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Abstract

In an attempt to solve an underlying problem of inadequate statistical knowledge
among researchers, Krishna et al. introduced StatPlayground, an exploratory learn-
ing tool, with the potential to help users improve certain statistical literacy skills,
in particular, skills regarding the widely adopted Null Hypothesis Significance
Tests (NHST). The tool allows users to control descriptive statistics of the data (e.g.
mean, the variance of distributions) by directly manipulating visualizations (e.g.,
box plots) to see the effect on the resulting inferential statistics (e.g. p-value, effect
size) and vice versa.

Augmenting the current tool with the computational functionality we introduce
CHENO. As a statistical computations library, CHENO concerns itself with the for-
ward pass (from datasets to descriptive statics to inferential statistics), but more
importantly with the correct, swift and flexible computation of the inverse pass
(from inferential statistics to descriptive statistics to datasets). CHENO achieves
this by use of algebraic transformations of the NHST’s equations. Furthermore, to
permit the flexible search of datasets, the library allows the user to constrain and
bound descriptive statics of the datasets.

As part of our evaluation, we then consider the validity of our produced results.
We benchmark the computation times. And discuss the flexibility of the library in
computing datasets from inferential statistics.

The developed system currently implements 9 significance tests but permits the
simple implementation of other significance tests, by preserving the same interface.
Such extensions to the tool will be pointed out at the end.
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Überblick

In einem Versuch, ein zugrunde liegendes Problem unzureichenden statistischen
Wissens unter Forschern zu lösen, haben Krishna et al. StatPlayground eingeführt,
ein Exploratives Lernen Werkzeug, mit dem potentiellen Nutzer bestimmte statis-
tische Fähigkeiten verbessern könnten, insbesondere in Bezug auf die weit ver-
breiteten Nullhypothese Significant Tests (NHST). Mit dem Tool können Benutzer
deskriptive Statistiken der Daten (z. B. Mittelwert, die Varianz der Verteilungen)
steuern, indem Visualisierungen (z. B. Box-Plots) direkt bearbeitet werden, um die
Auswirkungen auf die resultierenden Folgerungsstatistiken (z. B. p-Wert, Effek-
tgröße) und umgekehrt sehen zu können.

Wir führen CHENO ein, um das aktuelle Werkzeug um die Rechenfunktion-
alität zu erweitern. Als statistische berechnungs Bibliothek, erlaubt CHENO den
Vorwärtsdurchlauf (von Datensätzen über beschreibende Statistiken bis hin zu In-
ferenzstatistiken), aber noch wichtiger ist die korrekte, schnelle und flexible Berech-
nung des Rückwärtsdurchgangs (von Inferenzstatistiken über beschreibende
Statistiken zu Datensätzen). CHENO erreicht dies durch die Verwendung alge-
braischer Transformationen der NHST Gleichungen. Um eine flexible Suche nach
Datensätzen zu erlauben, ermöglicht die Bibliothek den Benutzern außerdem die
Einschränkung und Grenzen der beschreibenden Statik der Datensätzen.

Bei unserer Bewertung berücksichtigen wir die Gültigkeit unserer Ergebnisse. Wir
vergleichen die Rechenzeiten and besprechen des Weiteren auch die Flexibilität der
Bibliothek bei der Berechnung von Datensätzen aus Inferenzstatistiken.

Das entwickelte System implementiert derzeit 9 Signifikanztests, ermöglicht je-
doch die einfache Implementierung anderer Signifikanztests, indem dieselbe
Schnittstelle beibehalten wird. Solche Erweiterungen des Werkzeugs werden am
Ende gezeigt.
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Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
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EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in British English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file
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Chapter 1

Introduction

1.1 Statistical Literacy and StatPlay-
ground

Statistical analysis plays an important role in many human- Statistical illiteracy
centered sciences such as HCI (Cairns [2007]), psychology
and medicine (Chavalarias et al. [2016]), because it allows
researchers to validate their hypothesis and communicate
their results to the community. A commonly used method
of statistical analysis, Null Hypothesis Significance Testing
(NHST), has been widely criticized over the years for hav-
ing several shortcomings (Cumming [2014]). An underly-
ing cause of this problem is inadequate statistical literacy
(Gal [2016]): “The problem is not that people use P-values
poorly, it is that the vast majority of data analysis is not per-
formed by people properly trained to perform data analy-
sis”(Leek [2014]).

For addressing many of the problems at pedagogical level,
researchers have identified frequent misunderstood statis-
tical topics and proposed principles for improving teaching
(Garfield and Ben-Zvi [2007]).

As a potential didactical augmentation solution for correct- Learning statistical
analysis through
exploratory learning
with StatPlayground

ing problems with the practice of NHST, StatPlayground
(Subramanian and Borchers [2017]) was proposed. Stat-
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Playground adopts an exploratory learning approach (De
Freitas and Oliver [2006]) towards the teaching of NHST
methods, thus encouraging users through its design to dis-
cover by themselves relationships between existing back-
ground knowledge of statistics and unfamiliar content and
concepts about NHST.

INFERENTIAL STATISTICS:
In the context of NHST inferential statistics are statis-
tics (i.e. numbers) drawn from statistics of the datasets
(e.g. mean, variance, ranks), which assist in the decision
whether to accept or reject different hypothesis.

Definition:
Inferential Statistics

StatPlayground consists of a dataset selection screen (see
Figure 1.1) where the user can manipulate statistical prop-
erties of the datasets (i.e. mean, variance, sample size)
by dragging sliders to reshape the data. Furthermore, the
statistical properties of datasets can be locked (i.e. con-
strained) and/or bounds can be specified for them. In the
top panel, options for the choice of experiment type are pre-
sented, allowing users to pick from an array of statistical
tests. In the footer of the interface, the inference statistics
resulting from data is presented.

Described by the authors, StatPlayground, should allow
the following two functionalities:

1. Manipulation of statistical properties of the datasets
to then see the effect on the resulting inferential statis-
tics with regard to the selected statistical test.

2. The reverse operation, the manipulation of the infer-
ential statistics to see datasets that could yield those
inferential statistics with regard to the selected statis-
tical test.

For the rest of this research work we will use the term for-
ward pass to describe the first functionality and inverse
pass to describe the second.

The forward pass describes the functionality of comput-Forward Pass
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Figure 1.1: Main Interface of StatPlayground

ing the inference statistics resulting from the user provided
datasets. From a computational standpoint, this is done
by simple algorithms that follow the steps for the selected
statistical test (Field [2009], SciPy). From a mathematical
standpoint, the forward pass can be described as a func-
tion of the data. Therefore for each combination of datasets
there is only one resulting inference statistics.

We illustrate this in more detail in Figure 1.2. Suppose we
have two datasets X1 and X2: {29.4, 30.5, 30.7, 30.8, 31.6}
and {28.1, 28.6, 29.2, 30.1, 30.4}. Suppose now that we can
calculate a value, with which can gauge the difference be-
tween the two datasets, given by the inferential statistics d
given by Equation 1.1, where µ1 and µ2 are the means (av-
erages) of the two datasets and σ21 and σ22 are the variances
(spread).
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d =
µ1 − µ2√
σ2
1+σ

2
2

2

(1.1)

The calculation can be described as a two step process,
where we first transform the data into descriptive statistics
and then from descriptive statistics to inferential statistics.

Figure 1.2: Example of a Significance Test

1.2 Difficulties of the Inverse Pass

DESCRIPTIVE STATISTICS:
Statistical tools which aid in quantitatively describing
and summarizing of features of groups of data. Common
descriptive statistics are mean, variance, sample size and
frequency distribution.

Definition:
Descriptive Statistics

As the name implies the inverse pass is the mathematical
inverse of the function of the forward pass. The problem of
computing the inverse pass can be divided in the following
two parts:

• From inferential statistics to descriptive statistics:
The functions we use in the forward pass to calcu-
late the inference statistics, are in part multivariate
functions, therefore inverting them results in func-
tions that map single values on a multi-dimensional
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codomain. Our first obstacle is therefore finding re-
liably and efficiently as many and as varied of solu-
tions of descriptive statistics that could thus yield a
given inferential statistic. For the rest of the paper we
will use the terminology of a suitable statistics con-
figuration to denote a solution of the first part of the
inverse pass problem.

• From descriptive statistics to data: Moreover, all
functions used in the forward pass await as input
descriptive statistics of the data, and as descriptive
statistics are summarized properties of data taken as
a group, different groups could lead to the same de-
scriptive statistics and thus the same inference statis-
tic. Our second obstacle is therefore finding sets of
data with given descriptive statistics.

We illustrate the first part of the problem with the follow-
ing example: suppose we start from an inference statistics
d=0.5. Three possible solutions are displayed in Figure 1.3,
but it is important to note that there are infinitely many so-
lutions for this one value of the inference statistic d.

Figure 1.3: Motivation for the Difficulties of the Inverse
Pass

Furthermore, as the platform allows the user to constrain Constraining
parameters and
parameter bounds

(fix) or/and bound certain values of descriptive statistics,
the first part of the inverse pass would need to also ac-
commodate such functionality, thus narrowing the search
space.
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Dependent variables
Two Datasets

Parametric Student’s dependent t-test
Nonparametric Wilcoxon Signed-Rank Test

More than two datasets
Parametric rANOVA
Nonparametric Friedman Analysis

Independent variables
Two Datasets

Parametric
Student’s independent t-test
Welch’s t-test

Nonparametric Mann-Whitney-Wilcoxon W-test

More than two datasets
Parametric ANOVA
Nonparametric Kruskal-Wallis H-test

Table 1.1: Implemented Significance Tests.

So far, the development of StatPlayground’s inverse pass
has been confined to a simple algorithm as a proof of con-
cept. The current implementation finds only neighbouring
configurations of descriptive statistics, therefore the suit-
able statics configurations are relatively similar, and thus
not permitting the user to “play-around” to explore the do-
main of possible values to visualize the impact of vastly
different statistical configurations on the result.

1.3 Contributions of This Thesis

This research work aims to improve over the existing in-Cheno, out of
respect, is an

anagram of the word
Cohen with reference

to the statistician
Jacob Cohen.

verse pass functionality for the StatPlayground platform,
by increasing the variability for the suitable statistical con-
figurations. The resulting algorithms will be gathered in a
library, entitled Cheno, which brings with it the following
functionality:

• Algorithms performing the inverse pass for 9 com-System
Requirements monly used significance tests in HCI. (see Table 1.1)

• Close to real-time computation. Finding a suitable
statics configuration should not take more than the
users uninterrupted flow of thought, therefore we re-
quire a maximum computation time of 1.0 seconds
(Nielsen). This leads also to a more pleasing user ex-
perience.

• Control over the choice of results being computed.
Fine-grained control over the computed suitable sta-
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tistical configurations, by allowing constraining and
bounding part of the resulting statistics. Moreover
feedback about the space of possible values, should
also be prompted to the user (i.e. values for the sec-
ond mean exist in the range [lower bound, upper
bound]).

1.4 Roadmap

We have organized the rest of this paper in the following
way:

• Chapter 2, Foundation, will go over prerequisites for
understanding the algorithms of the proposed library
as well present a review of related work, that inspired
us.

• Chapter 3, Development, will explain the algorithms
behind each test, as well as obstacles encountered
during their development .

• Chapter 4, Results, will present the benchmarks and
accuracy test done on the algorithms together with
their results.

• Chapter 5, Conclusion and Future Work, were we will
point out improvements to the library as well as sum-
marize the study.
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Chapter 2

Foundation

In the previous chapter, we introduced the exploratory sta-
tistical learning tool, StatPlayground, and motivated the
need for a statistical analysis library for performing the in-
verse pass. As the subject of this research work is a soft-
ware engineering product which relies on statistical meth-
ods and algorithmical computations, we dedicate this chap-
ter to prerequisites we expect as necessary for easier under-
standing of the material to follow, as well as to take a closer
look at research work done for solving similar problems to
ours.

2.1 Descriptive Statistics

To understand and analyse the data we are processing, we
employ the use of statistical tools, called descriptive statis-
tics, which describe and summarize properties of said data.
In the following we will overview the basic descriptive
statistics we are employing for our problem.

2.1.1 Mean, Variance and Standard Deviation

The mean is a measure for the center point or the most aver- The mean of a
dataset



10 2 Foundation

age value in a set of data. Suppose we have a dataset with
points x1, . . . xn. The mean of the dataset is

µ =
1

n
·
n∑
i=1

xi (2.1)

The variance is a measure of the spread or dispersal of dataThe variance of a
dataset around the mean. The higher the variance the further apart

individual data points exist around the mean. Suppose we
have a dataset with points x1, . . . xn and mean µ. The vari-
ance of the dataset is

σ2 =
1

n− 1
·
n∑
i=1

(xi − µ)2 (2.2)

As the variance relies on squared units it is difficult to inter-The standard
deviation of a dataset pret the result, thus we take the square root of the variance,

and obtain the standard deviation, σ.

2.1.2 Ranks

Ranking a set of values represents the transformation of
data, in which each value is replaced by its order in the
list after it has been already sorted. For example, for the
sequence 3.4, 4.3, 2.7, 5 we have the ranks 2, 3, 1, 4.

2.1.3 Distribution

The distribution of a dataset, sometimes called, the fre-
quency distribution, is a list of tuples for each value in our
dataset and its respective count (i.e. the first entry in the
tuple is given by a datapoint value, whereas the second
represents the number of times, that value comes up in the
dataset). Visualizing the list of pairs of values and counts
gives us the graph of the distribution.

Some unique distributions, can be described by functions,
which are often dependent only on a number of parame-
ters (i.e. if we know the parameters we can describe the
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underlying data), these are called parametric distributions.
One such parametric distribution which is of interest to us
is the normal distribution (often called Gaussian distribu- Normal Distribution
tion), which is dependent on the mean and variance.

2.2 Inferential Statistics

Another branch of statistics, inferential statistics, leverages
descriptive statistics and builds upon tools of assumption
and reasoning to draw conclusion about a population (the
entire group) from a randomly picked sample (smaller in
comparison, a group randomly picked from the popula-
tion).

The kinds of research questions one can answer with these
tools of inferential statistics are of the following form:

• “is there a relationship between two (or more) prop-
erties of a group?”

• “is there a difference between two (or more) groups?”

We will focus for the remainder of this research work on the
latter point.

The act of researching whether or not a difference exists, Process of research
could be sketched as a multistage process as pointed out by
Field [2009]: A researcher would:

1. Generate a research question through initial observa-
tion and pose a theory explaining it.

2. Generate hypothesis: breaking your theory down
into a set of testable predictions.

3. Collect data that could test your predictions.

4. Analyze the data.
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In the second step of generating a testable hypothesis, re-
searchers formulate the alternative hypothesis Ha (stating
that the predicted effect will be present) and the null hypoth-
esis H0 (stating the opposite, that the effect is absent). The
latter is the statement we test, as the methods of statistical
inference are not able to prove the validity of our alterna-
tive hypothesis, but are able to reject the null hypothesis. It
is important to note that even if we reject the null hypoth-
esis, this still does not prove the alternative hypothesis - it
just gives us more confidence in its validity.

2.2.1 Null Hypothesis Significance Test

One widely used method to aid researchers at rejecting orMeasure probability
of a difference

between datasets
accepting the null hypothesis,H0, is the Null Hypothesis Sig-
nificance Test (NHST). The method works by gauging the
probability of a difference between two or more datasets.
It does so, by computing the probability of the null hy-
pothesis being true, where high probability values repre-
sent more confidence that the datasets are similar, whereas
low probability value give us more confidence that they dif-
fer, thus allowing us to reject H0.

2.2.2 Effect Size

One other method for analyzing differences betweenMeasure size of a
difference between

datasets
groups is the use of effect sizes. If the NHST assists in the
decision whether a difference exists between groups, the
effect size informs on the magnitude of the difference. The
advantage of utilizing effect sizes lies in the fact, that it po-
sitions the measurement of the size of the difference on a
standardized scale, thus allowing us for example to com-
pare the size of the effect of different experiments.

All the effect size used in this thesis are based on Tomczak
and Tomczak [2014] work.
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2.2.3 The Tests

Multiple NHST exist and their uses are based on the exper-
imental setup. We discriminate between:

1. Dependent and Independent tests Dependent tests
assume that the groups being tested are related,
meaning that the subjects are the same across groups.
In contrast independent tests, are applied when
groups are independent from one another, meaning
no subject appears more than in one group.

2. Parametric and nonparametric tests Parametric tests
assume that the data being tested follows a known
distribution (in our cases the normal “Gaussian” dis-
tribution) which can be described by a handful of pa-
rameters (i.e. mean, standard deviation and sample
sizes). In contrast, the non parametric, although not
as powerful as the parametric tests, don’t make the
assumption about the distribution of data. Instead
they look at the order of values and are therefore
based upon the descriptive statistics of ranks.

3. Two groups and more than two groups tests

We will look in the following paragraphs at the steps for
computing each significance test of the 9 we have chosen.
We note that we will not go into much detail regarding the
theory behind the tests as this is outside the scope of this
work and clarify only the method of each one, but we make
the following sugestions: Field [2009].

From here on out, if not stated otherwise, we are going to
use the following notation:

• Xi - denotes the i-th dataset, with entries xi,1, xi,2, ...

• p - denotes the p-value.

• ef - denotes the effect size.

• k - denotes the total number of groups.
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• µ and µi - denotes the mean of the only group respec-
tively of the i-th group.

• µgrand - denotes the global mean: µgrand =
1
Nk

∑k
i=1 niµi

• σ and σi - denotes the standard deviation of the only
group respectively of the i-th group.

• n and ni - denotes the sample size of the only group
respectively of the i-th group.

• N :=
∑k

i=1 ni - denotes the total sample size.

• Ri with i ∈ {1, ...k} - denotes the sum of the ranks
belonging to group i, considering the values in all k
groups together. (e.g. let X1 = {11, 21, 43} and X2 =
{21, 36, 53} then the ranks associated with group 1,
considering ties, are: 1, 1.5, 4 [the sum is 6.5] and for
group 2: 1.5, 3, 5 [their sum is 9.5])

It can also be assumed that the descriptive statistics belong
to each individual group.

Student’s dependent t-test The test is applicable to de-
pended datasets in experiments with two groups. The de-
scriptive statistics computed (i.e. mean, standard devia-
tion, sample size) belong to the dataset comprised of the
differences between measurements of the participant across
groups (i.e. let X1 = {x1,1, x1,2, ...} and X2 = {x2,1, x2,2, ...}
then D = X1 −X2 = {x1,1 − x2,1, x1,2 − x2,2}).

t-statistics
t :=

µD√
σ2
D
n

= T−1(p|n− 1) (2.3)

The test statistics t follows a t-distribution 1, denoted by T .
Plugging t in the aforementioned distribution, along with
n− 1 yields the p-value.

1Student’s t-distribution. (2019). En.wikipedia.org. Retrieved
19 January 2019, from https://en.wikipedia.org/wiki/Student%27s t-
distribution
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Effect Size

ef = d :=
µ

σ
=
t

n
(2.4)

Student’s independent t-test This test, similar to the pre-
vious one works in experiments with two groups, though
the datasets are supposed to be independent and the vari-
ances similar.

t-statistics

t :=
µ1 − µ2√

σpooled
n1

+
σpooled
n2

= T−1(p|n1 + n2 − 2) (2.5)

Similarly to the previous test, T denotes the t-distribution,
the test statitics t follows.

where σpooled = (n1 − 1)σ21 + (n2 − 1)σ22 (2.6)

Effect Size

ef = d :=
µ1 − µ2√
σ2
1+σ

2
2

2

= t

√
1

n1
+

1

n2
(2.7)

Welch’s t-test This test, similar to the previous one works
in experiments with two groups where the datasets are sup-
posed to be independent, though the variances do not have
to be similar. The distribution the test statistics t follows is
again the t-distribution.

t-statistics

t :=
µ1 − µ2√
σ2
1
n1

+
σ2
2
n2

= T−1(p|df) (2.8)

Welch–Satterthwaite
equation

where df =
(
σ2
1
n1

+
σ2
2
n2
)2

σ4
1

n2
1·(n1−1)

+
σ4
2

n2
2·(n2−1)

(2.9)
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Effect Size

ef = d :=
µ1 − µ2√
σ2
1+σ

2
2

2

(2.10)

ANOVA This test is applicable in experiments with two
or more groups, where the datasets are supposed to be in-
dependent and the variances similar.

Gmean :=
1

N

N∑
i=0

xi =
1

k

k∑
i=0

µi (2.11)

SSM =

k∑
i=1

ni · (µi −Gmean)2 (2.12)

SSR =

k∑
i=1

(ni − 1) · σ2i (2.13)

F -statistics

F :=
SSM
k − 1

/
SSR
N − k

= F−1(p|k − 1, N − k) (2.14)

The F -statistics follows a F -distribution2.

Effect Size

ef := eta2 =
SSM

SSM + SSR
(2.15)

Repeared-measures ANOVA Similarly to the normal
ANOVA, this test is applicable in experiments with two
or more groups, though the datasets are supposed to be
dependent. The assumption of similarity of variance, is
adapted to suite the repeated-measures design (dependent
datasets), so that the variances of the differences of pairwise
different groups has to be similar.

2Snedecor’s F distribution or the Fisher–Snedecor distribution. F-
distribution. (2019). En.wikipedia.org. Retrieved 19 January 2019, from
https://en.wikipedia.org/wiki/F-distribution
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SSW =
n∑
i=1

(ni − 1) · σ2i (2.16)

SSM =
k∑
i=1

ni · (µi −Gmean)2 (2.17)

SSR = SSW − SSM (2.18)

F -statistics

F :=
SSM
k−1
SSR

(n−1)(k−1)
= F−1(p|k − 1, (k − 1)(n− 1)) (2.19)

The same effect size equation — Equation 2.15 — as with
the normal ANOVA is used.

Mann-Whitney-Wilcoxon U/W-test This test is appli-
cable to independent datasets in experiments with two
groups, without any assumption of normality of the
datasets. Mann-Whitney Test

Statistics

W :=


min(R1, R2), if n1 = n2.

R1, if n1 < n2.

R2, otherwise.

(2.20)

Z-score

z :=
W −W
SEW

= N−1(p|0, 1) (2.21)

N denotes the normal distribution.

W =
n1 · (n1 + n2 + 1)

2
(2.22)

SEW =
n1n2 · (n1 + n2 + 1)

12
(2.23)

Effect Size

r = η =
Z√
N

(2.24)
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Wilcoxon Signed Rank Test Similarly to the previous
test, this one is applicable to any datasets, without an
assumption of normality about the datasets, though the
datasets have to be dependent. As in the Student’s depen-
dent t-test, we first compute the difference of the measure-
ments of a participant across the two groups. Following
that, we compute the sum of ranks of the negative differ-
ences (R−) and the sum of ranks of the positive differences
(R+). n denotes in this case the differences unequal 0.Wilcoxon Test

Statistics
T = min(R−, R+) (2.25)

Z-score

z :=
T − T
SET

= N−1(p|0, 1) (2.26)

T =
n · (n+ 1)

4
(2.27)

SET =
n · (n+ 1) · (2n+ 1)

24
(2.28)

Kruskal-Wallis H-test This test is the equivalent of the
Mann-Whitney W-test applied to two or more groups.Kruskal-Wallis Test

Statistics

H =
12

N · (N − 1)
·
k∑
i=1

R2
i

ni
− 3 · (N − 1) (2.29)

The H-statistics follows a χ2-distribution3.

Effect Size

ef = η2 :=
H − k + 1

N − k
(2.30)

Friedman Analysis This test is the equivalent of the
Wilcoxon Signed Rank test applied to two or more groups.Friedman Test

Statistics 3Chi-squared distribution. (2019). En.wikipedia.org. Re-
trieved 21 January 2019, from https://en.wikipedia.org/wiki/Chi-
squared distribution
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Fr =
12

N · k · (k + 1)
·
k∑
i=1

R2
i − 3 ·N · (k + 1) (2.31)

Effect Size

W =
χ2

N · (k − 1)
(2.32)

2.3 Related Work

2.3.1 Anscombe’s Quartet

In 1973 Anscombe et al. [2007] called attention to the im-
portance of plotting the data in the processes of statisti-
cal analysis. He explained how statistical quantities (e.g
mean, variance, regression coefficient) are sometimes not
enough to analyze the data, instead certain properties of
the underlying data can only appreciated by visualizing it.
With his now famous datasets and their respective graphs
he pointed out that although the datasets had similar statis-
tics, their graphs were unique and distinctive.

2.3.2 Computing Data from Descriptive Statistics

Building on Anscombe’s work Chatterjee and Firat [2007]
devised a randomized searching algorithm to automati-
cally search for a new dataset starting from an initial one,
while constraining certain statistics of the datasets to stay
the same. With a different randomized searching algorithm
Matejka and Fitzmaurice [2017] were able to generate target
datasets which also had a unique (i.e. a circle, a t-rex sketch)
and distinct graph. Similar searching algorithms are also
employed in our implementation.
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Chapter 3

Design and
Development

“The theory of probabilities is at bottom nothing but common
sense reduced to calculus.”

—Laplace, Théorie analytique des probabilités, 1820

In the previous chapter, we briefly overview the prerequi-
sites for the algorithms to come, as well as existing related
work. In this chapter, we examine each algorithm for com-
puting the inverted significance tests, discussing the ap-
proach and the implementation for each one.

The structure we planed for this chapter follows from the
same idea presented in figure 1.2, namely that the signif-
icance test can be seen as a two stage process. The same
thing can be said of the inverse of a significance test. There-
fore we will structure this chapter in two major sections:
the stage From Inference Statistics to Descriptive Statistics and
From Descriptive Statistics to Data.
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3.1 From Inference Statistics to Descrip-
tive Statistics

In the first stage of the algorithm we start from a pair of
test statistics — the p-value and the effect size — and com-
pute by means of algebraic transformations and randomized
sampling a suitable statistics configuration (means, standard
deviation and sample size, or ranks).

SAMPLING:
Sampling is a process used in statistical analysis in which
a predetermined number of observations are taken from
a larger population.

Definition:
Sampling

One observation we made early on during the development
process, was that the test specific test statistic (e.g. t-value,
F-value, H-value, W-value, etc.) acts as a bridge between
the input pair of test statistics and the suitable statistics con-
figuration. This idea is represented in figure 3.1. Trans-
forming the p-value and the effect size to this test statistics
allows us to recover suitable statistics configurations from
the input.

Figure 3.1: Workflow for the Inverse Pass of a Significnat
Test

Another observation about the significance tests, that weSampling missing
values noticed, is that there are considerably less equations than

unknowns to simply (i.e. system of equations) be able to
solve for the suitable statistics configuration. Therefore we
use methods of randomized sampling of values, for the un-
known descriptive statistics, from predefined ranges.

Constrained bounds: The predefined ranges for each
variable are specified in a configuration file. The user is
able to overwrite the values before when he starts a com-
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putation. We use qlb to denote the lower bound and qub to
denote the upper bound for the descriptive statistics q.

Fixed variables: The user is also able to suggest values for
unknown descriptive statistics. The algorithms take these
values into account. If, thought, the user provided descrip-
tive statistics don’t fit the provided inferential statistics, we
either raise an error, auditioning the user of the incompat-
ibility between the provided descriptive statistics and the
provided inferential statistics, or we don’t take the pro-
vided value into consideration. This choice is specified by
the user before the start of the computation.

In the following we will continue using the same notation
introduced in Chapter 2.

3.1.1 Student’s Dependent t-test

Inputs: p, ef, µ, σ, n
Outputs: µ, σ, n

The first unknown we solve for is the sample size, simi-
larly to all the other parametric tests besides Welch’s t-test,
as it is the most constrained unknown of the 3 descriptive
statistics. We achieve this, by constructing a loss function,
dependent only on n, which we build with the help of equa-
tion 2.3 and 2.4.

LOSS FUNCTION:
is a function that maps a cost value to an input. The goal
of many optimization problems is the minimization of
said cost value.

Definition:
Loss Function

Multiplying equation 2.4 by the sample size, n, and to-
gether with 2.3 we get:

Loss function

ϕ(n) = T−1(p|n− 1)− ef · n (3.1)
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Minimizing equation 3.1 gives us the optimal sample size,
n∗.

To accustom the fact that, as the minimum of equation 3.1
might not be found in 0 and thus it would mean that either
the p-value or the effect size would not have been produced
by aforementioned n∗, we undertake a recalculation of the
effect size as posed in equation 2.4 using t and n∗.

Moving on to the rest of the unknowns, µ and σ, we note
that they are constrained by equation 2.4. We find the two
values with the following algorithm 1.

Algorithm 1 Finding a suitable mean and standard devia-
tion

Input d, µ, σ, lower and upper bound for the standard
deviation σlb, σub

Output suitable mean and standard deviation µ, σ

1: function FINDMEANSTD(d, µ, σ, σlb, σub)
2: if µ = NULL & σ = NULL then
3: σ← uniform(σlb, σub)
4: µ← d · s
5: if m 6= NULL & s = NULL then
6: σ← |µ · d|
7: if µ = NULL & σ 6= NULL then
8: µ← d · σ
9: return µ, σ

3.1.2 Student’s Independent t-Test

Inputs: p, ef, µ, σ, n
Outputs: µ, σ, n

The first unknowns we solve for are the ni with i ∈ {1, ...k}.
For this we construct a loss function with the help of equa-
tion 2.6 and 2.7. In contrast to the previous significance test
we now have to solve across pairs of values.

Loss Function
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ϕ(ns1, ns2) = F−1(p|n1 + n2 − 2)− d√
1
n1

+ 1
n2

(3.2)

As n1 and n2 are integers, the same note regarding the effect
size applies to the independent t-test similarly to the de-
pendent t-test. We therefore recompute the effect size value
with equation 2.7.

We move onto the next stage, in finding values for the Finding the mean
and standard
deviation

means and standard deviations. We have a total of 9 cases
to cover depending on the number of constrained values
the user provided.

1. If the user provided constrained variables are pro-
vided for both means and both standard deviations,
we check them against equation 2.7, informing the
user if they don’t fit.

2. If user provided constrained variables are available
for both means but not for both standard deviations,
we use the means to solve for σpooled

(a) If one of the two standard deviations is pro-
vided, we use the spooled equation to solve for
the remaining standard deviation

(b) If none of the two is provided we randomly
sample with equal probability from a predefined
range of standard deviation values and use that
to solve for the second one

3. If user provided constrained variables are available
for both standard deviations but not for both means,
we use them to solve for the difference between the
means, µ1 − µ2, which we in turn use to solve for the
individual means:

(a) If one of the two means is provided, we use it to
solve for the remaining mean

(b) If none of the two is provided we randomly
sample with equal probability from a predefined
range for mean values and use that to solve for
the second one
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4. If user provided constrained variables are available
for one standard deviations, we will then randomly
sample with equal probability from a predefined
range of standard deviation values, use then both
standard deviations to compute σpooled which then
puts us back in case (3) (a) or (b).

5. If no user provided constraints are available for the
standard deviations we randomly sample with equal
probability from a predefined range of standard devi-
ation values, which brings us back to case (4)

6. If one or none user provided constraints are available
for the means:

(a) We still turn to case (4) or (5) and find values for
the standard deviations first.

(b) We then recover the mean difference from equa-
tion 2.7

(c) Either we compute the missing mean from the
mean difference if the user has provided one
constrained variable for the mean or we ran-
domly sample one value for the first mean from
a predefined range and use it to solve for the sec-
ond mean

It is important to note that one critical assumption of Stu-
dent’s independent t-test is the homoscedasticity of the
variances. We ensure this by either checking the validity
of the user provided constraints with the f-test1 of equality
of variances, when both standard deviations are provided,
or use the same test to adjust the bounds on the predefined
range of values for the standard deviation when randomly
sampling them.

3.1.3 Welch’s t-Test

Inputs: p, ef, µ, σ, n
Outputs: µ, σ, n

1F-test. (2019). En.wikipedia.org. Retrieved 21 January 2019, from
https://en.wikipedia.org/wiki/F-test
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Similarly to Student’s independent t-test, we first build our Difficulties in
computing the
sample sizes for
Welch’s t-test

loss function, though in this case the function is dependent
on more than only the sample sizes. We use equations 2.8
and 2.10 and construct equation 3.3.

ϕ(n1, n2, σ1, σ2) = T−1(p|df)− µ1 − µ2√
σ2
1+σ

2
2

2

(3.3)

Our approach to address this issue is to search for a combi-
nation of sample sizes and standard deviations that best fit
equations 2.8 and 2.10.

Algorithm 2 Finding suitable sample sizes and standard
deviations

Input µ, n, Gµ
Output suitable means µ

1: function FINDCOMB(µ, σ)
2: nr1, n

r
2, σ

r
1, σ

r
2 ← Empty Lists

3: for i in range(0, RUNS) do

4: nr1← nr1 append nlb1 + i · (n
ub
1 −nlb

1 )
RUNS

5: nr2← nr2 append nlb2 + i · (n
ub
2 −nlb

2 )
RUNS

6: σr1 ← σr1 append σlb1 + i · (σ
ub
1 −σlb

1 )
RUNS

7: σr2 ← σr2 append σlb2 + i · (σ
ub
2 −σlb

2 )
RUNS

8: S← nr1 × nr2 × sr1 × sr2
9: return argmini∈S ϕ(i)

Moving onto finding the means, we recover the mean dif-
ference from equation 2.8, then take the same approach as
with Student’s independent t-test for cases (6) and (7) point
(c).

3.1.4 ANOVA

Inputs: p, ef, µ, σ, n, Gmean
Outputs: µ, σ, n
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As with the previous tests, we try solve for the most con-
strained variables first. Therefore we utilize equation 2.14
and 2.15 to construct our loss function. We do this by trans-
forming both equations by solving in both for SSM

SSR
. Taking

their difference results in equation 3.4.

Loss function

ϕ(N) = f · k − 1

N − k
− ef

1− ef
(3.4)

Knowing N , we move onto figuring out a configuration of
sample sizes, n. To solve this we either:

1. Check the user provided constrained variables for the
sample sizes to sum up to N, if all of them are pro-
vided

2. If less than k user provided constrained variables are
provided, we check to see whether their sum is less
than N, then move onto case (3).

3. For the remaining l variables we assign the value
n∗ = N∗

l , where N∗ results from subtracting the user
provided constrained variables from the total sample
size, N.

We move onto the next stage, in finding values for the stan-Finding means and
standard deviations dard deviations:

1. We first check whether the user provided all con-
strained variables for the means. If so we:

(a) compute the global mean, regardless for its pre-
vious value.

(b) employ equation 2.13 to compute SSM and then
utilize the result as well as equation 2.15 to solve
for SSR.

(c) calculate the standard deviations sequentially
utilizing equation 2.13. We do this by comput-
ing a factor c = rest

k∗ where rest represents the
difference between SSR and all the known com-
ponents (ni−1)σ2i and k∗ represents the number
of known components.
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(d) we assign the value of c multiplied by a random
value in the range .9 to 1.1, to the first unknown
standard deviation.

2. We do steps (c) to (d) until we have assigned value to
all standard deviations.

3. If the user has not provided all constrained variables
for the means, carry out step repeatedly (1) (d), where
c is in this case is the mean over the known standard
deviations. If no user constrained variable was pro-
vided for the standard deviations we randomly sam-
ple with equal probability from a predefined range.

We move onto the next stage, in finding values for the
means:

1. We compute SSR from the afore computed standard
deviations utilizing equation 2.13. Employing equa-
tion 2.15 we solve for SSM .

2. If more than two user constrained variables were not
provided we generate the rest in a similar fashion to
step (1) (c) to (e) for the standard deviations. We com-
pute a factor c = rest

k∗ , where rest represents the dif-
ference between Gglobal ·N and all the known compo-
nents ni · µi and k∗ represents the number of known
components.

3. As we have two equations (2.12 and equation 2.11) to
constrain the means, we utilize a nonlinear equation
solver to solve for the remaining means, if there are
only two means missing.

4. If it is the case, though, and we have all but one mean
missing, we utilize equation 2.11 to solve for the re-
maining variable, and then test the afore computed
mean on correctness if it fits equation 2.12.

To summarize the algorithm:

1. We start by making use of the equations of the signif-
icance test and effect size to find the f -value that fits
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both well, by cycling through multiple values for the
total sample size, N, thus finding also a solution for
N.

2. We use the afore computed total sample size, N, to
check the user provided constrained variables for the
sample sizes or we randomly sample suitable values.

3. We check the user provided constrained variables for
the standard deviations or we randomly sample suit-
able values.

4. We check the user provided constrained variables for
the means or we randomly sample suitable values.

3.1.5 rANOVA

Inputs: p, ef, µ, σ, n, Gmean
Outputs: µ, σ, n

The first unknown we solve for is the sample size, as in this
case it is the most constrained unknown of the 3 descrip-
tive statistics. We achieve this, by constructing a loss func-
tion, dependent only on n, which we build with the help of
equation 2.19 and 2.15.

By multiplying equation 2.19 with 1
n−1 we get:

f∗ := f

n− 1
=
SSM
SSR

=
F−1(p|k − 1, (n− 1)(k − 1))

n− 1
(3.5)

Solving equation 2.15 for SSM
SSR

we get:

SSM
SSR

=
ef2

1− ef2
= f∗ (3.6)

Bringing them together results in our loss function 3.7.
Minimizing it results in a suitable sample size value.

Loss function
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φ(n) =
f

n− 1
− ef2

1− ef2
(3.7)

We proceed on finding the second unknown, namely the
list µ. As there is only one equation constraining the means,
equation 2.11, for all the cases the user provides less than all
but one mean value, we randomly sample (uniform proba-
bility) the remaining values.

Algorithm 3 Finding suitable means
Input µ, n, Gµ
Output suitable means µ

1: function FINDMEANS(µ, n,Gµ, lb, ub)
2: for µj in µ do
3: if µj = NULL then
4: rest← k ·Gµ −

∑k
i=0,µi 6=NULL µi

5: nulls← # NULL-entries in µ
6: factor← rest/nulls
7: if µj last entry in µ then
8: µ← factor
9: else

10: µ← factor · uniform(lb, ub)

11: return µ

Our algorithm 3 fills the empty means in µ, while ensuring
the constraints from equation 2.11.

Lastly we press on to finding the last unknown, the list σ
containing the standard deviations of each group. Before
doing so, we take a detour, and first find the standard de-
viations of each participant across groups, σpart. To do so
we employ equation 2.16, where we compute the missing
value SSW , by use of equations 2.18, 2.17 and 3.5.
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Algorithm 4 Finding suitable standard deviations for the
participants across groups

Input n, SSW
Output suitable standard deviations for the partici-

pants σpart

1: function FINDSTDSPART(n, SSW )
2: σpart← List of size n with NULL entries
3: for σj in σpart do
4: rest← k ·Gµ −

∑k
i=0,mui 6=NULL µi

5: nulls← # NULL-entries in σpart
6: factor← rest/nulls
7: if µ last entry in µ then
8: σj ← factor
9: else

10: σj ← factor · uniform(.5, 1.5)

11: return σpart

In our analysis we have noticed that the mean of the stan-
dard deviations for the participants across each group is
relatively similar to the mean of the standard deviations of
each group, therefore we use this as an anchor point for fig-
uring out the unknown σ.

3.1.6 Mann-Whitney U-Test

Inputs: p, ef, n
Outputs: ranks

The first unknown we solve for is the total sample size, N .
We utilize equation 2.21 to transform the user provided p-
value to a z-score and then equation 2.24 to transform afore-
mentioned z-score to the total sample size value, N .

Knowing the sum of samples sizes, N, we either:

1. Check the user provided constrained variables for the
sample sizes, if both are provided
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2. Use one of the user provided constrained variables
for the sample size to solve for the other

3. or we randomly sample from a uniform probability
from a predefined range of values for the sample size

We compute W and SEW via equations 2.22 and 2.23 and
utilize them in equation 2.20 to finally figure out the test
statistics W.

We move onto figuring out the ranks from our afore com-
puted test statistics, W.

ARITHMETIC PROGRESSION:
A sequence of numbers, where each two consecutive
numbers differ by a constant. For example 1, 2, 3, 4, 5. . .
where consecutive numbers differ by a constant 1 or 3, 6,
9, 12, 15. . . where consecutive numbers differ by a con-
stant 3.

Definition:
Arithmetic
Progression

The test statistics, W, can be described as the sum over a
subset of the arithmetic progression defining the ranks. We
draw the following conclusions from this observation:

• The test statistics, W, has the complement W c. To-
gether they sum up to N ·(N+1)

2 .

• There is a fixed range of values W and W c can take.

We can now formulate the problem of finding ranks from Finding the ranks
the test statistics, W . From an arithmetic progression, S,
of constant 1, from 1 up to N , find subsets S1 and S2 of
size n1 and n2, where S1 = W and S2 = W c if n1 < n2 or
W < W c else

∑
S1 = W c and

∑
S2 = W and S1 ∪ S2 = S

and S1 ∩ S2 = ∅.

We implement a simple randomized searching algorithm:

1. It starts off with a list, Stotal, with values from 1 to N .
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2. Without loss of generality it samples n1 pairwise in-
dependent values from Stotal, resulting in a list S. Let
W ∗ be the sum over the values of S.

3. It then reduces the distance between W and W ∗, by
iteratively improving our W ∗:

(a) If W ∗ < W , randomly pick a value, v, in S, and
increment it by 1 resulting in v∗, such that v∗ is
pairwise independent from all the values in S
and less than N . It then goes back to step (3).

(b) If W ∗ > W , randomly pick a value, v, in S, and
decrements it by 1 resulting in v∗, such that v∗

is pairwise independent from all the values in S
and greater than 1. It then goes back to step (3).

(c) If W ∗ =W , it stops the algorithm.

4. The algorithm returns a list containing S and Sc,
where Sc = {1, 2, ...N}\S

It is important to note, that as in step (3) of our algorithm
we employ randomized searching method to find solutions
to our problem, we don’t expect to always find a close ap-
proximation to a solution. We try increase our chances by
doing multiple runs of the entire algorithm.

To summarize the algorithm:

1. We compute the z-score from the p-value, and the sum
of sample sizes, N, from the aforementioned z-score
and the effect size, r.

2. From the sum of sample sizes we compute a suitable
combination of samples sizes, n1 and n2 either from
the user provided input or we randomly sample val-
ues.

3. We compute W and SEW from the sample sizes, and
thus the test statistics, W.

4. We utilize W, and the sample sizes to randomly
search for independent subsets S1 and S2 of the arith-
metic progression of constant 1, from 1 to N, that sum
up to W and W c respectively.
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3.1.7 Wilcoxon Signed Rank Test

The algorithm for the Wilcoxon signed rank test is similar
to the Mann-Whitney U/W-test in that we also utilize equa-
tion 2.21 to transform the user provided p-value to a z-score
and then equation 2.24 to transform aforementioned z-score
to the total sample size value, N. In this case, though, as
this significance test assumes dependence of the datasets,
we find the sample size, n, for both datasets, by simply di-
viding N by two. We check this value against the user pro-
vided one, if the user has provided any sample size, else we
continue with our resulting value.

Then we compute the test statistic, T, with equation 2.25
and the value of T and SET , which in turn we compute by
utilizing equation 2.27 and equation 2.28.

We move onto figuring out the ranks from our afore com-
puted test statistics, T.

In section 2.2.3 we observed, that the test statistics, T, re-
sults from the smallest sum of either the negative ranks or
the positive ones. From this observation we conclude the
following:

• Again we need to generate two lists of ranks, S1
and S2, where the sizes n1 and n2, respectively and
ntotal = n1 + n2.

• Without loss of generality we assume that n1 < n2.
The test statistics, T , has then to be greater or equal
than the sum of the first n1 elements of the arithmetic
progression of constant 1, from 1 to n.

• Without loss of generality we assume that n1 < n2.
The test statistics, T , has to be less than or equal to
the the sum of the last n2 elements of the arithmetic
progression of constant 1, from 1 to n.

To find the two lists of ranks, S1 and S2, we first need to
find the number of ranks, n1 and n2, that go into each of
them them. To do so we cycle through values from 0 to n,
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and check if the test statistics, T , respects inequality 3.8 we
obtain from conclusions (2) and (3), where i, represents the
smaller value between n1 and n2.

i(i+ 1) ≤ T ≤ i(n+ (n− i+ 1)) · 1
2

(3.8)

If we find values that respect inequality 3.8 we can apply
the randomized searching algorithm from section 3.1.6 to
find a solution of lists of ranks.

To summarize the algorithm:

1. We compute the z-score from the p-value, and the
sum of sample sizes, N , from the aforementioned z-
score and the effect size, r.

2. From the sum of sample sizes, N , we determine a
suitable samples size, n, which we compare against
the user provided value, if the user has provided any
value for the sample size.

3. We compute T and SET from the sample sizes, and
thus the test statistics, T .

4. We utilize T and the sample size, n, to find a suitable
combination of sizes, n1 and n2, for rank lists, S1 and
S2.

5. We employ the randomized searching algorithm, dis-
cussed for the Mann-Whitney algorithm, to find inde-
pendent subsets S1 and S2 of the arithmetic progres-
sion of constant 1, from 1 to N , that sum up to T and
T c respectively.

3.1.8 Kruskal-Wallis H-test

As with the previous algorithms for nonparametric signifi-
cance tests, we try to first solve for the test dependent test
statistics, H , then use it to search for a configuration of
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ranks, which fits that test statistics. We find H , by employ-
ing equation 2.29.

We then solve for the total sample size, N , in equation
2.4.3.3. Knowing N, we move onto figuring out a config-
uration of sample sizes, n. To solve this we either:

1. Check the user provided constrained variables for the
sample sizes to sum up to N , if all of them are given

2. If less than k user provided constrained variables are
given, we control to see whether their sum is less than
N , then move onto case (3)

3. For the remaining, l, variables we assign the value
n∗ = N∗

l , where N∗ results from subtracting the user
provided constrained variables from the total sample
size, N

We move onto figuring out the ranks from our afore com-
puted test statistics, H .

We noticed in section 2.4.3 that only equation 2.4.3.1 im-
poses a direct constraint on the distribution of the ranks
between the k groups. We can now formulate the problem
as an optimization problem:

PARTITION OF A SET:
Is a grouping of the elements of a set into non-empty sub-
sets, such that every element belongs to only one subset.
A k-partition denotes a partitioning into k subsets.

Definition:
Partition of a set

Let S denote an arithmetic progression of constant 1 from 1 Finding ranks
to N , where N is a positive integer, and H is a positive real
constant. Find a k-partition of S, such that:

1. H − y∗ is minimal

2. Let y∗ = 12
N ·(N−1)

∑k
i=1

R2
i
ni
− 3 · (N + 1), where Ri is

the sum over the elements in the i-th partition
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Our inclination was to adapt the algorithm previously pro-
posed in section 3.1.6, though we needed a way to repro-
duce stage (3) of the algorithm, where we took the step in
the direction of the solution.

1. The first issue had to do with the fact, that we were
working with more than two groups. To address this,
we thought of generating an initial partitioning, S,
and work directly on the elements of the individual
subsets, exchanging between subsets.

2. The second issue we encountered had to do with the
choice of which elements to exchange. To address
this, we select the group with the smallest or the
greatest weighted sum Ri

ni
where i ∈ {1, ...k} depend-

ing on whether the difference H − y∗ is positive or
negative, which acts as the sender. We select another
group at random from the remaining groups, which
acts as the receiver. For the exchange we select one
element, xsender in the sender’s group and one ele-
ment in the receiver group, the closest to, but less than
xsender.

We propose the following simple randomized search algo-
rithm:

1. We initialize a list of lists, S, with a random partition-
ing of the aforementioned arithmetic progression

2. We iterate e times in which we:

(a) First compute y∗
(b) If H − y∗is:

i. Positive, we select the group with the small-
est Ri

ni
, i ∈ {1, ...k} as the sender and from

the remaining groups we randomly sample
one other group for the receiver

ii. Negative, we select the group with the
greatest Ri

ni
, i ∈ {1, ...k} as the sender and

from the remaining groups we randomly
sample one other group for the receiver
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iii. Zero, we have found a partitioning that fits
our equation, therefore we stop.

(c) We proceed with the swap of elements between
sender and receiver and we attempt to exchange
the smallest element of the sender, xsender, with
an element of the receiver, whose value is clos-
est but less than xsender. If we can’t find any
we proceed onto the next smallest element of the
sender. Independent of whether we make the
swap we continue onto the next iteration.

3. We return the partitioning, S, that minimized H − y∗

To summarize the algorithm:

1. We compute the H test statistics

2. We use the newly computed value of H to solve for
the total sample size, N .

3. We find a combination of individual sample sizes,
that sum up to N , by checking whether the user pro-
vided values for the sample sizes fit the the sum or
we use a factor for the sample sizes the users has not
provided

4. We proceed onto finding a k-partitioning of the ranks
with our randomized search algorithm

3.1.9 Friedmann Analysis

Similarly to the Kruskal-Wallis algorithm in section 3.1.8,
we transform the p-value to a F-value, utilizing equation
2.29 and we extract the sample size, n, from the p-value and
the effect size, W , by means of equation 2.32. We check this
value against the user provided one, if the user has pro-
vided any sample size, else we continue with our resulting
value.

We move onto figuring out the ranks from our afore com-
puted test statistics, F .
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PERMUTATION:
Represents on ordering of the elements of a sequence. To
permute a sequence is the act of rearranging the elements
of said sequence.

Definition:
Permutation

Similarly to the Kruskal-Wallis test, the only constraint im-
posed on the ranks is equation 2.4.4.1. As with the problem
in the previous section this observation helps us to formu-
late the following optimization problem:

Let X be a matrix of size n × k where each of the n-rowsFinding ranks
is a permutation of the arithmetic progression of constant 1
from 1 to k and F is a real constant. Find X such that:

1. F − y∗ is minimal

2. Let y∗ −H = 12
nk(k+1)

∑k
i=1R

2
i − 3 · n · (k + 1), where

Ri is the sum over the elements in the i-th column of
X .

We propose the following simple randomized search algo-
rithm:

1. We initialize each row of X with the arithmetic pro-
gression of constant 1 from 1 to k.

2. We iteratively try to improve our solution:

(a) We compute y∗

(b) If F − y∗ > 0 we randomly permute the imodn
row, where i is the current iteration.

(c) If F − y∗ = 0 we return X

We return the X that minimized F − y∗

To summarize the algorithm:

1. We compute the F test statistics

2. We use the newly computed value of F to solve for
the sample size, n.
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3. We proceed onto finding a matrix X of ranks our ran-
domized search algorithm

3.2 From Descriptive Statistics to Data

In the previous section we have discussed the first stage of
the inverse pass for statistical significance tests and were
able to compute approximations for the descriptive statis-
tics of the data sets that could yield our target inferential
statistics. In this section we are going to look at the second
half of the inverse pass, and utilizing the afore computed
descriptive statistics we examine one method for generat-
ing data for statistical test, from descriptive statistics, by
means of sampling.

As the tests use different kinds of descriptive statistics we
are going to differentiate between two methods for com-
puting the data from descriptive statistics.

3.2.1 Parametric Distributions

One of the main assumptions of the parametric significance
tests is that they follow a known distribution, which can be
described by a fixed number of parameters. For our choice
of significance tests, the distribution we expect from our
data is the normal distribution, which is described by only
two parameters — the mean and the standard deviation.

As we have already computed these descriptive statistics
in the previous stage, we can use them to sample data
points from a normal distribution described by the men-
tioned statistics.
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Algorithm 5 Sample data for parametric distributions
Input k, µ, σ, n
Output data a list of list, where datai contains the data

points for the i-th group

1: function SAMPLEPARAM(k, µ, σ, n)
2: data← Empty List
3: for i in 1, ...k do
4: cur← sampleNormal(µi, σi, ni)
5: cur← adjustV ariance(cur, σi)
6: cur← adjustMean(cur, µi)
7: data← append cur to data
8: return data

Algorithm 5 describes the method we used. The subroutine
sampleNormal employs a sampling function of the Numpy-
package2. As there is a low chance the generated data from
sampleNormal will have exactly the asked for descriptive
statistics we undertake a correction to the standard devi-
ation and the mean in subroutines sampleV ariance and
sampleMean.

rANOVA: From Descriptive Statistics to Data

One special case of data generation for a parametrized sig-
nificance test, is the repeated measures ANOVA, where not
only the mean and the standard deviation of each individ-
ual group is specified, but also the standard deviation of
each individual participant is of importance. Therefore the
generation of data for this particular test, is subjected to one
additional constrained on the standard deviation of each in-
dividual participant.

We start off by initializing the k groups, by using algorithm
5, according to the the k meansms and standard deviations

2numpy.random.normal — NumPy v1.15 Man-
ual. (2019). Docs.scipy.org. Retrieved 25 Jan-
uary 2019, from https://docs.scipy.org/doc/numpy-
1.15.0/reference/generated/numpy.random.normal.html
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ss of the groups we computed in the previous stage. Al-
though the means and the standard deviations of the newly
generated datasets match the ones computed in the previ-
ous stage it still does not mean that the standard deviations
of the participants sspart match.

Step 1: To measure the difference, δ ∈ Rn×1, between the
current participant standard deviations ysspart and and the
target sspart we construct the loss function in equation 3.9.

Loss function

δ = ϕ(ysspart , sspart) = (ysspart − sspart)2 (3.9)

Step 2: From the resulting vector δ, we pick the
nmax greatest differences and the corresponding indices
i1, ...inmax , to correct, where 0 ≤ nmax ≤ n.

Let X∗j be the dataset of the j − th group, where the indices
i1, ...inmax have been removed.

Step 3: We compute the remaining standard deviation σ∗j
from the target mean msj with equation 3.10.

Step 4: Utilizing the afore computed standard deviation
σ∗j and the target mean msj along with the the sample size
of nmax we generate, with algorithm 5, new values to re-
place the ones removed in X∗j .

Remaining standard
deviation

σ∗j :=

√√√√ 1

n− nmax

n−nmax∑
t=0

(X∗j,t −msj)2 (3.10)

If the datasets with the new values produce a p-value closet
to our input p-value, we accept the new datasets as a better
approximation to the previous one, replacing them. We re-
peate steps 1 through 4 for a predefined number of rounds,
Continuesly trying to improve our solution.
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3.2.2 Nonparametric Distributions

The same assumption of a known distribution for the un-
derlying data does not apply to the nonparametric tests.
For these significance tests we convert the ranks, previously
computed, to data points, while still maintaining the same
order of the data values. We leave it to the user to chose
a distribution for the data which best suits him, offering
currently the alternatives of a normal and a uniform distri-
bution.

Algorithm 6 Sample data for nonparametric distributions
Input k,N, n, ranks - list of list, where ranksi contains

all the ranks belonging to i-th group
Output data a list of list, where datai contains the data

points for the i-th group

1: function SAMPLENONPARAM(k,N, n, ranks)
2: data← Empty List
3: s← sample(N) . s is sorted in ascending order
4: for i in 1, ...k do
5: cur← Empty List
6: for j in 1, ...ni do
7: cur← append sranksi,j to cur

8: data← append cur to data
9: return data

Algorithm 6 describes our method, where the subroutine
sample denotes one of the chosen distributions.
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Chapter 4

Evaluation

In the previous chapter we discussed the algorithms we de-
veloped to compute the inverse pass for the significance
tests. In this chapter, we discuss the evaluation we con-
ducted on said algorithms to assess their performance with
respect to their specification, as well as analyse the results
for validity and speed.

4.1 System Requirements

We focused on implementing the following system require-
ments into our system.

SR1: Algorithms for the inverse of statistical tests that
correctly generate valid data points from a pair of inference
statistics. StatPlayground already has 9 commonly used
NHST implemented, therefore we are adding functionality
to them for computing the inverse of NHST.

SR2: Time Efficiency below 1 second.
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SR3: Flexibility in generating data points. Computing
the inverse of a NHST is not a one-to-one correlation be-
tween input and output values, as for multiple configura-
tions of data points can yield the same pair of inferential
statistics. Therefore, we are looking for a procedure to bet-
ter segment the search space by specifying constraints or
boundaries for the data we produce.

4.2 Structure of the Evaluation

Our method for testing the validity is as follows:

1. Start from a pair of inference statistics (p-value and
effect size) which we use as input to the algorithm

2. Compute data sets that could yield aforementioned
value pairs

3. Calculate the inferential statistics (p-value and effect
size) for the afore computed generated data sets

4. Calculate the relative error between the two pairs of
values from step (3) and the original inference statis-
tics from step (1)

The data we used for input (i.e. pairs of inference statistics)
is split into two categories:

• Pairs of values scrapped from different papers, arti-
cles and other publications

• Generated values pair

In benchmarking the algorithms we measure only the time
it took to compute a set of suitable data points from a pair
of inferential statistics. We run a total of 1000 different in-
ferential statistics pairs for each algorithm. The results can
be visualized in table 4.2.

All benchmarks were run on a Lenovo Y50-70, 12Gb of RAM,System
specifications
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Intel Core i7-4700HQ CPU @ 2.40GHz 3 0:1 3400,00 MHz,
Nvidia GTX 860m GPU and an ATA Kingston SUV400S 256Gb
SSD.

4.3 Results

This section presents the results of the tests.

Test
Relative Error from Data

Minimum (s) Average (s) Maximum (s)
Student Dependendent 0.00E+00 1.50E-03 3.30E-01
Student Independent 0.00E+00 1.23E-03 2.91E-01
Welch’s 2.10E-16 3.12E+00 8.29E+02
ANOVA 0.00E+00 9.75E-02 1.34E+00
rANOVA 5.09E-07 3.57E-03 7.07E-02
Mann Whitney 7.60E-04 6.30E-03 1.39E-01
Wilcoxon 0.00E+00 0.00E+00 0.00E+00
Kruskal Wallis 1.18E-04 1.49E-01 1.39E+00
Friedman 0.00E+00 1.90E-04 1.67E-03

Table 4.1: Relative Error of the Algorithms

Test
Relative Error from Data

Minimum (s) Average (s) Maximum (s)
Student Dependendent 1.09E-02 1.26E-02 2.75E-02
Student Independent 9.81E-01 1.00E+00 1.16E+00
Welch’s 5.25E-01 7.63E-01 1.87E+00
ANOVA 1.61E-02 8.83E-02 1.64E-01
rANOVA 6.27E-01 8.87E-01 1.95E+00
Mann Whitney 2.32E-04 2.18E-03 2.71E-02
Wilcoxon 2.16E-04 1.03E-02 1.03E-01
Kruskal Wallis 1.70E-01 3.49E-01 8.39E-01
Friedman 5.70E-02 2.08E-01 4.12E-01

Table 4.2: Runtime of the Algorithms
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4.4 Discussion

This section discusses the data analysis process and elabo-
rates the findings made in detail.

SR1: Algorithms for the inverse of statistical tests, that
correctly generate valid data points from a pair of infer-
ence statistics. Not surprisingly the tests with more equa-
tions to constrain them, have a greater accuracy in generat-
ing data, with an average relative error of about 0.1%. In-
terestingly, even though we only used basic algebraic oper-
ations like addition and multiplication, we still have a rel-
ative error of 0.1% instead of a lower one, which is due to
machine error.

SR2: Time Efficiency below 1 second. We can observe
that all algorithms achieve the 1 second runtime Nielsen.
Of interest might be the fact that the less constrained tests
(i.e. ANOVA as well as the nonparametric tests) achieved
on average lower benchmark times. At times even with an
order of magnitude lower than the more constrained tests.

SR3: Flexibilty The flexibility of the library is offered
through the use of constraints and bounds on the target de-
scriptive statistics. Although generating a specific dataset,
on the data level, is not possible with the current state of
the library, on the descriptive statics level is. Therefore the
more constraints the user specifies the better the approxi-
mated result gets.
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Chapter 5

Summary and Future
Work

In the previous chapter, the evaluation of the system was
conducted to validate the system requirements, followed
by the analysis and the resultant research findings were dis-
cussed. In this chapter, we summarize the thesis upto this
point and potential future works, such as additional fea-
tures that can be added to enhance Cheno, are discussed.

5.1 Summary

In the first chapter, we motivated the need for Cheno as
an extension for the existing StatPlayground project (Sub-
ramanian and Borchers [2017]) and we introduced the topic
of the inverse pass in the context of statistical significance
tests — computing datasets from inference statistics. Then
we tried to analyze the difficulties of computing the afore-
mentioned inverse and ended the chapter by overviewing
the proposed system requirements of the system: accuracy,
speed and flexibility.

In the second chapter, we reviewed basic statistical con-
cepts like descriptive statistics and hypothesis tests. Fol-
lowing that we discussed existing research related to
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Cheno.

In the third chapter, we discussed the design and develop-
ment of the algorithms for the various tests supported by
Cheno. We presented the first part of the inverse pass —
from inferential statistics to descriptive statistics — by de-
scribing the inputs and outputs of each algorithm and then
elaborating on the method each algorithm takes to compute
said descriptive statistics.

In this chapter we also discussed the second part of the in-
verse pass — from descriptive statistics to datasets — by
briefly describing one method to generate data from de-
scriptive statistics.

In the fourth chapter, we enumerated the system require-
ments and discussed the structure of the evaluation for
testing aforementioned requirements. We presented after-
wards the results of the evaluation and discussed them. We
found out that Cheno respects the target bounds for all but
one test in terms of accuracy. All the tests perform on av-
erage in the proposed target speed bounds, with only two
tests violating in the worst case the proposed time of 1 sec-
ond.

5.2 Future Work

One of the main features left out of the final implementa-
tion is a proper system for informing the user if the so-
lutions he is looking for are even possible given his con-
straints and bounds. This could be from a user perspective
something of interest, to better understand for which con-
figuration of descriptive statistics are the restulting infer-
ence statistics realistic.

One a further note, as Cheno was intended as an extension
for StatPlayground, Cheno had only those tests developed
that were required by StatPlayground. Additional tests can
be developed based on the same design.

Some of the algorithms were designed for parallel comput-
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ing, lowering the speed by a considerable factor (i.e. in the
case of Welch’s t-test by a factor of 4). Writing the algo-
rithms with parallel computing in mind, could lower the
computing time even more, though, given the GIL 1 of our
implementation of python, the multiprocessing can be fur-
ther improved by changing to a more performant multipro-
cessing programming language. Furthermore, the current
implementation was developed in Python, which doesn’t
compare in terms of performance to compiled languages
such as C++ or Java. Implementing Cheno in a compiled
language could also boost performance considerably.

1Global interpreter lock. (2019). En.wikipedia.org. Retrieved 15
February 2019, from https://en.wikipedia.org/wiki/Global interpreter lock
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Appendix A

Implementation

Cheno was developed with Python 3.7. The numer-
ical computation were done with the python packages:
numpy 1.151 and scipy 1.12.

The software design is modular, with each significance test
falling into its own class, with the same public interface
shared across all the 9 classes.

The two public methods are forward and solve, whereas
the former computes the normal forward pass, the latter
computes the inverse pass of the specific significance test.

1http://www.numpy.org/
2https://www.scipy.org/
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