of an extracted
TextEdit state:

1 { "application": {
2 "identifier": "com.apple.TextEdit",
3 "name": "TextEdit",
4 "type": "texteditor" },
5 "global": {},
6 "documents": [{
7 "file": {
8 "modificationDate": "2013 -03 -18 T15

:40:32Z",
9 "edited": false ,

10 "path": "/Users/demo/example.txt",
11 "type": "public.text" },
12 "selectedRange": {
13 "location": 11,
14 "length": 0 },
15 "windowFrame": {
16 "y": 880, "x": 349,
17 "width": 565, "height": 468 },
18 "scrollingRect": {
19 "y": 0, "x": 0,
20 "width": 550, "height": 389 } }] }

148 5 The State Exchange Architecture

Integrating State I/O
support into TextEdit
required only two
classes to be modified

After including the State I/O library, only two classes had
to be modified to implement State I/O: the Controller and
the DocumentWindowController. The Controller class is the
application delegate, which is the central object that is no-
tified about all aspects of the application’s life cycle. It was
modified to initialize the the State I/O library upon launch-
ing the application. The DocumentWindowController class
is responsible for the window of a text document. Two
methods were added to this class that allow the extrac-
tion and restoration of the associated document’s state. The
Controller classes uses these methods to collect the states of
all open documents or create a new document and restore
a given state upon request.

State synchronization is
enabled by creating state
change events based on
cursor changes

To support state synchronization, TextEdit has to inform
the service about any changes that occur to its state. To this
end, the DocumentWindowController class was modified
to observe the cursor position in the document’s text view
and the position and size of the window and the scrolling
view. These notifications are sufficient to capture all state
changes as any text modification is always accompanied by
a change of the cursor location. Based on the change infor-
mation included in the notification, the DocumentWindow-
Controller can generate a state change event that reflects the
change of the state.

State change events
include information
about text modification to
improve performance

TextEdit also includes textual changes to the document in
the change events. These change descriptions are gener-
ated by comparing the previous version of the text with
the current version. The change description is included to
avoid the high overhead of retransmitting a changed file
over and over to synchronize its contents across multiple
applications. The change description is included using the
virtual key file.content. The following listing illustrates a
change event where the character “a” was inserted into the
text:

1 { "event": "stateChanged",
2 "object": {
3 "application": "com.apple.TextEdit",
4 "file": {
5 "content": {
6 "insert": {
7 "location": 11,
8 "text": "a" } } },
9 "selectedRange": {

10 "location": 12,
11 "length": 0 } } }

5.3 Final Iteration of the State Exchange Architecture 149

Figure 5.6: State syn-
chronization between
TextEdit and WebTextE-
dit: Both applications
generate state change
events when their state
changes. If these events
are forwarded to the
other application, the
appearance of both ap-
plications can be kept in
synchronization.

A second text editor called WebTextEdit was implemented
as a web application that shares state with TextEdit. Web-
TextEdit can only show a single open document. The doc-
ument’s contents are displayed in a textarea element, which
the user can edit similar to the original TextEdit application.

WebTextEdit and
TextEdit share the same
application state but not
all aspects of the state
are used by both
applications

When a state from TextEdit is restored in WebTextEdit, the
first document contained in the state is displayed and can
be edited. This document reflects the document that was
currently active in TextEdit when the state was extracted.
In addition, the cursor position is restored from the state
such that the user can seamlessly continue editing the text
after the transition. Because the window position and size
is handled by the browser in the web application, the state
information about the window and scrolling view are ig-
nored in the restoration.

WebTextEdit can be
synchronized with
TextEdit such that all edit
events are reflected in
both applications
simultaneously

WebTextEdit also supports state synchronization. When
the user types a character or changes the cursor position in-
side the text, WebTextEdit generates a state change event
that includes the same information as the TextEdit state
change event. Through these events, TextEdit and Web-
TextEdit can be set up to synchronize their appearance such
that their user interfaces appears the same at all times as il-
lustrated in Figure 5.6. To enable state synchronization, the
service on both ends must be configured to forward state
change events to the other side. Note that this solution ig-
nores potential conflicts, when both ends are manipulated
at the same time. However, as discussed earlier there are
technical solutions to automatically resolve such conflicts.

150 5 The State Exchange Architecture

Skim

Skim7 is an open source PDF document viewer for
Mac OS X. It is developed in Objective-C using the Cocoa
framework. Its source code is available at SourceForge8 The
implementation described in this section is based on build
7809 from November 11th, 2012 and contains 55, 776 source
lines of code (ignoring comments) in Objective-C.

The state of Skim
contains all open
documents, the window
configuration, and the
current page index

Skim allows users to view and navigate multiple PDF doc-
uments. Each PDF document is displayed in a designated
window. Users can navigate the PDF documents by page
or by zooming into a specific page and panning the view.
Similar to TextEdit, all of Skim’s state depends on the open
document and thus its state is also stored entirely in the
documents element. The relevant state information for each
PDF document is:

• file: the document file

• pageIndex: the page that is currently visible

• windowFrame: the location and size of the window

• scrollingRect: the visible portion of the document in
the window

This list can be extended to include other aspects of Skim’s
state, such as the selected navigation tool and any cus-
tomizations of its user interface. For the sake of simplic-
ity, however, these additional aspects were skipped in the
current implementation. The following listing shows an ex-
ample of an extracted state from Skim:

1 { "application": {
2 "identifier": "net.sourceforge.skim -app.

skim",
3 "name": "Skim",
4 "type": "pdfviewer" },
5 "global": {},
6 "documents": [{
7 "file": {
8 "modificationDate": "2013 -03 -18 T15

:44:44Z",
9 "edited": false ,

10 "url": "file :// localhost/Users/demo/
example.pdf",

11 "name": "main",

7http://skim-app.sourceforge.net
8http://sourceforge.net/projects/skim-app/develop

http://skim-app.sourceforge.net
http://sourceforge.net/projects/skim-app/develop
http://skim-app.sourceforge.net
http://sourceforge.net/projects/skim-app/develop

5.3 Final Iteration of the State Exchange Architecture 151

12 "type": "com.adobe.pdf" },
13 "pageIndex": 2,
14 "windowFrame": {
15 "y": 150, "x": 1113,
16 "width": 803, "height": 1028 },
17 "scrollingRect": {
18 "y": 0, "x": 0,
19 "width": 803, "height": 957 } }] }

State I/O was
implemented in two
classes: the application
delegate and the
document controller

Similar to TextEdit only two classes had to be modified
to implement State I/O support. The application delegate
called SKApplicationController was used to initialize the li-
brary upon launching Skim. State extraction and restora-
tion was implemented in the SKMainDocument class, which
is responsible for a single open PDF document. This class
was extended with two methods to extract and restore
state. Like TextEdit, these methods are used to extract the
state of each document from the SKApplicationController.

State synchronization
was implemented by
observing the window
and the current page
index

To implement support for state synchronization, the
SKMainDocument was configured to observe changes to
the window, the scroll view, and the current page index.
Based on these notifications, a state change object is gen-
erated and sent to the service. Since Skim cannot be used
to edit PDF files, the file contents of the an open file can-
not change. Thus, state synchronization only applies to
the user interface showing the PDF document, most impor-
tantly the page that is currently shown.

SkimRemote allows
users to navigate the
current page of Skim
from a remote device

A second application called SkimRemote was implement
that shares state with Skim. SkimRemote runs on a mo-
bile device and does not display a PDF document. In-
stead, it was designed to be synchronized with a running
instance of Skim on a separate device that is remote con-
trolled through SkimRemote. To this end, SkimRemote dis-
plays the current page index of the synchronized state and
offers two buttons to increment and decrement this page in-
dex. Pressing a button, sends a state change event to Skim
that reflects the change in the page index. Skim reacts to
this change event by updating its current page to the state
in the change event. In consequence, SkimRemote can be
used to navigate the current page of PDF document viewed
in Skim from a remote device. Figure 5.7 illustrates how
SkimRemote and Skim can be used in combination.

152 5 The State Exchange Architecture

Figure 5.7: State syn-
chronization between
Skim and SkimRemote:
When SkimRemote is
synchronized with Skim,
it displays the index of
the visible page and
offers to buttons to in-
crement and decrement
this page index. Upon
tapping a button, the
state of Skim is changed
to reflect the new page
index and thus navigate
the PDF document.

5.3.4 Example Clients

Three different example clients have been implemented to
illustrate how different interaction techniques can be de-
veloped separate from the task applications. These clients
communicate with the state exchange service via the State
Exchange programming interface to initiate and control
multi-device interactions.

Web Control Center

The web control center
gives advanced users
direct access to the
functions of the state
exchange interface

The web control center lists all applications running on a de-
vice and allows users to extract the state of each running
application. The extracted state can be inspected, stored
as a file, and later restored to resume operation of the task
stored in the state. The web control center was designed
to assist the development of the state exchange service. As
such, it can be a valuable tool for advanced users, who can
use to gain unlimited access to all of the functions of the
state exchange programming interface. Figure 5.8 shows a
screen shot of the web control center.

Application Integration

State synchronization
between SkimRemote
and Skim is initiated
directly from the
SkimRemote application

The client to set up state synchronization between Skim-
Remote and Skim was integrated into SkimRemote. After
launching SkimRemote, a list of all discovered devices is
shown where a state exchange service is running. When

5.3 Final Iteration of the State Exchange Architecture 153

Figure 5.8: The web
control center provides
direct access to the state
exchange interface. It
shows a list of all sup-
ported applications and
allows the state of each
application to be ex-
tracted by clicking on
the application. The
extracted state can be
inspected or saved to
a file, which can be re-
stored by clicking the
button at the bottom of
the control center.

the user selects a device, SkimRemote connects to the de-
vice via the state exchange interface and waits until Skim is
launched on the device. Once Skim is launched, SkimRe-
mote requests the state of Skim including the observe op-
tion such that from then on, the service forwards all state
change events to SkimRemote. When the user presses a
button, the state change event generated by SkimRemote
is sent back to Skim as a request to restore the partial state.

MagicPad

The MagicPad allows
users to transition tasks
between a mobile device
and a desktop computer
by placing the mobile
device on a designated
pad

The MagicPad demonstrates how innovative new multi-
device interaction techniques can be implemented based on
application state. MagicPad is a hardware pad that can be
sensed by mobile devices. Once a mobile device is placed
on the pad, the state of the application running on the mo-
bile device is transferred to and restored on the nearest
desktop computer. When the mobile device is lifted, the ap-
plication state is extracted from the desktop computer and
transferred back to the mobile device, where it is restored.
This way, a user can simply place her mobile device on this
pad to transition an ongoing task to the desktop and lift it
up again to transition the task back to the mobile device.

The MagicPad emits a
strong magnetic field
that can be detected by
the mobile device to
initiate a state transfer

Due to restrictions of the iOS mobile operating system, sup-
port for the MagicPad could not be implement for generic
tasks. Instead, it was integrated into a custom text editing
application for iOS. This mobile text editor shares state with
TextEdit such that its state can be restored in TextEdit and

154 5 The State Exchange Architecture

Figure 5.9: The magic
pad automatically ini-
tiates a state transfer
between a mobile device
and a desktop computer.
When the mobile de-
vice is placed on the
pad, the active appli-
cation on the mobile
device is migrated to the
attached desktop com-
puter. When the mobile
device is lifted, the appli-
cation is migrated back
to the mobile device.

vice versa. The MagicPad contains a strong magnet, which
is detected by the mobile device using the built-in digital
compass. Once the MagicPad is detected, the mobile text
editor triggers a state extraction for itself and transfers the
state to a pre-configured device. Afterwards, as soon as the
MagicPad is no longer detected, the mobile text editor trig-
gers a state extraction at the remote device and transfers
the state back to itself, where it is restored. The need to pre-
configure a target device for the MagicPad can be circum-
vented by connecting the MagicPad to the desktop com-
puter and watching for synchronous changes of the mag-
netic field around the pad.

5.3.5 Discussion

The state exchange
system architecture
supports state
extraction, persistence,
and restoration

Similar to the first iteration, the final iteration of the state
exchange system architecture enables task migration be-
tween devices by allowing the state of applications to be
extracted (R1), transferred (R2), and restored (R3). Further-
more, the presented system implementation shows that the
architecture can be integrated into a typical operating sys-
tem using only cross-platform technologies. Thus, the so-
lution also supports platform interoperability (R6).

State composition is
enabled by the semantic
structure of the extracted
application state

The semantic structure of the state that reflects which as-
pects of the state are related to an open document enables
state composition (R4): All tasks that are conducted with an
application can be distinguished in the extracted applica-
tion state by the document that is affected by the task. Since
applications are not designed to support multiple tasks be-
ing performed on a single document, the deduction of a

5.3 Final Iteration of the State Exchange Architecture 155

task from a document is typically unambiguous. Clients
can make use of state composition and remove the parts of
the state that are not needed in a transfer. Tasks that span
multiple devices can be captured by extracting the state of
all related applications. By combining these two methods,
a task spanning multiple applications unexclusively can be
captured and migrated or coordinated.

Application state can be
shared across multiple
applications by
employing a consistent
structure for the same
state type

The extracted state also supports state sharing, i.e., multiple
applications sharing a single state definition such that tasks
can be migrated between these applications by migrating
state. Each application state includes a state type, which
can be used to deduce how the state will be structured.
These types can also be used to define standard types for
commonly used application classes that all applications of
that class are encouraged to support. At the same time, the
state format is flexible enough to also support the use of
custom keys to augment a standard state structure with ad-
ditional information relevant only for specific applications.

Two applications can be
synchronized by
forwarding state change
events between both
applications

The state between two compatible applications can be
kept in synchronization (R7) by transferring the state from
one application to the other and then forwarding all state
change events between the two applications. This way,
changes to the original application are transmitted via
change events that were requested upon extraction to the
replicated application. Changes from the replicated appli-
cation are transmitted to the original application via change
events that were requested upon restoration. As demon-
strated by SkimRemote, state synchronization can be used
to enable other means of coordination by developing cus-
tom applications that provide a special coordination inter-
face, such as a remote control interface, for an existing ap-
plication.

Separation of control is
enabled by the
distinction between State
I/O and State Exchange

Finally, the architecture provides a clear separation be-
tween task applications and clients (R8). Task applications
are responsible for implementing the State I/O program-
ming interface and thus respond to state extraction and
restoration requests. Clients, on the other hand, use the
state exchange programming interface to initiate state ex-
traction and restoration requests on available task applica-
tions and manage synchronization and adaptation proce-
dures of the extracted states. This separation was demon-
strated with the development of several multi-device inter-
action clients, separate from any task applications. At the
same time, the separation is not exclusive, as the integrated

156 5 The State Exchange Architecture

client demonstrates that allows client functionality to be ex-
ecuted from inside a task applications.

5.4 Validation

This section argues that the proposed system architecture is
a valid solution for supporting multi-device interaction in
the wild in a way that is compatible with today’s interac-
tive system architectures. In summary, the argument is as
following: Any solution that fulfills the requirements listed
at the beginning of this chapter provides adequate support
for multi-device interaction in the wild. Since the proposed
system architecture fulfills all of these requirements, any
interactive system that integrates this architecture supports
multi-device interaction in the wild. The final section will
then discuss limitations of the approach.

5.4.1 Requirements Validation

The requirements
presented in this chapter
accurately describe a
system that supports
multi-device interaction
in the wild through
application state

The requirements described in section 5.1 accurately de-
scribe a system that provides support for multi-device in-
teraction through application state. Task migration is en-
abled by extracting, transferring, and restoring application
state, which can be migrated across a diversity of applica-
tions and devices. In the stored state multiple tasks run-
ning in a single application can be distinguished and mul-
tiple states can be combined to reflect tasks spanning mul-
tiple applications. Task coordination is enabled through
state synchronization, which gives applications a commu-
nication channel to coordinate their execution across mul-
tiple instances. This communication channel can be used
to keep the appearance synchronized. However, it is also
possible to use it for other coordination activities, such as
sharing control. Finally, the separation of control enables
designers to design and users to use multi-device interac-
tion techniques separate from task applications.

The first iteration of the
proposed system
enables task migration
with special focus on
application
interoperability

The first iteration of the state exchange system architec-
ture fulfills a large part of these requirements. The sys-
tem provides task applications with the means to extract,
transfer, and restore state. The extracted state can be trans-
ferred between different system and restored in diverse ap-
plications. The organization of application state into dif-
ferent contexts, enables applications to provide support for

5.4 Validation 157

as many application classes as they deem fit. Defining a
standard context structure for typical application classes
ensures that applications can share their state just by adher-
ing to this standard. At the same time, the state structure
is flexible enough to support individual differences of ap-
plications without interfering with one another or the stan-
dard.

The second iteration of
the proposed system
fulfills all of the
requirements

The second and final iteration of the state exchange system
architecture extends the previous iteration by integrating
support for state synchronization, state composition, and
separation of control. State synchronization is enabled by
allowing state to be observed and mediating change events
between the applications that are coordinated. This im-
plicit coordination channel can be used to keep the appear-
ance of multiple task applications in synchronization or to
create specialized coordination interfaces for existing ap-
plications. State composition allows tasks to be captured
at a finer level of granularity by allowing tasks that span
multiple applications unexclusively to be extracted and mi-
grated or coordinated. Finally, separation of control enables
the separate development of task applications and multi-
device interaction techniques by separating them through
two well-defined programming interfaces. Separation of
control helps integrating multi-device interaction into the
complex daily routine of users, where tasks, applications,
and device setups frequently change.

The state exchange
system architecture is
one possible solution for
the implementation of
the application state
conceptual model

In consequence, the architecture presented in this chapter
fulfills all the requirements and thus is suitable to be used
for multi-device interaction in the wild. However, just like
application state is only one possible conceptual model to
assist multi-device interaction in the wild, this architecture
should also be considered as one possible implementation
of the application state conceptual model. Just like any so-
lution, the state exchange system architectures comes with
several advantages and disadvantages. The advantages
have been largely discussed in this section and the require-
ments analyzes of the individual iterations. The following
section will analyze the disadvantages of the solution in the
form of limitations.

5.4.2 Limitations

The architecture proposed in this chapter has several limi-
tations.

158 5 The State Exchange Architecture

Device discovery is
limited to local devices

The device discovery mechanisms employed by the system
are limited to devices that are close to each other (Blue-
tooth) or within the same technical infrastructure (Bonjour).
It is not possible to discover or remember remote devices
such that it is not trivial for clients to initiate connections
with devices at remote locations. However, accessing re-
mote devices might be beneficial for users in some situa-
tions, e.g., when they need to transition a task from their
home computer to their computer at work. To support re-
mote discovery, the system could be extended with a cen-
tral device registry, where all of the user’s devices are regis-
tered and update their network location whenever they are
online.

Task coordination is
limited to coordinating
multiple devices via a
synchronized state

Task coordination is limited to the types of coordination
that can be realized using state synchronization. State syn-
chronization provides an implicit communication channel
between multiple devices that keeps the state of a task con-
sistent across all connected devices. This implicit commu-
nication is sufficient to perform several coordinated activi-
ties as demonstrated with the two examples in the previous
section. However, it does not allow the remote execution of
a particular piece of functionality. For example, it is not
easily possible to print a document on a printer that is con-
nected to a remote computer from a mobile device. In some
cases, the execution of remote commands can be enabled
by extending the application state with otherwise unused
keys. The remote device then listens to change events to
these special keys and triggers a pre-configured functional-
ity when an event is received. However, this workaround
reduces the semantic coherence of the state and should thus
be applied only sparingly.

Task synchronization
can lead to conflicts,
which are ignored by the
system

Task synchronization can lead to unresolved conflicts: If
two parties change the state of two synchronized applica-
tions at the same time, the change can lead to a conflict.
In the current implementation, these conflicts are ignored
and the latest change simply overwrites any intermediate
changes. In most cases, this will be sufficient, as the differ-
ent devices are used in a coordinated fashion, such that the
users can easily detect and circumvent any synchronization
conflicts. The TextEdit example, however, would benefit
from a more sophisticated synchronization procedure. To
this end, the operational transformation algorithm by Ellis
and Gibbs [1989] could be used to merge conflicting events
automatically.

5.4 Validation 159

Legacy task applications
are not supported
without modifying their
source code

The system does not support legacy task applications with-
out changing their source code. State extraction, restora-
tion, and synchronization must be implemented inside the
task application to allow it to participate in state exchange.
Thus, applications with inaccessibly source code cannot be
supported. This is a severe limitation for any system that
strives at supporting multi-device interaction in the wild,
as users are very reluctant of changing their tools for their
daily routine. In the next chapter, some approaches to inte-
grate support into legacy applications that do not need ac-
cess to the source code are presented. However, the optimal
solution is to encourage application developers to integrate
support for their applications. This can be only achieved, if
state exchange becomes a standard in all operating systems
with ample support such that application developers are
strongly encouraged to implement the needed methods.

The overhead of
implementing support for
state extraction,
restoration, and
synchronization lies with
the application developer

Finally, state extraction, restoration, and synchronization
must be customized to the application logic and imple-
mented by the application developer. This places much of
the burden of enabling multi-device interaction on the ap-
plication developer. The author strongly believes that this
limitation cannot be eliminated completely since applica-
tions exhibit very different behavior, which is reflected in
very diverse extraction, restoration, and synchronization
mechanisms. However, it is possible to assist application
developers further in implementing the necessary methods
by relying on common behavior throughout applications
that is rooted in commonly used system frameworks. Sup-
porting application developers this way is demonstrated by
example of the Cocoa framework in the next chapter.

161

Chapter 6

Integrating State Exchange
into Legacy Systems

The biggest hindrance of establishing a system like state ex-
change is to support a sufficient number of task application
for the system to become useful for the user. In the state
exchange system architecture, this support is enabled by
implementing the State I/O programming interface inside
the task application. In this chapter, different approaches
are presented and evaluated that simplify the integration
of State I/O into task applications.

The first approaches
ease communication
with the state exchange
service; the other
approaches make use of
system frameworks to
automate different parts
of the state exchange
implementation

The first two approaches provide useful abstractions to ap-
plication developers, which ease the communication with
the state exchange service. These abstractions can be im-
plemented in any system environment. The other ap-
proaches are based on the unique system frameworks in-
cluded in Mac OS X and cannot be immediately replicated
in other systems. These approaches highlight by exam-
ple of Mac OS X how features of the operating system can
be used to deduce information about the state of applica-
tions. To port these approaches, similar functionality must
be identified and exploited in other systems.

6.1 State I/O Support Library

The State I/O support library presented in section 5.3.2 pro-
vides several useful abstractions to simplify the implemen-
tation of the State I/O interface into task applications. It
manages the communication with the state exchange ser-
vice, provides abstractions for the interface methods, and a
data structure for state.

The State I/O library
allows application
developers to focus on
implementing state
extraction and
restoration

By using the State I/O support library, application devel-
opers do not need to be concerned about how to communi-
cate with the state exchange service. Instead, they can focus

162 6 Integrating State Exchange into Legacy Systems

on how to implement state extraction and restoration. Us-
ing the state data structure, the extracted state can then be
transferred between the application and the service with-
out the application developers needing to concern them-
selves with the underlying data format.

6.2 State Object

In the State I/O library state synchronization is supported
by calling a designated method every time the application
state changes. This method call must be accompanied by an
object describing the change. The goal of the state object is
to combine state extraction and state synchronization into
a single object.

The state object holds
the application’s current
state in a tree structure

The state object holds the complete application state at any
given time. The aspects of the application state are stored
in a tree with named branches that reflects the structure of
application state introduced in section 5.3.1. All of the val-
ues stored in the tree can be observed, i.e., when they are
changed a notification is posted, which can inform the ob-
server about the change.

The state object
contains all the
information needed for
state extraction and
synchronization

The state object is used to enable state extraction and syn-
chronization. When state extraction is triggered, the cur-
rent state object is simply exported and transferred to the
state exchange service. When a state observer was added
to a given state, any modifications of the state by the ap-
plication are immediately transferred to the state exchange
service as state change events. There is no need for the ap-
plication developer to implement any of this behavior.

Application developers
keep the state object
updated by replicated
any state changes in the
object or using it as a
model object

When using the state object, the application developer
must ensure that the state object always reflects the state
of the application. Thus, whenever the application’s state
changes, this change must also be applied to the state ob-
ject. For example, when a user interface element changes its
state, the application developer must implement a mecha-
nism that duplicates this change in the state object. Since in
most cases the application must respond to such a change
to its UI in any case, updating the state object can be sim-
ply integrated to the existing response logic. In other cases,
the state object can be used as a model object for the UI
to enable loose coupling between UI and application logic.
For example, a tool selection palette can be configured to
change the “selectedTool” property of the state object. The

6.3 Automatic Document Extraction 163

application logic can then observe the state property and
update the cursor accordingly without needing a direct
connection to the user interface.

By maintaining a state
object application
developers do not need
to implement state
extraction or
synchronization explicitly

The state object allows application developers to entirely
neglect state extraction and synchronization. Instead, they
must maintain the state object and ensure that it always re-
flects the state of the application. Depending on the ap-
plication, this programming pattern can significantly ease
the implementation of State I/O. In some cases, the pattern
can even improve the underlying application architecture
because it facilitates loose coupling between user interface
objects and application logic.

6.3 Automatic Document Extraction

In the state exchange system application state is organized
by open documents to enable clients to distinguish between
individual tasks that are executed in parallel in a single
application. Automatic document extractions aids the ap-
plication developers with this organization by determining
all open documents and preparing the application state ac-
cordingly. The approach is based on the Cocoa document
architecture.

The Cocoa document
architecture is a system
architecture for
multi-document
application

The Cocoa document architecture is a system architecture that
application developers are encouraged to use to implement
any kind of application that can open one or more files,
called documents, and show each document in one or more
designated windows. The architecture defines a mecha-
nism to manage documents in the application and a life-
cycle for the documents: All documents are managed by
a single controller class that is instantiated by the system.
This controller maintains a list of all open documents and
is used to create and initiate new documents, which are rep-
resented by document objects. The life-cycle of a document
defines how the document is created including the configu-
ration of its user interface, how its contents are loaded from
or save to a file, and how it is closed.

Application developers
create a subclass of the
abstract document class
for each document type
they want to support

To aid developers in implementing this architecture, Cocoa
includes a system framework that automates many parts
of the implementation. The system framework includes a
fully-functional standard implementation of the controller
that manages the open documents. In addition, the frame-
work defines an abstract document class that defines the

164 6 Integrating State Exchange into Legacy Systems

frame for implementing the document objects. To make use
of this standard functionality, application developers create
a subclass of the document class for each document type
they want to support and configure the application to as-
sociate their subclass with the appropriate file type. Then,
they implement the logic needed to load/save the docu-
ment contents from/to a file. Finally, the user interface of
the document is set up and any additional needed function-
ality is implemented in the document class.

The Cocoa document
architecture is exploited
to enable automatic
document extraction

If an application uses the Cocoa document architecture, the
standard document management and life-cycle can be used
to automate the organization of application state according
to documents. To this end, the state extraction mechanism
is split up into two parts: The global state is configured
from the application delegate, which is a central object that
manages the entire application. The state of each document
included in the documents element is then configured from
each of the document objects that are managed by the doc-
ument controller. State restoration can be split up in the
same way. In other words, state extraction and restoration
is integrated into the document life cycle.

Automatic document
extraction splits state
extraction and
restoration into
semantically coherent
parts

Integrating state extraction and restoration into the docu-
ment life cycle is beneficial for application developers, be-
cause it splits up the process into semantically coherent
parts: The application delegate is extended with two meth-
ods that extract and restore the state of the application that
is independent of any documents. The document objects
are extended with two methods that extract or restore the
state that is relevant for the document. When state extrac-
tion or restoration is triggered, the system can call these
methods on the appropriate objects to construct or restore
the complete application state. If needed, new documents
can be created using the document controller and config-
ured by calling the state restoration method.

6.4 Automatic User Interface State Extraction

While the previous sections focused on supporting applica-
tion developers in their implementation of state extraction
and restoration, this section explores how some aspects of
the state can be extracted and restored automatically. In
particular, the section explores how the inspection and con-

6.4 Automatic User Interface State Extraction 165

figuration capabilities of standard UI elements can be ex-
ploited to automatically derive their state.

User interface elements
are represented by view
objects, which are
organized in a tree
structure

In Cocoa, the UI is represented by view objects. A view
object contains the capabilities to render a widget on the
screen and listen to user events that affect the rendered wid-
get. View objects are organized in a tree structure that re-
flects the structure of the user interface. The root element is
always a window object, representing the window that the
views are placed in. The tree structure and all properties of
standard view objects can be inspected at runtime.

User interface state can
be extracted by
replicating the tree
structure of the view
objects in the state and
storing all view
properties at the
appropriate elements

To extract the state of the UI, it is sufficient to extract the
state of all view elements in the UI in a way that reflects
their organization in the UI. Since both the UI and applica-
tion state are organized as a number of trees, the structure
of the UI can be reflected in an equal structure in the appli-
cation state. This tree structure can then be used to store all
properties of the view objects that are relevant for its state.
For example, the state of a button includes at a minimum
the button label and the “pushed” state of the button. Cus-
tom view objects, i.e., view objects defined by the applica-
tion developers, cannot be included in the state extraction
because their properties are unknown.

User interface state is
restored by updating the
user interface elements
according to the stored
state

To restore the automatically extracted UI state, the stored
view properties are read from the state and applied to the
appropriate view elements. This process assumes that the
UI exists at the time of restoration and that its structure is
the same as when it was extracted. In other words, the au-
tomatic UI state extraction can only work with a static UI
structure, where it is guaranteed that the tree structure con-
taining all view elements does not change. The state can
then be restored by traversing both the stored state struc-
ture and the view structure and applying the stored view
properties to the view objects.

The UI can be created
from the Cocoa
document architecture

The assumption that the UI must exist at the time of restora-
tion is fulfilled if state restoration is integrated into the Co-
coa document architecture as described in the previous sec-
tion. By using the Cocoa document architecture, the system
can create a new document from the document referenced
in the state, which will instantiate the default UI for that
document. In a second step, this UI is then updated ac-
cording to the stored view properties.

166 6 Integrating State Exchange into Legacy Systems

Differences in the UI
structure between the
time of extraction and
the time of restoration
can lead to incomplete
or erroneous restoration

The assumption that the created UI must have the same
structure as the UI at the time of extraction, however, can-
not be guaranteed for all applications. If the created UI dif-
fers from the stored UI, the state restoration may be incom-
plete or erroneous. An incomplete restoration occurs if the
location of a UI element is different between the time of ex-
traction and the creation time. In this case, the state of the
UI element is not restored. An erroneous restoration occurs,
if a different UI element is located at the place of a stored
UI element. If the difference between these UI elements is
not detected, the restoration can result in a wrongly con-
figured UI element or in a runtime error that terminates the
application. To avoid erroneous restoration, the application
state should include the type of the UI element (name of the
view class) and match this type with the type of the element
during restoration.

Restoring view
properties can lead to
inconsistencies between
the UI and the
application, which are
avoided by triggering
view update events

Finally, extracting and restoring only the state of UI ele-
ments can lead to inconsistencies between the user interface
and the application. For example, the UI may be restored to
show the “annotate” tool as active while internally the “se-
lection” tool is active by default. This inconsistency can be
avoided by triggering the same mechanisms that are used
when the user changes the value of a view property, when
restoring the view property from a state. In above example,
the UI restoration can trigger a change event after restoring
the tool selection, which will then update the application
logic to match the tool selected in the UI. In Cocoa, this is
the default behavior when setting view properties.

The approach takes
away the need to
implement state
extraction and
restoration for the user
interface at the cost of a
semantically meaningful
structure of the state

Using the described approach, application developers no
longer need to provide a custom implementation to extract
and restore the user interface state of an application. In-
stead, they can focus on how to extract and restore the re-
maining application state and ensure that the automatic UI
restoration does not fail because of the limitations men-
tioned above. In many cases, this will likely decrease the
overall effort of implementing complete support for state
extraction and restoration. However, the structure of the
automatically generated UI state does not provide a good
semantic representation of the state. Since view objects in
the UI are structured as an ordered tree without named
keys for the branches, the automatically extracted UI state
also cannot contain meaningful keys to reference the UI
elements. Thus, the automatically extracted state is com-
prised of unlabeled lists of elements that are hard to distin-

6.5 Automatic State Extraction via Resume 167

guish from one another. Consequently, automatic UI ex-
traction can help application developers implement sup-
port for state extraction and restoration but only at the cost
of reduced semantic coherence of the extracted state.

6.5 Automatic State Extraction via Resume

Resume is a feature of Mac OS X that allows terminated ap-
plications to be resumed at the state when they were ter-
minated. To support Resume, an application must create a
persistent copy of its state on the disk before termination,
which is then loaded to restore the state upon resumption.
This feature can be used to enable automatic state extrac-
tion and restoration.

Resume requires
application developers to
create a persistent copy
of the application’s state,
which is organized
according to the internal
structure of the
application

It is the application developer’s responsibility to extract
and store the state of the application before termination
such that the application can restore its appearance from
the stored state upon resumption. The state extraction is
done in a multi-step process, where different parts of the
application are asked for the part of the state that is relevant
to them. These parts are closely related to the Cocoa doc-
ument architecture: The application delegate is queried for
any global state, and each document, window controller,
and all view objects for their state. However, the extraction
process does not include user content. Instead, user con-
tent is stored using the Autosave feature, which ensures that
all user content is always stored persistently on the disk to
avoid loss of data.

The Resume feature can
be used to enables state
migration and state
composition but lacks
immediate support for
the other requirements
of multi-device
interaction in the wild

The state that is extracted through the Resume mechanism
contains everything that is needed to resume operation of
the application. This information is stored in a way such
that different parts of the application, including all open
documents, can be distinguished. Consequently, the state
can be used to enable task migration with support for dis-
tinguishing between the tasks that are currently executed
in the application. However, state extraction can only be
triggered by the system, which is only done upon applica-
tion termination. Additionally, the extracted state is typi-
cally not organized in a semantically coherent format mak-
ing it is hard to interpret and convert the state to enable
state sharing or platform interoperability. Finally, state syn-
chronization is not supported by Resume.

168 6 Integrating State Exchange into Legacy Systems

Separation of control can
be integrated by injecting
custom functionality into
the application

The need to terminate an application to extract its state can
be eliminated using a custom script that triggers state ex-
traction from inside the application. This script must be
injected into the application via AppleScript as described
in the next section. Afterwards, the script can be executed
from an external process to extract the state of the applica-
tion into a file, which can then be transferred to a remote
device. In addition to the state file generated via the Re-
sume feature, the autosaved documents are also extracted,
using the approach based on the Cocoa document architec-
ture described above. Finally, the script can be executed to
restore its state from a previously extracted state by supply-
ing the location of the state file and the related user content.

State sharing is possible
but complicated by the
format in which the state
is stored and the way it
is extracted

The format of the state files is stored in the NSCoding for-
mat, which is the standard Cocoa data format. However,
this format cannot be stored in a human-readable format,
because it directly represents the runtime object structure,
which can contain circular relationships between objects.
Additionally, the state information is not stored in a se-
mantically abstract way but close to the representation of
the application on the platform where it was extracted. For
example, the position of a viewer application in a PDF doc-
ument is stored as a scrolling offset in pixels instead of the
page number. Consequently, even though all necessary in-
formation is contained in the state file, it is hard to extract
and interpret the relevant information for the task to create
custom applications that share the same state.

The Resume enables
state migration at the
cost of reduced semantic
abstraction of the state

The Resume feature represents the strongest opportunity
for completely automatic state extraction and restoration
on Mac OS X. It provides the complete state of the appli-
cation in a way that can be extracted at runtime and dis-
tinguished at the task level. The state can be stored per-
sistently and transferred to other systems, where it can be
restored to restore the application to the state of extrac-
tion. However, state extraction using the Resume feature
comes at the cost of greatly reduced semantic abstraction
of the state. The automatically extracted state is stored in
a way that closely resembles the internal organization of
the application, which makes the process of standardizing
state for specific application types and converting state be-
tween applications much harder. Thus, even though the
Resume feature can be used to enable state migration where
it would otherwise not be supported, it is not a sustainable

6.6 Enabling Third-party State I/O Integration 169

solution to just rely on this feature for state migration in the
future.

6.6 Enabling Third-party State I/O Integration

The previous approaches have focused on simplifying the
implementation of State I/O for application developers. In
this section, a different approach is taken to increase oppor-
tunities for State I/O adaptation: By making it possible to
implement support for legacy applications without access
to the application’s source code, third-party developers can
integrate State I/O on behalf of the application developers.
This way, more people are empowered to extend existing
applications with support for state exchange.

Runtime toolkit
overloading enables
third-party developers to
modify the behavior of
legacy applications by
providing six
abstractions

The approach is based on Runtime toolkit overloading by Ea-
gan et al. [2011], which allows developers to inject custom
functionality into legacy applications to change the behav-
ior of these applications. Runtime toolkit overloading pro-
vides six abstractions that help developers in creating these
modifications:

• Window or widget hooks allow developers to adapt the
appearance of the UI before it is rendered.

• Event funnels provide mechanisms to intercept and re-
spond to arbitrary events.

• Glass sheets are overlays on top of the existing UI that
can be used to augment or replace the UI with custom
widgets.

• Dynamic code support enables developers to load cus-
tom code into the running application and replace
and extend existing functionality at the class level.

• Object proxies allows developers to override and ex-
tend existing functionality at the object instance level.

• Code inspection provides several tools to inspect the
structure of the application and its user interface at
runtime.

Dynamic code support
can also be used to
integrate support for
State I/O into legacy
applications

These abstractions assist developers in two ways: They en-
able developers to create modifications without needing a
deep understanding of the application structure, and they
help developers in gaining a deeper understanding of the

170 6 Integrating State Exchange into Legacy Systems

application if necessary. In the context of this thesis dy-
namic code support is used to enable third-party develop-
ers to integrate State I/O support into legacy applications.

A ScriptingAddition
extends all applications
on a system with custom
functionality that can be
executed via AppleScript

On Mac OS X any application written with the standard
system framework (Cocoa) can be extended with custom
functionality through a ScriptingAddition. A ScriptingAd-
dition is a static library that contains compiled code and
an AppleScript interface. By installing the ScriptingAddi-
tion in the system, the AppleScript interface is automati-
cally injected into any application as soon as the applica-
tion is started. By executing the commands defined in the
AppleScript interface of the library on a third-party appli-
cation, the library is loaded into the program context of the
application and the custom functionality is executed.

AppleScript commands
are executed from a
Cocoa application or a
command line tool by
sending the command
and parameters as a
string to the target
application

AppleScript commands can be executed in diverse ways.
Cocoa provides several classes to assist the creation and ex-
ecution of an AppleScript interface. In addition, commands
can be executed from a designated command line tool. An
AppleScript command can contain parameters and return
data including complex objects. However, the command,
the parameter, and the returned value are encoded as a
string and thus should not contain long segments of binary
data.

State I/O support can be
loaded into a legacy
application through a
ScriptingAddition

Through a ScriptingAddition, the State I/O support library
or any of the approaches mentioned above can be loaded
into legacy applications on Mac OS X. State extraction and
restoration can then be executed in two different ways: The
application can be configured to connect to the state ex-
change service as described in section 5.3.1, or the Apple-
Script interface can define two methods to execute state ex-
traction and restoration directly. Connecting to the state ex-
change service has the advantage of a continuous commu-
nication channel between the application and the service,
which can be used for state synchronization. However, due
to restrictions of the application sandbox1, many applica-
tions are not allowed to open a socket connection to an-
other service. The AppleScript interface is not affected by
this limitation.

A ScriptingAddition can
also be used to load a
custom implementation
of the State I/O interface

In addition to a support library, the ScriptingAddition can
also be used to load a custom implementation of the State
I/O interface. Through this custom implementation, a

1http://developer.apple.com/library/mac/#documentation/
Security/Conceptual/AppSandboxDesignGuide

http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide

6.7 Example Implementation 171

legacy application can be augmented with full support for
State I/O without needing access to the source code. The
code inspection tools from Runtime toolkit overloading can
help third-party developers to find the appropriate state
values to be included in the extracted state and to update
these values when given a state for restoration.

6.7 Example Implementation

Different approaches to
integrate State I/O have
been implemented in a
prototype

Several aspects of the approaches presented in this chapter
have been implemented in a prototype on Mac OS X. The
prototype is composed of three components:

• The NomadicApps ScriptingAddition loads the Nomad-
icApps library or a custom implementation of State
I/O and defines an AppleScript interface to trigger
state extraction and restoration.

• The NomadicApps library is loaded into applications to
assist or automate the implementation of state extrac-
tion and restoration.

• The NomadicDesktop application allows users to ini-
tiate task migration by extracting, transferring, and
restoring state from a menu in the system menu bar.

The prototype is not
compatible with the state
exchange architecture

Due to the limitation of the application sandbox that pre-
vents many applications from communicating with ser-
vices via a socket and the incompatibility of the automat-
ically extracted state with the state format suggested in sec-
tion 5.3.1, the prototype is not compatible with the state ex-
change architecture.

6.7.1 NomadicApps ScriptingAddition

The NomadicApps ScriptingAddition defines an Apple-
Script interface that is injected into all applications on the
same system. The interface defines the following four
methods:

1. Return a list of all documents that are currently
opened in the application.

2. Close the specified document.

3. Extract the application state that is related to the spec-
ified document into a file and return the file path.

172 6 Integrating State Exchange into Legacy Systems

4. Restore the document and its related application state
from the file at the specified location.

The NomadicApps
ScriptingAddition defines
the methods needed for
state extraction and
restoration

The first two methods are used to identify and manage the
open documents in an application. The last two methods
are used to extract and restore the application state related
to a specific document. The extracted state is returned by
means of a file in the file system, avoiding the overhead of
sending large binary data via the AppleScript interface.

Upon triggering the
AppleScript interface a
custom or automatic
implementation of the
interface methods is
loaded and executed

The first time, any of these methods is executed, the
ScriptingAddition loads the NomadicApps library into the
running task application. Then, a custom implementation
of state extraction and restoration, if available, or the au-
tomatic implementation from the NomadicApps library is
used to perform the appropriate command. A custom im-
plementation is provided via a plug-in, i.e., a static library
that includes an implementation of the state extraction and
restoration methods and a description of the application
that it is appropriate for.

6.7.2 NomadicApps Library

The NomadicApps library is designed to be loaded into
legacy applications and support application developers in
implementation state extraction and restoration or provide
an automatic implementation based on the Resume feature.
It contains two classes:NAState and NADocumentCoder.

The NAState class is
used to create, access,
and manage an
application state stored
on the disk

The NAState class represents a file structure that is used to
stored extracted application state on the disk. The appli-
cation state is stored in three files: The info file contains a
description of the application and the document. The docu-
ment file contains the user content in the format defined by
the application. The supplement file contains the exported
application state from the Resume feature. In addition, the
file structure can include a screen shot of the application at
the time of extraction. The NAState object implements sev-
eral convenience methods to create and manage state files
on the disk.

The NADocumentCoder
class extracts and
restores state by saving
or loading the document
and extracting or
restoring the related
application state

The NADocumentCoder class implements automatic state
extraction and restoration based on the Cocoa document
architecture and the Resume feature. The list of open doc-
uments and a mechanism to close a document can be read-
ily obtained from the document controller included in the
document architecture. State extraction and restoration is

6.7 Example Implementation 173

Figure 6.1: The
menu included in No-
madicDesktop allows
users to extract the state
of the active document
and store it as a file or
send it directly to a peer
device.

done by first storing the specified document to NAState’s
document file and, finally, extracting and storing the appli-
cation state related to the document in the supplement file.
State restoration first opens the document contained in the
NAState object and then updates the document’s user in-
terface according to the state stored in the supplement file.

6.7.3 NomadicDesktop

NomadicDesktop is an application that can be used to ini-
tiate application migration in two ways: First, it creates a
menu in the Mac OS X menu bar, which allows users to ex-
tract the state of the active document and store it in a file
or transfer it to a remote device. Second, it allows users to
extract the state of an arbitrary document and application
running on the system by selecting it from a list. An ex-
tracted state stored in a file can be restored by opening it
with NomadicDesktop and initiating state restoration.

The NomadicApps menu
allows users to interact
with the state of the
currently active
document and
application

Figure 6.1 shows the menu included in NomadicDesktop.
Using the menu, users can only extract the state of the ac-
tive document. The state can be either stored in a file or
sent to a remote device. All remote devices running the
NomadicDesktop application on the same network are au-
tomatically discovered and shown in the list of possible
transfer targets. By clicking on a target device, the state
of the current document and application is migrated to the
target device in one step. Finally, the menu can be used
to migrate the active document and application running on
the remote device to the local device.

The application browser
is used to inspect and
extract the state of any
running application

Figure 6.2 shows a screen shot of the NomadicDesktop ap-
plication browser. In the left column, all running applica-
tions are listed and can be selected by clicking on the ap-
plication name. Once selected, the main part of the screen
reveals a list of all open document in the selected applica-

174 6 Integrating State Exchange into Legacy Systems

Figure 6.2: The No-
madicDesktop appli-
cation browser allows
users to select and ex-
tract the state of any
active application and
document.

tion. These documents can be selected and extracted into
a state file. In addition to the local application browser, it
is also possible to open an application browser on a remote
device. This allows users to inspect, extract, and transfer
the state of applications running on remote devices.

The automatic state
extraction and
restoration of the
NomadicDesktop
prototype works with a
variety of applications

The automatic implementation of state extraction and
restoration was tested successfully with the 18 different ap-
plications listed in Table 6.1. This list includes many of the
applications that are bundled with Mac OS X. Addition-
ally, the iWork application suite from Apple is also sup-
ported. The remaining applications are made of a mix of
smaller commercial and open-source applications for the
Mac. Large application bundles, such as Microsoft Office
or Adobe Creative Suite, are not supported because they
are not developed in Cocoa.

6.8 Discussion

The goal of this chapter was to explore different approaches
to simplify the integration of State I/O into legacy appli-
cations. This goal was addressed from three sides: Sim-
plify the integration process for application developers, au-
tomate State I/O integration, and empower third-party de-
velopers to integrate State I/O on behalf of the application
developers.

To convince application
developers to integrate
support for State I/O, the
barriers of integration
should be lowered as
discussed in this chapter
and the functionality
should be anchored in
the operating system

The approaches focused on supporting application devel-
opers are universally applicable. They can be readily
ported to other operating systems and device classes. These
approaches, however, still require work on behalf of the ap-
plication developers. The best way to encourage applica-
tion developers to implement this support is to lower the
barriers of implementation as demonstrated with the dis-
cussed approaches and to integrate them deeply into the

6.8 Discussion 175

Application Version
AppleScript Editor 2.4.1
Automator 2.2.1
Chess 2.4.3
Grab 1.6
Grapher 2.2
Preview 5.5.1
Quicktime Player 10.1
TextEdit 1.7
BibDesk 1.5.4
CocoPad 1.0
GarageBand ’11 6.0.4
Keynote ’09 5.1
Numbers ’09 2.1
OmniGraffle 5.3.2
OmniOutliner 3.10.3
Pages ’09 4.1
Skim 1.4.4
TeXShop 3.04

Table 6.1: The listed applications can be migrated using the NomadicDesktop prototype.

operating system. Through this deep integration, users will
become acquainted with the features enabled by state ex-
change. In consequence, users will actively demand that
their applications’ fulfill the requirements to participate in
state exchange and thus give application developers suffi-
cient incentive to make their applications compatible.

To empower third-party
developers or enable
automatic
implementation of State
I/O support can help the
adoption of state
exchange, but it should
not be considered a
permanent solution

The other approaches focused on integrating State I/O sup-
port into legacy applications on behalf of the application
developers, should be considered as a bridge between to-
day where no support is provided and a future where
hopefully the application developers will readily imple-
ment State I/O support. Automating state extraction and
restoration suffers from severe drawbacks in the form of re-
duced semantic meaning of the extracted state and its im-
plications on state sharing, platform interoperability, and
synchronization. Pushing the efforts onto third-party de-
velopers or the “community” can mitigate some of these
problems, but the solutions created by third parties are hard
to maintain and thus prone to compatibility issues between
different versions of the software.

177

Chapter 7

Conclusion

The thesis provides
contributions in the
areas of understanding,
supporting, and
integrating multi-device
interaction in the wild

When developing support for users in their everyday be-
havior, it is important to understand the user behavior
that is encouraged and define a solution that embeds itself
tightly into their everyday infrastructure. This thesis pur-
sued the goal of improving everyday work with multiple
devices in this matter: First, the thesis sought a deeper un-
derstanding of user behavior when confronted with mul-
tiple devices. Then, an interaction concept to facilitate ef-
fective multi-device interaction with everyday devices was
designed. Finally, the tight integration of this concept into
the existing tools was demonstrates with a system archi-
tecture that augments existing interactive devices with the
multi-device operations provided by the concept. This the-
sis provides several unique contributions in each of these
areas, which are summarized in the following sections.

7.1 Multi-device Interaction in the Wild

There is ample room to
improve support for
multi-device interaction
in the wild

This thesis established that multi-device interaction in the
wild as conducted today is far from its full potential. The
main hindrances of this evolving behavior are a lack of sup-
port in current systems that leaves the overhead of manag-
ing and coordinating tasks across multiple devices entirely
to the user and a misalignment of current research efforts
in the area of multi-device interaction. If these hindrances
can be overcome and efficient multi-device interaction can
be integrated into common systems and used for common
tasks, these solutions have the potential to reach an increas-
ing number of users and improve their daily lives.

The thesis classifies
multi-device interaction
operations and uncovers
its challenges

Before designing a solution for multi-device interaction in
the wild, it is important to understand the unique proper-
ties and challenges of the domain. This thesis contributes
to the understanding of multi-device interaction in the wild

178 7 Conclusion

in two ways: First, it proposes the multi-device interac-
tion matrix, which identifies two categories of multi-device
interaction in the wild: timing and task. Second, it un-
covers the unique challenges of multi-device interaction in
the wild: support opportunistic rearrangement of devices
and tasks, transitions must be robust, support ad-hoc situ-
ations. These contributions can be used to guide the design
of future solutions to address the unique demands of multi-
device interaction in the wild.

By raising awareness of
multi-device interaction
in the wild, the author
hopes to push more
research into the
direction of this
promising domain

The most important goal of this thesis in analyzing multi-
device interaction in the wild, however, is to raise aware-
ness of this domain in the research community. Past
research efforts in multi-device interaction appear to be
caught in the domains of collaborative work and meeting
room technology. At the same time, workers have devel-
oped their own way of using multiple devices in their ev-
eryday routine, without much support from research. By
highlighting this evolving behavior, the author of this the-
sis hopes to encourage more work on multi-device inter-
action in the wild in an attempt to realign research efforts
with current practices.

7.2 Exposing Application State

This thesis presents an
interaction concept that
addresses the
challenges of
multi-device interaction
in the wild

In addition to raising awareness of multi-device interaction
in the wild, this thesis also pursued first steps into solv-
ing the challenges of this promising domain. To this end,
an interaction concept was developed that meets the chal-
lenges of multi-device interaction in the wild. This concept
demonstrates how the behavior described above can serve
as a basis for the design of an interactive system to address
multi-device interaction in the wild. At the same time, it
demonstrates a new approach to multi-device interaction
that both designers and users can benefit from.

The development of the
interaction concept
demonstrates how the
challenges underlying
multi-device interaction
in the wild can be
leveraged in the design
process

By describing not only the final solution but also the pro-
cess of how it was developed, this thesis demonstrates how
the insights about multi-device interaction in the wild can
be used to design new solutions that are tailored to this
evolving behavior. The process description validates the ef-
fectiveness of the classification of multi-device interaction
in the wild and the described challenges as a design tool.
Thus, it can serve as a guide for future authors to apply the

7.3 System Architecture 179

theoretical considerations around multi-device interaction
in the wild in novel interaction concepts.

The interaction concept
can guide the design of
future multi-device
interaction techniques
for everyday tasks

At the same time, the concept itself is very generic and can
be applied to manifold systems and situations where both
users and designers can benefit from the consistent appli-
cation of the concept: For users it defines a standard way
of integrating multi-device interaction into their everyday
tasks by turning application state into a persistent, manip-
ulatable object. For designers it facilitates the design pro-
cess of creating multi-device interaction techniques that in-
tegrate into common interactive systems by separating this
integration process from the actual design of the interaction
technique. The author hopes that this concept will assist
the consistent adaptation of existing multi-device interac-
tion techniques from the literature into everyday tasks, as
well as the design of novel interaction techniques.

7.3 System Architecture

The thesis proposes a
system architecture for
exposing state that
integrates into modern
operating systems

To demonstrate that the concept of exposing application
state as a first-class interactive object can be integrated into
common interaction system, the thesis finally explored a
system architecture that implements above concept on top
of a typical operating system. This implementation relies
on application developers to implement a standard pro-
gramming interface that makes the state of the application
accessible. Interaction designers can then use this interface
to implement interaction techniques that can operate on all
applications that support the interface.

The implementation
would benefit from being
integrated into operating
systems at the system
level

Ideally, the implementation proposed in this thesis or a
similar implementation should be integrated at the system-
level of modern operating systems. As with any technology
that is pushed by operating system developers, integrating
state exchange at the system level has the potential to en-
courage more application developers to implement support
for state exposition in their application. Additionally, many
of the implementation challenges encountered in this thesis
are easily circumvented by the extensive access that oper-
ating system developers have over common applications.

180 7 Conclusion

Community-based and
automatic integration of
exposing application
state lowers the initial
adoption of multi-device
interaction into everyday
systems

With the discussion of community-based and automatic in-
tegration of state exposition, this thesis describes several
methods to improve initial adoption of the new technology
into modern systems – a challenge that is especially critical
for introducing technology that affects people’s everyday
lives. Pursuing automated approaches has the potential to
greatly increases the number of initially supported appli-
cations and thus ease the adoption of the new technology.
Similarly, by giving third-party developers the opportunity
to implement exposing application state on behalf of appli-
cation developers empowers enables a large community to
create custom support for multi-device interaction. How-
ever, these approaches should be considered as an interme-
diate step with the ultimate goal of reaching application de-
velopers to implement support for state exchange into their
applications.

181

Appendix A

External Resources

Resource URL
State Exchange Project Website http://hci.rwth-aachen.de/stateexchange
Ying Zhang’s website http://hci.rwth-aachen.de/zhang
Mario Fraikin’s website http://hci.rwth-aachen.de/fraikin
Sören Busch’s website http://hci.rwth-aachen.de/busch
Ahsan Nazir’s website http://hci.rwth-aachen.de/nazir
Stefan Plücken’s website http://learntech.rwth-aachen.de/Pluecken

http://hci.rwth-aachen.de/stateexchange
http://hci.rwth-aachen.de/zhang
http://hci.rwth-aachen.de/fraikin
http://hci.rwth-aachen.de/busch
http://hci.rwth-aachen.de/nazir
http://learntech.rwth-aachen.de/Pluecken

183

Bibliography

Tube with a Memory Keeps Answers on File. Popular Science, page 96, 1950.

Till Ballendat, Nicolai Marquardt, and Saul Greenberg. Proxemic Interaction: De-
signing for a Proximity and Orientation-aware Environment. In Proceedings of the
International Conference on Interactive Tabletops and Surfaces, ITS ’10, pages 121–130.
ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0399-6.
URL http://dx.doi.org/10.1145/1936652.1936676

Lionel Balme, Alexandre Demeure, Nicolas Barralon, Joëlle Coutaz, and Gaëlle
Calvary. CAMELEON-RT: A Software Architecture Reference Model for Dis-
tributed, Migratable, and Plastic User Interfaces. In European Symposium on Am-
bient Intelligence, pages 291–302. Springer Verlag, Berlin / Heidelberg, 2004. ISBN
978-3-540-23721-1.
URL http://dx.doi.org/10.1007/978-3-540-30473-9_28

Renata Bandelloni and Fabio Paternò. Flexible Interface Migration. In Proceedings
of the International Conference on Intelligent User Interfaces, IUI ’04, pages 148–155.
ACM, New York, NY, USA, 2004. ISBN 1-58113-815-6.
URL http://dx.doi.org/10.1145/964442.964470

Jakob Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard. Support for
Activity-based Computing in a Personal Computing Operating System. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06,
pages 211–220. ACM, New York, NY, USA, 2006. ISBN 1-59593-372-7.
URL http://dx.doi.org/10.1145/1124772.1124805

Patrick Baudisch, Edward Cutrell, Dan Robbins, Mary Czerwinski, Peter Tandler,
Benjamin Bederson, and Alex Zierlinger. Drag-and-Pop and Drag-and-Pick:
Techniques for Accessing Remote Screen Content on Touch- and Pen-Operated
Systems. In Proceedings of Human-Computer Interaction, INTERACT ’03, pages
57–64. IOS Press, 2003. ISBN 1-58603-363-8.

Patrick Baudisch and Ruth Rosenholtz. Halo: a Technique for Visualizing Off-
Screen Locations. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’03, pages 481–488. ACM, New York, NY, USA, 2003.
ISBN 1-58113-630-7.
URL http://dx.doi.org/10.1145/642611.642695

Michel Beaudouin-Lafon. Instrumental Interaction: An Interaction Model for De-
signing Post-WIMP User Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’00, pages 446–453. ACM, New York,

http://dx.doi.org/10.1145/1936652.1936676
http://dx.doi.org/10.1007/978-3-540-30473-9_28
http://dx.doi.org/10.1145/964442.964470
http://dx.doi.org/10.1145/1124772.1124805
http://dx.doi.org/10.1145/642611.642695

184 Bibliography

NY, USA, 2000. ISBN 1-58113-216-6.
URL http://dx.doi.org/10.1145/332040.332473

Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. Engineer-
ing JavaScript State Persistence of Web Applications Migrating Across Multiple
Devices. In Proceedings of the SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’11, pages 105–110. ACM, New York, NY, USA, 2011. ISBN
978-1-4503-0670-6.
URL http://dx.doi.org/10.1145/1996461.1996502

Krishna Bharat and Marc H. Brown. Building Distributed, Multi-user Applications
by Direct Manipulation. In Proceedings of the Annual Symposium on User Interface
Software and Technology, UIST ’94, pages 71–80. ACM, New York, NY, USA, 1994.
ISBN 0-89791-657-3.
URL http://dx.doi.org/10.1145/192426.192454

Krishna A. Bharat and Luca Cardelli. Migratory Applications. In Proceedings of the
Annual Symposium on User Interface Software and Technology, UIST ’95, pages 132–
142. ACM, New York, NY, USA, 1995. ISBN 0-89791-709-X.
URL http://dx.doi.org/10.1145/215585.215711

Jacob T. Biehl and Brian P. Bailey. ARIS: An Interface for Application Relocation
in an Interactive Space. In Proceedings of Graphics Interface, GI ’04, pages 107–
116. Canadian Human-Computer Communications Society, School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, 2004. ISBN 1-56881-
227-2.
URL http://dx.doi.org/10.1145/642611.642666

Jacob T. Biehl, William T. Baker, Brian P. Bailey, Desney S. Tan, Kori M. Inkpen, and
Mary Czerwinski. IMPROMPTU: A New Interaction Framework for Supporting
Collaboration in Multiple Display Environments and Its Field Evaluation for Co-
located Software Development. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 939–948. ACM, New York, NY, USA,
2008. ISBN 978-1-60558-011-1.
URL http://dx.doi.org/10.1145/1357054.1357200

BITKOM. IT-Nutzung an deutschen Arbeitsplätzen nur noch Mittelmaß. 2011.
URL http://www.bitkom.org/72889_72885.aspx

BITKOM. Tablet Computer verbreiten sich rasant. 2012.
URL http://www.bitkom.org/de/presse/64050_70631.aspx

Marco Blumendorf, Dirk Roscher, and Sahin Albayrak. Dynamic User Interface
Distribution for Flexible Multimodal Interaction. In International Conference on
Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interac-
tion, ICMI-MLMI ’10, pages 20:1–20:8. ACM, New York, NY, USA, 2010. ISBN
978-1-4503-0414-6.
URL http://dx.doi.org/10.1145/1891903.1891930

http://dx.doi.org/10.1145/332040.332473
http://dx.doi.org/10.1145/1996461.1996502
http://dx.doi.org/10.1145/192426.192454
http://dx.doi.org/10.1145/215585.215711
http://dx.doi.org/10.1145/642611.642666
http://dx.doi.org/10.1145/1357054.1357200
http://www.bitkom.org/72889_72885.aspx
http://www.bitkom.org/de/presse/64050_70631.aspx
http://dx.doi.org/10.1145/1891903.1891930

Bibliography 185

Sören Busch. Nomadic Interfaces in UbiComp. Diploma thesis, RWTH Aachen Uni-
versity, 2011.
URL http://hci.rwth-aachen.de/busch

Luca Cardelli. A Language with Distributed Scope. In Proceedings of the SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’95, pages 286–
297. ACM, New York, NY, USA, 1995. ISBN 0-89791-692-1.
URL http://dx.doi.org/10.1145/199448.199516

Tsung-Hsiang Chang and Yang Li. Deep Shot: A Framework for Migrating Tasks
Across Devices Using Mobile Phone Cameras. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’11, pages 2163–2172. ACM,
New York, NY, USA, 2011. ISBN 978-1-4503-0228-9.
URL http://dx.doi.org/10.1145/1978942.1979257

Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. Associating the Visual Represen-
tation of User Interfaces with Their Internal Structures and Metadata. In Proceed-
ings of the Annual Symposium on User Interface Software and Technology, UIST ’11,
pages 245–256. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0716-1.
URL http://dx.doi.org/10.1145/2047196.2047228

comScore. MobiLens. 2012.
URL http://de.statista.com/statistik/daten/studie/219258

Joëlle Coutaz. User Interface Plasticity: Model Driven Engineering to the Limit! In
Proceedings of the SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS ’10, pages 1–8. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0083-4.
URL http://dx.doi.org/10.1145/1822018.1822019

David Dearman and Jeffery S. Pierce. It’s on my other Computer!: Computing
with Multiple Devices. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, pages 767–776. ACM, New York, NY, USA, 2008.
ISBN 978-1-60558-011-1.
URL http://dx.doi.org/10.1145/1357054.1357177

Jonathan Diehl and Jan Borchers. Tangible Windows. Technical report, RWTH
Aachen University, 2013.
URL http://hci.rwth-aachen.de/diehl

Morgan Dixon, Daniel Leventhal, and James Fogarty. Content and Hierarchy in
Pixel-based Methods for Reverse Engineering Interface Structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages
969–978. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0228-9.
URL http://dx.doi.org/10.1145/1978942.1979086

James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. Cracking the
Cocoa Nut: User Interface Programming at Runtime. In Proceedings of the An-
nual Symposium on User Interface Software and Technology, UIST ’11, pages 225–234.
ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0716-1.
URL http://dx.doi.org/10.1145/2047196.2047226

http://hci.rwth-aachen.de/busch
http://dx.doi.org/10.1145/199448.199516
http://dx.doi.org/10.1145/1978942.1979257
http://dx.doi.org/10.1145/2047196.2047228
http://de.statista.com/statistik/daten/studie/219258
http://dx.doi.org/10.1145/1822018.1822019
http://dx.doi.org/10.1145/1357054.1357177
http://hci.rwth-aachen.de/diehl
http://dx.doi.org/10.1145/1978942.1979086
http://dx.doi.org/10.1145/2047196.2047226

186 Bibliography

W. Keith Edwards, Mark W. Newman, Jana Sedivy, Trevor Smith, and Shahram
Izadi. Challenge: Recombinant Computing and the Speakeasy Approach. In Pro-
ceedings of the Annual International Conference on Mobile Computing and Networking,
MobiCom ’02, pages 279–286. ACM, New York, NY, USA, 2002. ISBN 1-58113-
486-X.
URL http://dx.doi.org/10.1145/570645.570680

C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. In Proceed-
ings of the SIGMOD International Conference on Management of Data, SIGMOD ’89,
pages 399–407. ACM, New York, NY, USA, 1989. ISBN 0-89791-317-5.
URL http://dx.doi.org/10.1145/67544.66963

Mario Fraikin. Collaborating with Tangible Windows - Idea Generation and Information
Exchange in Small Groups. Diploma thesis, RWTH Aachen University, 2011.
URL http://hci.rwth-aachen.de/fraikin

Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. On-demand Cross-device
Interface Components Migration. In Proceedings of the International Conference
on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’10,
pages 299–308. ACM, New York, NY, USA, 2010. ISBN 978-1-60558-835-3.
URL http://dx.doi.org/10.1145/1851600.1851653

Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. Push and Pull of Web User
Interfaces in Multi-Device Environments. In Proceedings of the International Work-
ing Conference on Advanced Visual Interfaces, AVI ’12, pages 10–17. ACM, New
York, NY, USA, 2012. ISBN 978-1-4503-1287-5.
URL http://dx.doi.org/10.1145/2254556.2254563

Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan, Clément Pillias,
and Michel Beaudouin-Lafon. Shared Substance: Developing Flexible Multi-
surface Applications. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 3383–3392. ACM, New York, NY, USA, 2011.
ISBN 978-1-4503-0228-9.
URL http://dx.doi.org/10.1145/1978942.1979446

Carl Gutwin, Saul Greenberg, and Mark Roseman. Workspace Awareness Support
With Radar Views. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’96, pages 210–211. ACM, New York, NY, USA, 1996.
ISBN 0-89791-832-0.
URL http://dx.doi.org/10.1145/257089.257286

Sandra G. Hart and Lowell E. Staveland. Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research. In P. A. Hancock and
N. Meshkati, editors, Human Mental Workload, pages 239–250. North Holland
Press., Amsterdam, 1988. ISBN 978-0-444-70388-0.

Mountaz Hascoet. Throwing Models for Large Displays. In Human Computer Inter-
action, HCI ’03, pages 77–108. British HCI Group, Bath, UK, 2003.

http://dx.doi.org/10.1145/570645.570680
http://dx.doi.org/10.1145/67544.66963
http://hci.rwth-aachen.de/fraikin
http://dx.doi.org/10.1145/1851600.1851653
http://dx.doi.org/10.1145/2254556.2254563
http://dx.doi.org/10.1145/1978942.1979446
http://dx.doi.org/10.1145/257089.257286

Bibliography 187

Ken Hinckley. Synchronous Gestures for Multiple Persons and Computers. In
Proceedings of the Annual Symposium on User Interface Software and Technology, UIST
’03, pages 149–158. ACM, New York, NY, USA, 2003. ISBN 1-58113-636-6.
URL http://dx.doi.org/10.1145/964696.964713

David Holman, Roel Vertegaal, Mark Altosaar, Canada Kl, Nikolaus Troje, and
Derek Johns. PaperWindows: Interaction Techniques for Digital Paper. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’05,
pages 591–599. 2005. ISBN 1-58113-998-5.
URL http://dx.doi.org/10.1145/1054972.1055054

Brad Johanson and Armando Fox. The Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In Proceedings of the Workshop on Mobile Computing
Systems and Applications, WMCSA ’02, page 83. IEEE Computer Society, Wash-
ington, DC, USA, 2002. ISBN 0-7695-1647-5.
URL http://dx.doi.org/10.1109/MCSA.2002.1017488

Brad Johanson, Armando Fox, and Terry Winograd. The Interactive Workspaces
Project: Experiences with Ubiquitous Computing Rooms. Pervasive Computing,
1:67–74, 2002a. ISSN 1536-1268.
URL http://dx.doi.org/10.1109/MPRV.2002.1012339

Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone. PointRight:
Experience with Flexible Input Redirection in Interactive Workspaces. In Proceed-
ings of the Annual Symposium on User Interface Software and Technology, UIST ’02,
pages 227–234. ACM, New York, NY, USA, 2002b. ISBN 1-58113-488-6.
URL http://dx.doi.org/10.1145/571985.572019

Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers, Gonzalo Ramos, Kathy Lee, and
John C. Tang. Mobile Taskflow in Context: A Screenshot Study of Smartphone
Usage. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 2009–2018. ACM, New York, NY, USA, 2010. ISBN 978-
1-60558-929-9.
URL http://dx.doi.org/10.1145/1753326.1753631

Amy K. Karlson, Brian R. Meyers, Andy Jacobs, Paul Johns, and Shaun K. Kane.
Working Overtime: Patterns of Smartphone and PC Usage in the Day of an In-
formation Worker. In Proceedings of the International Conference on Pervasive Com-
puting, Pervasive ’09, pages 398–405. Springer-Verlag, Berlin, Heidelberg, 2009.
ISBN 978-3-642-01515-1.
URL http://dx.doi.org/10.1007/978-3-642-01516-8_27

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceed-
ings of the European Conference on Object-Oriented Programming, ECOOP. Springer-
Verlag, 1997. ISBN 978-3-540-63089-0.
URL http://dx.doi.org/10.1007/BFb0053381

http://dx.doi.org/10.1145/964696.964713
http://dx.doi.org/10.1145/1054972.1055054
http://dx.doi.org/10.1109/MCSA.2002.1017488
http://dx.doi.org/10.1109/MPRV.2002.1012339
http://dx.doi.org/10.1145/571985.572019
http://dx.doi.org/10.1145/1753326.1753631
http://dx.doi.org/10.1007/978-3-642-01516-8_27
http://dx.doi.org/10.1007/BFb0053381

188 Bibliography

Clemens Nylandsted Klokmose and Michel Beaudouin-Lafon. VIGO: Instrumental
Interaction in Multi-Surface Environments. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’09, pages 869–878. ACM, New
York, NY, USA, 2009. ISBN 978-1-60558-246-7.
URL http://dx.doi.org/10.1145/1518701.1518833

Shin’ichi Konomi, Christian Müller-Tomfelde, and Norbert A. Streitz. Passage:
Physical Transportation of Digital Information in Cooperative Buildings. In Pro-
ceedings of the Second International Workshop on Cooperative Buildings, Integrating
Information, Organization, and Architecture, CoBuild ’99, pages 45–54. Springer-
Verlag, London, UK, UK, 1999. ISBN 3-540-66596-X.
URL http://dx.doi.org/10.1007/10705432_5

Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of virtual
machine based on full system trace and replay. In Proceedings of the Annual Sym-
posium on User Interface Software and Technology, UIST ’09, pages 101–110. ACM,
New York, NY, USA, 2009. ISBN 978-1-60558-587-1.
URL http://dx.doi.org/10.1145/1551609.1551630

N. Marquardt, T. Ballendat, S. Boring, S. Greenberg, and K. Hinckley. Gradual En-
gagement between Digital Devices as a Function of Proximity: From Awareness
to Progressive Reveal to Information Transfer. In Proceedings of Interactive Table-
tops and Surfaces, ITS ’12. ACM, 2012a. ISBN 978-1-4503-1209-7.
URL http://dx.doi.org/10.1145/2396636.2396642

Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg.
The Proximity Toolkit: Prototyping Proxemic Interactions in Ubiquitous Com-
puting Ecologies. In Proceedings of the Annual Symposium on User Interface Software
and Technology, UIST ’11, pages 315–326. ACM, New York, NY, USA, 2011. ISBN
978-1-4503-0716-1.
URL http://dx.doi.org/10.1145/2047196.2047238

Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. Cross-Device Interaction
via Micro-mobility and F-formations. In Proceedings of the Annual Symposium on
User Interface Software and Technology, UIST ’12, pages 13–22. ACM, New York,
NY, USA, 2012b. ISBN 978-1-4503-1580-7.
URL http://dx.doi.org/10.1145/2380116.2380121

Cathy Marshall and John C. Tang. That Syncing Feeling: Early User Experiences
with the Cloud. In Proceedings of the Designing Interactive Systems Conference, DIS
’12, pages 544–553. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1210-3.
URL http://dx.doi.org/10.1145/2317956.2318038

Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter Van Roy. A
Toolkit for Peer-to-peer Distributed User Interfaces: Concepts, Implementation,
and Applications. In Proceedings of the SIGCHI Symposium on Engineering Interac-
tive Computing Systems, EICS ’09, pages 69–78. ACM, New York, NY, USA, 2009.
ISBN 978-1-60558-600-7.
URL http://dx.doi.org/10.1145/1570433.1570449

http://dx.doi.org/10.1145/1518701.1518833
http://dx.doi.org/10.1007/10705432_5
http://dx.doi.org/10.1145/1551609.1551630
http://dx.doi.org/10.1145/2396636.2396642
http://dx.doi.org/10.1145/2047196.2047238
http://dx.doi.org/10.1145/2380116.2380121
http://dx.doi.org/10.1145/2317956.2318038
http://dx.doi.org/10.1145/1570433.1570449

Bibliography 189

Jérémie Melchior, Jean Vanderdonckt, and Peter Van Roy. A Model-based Ap-
proach for Distributed User Interfaces. In Proceedings of the SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS ’11, pages 11–20. ACM, New
York, NY, USA, 2011. ISBN 978-1-4503-0670-6.
URL http://dx.doi.org/10.1145/1996461.1996488

Giulio Mori, Fabio Paternò, and Carmen Santoro. Tool Support for Designing No-
madic Applications. In Proceedings of the International Conference on Intelligent User
Interfaces, IUI ’03, pages 141–148. ACM, New York, NY, USA, 2003. ISBN 1-58113-
586-6.
URL http://dx.doi.org/10.1145/604045.604069

Brad A. Myers. Using Handhelds and PCs Together. Communications of the ACM,
44(11):34–41, 2001. ISSN 0001-0782.
URL http://dx.doi.org/10.1145/384150.384159

Miguel Nacenta, Carl Gutwin, Dzimitri Aliakseyeu, and Sriram Subramanian.
There and Back again: Cross-Display Object Movement in Multi-Display Envi-
ronments. Human-Computer Interaction, 24(1):170–229, 2009. ISSN 0737-0024.
URL http://dx.doi.org/10.1080/07370020902819882

Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl Gutwin.
A Comparison of Techniques for Multi-display Reaching. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages 371–
380. ACM, New York, NY, USA, 2005. ISBN 1-58113-998-5.
URL http://dx.doi.org/10.1145/1054972.1055024

Miguel A. Nacenta, Samer Sallam, Bernard Champoux, Sriram Subramanian, and
Carl Gutwin. Perspective Cursor: Perspective-based Interaction for Multi-
display Environments. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’06, pages 289–298. ACM, New York, NY, USA, 2006.
ISBN 1-59593-372-7.
URL http://dx.doi.org/10.1145/1124772.1124817

Tatsuo Nakajima. How to Reuse Exisiting Interactive Applications in Ubiquitous
Computing Environments? In Proceedings of the Symposium on Applied Computing,
SAC ’06, pages 1127–1133. ACM, New York, NY, USA, 2006. ISBN 1-59593-108-2.
URL http://dx.doi.org/10.1145/1141277.1141546

Ahsan Nazir Sheikh. NoteCarrier: A Nomadic Application for Bi-Directional Class-
Room Communication. Master’s thesis, RWTH Aachen University, 2012.
URL http://hci.rwth-aachen.de/asheikh

Donald A. Norman. Cognitive Engineering. In Donald A. Norman and Stephen W.
Draper, editors, User Centered System Design: New Perspectives on Human-computer
Interaction. CRC Press, 1986. ISBN 978-0898598728.

Antti Oulasvirta and Lauri Sumari. Mobile Kits and Laptop Trays: Managing Mul-
tiple Devices in Mobile Information Work. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07, pages 1127–1136. ACM, New

http://dx.doi.org/10.1145/1996461.1996488
http://dx.doi.org/10.1145/604045.604069
http://dx.doi.org/10.1145/384150.384159
http://dx.doi.org/10.1080/07370020902819882
http://dx.doi.org/10.1145/1054972.1055024
http://dx.doi.org/10.1145/1124772.1124817
http://dx.doi.org/10.1145/1141277.1141546
http://hci.rwth-aachen.de/asheikh

190 Bibliography

York, NY, USA, 2007. ISBN 978-1-59593-593-9.
URL http://dx.doi.org/10.1145/1240624.1240795

J. Karen Parker, Regan L. Mandryk, and Kori M. Inkpen. TractorBeam: Seamless
integration of local and remote pointing for tabletop displays. In Proceedings of
Graphics Interface, GI ’05, pages 33–40. Canadian Human-Computer Communi-
cations Society, School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 2005. ISBN 1-56881-265-5.

Fabio Paternò and Carmen Santoro. A Logical Framework for Multi-device User
Interfaces. In Proceedings of the SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’12, pages 45–50. ACM, New York, NY, USA, 2012. ISBN
978-1-4503-1168-7.
URL http://dx.doi.org/10.1145/2305484.2305494

Stefan Plücken. Übertragung von android- und windowsbasierten Applikationen zwis-
chen verschiedenen Geräten. Diploma thesis, RWTH Aachen University, 2012.
URL http://learntech.rwth-aachen.de/Pluecken

Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd.
ICrafter: A Service Framework for Ubiquitous Computing Environments. In
Proceedings of the International Conference on Ubiquitous Computing, UbiComp ’01,
pages 56–75. Springer-Verlag, London, UK, UK, 2001. ISBN 3-540-42614-0.
URL http://dx.doi.org/10.1007/3-540-45427-6_7

Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable
Third Generation Architectures. Communications of the ACM, 17(7):412–421, 1974.
ISSN 0001-0782.
URL http://dx.doi.org/10.1145/361011.361073

Adrian Reetz, Carl Gutwin, Tadeusz Stach, Miguel Nacenta, and Sriram Subra-
manian. Superflick: a Natural and Efficient Technique for Long-Distance Object
Placement on Digital Tables. In Proceedings of Graphics Interface, GI ’06, pages 163–
170. Canadian Information Processing Society, Toronto, Ont., Canada, Canada,
2006. ISBN 1-56881-308-2.

Jun Rekimoto. Pick-and-Drop: A Direct Manipulation Technique for Multiple Com-
puter Environments. In Proceedings of the Annual Symposium on User Interface
Software and Technology, UIST ’97, pages 31–39. ACM, New York, NY, USA, 1997.
ISBN 0-89791-881-9.
URL http://dx.doi.org/10.1145/263407.263505

Jun Rekimoto, Yuji Ayatsuka, and Michimune Kohno. SyncTap: An Interaction
Technique for Mobile Networking. In Proceedings of the International Conference
on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’03,
pages 104–115. Springer, 2003. ISBN 978-3-540-40821-5.
URL http://dx.doi.org/10.1007/978-3-540-45233-1_9

Jun Rekimoto and Masanori Saitoh. Augmented Surfaces: A Spatially Continuous
Work Space for Hybrid Computing Environments. In Proceedings of the SIGCHI

http://dx.doi.org/10.1145/1240624.1240795
http://dx.doi.org/10.1145/2305484.2305494
http://learntech.rwth-aachen.de/Pluecken
http://dx.doi.org/10.1007/3-540-45427-6_7
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/263407.263505
http://dx.doi.org/10.1007/978-3-540-45233-1_9

Bibliography 191

Conference on Human Factors in Computing Systems, CHI ’99, pages 378–385. ACM,
New York, NY, USA, 1999. ISBN 0-201-48559-1.
URL http://dx.doi.org/10.1145/302979.303113

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.
Virtual Network Computing. Internet Computing, 2(1):33 –38, 1998. ISSN 1089-
7801.
URL http://dx.doi.org/10.1109/4236.656066

Robert W. Scheifler and Jim Gettys. The X Window System. ACM Transactions on
Graphics, 5:79–109, 1986. ISSN 0730-0301.
URL http://dx.doi.org/10.1145/22949.24053

Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and Hans Gellersen. PhoneTouch:
A Technique for Direct Phone Interaction on Surfaces. In Proceedings of the Annual
Symposium on User Interface Software and Technology, UIST ’10, pages 13–16. ACM,
New York, NY, USA, 2010. ISBN 978-1-4503-0271-5.
URL http://dx.doi.org/10.1145/1866029.1866034

B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
Computer, 16(8):57–69, 1983. ISSN 0018-9162.
URL http://dx.doi.org/10.1109/MC.1983.1654471

James E. Smith and Ravi Nair. The Architecture of Virtual Machines. Computer,
38(5):32–38, 2005. ISSN 0018-9162.
URL http://dx.doi.org/10.1109/MC.2005.173

Timothy Sohn, Frank Chun Yat Li, Agathe Battestini, Vidya Setlur, Koichi Mori,
and Hiroshi Horii. Myngle: Unifying and Filtering Web Content For Unplanned
Access Between Multiple Personal Devices. In Proceedings of the International Con-
ference on Ubiquitous computing, UbiComp ’11, pages 257–266. ACM, New York,
NY, USA, 2011. ISBN 978-1-4503-0630-0.
URL http://dx.doi.org/10.1145/2030112.2030147

Statistisches Bundesamt. Private Haushalte in der Informationsgesellschaft (IKT).
2012. Fachserie 15 Reihe 4.

Norbert A. Streitz, Jörg Geißler, Torsten Holmer, Shin’ichi Konomi, Christian
Müller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Stein-
metz. i-LAND: An Interactive Landscape for Creativity and Innovation. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’99,
pages 120–127. ACM, New York, NY, USA, 1999. ISBN 0-201-48559-1.
URL http://dx.doi.org/10.1145/302979.303010

Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. User
Interface Façades: Towards Fully Adaptable User Interfaces. In Proceedings of the
Annual Symposium on User Interface Software and Technology, UIST ’06, pages 309–
318. ACM, New York, NY, USA, 2006. ISBN 1-59593-313-1.
URL http://dx.doi.org/10.1145/1166253.1166301

http://dx.doi.org/10.1145/302979.303113
http://dx.doi.org/10.1109/4236.656066
http://dx.doi.org/10.1145/22949.24053
http://dx.doi.org/10.1145/1866029.1866034
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1109/MC.2005.173
http://dx.doi.org/10.1145/2030112.2030147
http://dx.doi.org/10.1145/302979.303010
http://dx.doi.org/10.1145/1166253.1166301

192 Bibliography

Takashi Suezawa. Persistent Execution State of a Java Virtual Machine. In Proceed-
ings of the Conference on Java Grande, JAVA ’00, pages 160–167. ACM, New York,
NY, USA, 2000. ISBN 1-58113-288-3.
URL http://dx.doi.org/10.1145/337449.337536

Desney S. Tan, Brian Meyers, and Mary Czerwinski. WinCuts: Manipulating Ar-
bitrary Window Regions for More Effective Use of Screen Space. In Extended
Abstracts of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pages 1525–1528. ACM, New York, NY, USA, 2004. ISBN 1-58113-703-6.
URL http://dx.doi.org/10.1145/985921.986106

Peter Tandler. The BEACH Application Model and Software Framework for Syn-
chronous Collaboration in Ubiquitous Computing Environments. Journal of Sys-
tems and Software, 69(3):267–296, 2004. ISSN 0164-1212.
URL http://dx.doi.org/10.1016/S0164-1212(03)00055-4

Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Enhancing Java Programs with
Distribution Capabilities. ACM Transactions on Software Engineering and Method-
ology, 19(1):1:1–1:40, 2009. ISSN 1049-331X.
URL http://dx.doi.org/10.1145/1555392.1555394

Peter van Roy, editor. Proceedings of The Second International Conference on Multi-
paradigm Programming in Mozart/Oz. MOZ ’04. Springer-Verlag, Secaucus, NJ,
USA, 2004. ISBN 978-3-540-25079-1.
URL dx.doi.org/10.1007/b106627

Chris Vandervelpen and Karin Coninx. Towards Model-Based Design Support for
Distributed User Interfaces. In Proceedings of the Nordic Conference on Human-
computer interaction, NordiCHI ’04, pages 61–70. ACM, New York, NY, USA, 2004.
ISBN 1-58113-857-1.
URL http://dx.doi.org/10.1145/1028014.1028023

S. Vinoski. CORBA: Integrating Diverse Applications Within Distributed Hetero-
geneous Environments. Communications Magazine, 35(2):46 –55, 1997. ISSN 0163-
6804.
URL http://dx.doi.org/10.1109/35.565655

Mark Weiser. The Computer for the 21st Century. Scientific American, 265(3):94–104,
1991.
URL http://dx.doi.org/10.1145/329124.329126

Andrew D. Wilson and Raman Sarin. BlueTable: Connecting Wireless Mobile De-
vices on Interactive Surfaces Using Vision-based Handshaking. In Proceedings of
Graphics Interface, GI ’07, pages 119–125. ACM, New York, NY, USA, 2007. ISBN
978-1-56881-337-0.
URL http://dx.doi.org/10.1145/1268517.1268539

Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object Model for
the Java System. In Proceedings of the USENIX Conference on Object-Oriented
Technologies, COOTS’96, pages 17–17. USENIX Association, Berkeley, CA, USA,

http://dx.doi.org/10.1145/337449.337536
http://dx.doi.org/10.1145/985921.986106
http://dx.doi.org/10.1016/S0164-1212(03)00055-4
http://dx.doi.org/10.1145/1555392.1555394
dx.doi.org/10.1007/b106627
http://dx.doi.org/10.1145/1028014.1028023
http://dx.doi.org/10.1109/35.565655
http://dx.doi.org/10.1145/329124.329126
http://dx.doi.org/10.1145/1268517.1268539

Bibliography 193

1996.
URL https://www.usenix.org/legacy/publications/library/proceedings/
coots96/wollrath.html

Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen. Lever-
aging Single-user Applications for Multi-user Collaboration: The Coword Ap-
proach. In Proceedings of the Conference on Computer-Supported Cooperative Work,
CSCW ’04, pages 162–171. ACM, New York, NY, USA, 2004. ISBN 1-58113-810-5.
URL http://dx.doi.org/10.1145/1031607.1031635

Ying Zhang. A Classification of Interaction Styles that Span Multiple Systems. Master’s
thesis, RWTH Aachen University, 2012.
URL http://hci.rwth-aachen.de/zhang

https://www.usenix.org/legacy/publications/library/proceedings/coots96/wollrath.html
https://www.usenix.org/legacy/publications/library/proceedings/coots96/wollrath.html
http://dx.doi.org/10.1145/1031607.1031635
http://hci.rwth-aachen.de/zhang

195

Index

Active space, see Multi-display environment
Activity-based computing, 86
AppleScript, 170
Application integration, 98, 102
Application state, 8, 38, 86, 93, 99, 100, 178
Application-level support for multi-device interaction, 6
ARIS, 47
Arrangement between devices and tasks, 25
Augmented surface, 40
Autosave, 167

Barriers to mobile tasks, 20
BEACH, 64
BlueTable, 36
Boards, see Ubiquitous Computing
Bridge, see Passage
Briefcase, see Software agent
Bumping, 48

CAMELEON-RT, 80
Challenges of multi-device interaction in the wild, 27, 103, 178
Cloud, see Cloud sharing service
Cloud sharing service, 4, 99
Cloud sharing services, 21
Cocoa document architecture, 163
Code injection, 169
Common Object Model interface, 85
Conceptual model, 94
Conceptual model of the file, 95
Content distribution, 99
CORBA, 73
Cost of device transition, 24
CoWord, 87
Cross-device pinch-to-zoom, 53

Data Heap, 64
Data-oriented programming, 69
Deep Shot, 38
Degree of compatibility, 68
Degree of indirection, 67
Degree of integration, 67

196 Index

Design model, see Conceptual Model
Design workshop, 105
Device classes, 23
Device combination, 2, 18, 22
Device diversity, 1, 17
Device switching, 2, 15, 19, 20, 22
Direct manipulation, 30
Distributed objects, 73
Distribution model, 79
Domain model, 77
Drag-and-drop, 30
Drag-and-pick, 43
Drag-and-pop, 42
Dynamic display tiling, 48

Event Heap, 63

F-formations, 53
Face-to-mirror, 53
Feed-forward, 57
Feedback, 58
File, 7, 93, 96
File in computing, 96
First-class interactive object, 8, 96, 100

Gradual Engagement, 54
Group Together, 53

Hyperdragging, 40

i-LAND, 34, 64
iCrafter system, 64
Identification, 60
IMPROMPTU, 83
Information dispersion, 4, 18
Input method, 55
Input model type, 57
Input redirection, 45, 48
Instrumental interaction, 66
Integrating state exchange into legacy applications, 9
Interaction Modalities Involved, 90
iRoom, 46, 62
iROS, 63

J-Orchestra, 74

Language virtual machine, see Process virtual machine
Legacy applications, 74, 85, 119, 161

MagicPad, 153
Micro-mobility, 53
Migratory applications, 75
Model-driven engineering, 77

Index 197

Multi-device coordination through the cloud, 5
Multi-device interaction in the wild, 3, 8, 13, 22, 99, 103, 156, 177
Multi-device interaction matrix, 25, 26, 178
Multi-device interaction research, 7
Multi-device interaction with shared devices, 24
Multi-device migration through the cloud, 5
Multi-device strategies, 16
Multi-device System Architecture, 90
Multi-display environment, 13, 29, 62, 64
Mutual sharing, 48

Node.js, 143
Nomadic application, 77, 78
Nomadic Whiteboard, 117
Nomadic Whiteboard evaluation, 119
Nomadic Whiteboard multi-device interactions, 118
NomadicApps library, 171, 172
NomadicApps ScriptingAddition, 171
NomadicDesktop, 171, 173
NoteCarrier, 121
NoteCarrier evaluation, 123

O-space, see F-formations
Oblique, 76
One-way sharing, 49
Operational transformation algorithm, 87

P-space, see F-formations
Pads, see Ubiquitous Computing
Pantograph, 43
PaperWindows, 34
PaperWindows interactions, 35
Parallelism, 59
Partial state extraction, 101
Passage, 32
Passenger, see Passage
Passenger identification methods, 33
Pebbles, 85
Perspective cursor, 46
PhoneTouch, 37
Pick-and-drop, 30
Pixel replication, 82
Platform Interoperability, 127
PointRight, 45
Portals, 53
Positional mapping, 55
Power of working area, 56
Problem statement, 3
Process virtual machine, 72
Properties of application state, 101, 126
Properties of the file, 97
Proxemic interactions, 49

198 Index

Proximity toolkit, 52
Proxy object, see Distributed objects

R-space, see F-formations
Radar view, 39
Recombinant computing, 76
Referential environment, 56
Remote method invocation, see Distributed objects
Remote Pointing, 39
Replace-ability of input devices, 56
Requirements for state exchange, 126
Research questions, 10
Resume, 167
Roomware, 62, 66
Runtime toolkit overloading, 169

ScriptingAddition, 170
Separation of authoring and management, 98
Separation of Control, 127
Separation of task and task management, 102
Sequential device usage, 25, 26
Shared Substance, 69
Simultaneous device usage, 25–27
SketchIt, 113
SketchIt evaluation, 116
SketchIt prototype on a large display, 115
SketchIt prototype on a tablet computer, 113
Slingshot, 43
Software agents, 75
State Composition, 101, 127
State Exchange, 137, 141
State exchange applications, 134, 146
State exchange clients, 152
State exchange evaluation, 156
State exchange message protocol, 144
State exchange prototype, 132, 143
State exchange service, 137, 142
State exchange system architecture, 9, 128, 137, 179
State Extraction, 126
State I/O, 137, 138
State I/O support library, 145, 161
State object, 126, 139, 146, 162
State Persistence, 126
State Restoration, 126
State Sharing, 127
State Synchronization, 101, 127
State synchronization, 148
Studies of multi-device behavior, 1, 14, 16, 18, 19, 21
Substance, 69
Suitcase, see Software agent
Superflick, 44
Synchronous gestures, 48

Index 199

SyncTap, 49
System image, see Conceptual Model
System virtual machine, 72

Tabs, see Ubiquitous Computing
Tangible Windows, 106
Tangible Windows evaluation, 110
Tangible Windows operations, 107
Tangible Windows prototype, 108
Task distribution, 102
TERESA, 77
Thesis statement, 9
Tilt-to-preview, 53
TractorBeam, 45
Transition Timing, 90
Trigger Activation Type, 89
Tuple space, 63

Ubiquitous computing, 61
Ubiquitous instrumental interaction, 68
UI accessibility information, 88
UI Adaptation Aspects, 90
UI Distribution, 88
UI Generation Phase, 90
UI Granularity, 89
UI Migration, 89
UI Plasticity, 80
UniInt proxy, see Universal Interaction Protocol
UniInt server, see Universal Interaction Protocol
Universal Interaction Protocol, 88
User interface façades, 82
User model, see Conceptual Model

View objects, 165
VIGO architecture, 68
Virtual machine, 71
Visual Oblique, 76
VNC, 82

Web applications, 83
Web control center, 152
Web socket, 145
WinCuts, 83
Window manager, 106

X Window System, 82
X11, see X Window System

201

Curriculum Vitae

Personal Data Jonathan Diehl
Media Computing Group
RWTH Aachen University

Email diehl@cs.rwth-aachen.de

24. Mai 1980 Born in Kiel, Germany

Oct 2001 – Sept 2006 Diploma in Computer Science at RWTH Aachen Univer-
sity, Germany

Aug 2007 – Nov 2013 Doctoral Candidate at the Media Computing Group, De-
partment of Computer Science, RWTH AAchen Univer-
sity, Germany
Advisor: Prof. Dr. Jan Borchers

Publications of the Author

2013

Jonathan Diehl and Jan Borchers. Tangible Windows. Technical report, RWTH
Aachen University, June 2013.

2012

Can Liu, Stéphane Huot, Jonathan Diehl, Wendy E. Mackay, and Michel
Beaudouin-Lafon. Evaluating the Benefits of Real-time Feedback in Mobile Aug-
mented Reality with Hand-held Devices. In Proceedings of CHI ’12, Austin, TX,
USA, May 2012. ACM Press.

202 Index

2011

Jonathan Diehl and Jan Borchers. Mobile HCI and Hospitality. In Mobile HCI ’11
Workshop on Mobile Interaction in Retail Environments, Stockholm, Sweden, Septem-
ber 2011. ACM Press.

Can Liu, Jonathan Diehl, Stéphane Huot, and Jan Borchers. Mobile Augmented
Note-taking to Support Operating Physical Devices. In Mobile HCI ’11 Workshop
on Mobile Augmented Reality, Stockholm, Schweden, September 2011. ACM Press.

Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan
Borchers. Stacksplorer: Call Graph Navigation Helps Increasing Code Main-
tenance Efficiency. In Proceedings of UIST ’11, Santa Barbara, CA, USA, October
2011. ACM Press.

2010

Bernd Theiss, Jan Borchers, Markus Jordans, and Jonathan Diehl. Gute Bedienung.
connect, 11:12-17, November 2010. Weka Media Publishing.

Jan-Peter Krämer, Thorsten Karrer, Jonathan Diehl, and Jan Borchers. Stacksplorer:
Understanding Dynamic Program Behavior. In Extended Abstracts of UIST ’10,
New York, NY, October 2010. ACM Press.

Chatchavan Wacharamanotham, Jonathan Meyer, Jonathan Diehl, and Jan
Borchers. The Interactive Bracelet: An input device for bimanual interaction. In
Mobile HCI ’10 Workshop on Ensembles of On-Body Devices, Lisbon, Portugal, Septem-
ber 2010. ACM Press.

Jonathan Diehl, Thorsten Karrer, and Jan Borchers. Interactive System Architec-
ture for Layered Applications. In Interactive System Architecture Workshop, Septem-
ber 2010.

2009

Jonathan Diehl. Associative Personal Information Management. In Extended Ab-
stracts of CHI ’09, Boston, MA, USA, 2009. ACM Press.

Max Möllers, Jonathan Diehl, Markus Jordans, and Jan Borchers. Towards System-
atic Usability Verification. In Extended Abstracts of CHI ’09, Boston, MA, USA, 2009.
ACM Press.

2008

Jonathan Diehl and Jan Borchers. Associative Information Spaces. In Extended
Abstracts of CSCW ’08, San Diego, CA, USA, November 2008.

Index 203

Jonathan Diehl, Max Möllers, and Jan Borchers. Improving List Selection Perfor-
mance with Pressure-Sensitivity on a Scroll Ring. In Extended Abstracts of UIST
’08, Monterey, CA, USA, October 2008.

Jonathan Diehl, Jan-Peter Krämer, and Jan Borchers. A Framework for using the
iPhone as a Wireless Input Device for Interactive Systems. In Extended Abstracts
of UIST ’08, Monterey, CA, USA, October 2008.

Mei-Fang Liau, Jonathan Diehl, and Jan Borchers. DISCO: Disk-based Interface
for Semantic Composition. In Ulrike Lucke, Martin Christof Kindsmüller, Stefan
Fischer, Michael Herczeg, and Silke S, editors, Workshop Proceedings der Tagungen
Mensch & Computer 2008, DeLFI 2008 und Cognitive Design 2008. Lübeck, Germany,
2008. Logos Verlag.

Jonathan Diehl, Deniz Atak, and Jan Borchers. Associative Information Spaces.
In Niels Henze, Gregor Broll, Enrico Rukzio, Michael Rohs, and Andreas Zimmer-
mann andd Susanne Boll, editors, Mobile HCI ’08 Workshop on Mobile Interaction with
the Real World, Amsterdam, Netherlands, 2008. BIS-Verlag.

Eileen Falke, Jonathan Diehl, and Jan Borchers. The Associative PDA 2.0. In Ex-
tended Abstracts of CHI ’08, Florence, Italy, April 2008. ACM Press.

2007

Bernd Theiss, Markus Eckstein, Jan Borchers, Jonathan Diehl, and Markus Jordans.
Systemkritik: Der Handy-Bedientest. connect, 9:14-23, September 2007. Weka Me-
dia Publishing.

2006

Jonathan Diehl. The Associative PDA - An Organic User Interface for Mobile
Personal Information Management. Diploma thesis, RWTH Aachen University,
2006.

Jonathan Diehl and Jan Borchers. The Associative PDA: An organic user interface
for mobile. In Extended Abstracts of Ubicomp ’06, Newport, CA, USA, September
2006. ACM Press.

Index 205

Typeset: 1st December, 2013

	 Preface
	 Abstract
	 Acknowledgements
	 Conventions

	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Thesis Statement
	1.4 Thesis Overview

	2 Multi-device Interaction in the Wild
	2.1 Understanding Multi-device Interaction in the Wild
	2.1.1 Mobile Kits and Laptop Trays: Managing Multiple Devices in Mobile Information Work
	2.1.2 It's on my other Computer!: Computing with Multiple Devices
	2.1.3 Working Overtime: Patterns of Smartphone and PC Usage in the Day of an Information Worker
	2.1.4 Mobile Taskflow in Context: A Screenshot Study of Smartphone Usage
	2.1.5 Summary

	2.2 Multi-device Interaction in the Wild
	2.3 Challenges

	3 Related Work
	3.1 Interaction support
	3.1.1 Multi-Device Direct Manipulation
	Pick-and-Drop
	Passage
	PaperWindows
	BlueTable
	PhoneTouch
	Deep Shot

	3.1.2 Remote Pointing
	Radar View
	Hyperdragging
	Drag-and-Pop and Drag-and-Pick
	Pantograph and Slingshot
	Superflick
	TractorBeam
	PointRight
	Perspective Cursor
	ARIS

	3.1.3 Synchronous Gestures
	Bumping
	SyncTap

	3.1.4 Proxemic Interaction
	Group Together
	Gradual Engagement

	3.1.5 Taxonomy of Multi-device Interaction
	Taxonomy Dimensions
	Classification of multi-device interaction techniques

	3.2 System Support
	3.2.1 Ubiquitous Computing and Roomware
	Interactive Workspaces Project
	Interactive Landscape for Creativity and Innovation

	3.2.2 Instrumental Interaction
	Ubiquitous Instrumental Interaction
	Shared Substance

	3.2.3 Runtime Program Migration and Distribution
	Virtual Machines
	Distributed Objects
	Automatic Application Partitioning
	Software Agents
	Recombinant Computing

	3.2.4 Model-based Migration and Distribution
	Model Transformation
	Modeling Distribution
	CAMELEON-RT

	3.2.5 User Interface Migration and Distribution
	Display Replication
	Pixel Replication
	Web Application Migration

	3.2.6 Legacy Application Support
	Pebbles
	Activity-based Computing
	CoWord
	Legacy Applications in Ubicomp Systems

	3.2.7 Logical Framework for Multi-Device User Interfaces

	3.3 Discussion

	4 Interacting with State
	4.1 Conceptual Model
	4.2 The File
	4.2.1 Properties of the File

	4.3 Application State
	4.3.1 Properties of Application State

	4.4 Multi-device Interaction in the Wild with Application State
	4.5 Validation
	4.5.1 Design Workshop
	4.5.2 Tangible Windows
	System Design
	Evaluation

	4.5.3 SketchIt
	System Design
	Evaluation

	4.5.4 Nomadic Whiteboard
	System Design
	Evaluation

	4.5.5 NoteCarrier
	System Design
	Evaluation

	5 The State Exchange Architecture
	5.1 Requirements
	5.2 First Iteration of the State Exchange Architecture
	5.2.1 System Design
	5.2.2 Implementation
	State Management Library
	Communication Library

	5.2.3 Example Applications
	5.2.4 Discussion

	5.3 Final Iteration of the State Exchange Architecture
	5.3.1 System Design
	State I/O Programming Interface
	State Exchange Programming Interface
	State Exchange Service

	5.3.2 Implementation
	State Exchange Service
	State I/O Support Library

	5.3.3 Example Applications
	TextEdit
	Skim

	5.3.4 Example Clients
	Web Control Center
	Application Integration
	MagicPad

	5.3.5 Discussion

	5.4 Validation
	5.4.1 Requirements Validation
	5.4.2 Limitations

	6 Integrating State Exchange into Legacy Systems
	6.1 State I/O Support Library
	6.2 State Object
	6.3 Automatic Document Extraction
	6.4 Automatic User Interface State Extraction
	6.5 Automatic State Extraction via Resume
	6.6 Enabling Third-party State I/O Integration
	6.7 Example Implementation
	6.7.1 NomadicApps ScriptingAddition
	6.7.2 NomadicApps Library
	6.7.3 NomadicDesktop

	6.8 Discussion

	7 Conclusion
	7.1 Multi-device Interaction in the Wild
	7.2 Exposing Application State
	7.3 System Architecture

	A External Resources
	 Bibliography
	 Index
	 Curriculum Vitae

