
Jan 15th, 2012
Apr 25th, 2012

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,April 2012
Christian Cherek

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Related work 3

2.1 The Multitouch Table 3

2.2 Deininghaus’s Diploma Thesis 5

2.3 SLAP . 6

3 Motivation 7

3.1 The Task . 7

3.2 Apparatchik . 9

3.2.1 Drawbacks 11

vi Contents

3.2.2 Where do they come from 12

3.3 Chose Another Framework 14

3.3.1 SLAP 14

4 Planning Folio 15

4.1 Initial Interviews 15

4.1.1 Gather Ideas 17

4.1.2 Sort Ideas 18

4.2 Create a Reasonable Project Plan 21

4.3 Progress at the Actual Implementation 22

5 Folio 23

5.0.1 The Model View Controller Paradigm 23

5.1 Data Structure 25

System State 25

Displayed Contents 26

Enhancements on our Books 26

The LivingObjectsController . 26

5.2 The Graphical User Interface 28

5.2.1 RoundedRectButton 28

5.2.2 Document, DocumentController
and DocumentView 29

Document 29

DocumentView 30

Contents vii

DocumentController 30

5.2.3 Browser, BrowserController
and BrowserView 31

Browser 31

BrowserView 32

BrowserController 35

5.2.4 Book, BookController and
BookView 36

Marker Detection 36

Old and New Version 36

Book 37

BookView 38

BookController 40

Tabs . 41

5.2.5 Clip, ClipController and ClipView . . 42

Clip 43

ClipView 43

ClipController 44

5.3 Workspace Organisation 44

6 Progress Evaluation 47

6.1 Data Structure Milestone 47

6.2 Browser Milestone 48

6.3 Clip Milestone 48

viii Contents

6.4 Book Milestone 49

6.5 Further Milestones 49

7 Summary and future work 51

7.1 Summary and contributions 51

7.2 Future work 52

A ADDITIONAL DOCUMENTS 55

Bibliography 59

Index 61

ix

List of Figures

2.1 Concept drawing: multitouch table 3

2.2 The FTIR technique 4

2.3 The DI technique 5

3.1 Manuscript by Ernst Meister 8

3.2 Links in Apparatchik 9

3.3 Tabs in Apparatchik 10

3.4 Slider under Apparatchik Books. 12

4.1 Interview Mindmap 18

5.1 Model View Controller Paradigm 24

5.2 RoundedRectButton 29

5.3 Apparatchik’s Browser 32

5.4 Folio’s Browser 33

5.5 Bookbinding to let Folio distinguish books. . 37

5.6 Apparatchik Book 38

5.7 Folio Book . 39

x List of Figures

5.8 Tabs in Apparatchik. 42

A.1 Folio structure diagram 56

A.2 Time Schedule for Folio 57

A.3 Folio class diagram 58

xi

List of Tables

4.1 List of features our first interviewee found
necessary . 19

4.2 List of features our second interviewee
found necessary 20

4.3 List of features our third interviewee found
necessary . 21

5.1 Overview for the
LivingObjectsController class 27

5.2 Overview for the RoundedRectButton . . 29

5.3 Overview for the Document class 30

5.4 Overview for the DocumentView class . . . 30

5.5 Overview for the DocumentController
class . 31

5.6 Overview for the Browser class 32

5.7 Overview for the BrowserView class 34

5.8 Overview for the BrowserController class 35

5.9 Overview for the Book class 39

5.10 Overview for the BookView class 40

xii List of Tables

5.11 Overview for the BookController class . . 41

5.12 Overview for the Clip class 43

5.13 Overview for the ClipView class 43

5.14 Overview for the ClipController class . . 44

xiii

Abstract

In the context of digital humanities literary scholars have to work more and more
in digital environments. Many publishers decide to do both, print the real book,
and give access to digital contents regarding the work.

In this thesis we present a project plan for a software on a multitouch table that
combines the advantages of real world physical books with the high accessibility
of digital contents. It is even possible to attach digital materials to real books. To
create this plan we did several interviews with literature professionals.

Furthermore we implemented the first steps to get this system running and present
them in this thesis as well. We describe the organization of the workspace to keep
the project clean and comprehensible.

Future work will be the implementation of the remaining steps suggested in the
project plan in chapter 4—“Planning Folio”. Also there are open research questions
on how our system changes the workflow of literary scholars.

xiv Abstract

xv

Überblick

Im Kontext der ”digital humanities” arbeiten Literaturwissenschaftler heute mehr
und mehr in digitalen Umgebungen. Viele Herausgeber entscheiden sich inzwis-
chen ihre Werke sowohl in gedruckter, als auch in digitaler Form im Internet zur
Verfügung zu stellen.

In dieser Bachelorarbeit präsentieren wir die Projektplanung für eine Software
auf einem Multitouch-Tisch, die einerseits die Vorteile der Arbeit mit gedruckten
Büchern und andererseits die Möglichkeiten der digitalen Vernetzung und Darstel-
lung von Materialien miteinander vereint. Es ist sogar möglich, digitale Materialien
so an physikalische anzubinden, dass diese immer zusammen erscheinen.

Um den Projektplan zu erstellen, wurden mehrere Interviews mit Literaturwis-
senschaftlern durchgeführt und hier präsentiert. Ausserdem wurden die er-
sten Schritte zur Implementierung dieser Software gemacht und hier vorgestellt.
Wir beschreiben die Ordnung des Projektes, um den Programmcode möglichst
übersichtlich und verständlich zu halten.

Zukünftige Arbeit an dem Projekt beinhaltet vor allem die Durchführung des in
Kapitel 4—“Planning Folio” erarbeiteten Projektplans. Ausserdem gibt es aus Sicht
der Human Computer Interaction offene Fragen, inwiefern ein System wie Folio die
Arbeitsabläufe und Gewohnheiten von Literaturwissenschaftlern ändern könnte.

xvii

Acknowledgements

There were a lot of people who helped me to get this thesis done, here I want to
name the most important among them.

Thank you Prof. Jan Borchers and Prof. Karin Herrmann for your supervising
support and your illuminating feedback on my cautious first steps in this thesis.

Thank you very much Moritz Wittenhagen and Max Möllers. Your feedback on my
progress, the tips you gave when I got stuck, your motivation and the constructive
criticism during this thesis meant really a lot to me.

Thank you Lara without you nothing of this would have happened at all.

And big thanks to my whole family, especially Papa, I could ask for your help
every day and night, no matter what, you always had a helping hand, ear or eye
for me.

Thank you all.

xix

Conventions

Throughout this thesis we use the following conventions.

Names of software or widgets are written in italic text.

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in colored boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

This thesis presents the design and implementation process
for a software, called Folio, on a 1,8x1,4 m2 scaled high def-
inition multitouch table. Folio is intended to support lit-
erary scholars in research projects, by building the bridge
between real world books and digital media.

As Deininghaus [2010] found in his thesis on interactive
surfaces for literary criticism, it is necessary for literary
scholars to maintain on their habit of using real world
books instead of switching to a complete digital version of
their working material.

Deininghaus also designed and created several prototypes
of a system, which accomplishes these needs. His software
prototype had been developed further for two years. Dur-
ing this development we found several reasons to rebuild
the software.

In this thesis we present a project plan to rebuild this soft-
ware. We did the next step through the DIA cycle, analyz-
ing the existing software, designing the next iteration, and
started to develop the next implementation step.

2 1 Introduction

DIA CYCLE:
The ”Design Implement Analysis Cycle” (DIA Cycle) is a
software development process that iteratively improves
a software. In the ”Design” step a prototype of the soft-
ware is designed. This could include a bug list that needs
to be fixed, or just brainstorm sessions on what the soft-
ware needs to do. The ”Implement” step uses the de-
sign to implement a prototype. This implementation gets
more and more concrete with each cycle. The ”Analysis”
step tests the prototype and evaluates it. This could be
done in a user study or with other feedback. The analy-
sis is used to design the next prototype.

Definition:
DIA Cycle

We did several interviews with literary scholars from the
Humtec institute at RWTH Aachen University, to examine
how they would like the system to be. Based on these, we
created the project plan that is presented here. The inter-
views are presented in chapter 4.1—“Initial Interviews”.

In chapter 5—“Folio” the implementation progress is de-
scribed. We name the important classes, describe which
parts are implemented already and what should be done
in the future. Most of this classes are part of the graphical
user interface, but there are also descriptions for data man-
agement classes and the workspace organisation.

At the end we summarize our progress on the project plan
and give a suggestion on the workflow for succeeding col-
leagues. For this workflow we recommend a close cooper-
ation with the literary scholars to build a system, that can
be used for literary research projects.

3

Chapter 2

Related work

2.1 The Multitouch Table

Folio is a software for a multitouch table, designed and built Folio runs on a
multitouch table.at Media Computing Group. In figure 2.1 you can see a

conceptual drawing of this multitouch table.

Figure 2.1: Conceptual drawing of our multitouch table.

Three high definition projectors are used to display the Three projectors
create the screen.screen contents. Via mirrors at the bottom of the table the

4 2 Related work

images are projected to the downside of an acrylic surface.
These projectors are connected to a desktop computer next
to the table. This computer is used to start the system, after
that our users will not need to work at the computer any-
more.

To detect finger touches on the surface we use a techniqueA finger touch is
detected with the
FTIR technique.

called Frustrated Total Internal Reflection or FTIR, figure 2.2
shows how this works. The acrylic surface of the table is
filled with infrared (IR) light sideways. This light stays in-
side the surface until it is disturbed by a touch. This can be
seen by IR-cameras on the bottom of the table, thus finger
touches can be detected.

Figure 2.2: Frustrated Total Internal Reflection is used to de-
tect finger touches.

Physical Objects on the surface are detected, using aObjects need
markers to be seen
by the camera.

technique called Diffuse Illumination or DI. All objects that
should be detected by our system need to have markers
on their downside. These markers get illuminated by
IR-Leds on the bottom of the table, and the reflection on
the markers is detected by the camera. This way even light
weighted objects can be detected on the surface. Figure 2.3
shows the concept of DI.

2.2 Deininghaus’s Diploma Thesis 5

Figure 2.3: The concept of Diffuse Illumination, this way
markers under objects are detected.

2.2 Deininghaus’s Diploma Thesis

Stephan Deininghaus did the first two DIA cycles on a sys- Folio builds up on
Deininghaus’s
diploma thesis.

tem that supports literary scholars in research, by combin-
ing physical and digital material, in [2010]. He created the
first software prototype on our multitouch table. This soft-
ware was called Apparatchik.

His studies showed that a system like this arouses a great
deal of interests within the humanities. In his future work
section he motivated a further development of the sys-
tem, that should include an integration of web services and
databases. Also he named several situations where collab-
oration or sharing features would be useful.

We used his experiences to developed a system that offers
the desired features and extends it further. We added a web
browser and save and reload features, which could be used
to create and save multiple different working processes.
This was not possible with Apparatchik until now.

6 2 Related work

2.3 SLAP

In [2008] Weiss et al. presented SLAP which is a shortcut forSLAP offers the
possibility to attach
physical objects to
our multitouch table.

Silicone Illuminated Achive Peripherals. SLAP is a frame-
work that offers multitouch tables the possibility to attach
physical widgets.

The great improvement above just simple onscreen widgets
is, that these widgets offer haptic feedback. At the same
time they benefit from the onscreen possibilities. A knob,
that can be turned can first be used to select a functional-
ity and then secondly control the selected functionality. On
the webpage of Media Computing Group you can find ad-
ditional information1 , that shows all possibilities of SLAP.

We used this framework to build Folio on top of it. It comes
with touch detection for fingers, as well as with marker de-
tection for physical objects. Also it offers a set of widgets
that can be used to display different contents on the screen.
Therefore we decided to work with SLAP for our next iter-
ation on Folio.

1http://hci.rwth-aachen.de/slap

http://hci.rwth-aachen.de/slap
http://hci.rwth-aachen.de/slap

7

Chapter 3

Motivation

3.1 The Task

Folio is created for literary scholars. Specifically profession- Folio will be used for
literary research.als who analyze literary texts by referring to different ver-

sions of a existing text. Therefore scholars create so called
editions, which are defined by Plachta [1997] as “a reliable
text that provides the basis for any historical or interpre-
tative examination”. Our system can be used to do both,
creating an edition and working with an edition to ana-
lyze texts. The exact process was described by Deininghaus
[2010] in chapter three of his diploma thesis.

EDITION:
”A reliable text that provides the basis for any historical
or interpretative examination.” (Plachta [1997])

Definition:
Edition

When creating an edition a, scholar collects many differ- Working at a desk
with movable items is
indispensable for our
users.

ent versions of a literary text. He subscribes handwritten
manuscripts and chronologically orders the different ver-
sions. That can be quite difficult. For example old hand-
written versions can be hard to read or the initial order is
not clear. In figure 3.1 you can see a manuscript of a poem
by Ernst Meister, his handwritings sometimes are really dif-
ficult to read.

8 3 Motivation

As Deininghaus [2010] examined, most users traditionallyLiterary scholars
usually spread their
material on a desk.

solve this task by spreading all versions on a table and try-
ing to sort them in the correct order. To transcript a hardly
readable text they make notes and discuss their ideas with
other scholars.

Figure 3.1: A handwritten manuscript of a poem by Ernst
Meister [2011].

An edition is used to analyze literary texts. The scholarOnline research
takes a lot of time. takes certain milestones in the creation of e.g. a poem, and

examines the differences between these versions. Doing
this, it is possible to get a better understanding of the re-
searched text. To solve this task our users also make heavy
usage of the internet. They search referenced texts or try

3.2 Apparatchik 9

to find out the meaning of outstanding terms in a literary
text. Therefore they need access to online databases or li-
brary systems where these references might be stored. Also
some publishers decide to release their edition not only in
a printed version but also in a digital version. In this dig-
ital version the scholar is able to see copies of the original
manuscripts, which were not printed in the actual edition.
These copies can be enlarged on the computer to get a more
detailed view as a printed version could offer it.

3.2 Apparatchik

In [2010] Deininghaus created some first prototypes to The current version
of our Software is
called Apparatchik.

build a system, which achieves our goals. His soft-
ware prototype was named Apparatchik. Apparatchik was
able to display digital representations of books, and
scanned single pages. Figure 5.6 in chapter 5.2.4—“Book,
BookController and BookView” is a screenshot of a
Book in Apparatchik.

Also there is a possibility to connect books via Links. These
Links were displayed as green arrows next to the Book (see
figure 3.2). Pressing on these arrows brings up either the
referenced page as a single Clip item, when the actual book
is not placed on the table, or a popup pointing on the refer-
enced book, if this is anywhere on the table.

Figure 3.2: The green arrow represents a direct link to an-
other book.

Another feature Deininghaus already implemented was the Apparatchik has a lot
of the desired
functionalities.

possibility to attach digital, single page copies to a specific
page of a book. The enhanced page got a Tab next to it,
which could be enlarged by pressing the tab symbol. In
figure 3.3 the minimized and maximized version of the tab

10 3 Motivation

can be seen. If this Tabs hold more items than displayable,
the Tabs could be scrolled up and down via touch gestures.

After Deininghaus left the Media Computing Group sev-
eral colleagues built up on Apparatchik. Apparatchik was en-
hanced with an internet browser and a marker detection
to detect which book is placed on the table and attach the
corresponding digital representation to it. The browser is
attached to a bluetooth keyboard, so that it always appears
above this keyboard. For a more detailed view on Appa-
ratchik’s features see chapter 5—“Folio”.

Figure 3.3: The Tab-functionality of the Book widget. Two
Tabs are opened, the third one ”Textgenese” is closed.

In the current version Apparatchik is already really ad-Deininghaus’s user
tests helped to
improve our design.

vanced. The running version was used to demonstrate a
typical working situation of a literary scholar, as it could
look like with a multitouch table. Also Deininghaus did
some user studies where our users showed great interest in
the system. These studies also provided feedback for our
implementation. For example the Link reference pop up for
a not yet placed book was mistaken for an error message.
That showed us that this feature needs to be realized differ-
ently this time.

3.2 Apparatchik 11

Unfortunately the latest version of Apparatchik has some Apparatchik is not
yet finished.drawbacks. Some of these drawbacks are hardware con-

strained and we are not able to solve these without rebuild-
ing the whole system. But others of these are software
based. Improving these problems is the main task of this
thesis.

3.2.1 Drawbacks

The biggest drawback the system has are performance A lack of
performance is the
biggest
disadvantage.

problems. Especially when there are many items on the ta-
ble the responsiveness gets more and more lost. Sometimes
the system even loses user input or confuses two actions
as a single one. This can lead to completely unpredictable
behavior.

The second problem is a very unstructured code. The orig-
inal software architecture is weaken up on many places
within the code. This leads to crashes of the whole system
which are hard to detect. Even the try to find some mem-
ory issues with Instruments - a debugging tool provided by
Apple - could not help to find the crash cause.

To use the system as a complete working environment for There are missing
features as well.literary scholars there are still a lot of missing features.

Deininghaus [2010] did some interviews on how the sys-
tem should work, and which functionalities should be pro-
vided. Now two years later the literary scholars have some
experience with the running system, so we reinterviewed
them to find out if their preferences are still the same.

The interaction with the table elements should get im- Some interaction
flaws complicate the
usage.

proved too. The way to choose a page in the digital
representation of a book for example is not intuitive
enough right now. In this version the user has to choose
the page via a slider widget, which is placed under the
digital book (see figure 3.4). This is quite difficult to handle
especially when the book has lots of pages, because the
sensitivity of the slider widget is to high there. That leads
to problems choosing a single page.

12 3 Motivation

In [2005] Hurst et al. presented a solution, the Zoomslider,
that could improve the performance on our slider, however
for Folio we aim to get a automatic recognition of the cur-
rent page by taking photos of the screen and reading the
selected page automatically. With automatic page recogni-
tion we would not need this slider anymore, since our users
are able to let the system check which page should be dis-
played.

Figure 3.4: Below a book widget is a slider to change the
displayed page. The green dot represents a touch.

3.2.2 Where do they come from

The performance issues have two origins. First the hard-There are two big
performance leaks. ware used to detect the touch events needs some time to

process the information, especially when there are very
many touches or objects on the surface (e.g. more than
30 touches). Unfortunately we cannot handle these delays
now, since we would need to change the hardware of the
system. Because this is not possible right now, we concen-
trated on improving the software side performance prob-
lems.

Measuring the exact delay was difficult. We started byExact delays are
hard to measure. adding log messages into the system. But these messages

could not measure the time Apparatchik needs to render the
contents on the screen. Doing this we found that our touch
detection, the time between the actual touch and the touch
event in Apparatchik, needs 0.2 - 0.3 seconds.

We made some informal measurements with a stopwatch,
that showed delays of more than 0.5 seconds with only
three active components on the table. With two books, a
browser and two clips most actions on, for example the
browser, got completely lost.

3.2 Apparatchik 13

Unfortunately we could not come up with a proper way of Delays of more than
0.5 seconds were not
acceptable for us.

measuring the exact delay. But our informal measurements
together with the fact that the touch detection does not slow
down with this amount of touches definitely show, that the
major performance issue is rooted in Apparatchik.

We spotted the main reason for the delay in Apparatchik is The used framework
is not able to display
fast graphics on
more than one
screen.

rooted in the decision to build up the system on the Core
Animation framework provided by Apple. This framework
encounters large performance issues when displaying con-
tents over multiple screens, which are moreover connected
to more than one graphic card. Since this framework is pro-
vided by Apple, we are not able to improve this any further
ourselves; that’s why we decided to rebuild the whole sys-
tem on another framework.

COREANIMATION:
CoreAnimation is a framework consisting of a collection
of Objective-C classes for graphics rendering, projection,
and animation.

Definition:
CoreAnimation

The messed up code structure is another reason for us to Many different
developers messed
the code structure.

rebuild the whole system. Since Deininghaus finished his
thesis at the Media Computing Group, his software proto-
type was developed further. This was done by many dif-
ferent people, everybody with his own understanding of
the code and his own opinion how this should be struc-
tured. There was no project plan our colleagues could re-
fer to. Since Apparatchik is a quite big software (approxi-
mately 30 000 lines of code) this led to a really unstructured
workspace.

We provide a project plan that includes a structured
workspace to prevent the new code from getting cluttered
as well. Also we provide a work plan when which feature
should be implemented, so that colleagues in the future can
refer to it.

Our interviews with literary scholars showed some The users needs
developed over the
past years.

changes in the preferences which functionality is needed
for the system. At Deininghaus’s interviews the partic-
ipants had no clear idea off how the system could look
like, and which features are possible to create. Now with

14 3 Motivation

two more years experience the scholars have a clearer idea
which functionality is needed and possible for our system.

The improvement of the interaction with the table is a big
topic. There are already some ideas on automating for ex-
ample the page detection of a physical book. And there is
ongoing research at the Media Computing Group on im-
proving the clarity of the workspace.

3.3 Chose Another Framework

Since we are not able to improve the Core Animation frame-We built up on a
framework,
developed at Media
Computing Group

work by Apple, we decided to build up on another frame-
work. At Media Computing Group Malte Weiss et al.
[2008] created a framework which is designed to run on
multitouch tables.

3.3.1 SLAP

The SLAP Framework created by Weiss et al. is a goodSLAP was developed
for similar systems,
and offers faster
graphic rendering.

framework to build our project up on. It is made for soft-
ware that runs on multitouch tables and brings the possi-
bility to combine physical objects with digital contents. It
provides a detection mechanism for physical objects we can
adopt to detect books on the table.

Furthermore since it was developed at the Media Comput-
ing Group we were able to extend or improve it if this was
needed. The SLAP framework uses OpenGL to render con-
tents which should fix the rendering problems we had with
Core Animation.

15

Chapter 4

Planning Folio

Folio has been and will be implemented following a specific This thesis provides
a project plan for
Folio.

project plan. This plan was created to prevent the source
code from becoming as unstructured as the previous sys-
tem. Furthermore the realization of Folio will take more
time than we had to write this thesis and the plan could be
used to finish the implementation. Succeeding colleagues
will be able to use this plan to finish Folio.

To create a reference on which we can implement this sys- The plan was created
with interviews and
brainstorm sessions.

tem we made the following steps. First we had some brain-
storm sessions in the computer science team which steps
are needed to get a system like this running. In figure A.1
you can see a diagram we created in one of our sessions.
Second we did several interviews with literary scholars to
examine their vision of the system. To create the plan we
put the gathered information together and created a plan
that supports the wishes of literary scholars and is reason-
able for computer scientists alike.

4.1 Initial Interviews

Since the whole project is done in a close cooperation with We set great value to
the needs of literary
scholars.

the literary scholars, we regarded their wishes which fea-
tures and in which order they should be implemented.
Therefore we did three interviews with literary scholars

16 4 Planning Folio

to investigate their needs. We interviewed the scholars in
their normal working environment. Furthermore we let
them try out the old version to let them think about the sys-
tem. We did the interviews consecutively and asked them
not to talk about the interviews, before all interviews were
concluded.

The interviews were structured in three parts. The first taskThe interviews
consisted of three
parts.

we gave our interviewees was to brainstorm which features
are needed to create a system that will be useful to them.
The interviewees were asked to name functionalities they
need to do their research at the multitouch table. We col-1. Naming all desired

functionality. lected all of their answers on a board so that they were able
to see them all the time. In the second part the participants
were asked to sort the answers they had given earlier in a
reasonable way. Reasonable in this context should mean,
if they could decide which feature should work first to do
something, which is the most important. If the interviewees2. Sorting their ideas

in a reasonable
order.

had some other ideas they forgot in the first part they were
allowed to add them as well.

The last part consisted of a short collection on which prob-3. Collect some
drawbacks of the
current version.

lems or drawbacks they found while using the existing sys-
tem. They should mention every problem they could come
up with the big really annoying as well as the little just a
little unhandy ones.

On all of these parts they were allowed to change or add
something to their previous answers. Everything they said
was collected on a whiteboard; we explicitly encouraged
the interviewees to think about the previous questions over
the whole interview. We did this because we wanted to
let them think about their experiences they had with the
system. This way they were able to come up with things
they thought about some time ago as well.

Within the interviews we tried to find out three major ques-Our goal was to find
out, what they want
to do, which features
they think they need,
and if these ideas
changed in the last
two years.

tions. First what do they want to do with the system, and
what their imaginations are what is possible with the mul-
titouch table. Second which features they need to do re-
search with it, and third in which order they think they
need their functionality back. The first two questions to-
wards the functionality and the use case were also treated
in the interviews Deininghaus [2010] did for his thesis. On

4.1 Initial Interviews 17

this part we payed close attention, if, and how, our partici-
pants ideas of the system changed since Deininghaus inter-
viewed them.

All interviewees are literary scholars who are creators of
editions. That means they are deeply into the process of
working on and with an edition and have a deep under-
standing of the process at working on editions.

The answers to the first question, what to do with the sys- The task our
interviewees want to
solve is alike among
them.

tem were quite similar. The system was created to fulfill a
specific task. Namely to do research in the context of cre-
ating and working with editions. That means heavy online
research, and equal efforts using printed books or hand-
written manuscripts of the author under research. All par-
ticipants described their workflow as spreading out the ma-
terials on their desk, sorting them in a possible order and
making notes on each of them. All participants expressed
their disapproval about loosing this collection when they
clean up their desk. Their normal workflow contains of
a second part in which they transcript the handwritten
manuscripts of the author and their own notes into digi-
tal text. For the transcription of the manuscripts they need
a word processor with lots of possibilities to edit the text.

4.1.1 Gather Ideas

The answers on our question, which features they need to The desired features
were more diverse.fulfill this task, were more diverse. The results are collected

in table 4.1, 4.2, and 4.3. Every participant expressed a high
need for connection to the internet. Also everyone men-
tioned the possibility to attach digital contents to a physical
book as a required function. Also the table should have the
ability to display digital copies of their research material.

One interviewee mentioned the system would only be fully One interviewee
mentioned a word
processor as desired
feature.

useful if it would also be possible to do the actual writing
processes at the table. That includes a text editor with ex-
tensive possibilities for editing and writing texts. The other
participants wanted to use the table not that much for ac-
tual writing the edition, but more sorting the materials and
making small annotations on the books and digital materi-

18 4 Planning Folio

Figure 4.1: A mindmap created within our initial interviews.

als. Therefore these interviewees mentioned a connection
to their desktop computer or even mobile devices as a need
to do research at the table.

Also a possibility to save and restore previous work per-Saving and restoring
the work process
was mentioned by all
interviewees.

haps even on user based working environment was men-
tioned as needed. To get copies of handwritten manuscripts
or annotations an author made every interviewee men-
tioned on the one hand the connection to the internet with
access to databases. And on the other hand a fast scan func-
tion, which just creates a photo of the table and offers the
possibility to create digital representatives of physical ma-
terials. You can see a collection of desired functionalities in
figure 4.1 collected on a mind map.

4.1.2 Sort Ideas

The last task we gave to the interviewees was to sort the
functionalities in a way they would desire them to work
again. Although real research can only happen when the
whole system is working with all functionalities there are

4.1 Initial Interviews 19

more important features and less important ones.

The feature lists in table 4.1, 4.2, and 4.3 are already sorted
as our interviewees thought how important each feature is.

Interviewee 1
1. Browser
2. Books
3. Attaching digital materials on books
4. Clips
5. Links between materials
6. Page recognition
7. Digital annotations
8. Save and restore working environment
9. Camera scans of physical documents
10. User management
11. Connection to other working stations (home PC)
12. Printing

Table 4.1: List of features our first interviewee found nec-
essary

All participants rated the internet connection with a very Internet connection
is essential for al
interviewees.

high importance. They described a widget that is more or
less like an internet browser used on a normal desktop pc.
It should be able to connect to online databases and search
engines.

The second and third features should be displaying the ma- Displaying materials
like books or single
page copies was
rated second.

terials. Single paged contents like scanned manuscripts on
the one hand, and books on the other hand. The single
page contents should be freely movable and resizable on
the desk. Interviewee 2 rated the creation of a word proces-
sor more important than displaying material, but for him
displaying contents had the highest need right behind the
text editor.

These materials should be created by downloading them
from online databases or just by creating a screenshot of the
browser or a book on the table. Two participants also men-
tioned that it would be great to create these screenshots of
physical material that is placed on the table, like a piece of
paper with some handwritten notes, but this functionality

20 4 Planning Folio

Interviewee 2
1. Clips
2. Browser
3. Automatic sorting
4. Word processor to subscribe manuscripts
5. Edit digital material (e.g. with text marker)
6. Books
7. Attaching digital materials on bookss
8. Links between material
9. Searching on the table
10. Searching the internet
11. Connect materials (to create an order)
12. Digital annotations

Table 4.2: List of features our second interviewee found
necessary

was rated less important than displaying downloaded data.

The books should be displayed digitally, but also be con-The connection of
digital book
representation to the
real physical book
should be the next
step.

nected to a real book if it is placed on the table. To extend
the possibilities of the book representative is the next de-
sired step. The books have to be able to attach the other
materials next to them. All participants described a folder
like extension on each page of the book to save the materi-
als in it. ”I just want to drag a manuscript into this folder
and save it there” one participant described it.

The next step should be a possibility to create ”Post-it” likeAnnotating the digital
materials was ranked
lower.

annotations on the table. They do not need lots of editing
functionality, but two participants expressed a wish to copy
them to their desktop easily for further usage. These an-
notations should be created with a wireless keyboard con-
nected to the multitouch table.

Other functionalities like saving the work situation, auto-
matic sorting, printing the material and different user pro-
files were not that important to our participants.

4.2 Create a Reasonable Project Plan 21

Interviewee 3
1. Browser
2. Searching the internet
3. Clips
4. Books
5. Attaching digital material on books
6. Save and restore working environment
7. Connection to other working stations (home PC)
8. Digital annotations
9. Edit digital material (e.g. with text marker)
10. Camera scans of physical documents
11. Automatic sorting
12. Links between material
13. Printing
14. Page recognition
15. User management

Table 4.3: List of features our third interviewee found nec-
essary

4.2 Create a Reasonable Project Plan

With these initial deliberations in mind, we created a Out of our interviews
and meetings within
the computer
scientists we created
a project plan.

project plan for the realization of Folio. Since our intervie-
wees were no computer scientists they had no software ar-
chitecture in mind when they thought about their desired
features. For example the ”save and restore the working en-
vironment” functionality needs to be done in several steps.
First the system needs a consistent data management for
material we created for the system as well as downloaded
material.

In figure A.2 you can see a time schedule with a feature
list we created out of these interviews. The time schedule
also displays the estimated time each implementation step
should need in our opinion. The rhombi represent certain
milestones in the implementation of Folio.

22 4 Planning Folio

4.3 Progress at the Actual Implementation

In the actual realization of our project plan we worked on
some of the described milestones simultaneously. The cre-
ation of the Browser, Book and Clip widgets is quite pro-
gressed. This is indicated by the darker blue timelines in
figure A.2.

Also the data structure to save the context of Folio is already
working, but the functionality to save online material and
attach it to books needs to be done after this thesis.

For a detailed description on how far Folio is developed,
and which parts still need to get done see chapter 6—
“Progress Evaluation”

23

Chapter 5

Folio

In this chapter we shall describe Folio as it will look like
when it will be finished. Each section will describe another
part of the Folio user interface, and how far the implemen-
tation progress has come so far.

5.0.1 The Model View Controller Paradigm

Folio makes heavy usage of the Model View Con- Folio uses the MVC
Paradigm.troller(MVC) Pattern Erik M. Buck [2012] 5.1. All interface

widgets always consist of these three parts.

The model is a container for the data. Holding the informa- The model holds the
data.tion which is displayed, as the current document, the page

or the current position on the screen. The Model is inde-
pendent of the presentation or the controller of the data. It
only provides getters and setters for the data.

The View is the onscreen representation of the Model. It The view displays the
data on the screensets the appearance of the interface widget. Which colors

are used for the buttons, where a button is, and calls the
methods to handle button presses. Every view knows its
model and its controller. The view displays the model data
and calls the controller to access the data.

The controller is responsible for the interaction. It ma- The controller is
responsible for the
interaction

nipulates the data corresponding to the user input, and

24 5 Folio

responses to the actions the view called. In Folio ev-
ery view controller is a delegate for it’s view and has
to implement the -(void) executeCommand:(int)
commandNamefromSource:(id)source; method. In
Folio the controller also is responsible to set up its view
when it is created. That means there is a close one to one
relationship between every view controller the correspond-
ing view and model.

Figure 5.1: The Model View Controller Paradigm

In Folio the whole interface is build up on this paradigm.Folio has a model,
view and controller
class for every
interface object.

For each instance of an user interface object, there is an
instance of a specific model class, the corresponding view
class and the controller class (e.g. Book, BookView and
BookController.

In our implementation every model and every view has a
weak reference to the associated controller class. The con-
troller takes the data from the model, updates the view and
takes the user input to update the model.

Our model for example holds the information where on the
table the view is placed. This is done to be able to save the
working situation, and bring it back for later usage.

In figure A.3 you can see a class diagram of Folio. The dif-
ferent parts of the MVC paradigm are marked as boxes.

5.1 Data Structure 25

5.1 Data Structure

Folio has to manage three different types of consistent data. There are three
types of information
Folio has to store.

The arrangement over the whole table, the contents which
enhances a specific book, and the pdf and jpg files which
are displayed by Books and Clips.

System State

The current working situation in Folio is defined as the The current state
describes every
active widget, it’s
position and inner
state.

digital objects currently displayed and the position of
each of them. Objects are Browsers, Books, Clips, and
Annotations. The model class for each object contains a
affineTransform property, which saves position, rota-
tion and zoom factor.

When Folio gets started the latest state is loaded; the These information
get loaded at startup.LivingObjectController is responsible for this. Every

object is recreated and brought back to the saved state. That
includes position, rotation and zoom. For the browser the
internet page is loaded, a book will display the latest page.

Of course we are not able to bring back the real world items
which were placed on the table, but since the loaded ta-
ble state is fully interactive the widgets will respond to re-
placed books, or touch input. This way a working situa-
tion of the previous day can be continued without a lot of
rethinking how the working materials were placed on the
table.

Until now the current table state is saved when the user hits Saving is done by
button press, to avoid
useless savings.

a button placed at the edge of the table. We decided to im-
plement it this way, since we wanted to offer the user a pos-
sibility to decide if and when a working situation is saved.
A time triggered saving could also save useless working
situations.

We are aware, that this could lead to losing contents the
user did not want to lose, to solve this problem we refer
to the future work section. Perhaps additional user studies
could give a hint which version is more useful.

26 5 Folio

Displayed Contents

The displayed contents consists of pdf and or jpg files. TheAll files that are
displayed in Books
and Clips need to be
stored separately.

scanned books and manuscripts are pdf and the browser
can download jpg or pdf files. All these files do not change
very often. Sometimes users will download additional files,
but its unlikely that they change a scanned manuscript or
book. Thus we decided to manage these files with the Core-
Data framework provided by Apple. The model class of a
table widget is responsible to handle this.

Enhancements on our Books

The enhancements on a book will get managed by theAttached items in
Books need to be
stored as well.

BookController class. Every BookController
manages a plist file similar to the one, the
LivingObjectsController has for the whole ta-
ble. These changes will be saved automatically, when the
user changes something. We are of the opinion that this
will not lead to useless savings, since both the situation
before and after are fixed states and not steadily changed.

Attaching Objects to a book will be done by dragging theThese saving
operations should be
done automatically.

object into the Tab. To remove it, the user simply has to
drag it out of the tab again. This way Clips and in the future
Annotations can be added to the page.

The LivingObjectsController

The LivingObjectsController takes care of the cre-The
LivingObjects-

Controller is used
to manage the
widget creation,
destruction and
saving.

ation, saving, loading and destruction of every
widget on the table. Table 5.1—“Overview for the
LivingObjectsController class” shows a overview
for the LivingObjectController class.

The NSMutableArrays are containers for the currently ac-
tive widgets on the table. These arrays are filled when Fo-
lio starts and the loadLivingObjectsOnUITK method is
called.

5.1 Data Structure 27

Class LivingObjects
Controller

inherits from NSObject
Properties:
livingBooks strong NSMutableArray*
livingClips strong NSMutableArray*
livingBrowsers strong NSMutableArray*
livingAnnotations strong NSMutableArray*
Class methods:
(id)init;

(void)loadLivingObjectsOnUITK:
(SLAPUITK*) uiToolKit;

(void)saveLivingObjects;

(void)addLivingBook:(Book*) book
onUITK:(SLAPUITK*)uiTollKit;

(void)removeLivingBook:(BookController*) book
fromUITK:(SLAPUITK*) uiToolKit;

Table 5.1: Overview for the LivingObjectsController class

First these four arrays were implemented as one array, Individual arrays for
each object ease the
saving and reloading.

which should contain all objects. We changed this to the
current solution, because this made the saving and reload-
ing a lot easier. Each widget on the table needs to save dif-
ferent values for it’s current state. By putting them in inde-
pendent lists, the conversion between the plist file and the
running system is much nicer now.

By changing these we made it harder to add additional
widgets on the table. To build in new widgets, the Living
ObjectsController now needs to get an additional ar-
ray and needs changes in the saveLivingObjects and
the loadLivingObjectsOnUITK: methods, but chang-
ing these should not be that difficult, therefore we decided
to stay with multiple arrays.

The methods addLivingBook: (Book*)
book onUITK: (SLAPUITK*) uiToolKit; and
removeLivingBook: (BookController*) book

28 5 Folio

fromUITK: (SLAPUITK*) uiToolKit; are listed
representative for similar methods to add or remove the
different widgets on the table.

5.2 The Graphical User Interface

The graphical user interface (GUI) of Folio consists of sev-We created a set of
interface widgets for
Folio.

eral different graphical widgets, which grant the possibil-
ity to interact with Folio. Until now there are three types
of widgets used; the Book, the Browser and the Clip widget.
The Book widget can be attached to real world objects (e.g.
the Book widget). The others are stand alone.

A fourth widget, the Annotation will be implemented in the
future. This widget will allow to write simple texts similar
to a real world Post-it paper. These Annotations will also be
attachable to Books, like the Clips are now.

5.2.1 RoundedRectButton

The SLAP Framework did not come with a
RoundedRectButton. Therefore we subclassed theOur Rounded Rect

Button is similar to
the one in
Apparatchik.

existing SLAP-button and overwrote the draw function.
The new button can be seen in figure 5.2. The design is
taken from Deininghaus’s [2010] latest version. The button
was created as a first step of implementing the interface,
since it is used for nearly every widget.

The implementation of our RoundedRectButton is
finished, and took the estimated time in the project
plan. Changeable characteristics are the colors of
font, stroke, button not pressed background, and but-
ton pressed background. Every button gets an identi-
fication number (ID) which is used to trigger the cor-
rect function in its parent widget. This parent wid-
get has to be a SLAPCommandReceiver and implement
the -(void) executeCommand:(int) commandName
fromSource:(id)source; method. Where the integer
commandName represents the button ID set for the trig-

5.2 The Graphical User Interface 29

gered button, handed over in source. You can see an
overview of the class we created in table 5.2.

Figure 5.2: RoundedRectButton created for Folio

Class Rounded Rect Button
inherits from SGOButton
Properties: (all inherited from SGOButton)
ID integer
buttonMode (Push/Toggle) SGOButtonMode
buttonState (Up / Down) SGOButtonState
Delegate:

SLAPCommandReceiver
Delegate methods

-(void) executeCommand:(int) commandName
fromSource:(id)source;

Table 5.2: Overview for the RoundedRectButton

5.2.2 Document, DocumentController and
DocumentView

The document classes are the parent classes for every inter- These classes are
superclasses for all
our interface objects.

face widget in Folio. Where the Document class represents
the parent model class, DocumentControllerrepresents
the controller parent, and DocumentView the parent view
class.

Document

In table 5.3 you can see the collection of at-
tributes, the Document class is responsible for. The Document is the

model class.affineTransform property saves the actual position,
rotation, and translation on the multitouch screen. By
saving this in the model as well, we are able to restore

30 5 Folio

the table on relaunch as it was left behind when the last
saving point was made. The controller property is weak to
prevent a retain cycle between controller and model. The
mutable array will hold the links to other materials on the
table.

Class Document
inherits from NSObject
Properties:
myController weak DocumentController
affineTransform CGAffineTransform
myReferences strong NSMutuableArray

Table 5.3: Overview for the Document class

DocumentView

Table 5.4 shows the class definition of the DocumentView
class. The delegate property holds a weakDocumentView

holds the connection
to the controller and
affine transform on
the screen.

reference to a controller who implements the
-(void) executeCommand:(int) commandName
fromSource:(id)source; method. Again the refer-
ence is weak to prevent a retain cycle between view and
controller.

Class DocumentView
inherits from SGORect
Properties:
delegate weak DocumentController

Table 5.4: Overview for the DocumentView class

DocumentController

The class overview for the DocumentController classThe controller class
manages the
interaction between
Document and
DocumentView.

can be seen in table 5.5. MyDocument and MyView
are the references to the model and the view class
corresponding to the MVC Paradigm. The (id)
initWithDocument:(Document*)document; method

5.2 The Graphical User Interface 31

creates a new DocumentController and sets the
myDocument property. The (void) affineTransform-
ChangedTo:(CGAffineTransform)transform method gets
called on the touchesMoved event, and sets the
transform property of the model. This property is
used to save the actual position on the screen in the
LivingObjectsController.

Class Document
inherits from NSObject
Properties:
myDocument strong Document
myView strong DocumentView
Class methods
(id) initWithDocument:(Document*)document;
(void) affineTransformChangedTo:
(CGAffineTransform)transform

Table 5.5: Overview for the DocumentController class

5.2.3 Browser, BrowserController and
BrowserView

Connection to the internet, search functionality and book- As Deinighaus and
our interviewees
suggested, we
implemented a web
browser.

marking were high rated features over all our interviews.
Therefore we enhanced Folio with a web browser. To save
and load different browser windows we added our browser
into the document management of Folio. Every browser
consists of a Browser model class, a BrowserView and
a BrowserController.

Browser

In Table 5.6 you can see an overview over the Browser The Browser class
holds all the data of
the current state the
Browser widget is in.

class. The only added property until now is the url-
string. But this list will need to be extended when the ac-
tual browser functionalities increase. To add a tab bar the
browser needs a list of urls. It would also be highly ap-
preciable to add a scroll position variable, which saves the

32 5 Folio

scroll position of the displayed page, and can be saved and
reloaded as well. Also there is no history management right
now; the browser should be able to go back and forth in a
history to be really useful.

Figure 5.3: The Apparatchik version of our Browser.

Class Browser
inherits from Document
Properties:
url strong NSString*

Table 5.6: Overview for the Browser class

BrowserView

In contrast to the old version our browser is not attachedThe BrowserView

displays web
contents.

to a keyboard on the table. Instead the user will be able to
create a new browser window by hitting a button on the
screen. Also users will be able to create more than one
browser. In figure 5.3 you can see the Apparatchik version
of the browser in comparison to figure 5.4 the Folio Browser.
Table 5.7 contains the class description of our BrowserView.

5.2 The Graphical User Interface 33

Figure 5.4: The Folio version of our Browser.

The webRect is the actual contents part of the
BrowserView it is a web renderer provided by the
SLAPFramework.

The forward- and backButton access the history of the forward- and

back-Buttons are
used to access the
history.

browser. The backButton brings the latest page back, the
forwardButton undoes the change a user made by press-
ing the backButton. All these should work to the very
maximum of all user inputs. That means the user should
be able to undo every page change he did from the launch
of a browser window and should be able to also reburying
every undid page.

The bookmarksButton brings up a new page, this page
contains a list of bookmarked pages. This list will be
editable when Folio is complete. Therefore the Browser
model class should be extended further in the later devel-
opment of Folio.

34 5 Folio

Class BrowserView
inherits from DocumentView
Properties:
webRect strong SGOBrowser*
backButton strong RoundedRectButton*
forwardButton strong RoundedRectButton*
bookmarksButton strong RoundedRectButton*
closeButton strong RoundedRectButton*
clipButton strong RoundedRectButton*
urlButton strong RoundedRectButton*
urlBar strong SGOText*

Table 5.7: Overview for the BrowserView class

The urlButton gives access to the urlBar. If the userThe urlButton

needs to be pressed
to change the url.

hits the button, the focus of the keyboard changes to the
urlBar and the user is able to enter a new url. When
the user hist the enter-button on the keyboard, the urlBar
loses the focus, and the browser loads the new entered url.
We took this behavior from the old version of the multi-
touch table, to be consistent with the system our users al-
ready knew. Nevertheless this technique of entering should
be rethought for the next implementation step. Perhaps a
touch on the urlBar is more intuitive to get the focus and
change the url.

The clipButton is used to create a new Clip out of theTo create a
screenshot of the
browser contents the
clipButton is
used.

browser. The first press enables a changeable mask over
the browser, where the user can select the area he wants to
copy. This area can be changed by pressing on the browser
with two fingers. One finger represents the top left corner
of the clip, the other represents the bottom right. When the
user hits the clipButton again, the masked part will be
copied into a new Clip and displayed next to the browser.
The default mask is set over the whole browser contents,
that means the user is able to copy the whole page by just
pressing the clipButton twice.

5.2 The Graphical User Interface 35

BrowserController

The BrowserController on table 5.8 is responsible for
the interaction with the Browser. It has weak references to
the LivingObjectsController, which saves and cre-
ates all objects on the table, and to the uiToolKit pro-
vided by the SLAP Framework. These references are weak
because we do not want to create retain cycles between a
BrowserController object and it’s delegates.

Class BrowserController
inherits from DocumentController
Properties:
expectsKeyboardEvents BOOL
myLivingObjectController weak LivingObjectController*
uiToolKit weak SLAPUITK*
Class methods
initialization
(id) initWithBrowser:(Browser*)browser
OnUITK:(SLAPUITK*)aToolKit;
Event handling
(void) executeCommand:()int) commandName
fromSource:(id)source;
(void) getKeyEvent:(NSEvent*)event;
(void) gotTwoTouches:(NSMutableSet*)t;
Browser methods
(void) closeBrowser
(void) loadNewUrl
(NSRect) selectNewClip
(void) createNewClipFromRect:(NSRect)rect;

Table 5.8: Overview for the BrowserController class

The BrowserController is a SLAPCommandReceiver The
BrowserController

class is a delegate
for button events.

delegate, to the button presses on a button of the SLAP
Framework. This is done in the executeCommand
method. The getKeyEvent: method and
expectsKeyboardEvents property are used to catch
keyboard events when the url is changed.

The selectNewClip and createClipFromRect meth-
ods are used to create a screenshot of the current screen.
They get triggered when the user hits the clipButton on

36 5 Folio

the bottom of the BrowserView. With a first press, the user
is able to chose the part of the contents which should get
copied, with a second press on the clipButton the actual
Clip is created.

5.2.4 Book, BookController and BookView

In figure 5.7 you can see the actual version of the Book wid-These classes
represent the Book
widget.

get. We tried to keep the look and feel of Deininghaus’s
version of the software, since he put a lot of effort and re-
search into it we wanted to use his findings. Deininghaus’s
book can be seen in figure 5.6

Marker Detection

We added the functionality to attach the digital representa-The marker detection
is handled by the
SLAP framework.

tion of a book to a real world book. The SLAP framework
comes with a possibility to detect certain combination of
touch markers. In figure 5.5 the Markers attached to a book
can be seen. These markers are recognized by the system
like normal finger touches. And the exact arrangement is
used to decide which book is actually placed on the surface.
Using information the digital representation of a book is at-
tached to it. Moves when the book is moved and remains
on its position if the book is lifted of the table.

In SLAP this is done by assigning a unique
SLAPFootprint object to the widget. This footprint
consists of several touch objects and can be detected by the
system. This is done in the SLAPUITK every time all touch
events get handled.

Old and New Version

As seen in figure 5.6 and 5.7 the old and the new version of aEditing the attached
material can be done
in Folio now.

book look similar. The only changes we made are in the feel
of this widget. With Apparatchik users had to add materials,
collected in a tab next to a page, by hand. This was done via

5.2 The Graphical User Interface 37

Figure 5.5: An arrangement of markers to distinguish
which book is placed on the table.

an interface which is displayed on the screen of the desktop
system next to the multitouch table. In our version users
will be able to add, remove and arrange the contents of the
tabs while the system is running. This will be possible with
standard multitouch gestures. Dragging a manuscript into
a folder will attach this manuscript to this position in the
folder. All these changes are saved automatically. Doing
this we hope to ease the work with Folio, this feature was
requested in our initial interviews.

Book

Table 5.9—“Overview for the Book class” shows the class
diagram for the Book Model. It holds the information which
book it represents, how big it is and how to handle the page
count. frontMatter is the actual number of pages which
are not counted as a page in front of the text, pageCount
represents the overall pages of a book, including the for the

38 5 Folio

Figure 5.6: The Book Widget in Apparatchik

page numbering of the printed version not counted pages.
The Book needs the two properties widthWhenClosed
and widthWhenOpen to be able to get displayed also when
the actual book is closed, but still lying on the table.

For future work this will be extended with properties for
the contents of the book. The parts used in the class
BookView are able to display pdfs. The displayed books
will be scanned, saved as pdf file and displayed on the mul-
titouch table.

BookView

The BookView holds the properties to display a digital rep-We omitted the slider
widget, since we
want to implement
automatic page
recognition soon.

resentation of a book. The bookRect is the actual container
for the scanned pdf. The left/rightPane rects will be
used to realize the Tabs.

Turning the pages is done as in Apparatchik with the
pageTurnButtons. We decided to omit the slider widget

5.2 The Graphical User Interface 39

Class Book
inherits from Document
Properties:
title strong NSString*
widthWhenClosed strong NSNumber*
widthWhenOpen strong NSNumber*
height strong NSNumber*
pageCount strong NSNumber*
frontMatter strong NSNumber*

Table 5.9: Overview for the Book class

Figure 5.7: The Book Widget in Folio

used in the earlier version, since the automatic page recog-
nition is one of the first implemented features after this the-
sis is finished.

The left and right ClipButtons are used similar to the one
in the Browser. A touch on this button will open a new win-
dow, where the user selects the clipped area, and then cre-

40 5 Folio

Class BookView
inherits from DocumentView
Properties:
bookRect strong SGOImage*
titleRect strong SGOText*
leftPane strong SGORect*
rightPane strong SGORect*
closeButton strong RoundedRectButton*
leftClipButton strong RoundedRectButton*
rightClipButton strong RoundedRectButton*
leftPageTurnButton strong RoundedRectButton*
rightPageTurnButton strong RoundedRectButton*
Class methods
(id)initWithFrame:(NSRect) frame
onGUIObject:(SLAPGUIObject*)parentObject)

Table 5.10: Overview for the BookView class

ates a new Clip.

The initWithFrame: onGUIObject: method over-
rides the inherited method to set up the widget when it is
created.

In table 5.10—“Overview for the BookView class” you can
see collection of the class properties and methods.

BookController

The BookController class as listed in table
5.11—“Overview for the BookController class”
is responsible for the interaction with the Book
widget. There are weak references to the dele-
gate LivingObjectsController and since the
BookController is again a SLAPCommandReceiver
also a weak reference to the system wide uiToolKit.

The closeBook method is called when the closeButton
of the corresponding view is pressed, and simply tells the
LivingObjectController to delete this instance of a
Book.

5.2 The Graphical User Interface 41

Class BookController
inherits from DocumentController
Properties:
myLivingObjectsController weak LivingObjectsController*
uiToolKit weak SLAPUITK*
Class methods
(id)initWithBook:(Book*) book
onUITK:(SLAPUITK*) uiToolKit
(void) closeBook

Table 5.11: Overview for the BookController class

Tabs

The tabs will be used to store contents next to a page of Tabs are used to
attach digital copies
to the Book.

a book. By dragging contents into them the user will be
able to store contents in this tab. The contents that can be
stored here are the clips taken out of other books, the in-
ternet browser or in a later version annotations and camera
scans. The contents in a tab is saved automatically so the
user does not need to care about loosing his work anymore.
In figure 5.8 this functionality can be seen. The tabs can be
opened and closed by pressing them, or by dragging them
in and out of the book.

If a tab holds more items than can be displayed at once, the
user is able to move the contents of a tab up and down. This
is done by dragging the contents to the top or the bottom of
the tab.

An item within such a tab can be enlarged and moved Until now the Tab
functionality is not
implemented in Folio.

independently by pressing on it. This creates a new Clip
with the contents of the item. This Clip gets added to
the LivingObjectsController and gets stored and
brought back as every other widget.

This functionality is not yet implemented in Folio but finish-
ing the Book widget and adding these functionality should
be done right after this thesis.

42 5 Folio

Figure 5.8: Part of a Apparatchik book with opened Tabs on
the left side.

5.2.5 Clip, ClipController and ClipView

The Clip widget is used to display single paged contents.This widget is used
to display single
page contents.

That could be a copy of a manuscript, or a screenshot of a
Browser. This widget will be used to spread out the mate-
rials on the table. If a user tries to analyze a certain text,
and wants to include the different versions of this text. It is
useful to spread out these versions, and move them around
to get a overview and order them correctly.

Deininghaus [2010] found that this is frequently done in a
normal working situation. Therefore we want our users to
be able to do this with Folio as well. We even extend this
possibility with a zooming function.

Our Clips can be moved on the table with standard multi-Clips are freely
movable and
resizable on the
screen.

touch gestures. Pinching on a Clip will enlarge it, so that
our users can investigate it in a more detailed version. Ro-

5.2 The Graphical User Interface 43

tating the fingers will rotate the Clip, so it is possible to
work with more than one person or arrange the items in
a circle around the user.

Clip

Class Clip
inherits from Document
Properties:
title strong NSString*

Table 5.12: Overview for the Clip class

In table 5.12—“Overview for the Clip class” you see the
class overview for the model part of the Clip widget. The
title property is used to store the the contents of the Clip.
These list will get extended when the actual contents needs
to be saved as well.

ClipView

Class ClipView
inherits from DocumentView
Properties:
closeButton strong RoundedRectButton*
contentImage strong SGOImage*
titleBar strong SGOText*

Table 5.13: Overview for the ClipView class

The ClipView 5.13—“Overview for the ClipView class”
displayed the contents of the Clip model. The
contentImage can hold pdf or image files and similar to
the Book and Browser a button is used to remove the widget
from the table.

44 5 Folio

Class ClipController
inherits from DocumentController
Properties:
myLivingObjectsController weak LivingObjectsController*
uiToolKit weak SLAPUITK*
Class methods
(id)initWithClip:(Clip*) clip
onUITK:(SLAPUITK*) uiToolKit
(void) closeClip

Table 5.14: Overview for the ClipController class

ClipController

In table 5.14—“Overview for the ClipController
class” a summary of the ClipController class can
be seen. As in the Browser- and BookController
the ClipController has a weak reference to the
LivingobjectsController and is a delegate for events
from the uiToolKit.

5.3 Workspace Organisation

The workspace of Apparatchik got more and more confused.The introduced
workspace structure
should be maintained
as good as possible.

Thus it was difficult for new programmers to understand
the project correctly.

To prevent this in Folio the workspace is clearly structured.
For each part of the model view controller paradigm there
is a folder, and classes that do not fit in there should get
grouped as well.

For classes of the widgets there are naming conventionsAlso naming
conventions make
the belongings to
MVC more visible.

that let each model class be named as the widget itself
(e.g. Book for the Book widget.) Each view class should
be named as the widget with a following ”View”. And the
controller with following ”Controller”.

Additional resources, like the plist file used to store the
table state are placed in the Resources folder.

5.3 Workspace Organisation 45

In the uppermost folder there are only the The
FolioAppDelegate

should not be
misused as servant
for every interaction.

FolioAppDelegate and the FolioViewDelegate.
Which are only used to delegate actions that concern
the whole application. In Apparatchik this was weaken
so that the AppDelegate had methods for starting the
App, managing touch input, managing keyboard input,
rendering the screen, managing the data function, and a lot
more. In Folio this should be stronger segregated from each
other.

47

Chapter 6

Progress Evaluation

We implemented the first milestones of Folio. In figure A.2 The first milestones
are already under
testing.

the already reached targets are marked in dark blue. The
first version can be used at the multitouch table. In this
chapter we will describe the milestones and how far each
of them is reached.

6.1 Data Structure Milestone

This milestone is not yet completed. We implemented the Saving the system
state is working, the
remaining steps in
progress.

current State savings. Each widget even the not yet imple-
mented Annotation can be saved and brought back as is was
before.

This includes the position on the table, the rotation and
zoom scale. For the Book this also includes the current se-
lected page and the whole contents; for the Browser we save
the url and in the future the whole browsing history as well.
Clips are just brought back as they were before.

To implement the data manager for contents in Books and
Clips took more time than we suggested. Our first try to im-
plement this on a plist structure as well went not good,
so we decided to change this and implement a Core Data
managed system instead. This is not finished right know,

48 6 Progress Evaluation

but should be one of the first steps for our succeeding col-
leagues.

Also saving the edits users can make to books is not yet im-
plemented. We skipped the realization of this feature until
the contents management works correct.

6.2 Browser Milestone

The Browser widget is quite complete. We are able to createAfter merging the
newest version of the
SLAP framework the
Browser should be
complete.

and move several browsers, and each of them exists inde-
pendently from the others.

Also it is possible to catch keyboard inputs and change the
url with this. We did not implemented any short cuts or
expert functionality yet, but if these are needed should be
discussed with our users again.

The only thing that still needs to be done is some testing on
this widget, but we are confident that the Browser widget
does not need a lot of effort any more.

6.3 Clip Milestone

Similar to the Browser, the Clip widget is nearly finished.Clips are running
and able to display
contents.

The whole interaction works fine and the widget can dis-
play every contents we want to.

The Clip will be complete as soon as the contents managing
system is finished. In the latest version of Folio our Clip
widget does not display anything, since we want to add
the correct contents with the next step but our tests showed
that it is possible to display our material on a Clip.

6.4 Book Milestone 49

6.4 Book Milestone

The Book Milestone is the milestone that is under progress The Book widget
marks the current
implementation step.
Right now this widget
gets developed
further.

right now. We already finished the widget layout. The Book
can be placed, deleted and moved as desired. Also the con-
tents display is complete.

What needs to be done next is page turning interaction and
the connection to the real world books. We recommend to
finish these steps right after the contents manager. Than the
Book widget will be fully usable. Also the interaction with
other widgets is not yet running, therefore the realization
of the third part of the data structure milestone is required.

6.5 Further Milestones

After finishing the milestones we recommend to follow Annotation, user
management and
automatic page
recognition will be
done in the future.

the other created milestones. These consist of additional
needed, but less fundamental features.

For example a automatic page recognition, or the Annota-
tion widget could be the next steps there. The project plan
A.2 In chapter 4—“Planning Folio” gives a overview how
the next steps should look like.

And after that the interview lists in chapter 4—“Planning
Folio” give additional feedback what should be the next
steps.

51

Chapter 7

Summary and future
work

In this thesis we motivated and planned the reimplemen-
tation of a software for literary criticism. We implemented
the basic functionality and gave a project plan, succeeding
colleagues can refer to.

7.1 Summary and contributions

The evaluation of the running system, showed that improv-
ing the old system is not a reasonable step. And our expe-
riences during the development process of Folio strength-
ened this assertion. The new software, Folio, although not
as sophisticated as Apparatchik now, is already a lot more
responsive. Even with multiple objects on the screen we do
not get similar performance issues.

Also we created a clean and structured workspace which
can be used to build Folio’s next implementation steps.
Chapter 5—“Folio” can be used to understand the code, and
the clear usage of design patterns as the Model View Con-
troller pattern facilitate the adjustment of new colleagues.

52 7 Summary and future work

7.2 Future work

For future work we suggest to abide by our project plan.
Following this it is possible to create a working environ-
ment, literary scholars could actually use for their research.

The multitouch table right now is attached to a computer
and needs some effort to get running. This makes it dif-
ficult for our users to simply turn it on and start working
with the table. It would be nicer to have a single button that
can be pressed, and all the initialization process is done for
the user. This contains initialization of the cameras detect-
ing the touches, and running the correct application. After
this initialization the user should not be forced to use the
computer next to the table at all.

Until now our system is able to communicate over the inter-
net. There is no application to existing databases since the
internet browser. Since these databases are heavily used by
our users it could be desirable to create applications within
Folio that provide easy access of these databases. Textgrid1

is an example for such a online database, where profession-
als in the humanities can access material and tools for their
research.

Since some of our interviewees mentioned they would like
to be able to create the whole edition at our table. It is worth
thinking of a possibility to add a vertical screen to the mul-
titouch table, where a word processor is running on. The
user should be able to use the horizontal surface as sug-
gested in this thesis and the vertical as a usual computer
screen in parallel. In [2009] Weiss et al. presented a mul-
titouch table that combines horizontal and vertical screens
with each other. This could be a possible way of integrating
research for a edition and the actual writing of the book.

From the human computer interaction perspective this
project offers interesting research fields as well. There is
ongoing research at the Media Computing Group which
tries to find out, how workspaces like our multitouch ta-
bles could be enhanced with better search or ordering func-

1http://www.textgrid.de/

http://www.textgrid.de/

7.2 Future work 53

tionality. Also the research question if the habits of literary
scholars change using this system is unanswered yet. We
hope that Folio once it is finished can offer the possibility to
do user studies on this kind of research projects.

55

Appendix A

ADDITIONAL
DOCUMENTS

56 A ADDITIONAL DOCUMENTS

Fi
gu

re
A

.1
:A

di
ag

ra
m

di
sp

la
yi

ng
th

e
st

ru
ct

ur
e

of
Fo

lio
,c

re
at

ed
in

on
e

of
ou

r
te

am
se

ss
io

ns
.

57

4d
1)

Sa
ve

 C
ur

re
nt

 S
ta

te

4d
2)

Sa
ve

 B
oo

k
Co

nt
en

t

1w
3)

Sa
ve

 C
lip

 C
on

te
nt

4)
D

at
as

tr
uc

tu
re

 c
om

pl
et

e

1d
5)

Bu
tt

on

4d
6)

Ke
yb

oa
rd

 In
pu

t

4d
7)

Br
ow

se
r

W
id

ge
t

2w
8)

Br
ow

se
r

Re
nd

er
er

9)
Br

ow
se

r
co

m
pl

et
e

1w
10

)
Cl

ip
 R

en
de

re
r

3d
11

)
Cl

ip
 W

id
ge

t

12
)

Cl
ip

s
co

m
pl

et
e

1w
13

)
Bo

ok
 W

id
ge

t

2w
14

)
Ta

bs
 fo

r
Bo

ok
s

1w
15

)
M

ar
ke

r
D

et
ec

tio
n

16
)

Bo
ok

s
co

m
pl

et
e

3w
17

)
Pa

ge
 R

ec
og

ni
tio

n

3d
18

)
Ex

te
nd

 B
oo

ks
 w

ith
 P

ag
e

Re
co

gn
iti

on

19
)

Pa
ge

 R
ec

og
ni

tio
n

co
m

pl
et

e

1w
20

)
Ke

yb
oa

rd
 In

pu
t

3d
21

)
An

no
ta

tio
n

W
id

ge
t

2w
22

)
Fo

cu
s

M
an

ag
em

en
t

23
)

An
no

ta
tio

ne
n

co
m

pl
et

e

Ti
tl

e
Eff

or
t

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

M
or

itz Ch
ris

tia
n

M
or

itz

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

Ch
ris

tia
n

D
ez

 2
01

1
Ja

n
20

12
Fe

b
20

12
M

är
 2

01
2

A
pr

 2
01

2
M

ai
 2

01
2

Ju
n

20
12

Fi
gu

re
A

.2
:

A
Ti

m
e

Sc
he

du
le

fo
r

th
e

Im
pl

em
en

ta
ti

on
of

Fo
lio

.
N

ot
co

nt
ai

ni
ng

ad
di

ti
on

al
fe

at
ur

es
w

hi
ch

ar
e

no
tn

ee
de

d
fo

r
ba

si
c

re
se

ar
ch

w
it

h
Fo

lio
.

58 A ADDITIONAL DOCUMENTS

Fi
gu

re
A

.3
:A

cl
as

s
di

ag
ra

m
of

Fo
lio

.C
la

ss
es

be
lo

ng
in

g
to

th
e

M
V

C
pa

ra
di

gm
ar

e
co

nn
ec

te
d

in
bo

xe
s.

59

Bibliography

Stephan Deininghaus. An interactive surface for literary
criticism. Master’s thesis, RWTH Aachen University,
April 2010.

Donald A. Yacktman Erik M. Buck. Cocoa Design Patterns
fuer Mac und iPhone. mitp, 2012.

W. Hurst and P. Jarvers. Interactive, dynamic video brows-
ing with the zoomslider interface. In Multimedia and Expo,
2005. ICME 2005. IEEE International Conference on, 2005.

Ernst Meister. Gedichte: Textkritische und kommentierte Aus-
gabe. Axel gellhaus, Stephanie Jordans, Andreas Lohr,
Göttingen: Wallstein, 2011.

Bodo Plachta. Editionswissenschaft: Eine Einführung in Meth-
ode und Praxis der Edition neuerer Texte. Reclam, 1997.

Malte Weiss, Roger Jennings, Julie Wagner, James D. Hol-
lan, Ramsin Khoshabeh, and Jan Borchers. Slap: Silicone
illuminated active peripherals. In Extended Abstracts of
Tabletop ’08, pages 37–38, 2008.

Malte Weiss, Simon Voelker, and Jan Borchers. Benddesk:
Seamless integration of horizontal and vertical multi-
touch surfaces in desk environments. In Extended Ab-
stracts of Tabletop ’09. ACM, 2009.

Typeset April 24, 2012

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	The Multitouch Table
	Deininghaus's Diploma Thesis
	SLAP

	Motivation
	The Task
	Apparatchik
	Drawbacks
	Where do they come from

	Chose Another Framework
	SLAP

	Planning Folio
	Initial Interviews
	Gather Ideas
	Sort Ideas

	Create a Reasonable Project Plan
	Progress at the Actual Implementation

	Folio
	The Model View Controller Paradigm
	Data Structure
	System State
	Displayed Contents
	Enhancements on our Books
	The LivingObjectsController

	The Graphical User Interface
	RoundedRectButton
	Document, DocumentController and DocumentView
	Document
	DocumentView
	DocumentController

	Browser, BrowserController and BrowserView
	Browser
	BrowserView
	BrowserController

	Book, BookController and BookView
	Marker Detection
	Old and New Version
	Book
	BookView
	BookController
	Tabs

	Clip, ClipController and ClipView
	Clip
	ClipView
	ClipController

	Workspace Organisation

	Progress Evaluation
	Data Structure Milestone
	Browser Milestone
	Clip Milestone
	Book Milestone
	Further Milestones

	Summary and future work
	Summary and contributions
	Future work

	ADDITIONAL DOCUMENTS
	Bibliography
	Index

