Chair for Computer
Science 10 (Media

Computing and Human-
Computer Interaction)

Chisv:
User-Centered
Design of a
Conference
Volunteer
Management
System

Master’s Thesis

submitted to the

Media Computing Group

Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

[0)%

Florian Busch

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.-Ing. Ulrik Schroeder

Registration date: 05.02.2020
Submission date: 31.08.2020






RWTH

Zentrales Prifu ngsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
| hereby declare in lieu of an oath that | have completed the present paper/Bachelor thesis/Master thesis* entitled

selbststandig und ohne unzuldssige fremde Hilfe (insbes. akademisches Ghostwriting)
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Fur den Fall, dass die Arbeit zusatzlich auf einem Datentrager eingereicht wird, erklare ich,
dass die schriftliche und die elektronische Form vollsténdig Ubereinstimmen. Die Arbeit hat in

gleicher oder ahnlicher Form noch keiner Prifungsbehérde vorgelegen.

independently and without illegitimate assistance from third parties (such as academic ghostwriters). | have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, | declare that the written
and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

Ort, Datum/city, Date Unterschrift/signature
*Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustandigen Behdrde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely
testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.

§ 161 StGB: Fahrlassiger Falscheid; fahrlassige falsche Versicherung an Eides Statt

(1) Wenn eine der in den 88 154 bis 156 bezeichneten Handlungen aus Fahrléssigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Tater die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.

(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
| have read and understood the above official notification:

Ort, Datum/city, bate Unterschrift/signature






Contents

[Abstract xvii
[ Uberblick Xix
|  Acknowledgements| xxi
[_Conventions| xxiii
(1 Introduction| 1
2_Related Workl 3
(2.1 Previous Version of CHISVI. . . . . ... ... 6
2.1.1 SV interfacel . . ... ... ....... 7

|2.1.2 Management Interface| . ... ... .. 11

2.2 SIGCSE Volunteer Registration Portal] . . . . 20
|2.2.1 Area of Application| . ... ... .. .. 20

|2.2.2 Web Technologies| . . . . ... ... .. 22

2.2.3 Messaging| . . ... .. ......... 22




Contents

2.2.4 Scheduled. . ... ... ... .. .... 22
[2.2.5 Getting Enrolled| . . . . ... ... ... 24
2.3 SIGGRAPH Student Volunteer System| . . . . 28
|2.3.1 Registration| . ... ... ... ..... 29

|2.3.2 Applying as Team Leader or Student

[ Volunteend . . . . .. ... ... ... .. 32
|2.3.3 Shift Swapping|. . . . . ... ... ... 33

|2.3.4 Schedule Creation and Accounting| . . 34

|3 Requirements Analysis| 35
[3.1 Target Audience|. . . . . . ... ... ..... 35
[3.2 First Iteration| . . . . . . ... ... ... ... 36
[3.2.1 Interviews| .. ... ... ... .. ... 36

SV Chairs| . . . ... .. ... ... .. 36

[Experienced Student Volunteers|. . . . 37

Vi nt Volunteers| . . . . . .. 37
.................. 38

[3.3 Second lteration| . .. ... .......... 39
[3.3.1 Interviews] . ... .. ... .. ... .. 39
.................. 39

3.4 Requirements| . . . ... ... ... ...... 40

13.4.1 Web Application| . . . .. ... ... .. 42




Contents

13.4.2 Enrollment of Volunteers| . . . . . . .. 48
13.4.3 Accepting Volunteers and Lottery| . . . 50
13.4.4 Task Bidding| . . . .. ... ... .... 51
|3.4.5 Task Assignment and Auction| . . . . . 54
|3.4.6 Notifying Volunteers| . .. ... .. .. 55

4 CHISV 57
A1 Overviewl. . . . . . o v v v v i i it 57
4.2 BackbEndl. .. ... ... .. ... ..., 58
4.2.1 Databasel . ... ... ... .. ..... 61
4.2.2 JobQueuel ... ... ... .. ..... 62

4.2.3 Authentication| . . . . . ... ... ... 63
4.2.4 ModelRelations] . . . ... ....... 64
|[Conterence, Users, and Permissions|. . 65

|Tasks, Bids, and Assignments| . . . . . 71

4.3 FrontEnd .................... 75
[4.3.1 Frameworksl . .. ............ 75
4.3.2 User Interface Structuref . . . ... .. 81

4.4 Selected Features In-Depth| . . ... ... .. 96

4.4.1 Cross-Site Scripting (XSS) and Cross- |
Site-Request-Forgery (CSRF) Mitigation| 96




viii Contents

Kie- Authentication| . . . . . . 100

4.4.2 Job Extension|. . . . .. ... ... ... 105
|Advancedjob Class| . . .. ... .. .. 107

|[Eloquent Job Modell . . . ... ... .. 109
J]obParameters Modell . . . . . ... .. 110
[ExecutableJob Interface| . ... .. .. 110

Handled . . . . .. ............ 110

4.4 V| . 114
4.4.4 A on| . . .. .. e 117
4.4.5 Custom Enrollment Forms| . .. .. .. 123
Structurel . . . .. ... Lo 124

|Individual Forms per Conference| 127

|Scoring with Weights| . . . . . . . . .. 128

446 Calendad ... .............. 130
[Month, Week, and Day View| . . . . . . 130

|Universal Event Export| . . . . . .. .. 134

4.4.7 Notifications and Reports|. . . . . . .. 136

> Evaluation| 145
[5.1 Requirements Coverage| . . .. ... ... .. 145
5.2 Scalability and Performance|. . . . . . . . .. 148

9.2.1 Geographic Latencies| . . . . . ... .. 149




Contents

15.2.2 TestSetup| ... .. ... ... ..... 150

B2Z3 Resulls . ... .............. 154

5.3 User Experience] . .. ... ... ....... 158

|6 Summary and Contributions| 163
[7_Future Workl 167
|7.1 Third-Party APl Access| . . . . .. ... .... 167
/.1.1 Authentication| . . . ... ... ... .. 167

17.1.2 Endpoints|. . . . .. ... ... ..... 170

|7.2 Realtime Calendar Integration| . .. ... .. 171

| Bibliography,| 173

| Index 179






xi

List of Figures

|2.1 Algorithm running the auction for the previ-

|2.2 Overview of all assignments in the manage-

ment view of the previous version of CHISV]| .

2.3 Creating a new account for volunteering at

|2.4 Submitting personal details and contact in-

formation for SI )

13.1 Concept map of all requirements for our im-

plementation of CHISV|. . . . . .. ... ...

4.1 Entity-Relationship model for CHISV’s con-

feren n r relations| . . . .. .. .. ..



List of Figures

4.2 Entity-Relationship model for tasks, bids, |
| and assignments of CHISV|. . . . . ... . .. 72

7 =Y [ 81
4.4 Creating a new user account for CHISV] . . . 82
|4.5 CHISV’s login with image carousel| . . . . . . 83

4.6 Tasks in CHISV: Comparison of the SV and |
[ SV Chair/Day Captain view] . . ... ... .. 85

4.7 Three most used CHISV features as pre- |
n Vs on mobil vices| . ... ... 86

4.8 CHISV’s assignments view: Tracking the |
| SVs'assignments| . . . ... ... ... .... 91

|4.9 Creating an assignment with CHISV| . . . . . 92

4.10CHISV’s FAQ system from the perspective of |
....................... 93

[4.11 Entity-relationship model for CHISV’s job |

4.12CHISV’s job extension and how the compo- |
nents interact with hother. . . ... ... 108

4.13CHISV’s auction and program flow through |
| bothphases| . . . ... ... .......... 120

|4.14 Desktop and mobile view of CHISV’s calendan131

4.15An event’s detail in CHISV’s calendand . . . . 133

|4.16 Composing messages for users in CHISV| . . 137

4.17CHISV’s Notification System: Selecting re- |
| cipients|. . . . . . ... ... ... 138




List of Figures

xiii

[4.18Visual comparison of a message sent

| through CHISV’s notification system| . . . . . 140
A.19Reports within CHISV| . . . ... ... .. .. 141
5.1 Map showing CHISV’s latency by region|. . . 149
|12.2 Box plot for the response time of the "SVs" |

77 T 155
5.3 Boxplot for the response time of the "Tasks" |

77 T 157
|5.4 Evaluation of task bidding with the previous |

[ version of CHISV and it’s successod . . . . . 159
5.5 Evaluation of the visual appeal and respon- |

| siveness of the previous version of CHISV |

[ and it’'ssuccessod . . . . . ... ... ... .. 160
|7.1 Example response of the conference preview |

| endpoint| . . . . ... ... ... 171







List of Tables

|2.1 Comparison of four systems for student vol- |
unteer management in regard to functions |

and their context of use. Two applications |

|

|

|

are build for multi-conference use (Multi
Conf.), all use a permission management.
Only CHISV allows for internal messaging
and calendar export (Cal. export).| . ... .. 4

|2.2 Comparison of four systems for student vol- |
unteer management in regard to hosting and |
framework related aspects. All but one ap- |

|

|

plication are hosted at facilities of universi-
ties. Fach approach has been built with a

|2.3 Roles in the previous version of CHISV|. . . . 6

5.1 Table showing the different latencies CHISV |
| users will encounter while using the appli- |
| cation from different regions. It is important |

[ to notice that these numbers can fluctuate |
| depending on the distance to our infrastruc- |

5.2 Table showing the auction runtime for differ- |
[ ent conference scenarios in m:ss format. | . . 156







xvii

Abstract

At many conferences, various organizational tasks exist. For instance, rooms
need to be set up for sessions, traffic might have to be coordinated, or atten-
dance to be verified. These, and many more other tasks, are usually taken care
of by (student) volunteers (SVs). For that to happen, conferences have so-called
Student Volunteer Chairs (SV Chairs) that assign volunteers to certain tasks or
shifts. As many large conferences can quickly have hundreds of tasks per day,
SV Chairs usually rely on a system that keeps track of assignments of volunteers
and also their completed hours.

One of these applications is called CHISV and has been used for more than 10
years. We present a new version of CHISV that we developed closely together
with its users to not only include the existing features but also to improve in
terms of usability and experience. Before we will take a look at how we con-
structed our application, we will evaluate how other conferences approach the
management of SVs. While others plan the volunteer’s assignment before the
conference, we will see how CHISV’s interactive task bidding approach is more
flexible and also more transparent for the volunteer.

We show in detail how we built CHISV’s back-end structures and why the design
eases maintainability and expandability. For the front-end application, we focus
more on the interaction with the user and the compatibility with modern stan-
dards. In our evaluation, we will see how CHISV is performing from different
geographical regions and with different conference sizes. Lastly, we will under-
stand why CHISV’s publicly and well-documented API is opening up the entire
system for new interaction concepts and form factors, and how we focused on
building third-party integration into its core.



xviii

Abstract




xix

Uberblick

Bei vielen Konferenzen gibts es verschiedene organisatorische Aufgaben. Zum
Beispiel miissen Raume fur Veranstaltungen vorbereitet, der Verkehrsfluss
gesteuert oder die Anwesenheit Uberpruft werden. Diese und viele an-
dere Aufgaben werden iiblicherweise von EhrenamtlerInnen (SVs) erledigt.
Damit dies geschieht, haben Konferenzen sogenannte Student Volunteer Chairs
(SV Chairs), welche die Zuweisung von Ehrenamtlerinnen zu Aufgaben oder
Schichten erstellen. Da viele grof3e Konferenzen oft schnell mehrere hunderte
Aufgaben pro Tag haben konnen, nutzen SV Chairs uiiblicherweise ein System
um die Zuweisungen und abgeschlossenen Aufgaben nachzuverfolgen.

Eine dieser Anwendungen heiSst CHISV und ist seit mehr als 10 Jahren im
Einsatz. Wir prasentieren eine neue Version von CHISV, die wir eng mit
seinen Benutzern entwickelt haben, um nicht nur die vorhandenen Funktio-
nen einzubeziehen, sondern auch die Benutzerfreundlichkeit und Erfahrung zu
verbessern. Bevor wir uns ansehen, wie wir unsere Anwendung entwickelt
haben, schauen wir, wie andere Konferenzen das Management von SVs ange-
hen. Wahrend andere die Aufgaben der EhrenamtlerInnen vor der Konferenz
planen, werden wir sehen, wie CHISV’s Ansatz zum interaktiven Bieten auf Auf-
gaben flexibler und auch fiir die EhrenamtlerInnen transparenter ist.

Wir zeigen detailliert, wie wir die Backend-Strukturen von CHISV erstellt haben
und warum mit diesem Design die Wartbarkeit und Erweiterbarkeit erleichtert
wird. Bei der Frontend-Anwendung konzentrieren wir uns mehr auf die Inter-
aktion mit dem Benutzer und die Kompatibilitat mit modernen Standards. In
unserer abschlieSenden Auswertung werden wir sehen, wie responsiv CHISV
ist, wenn wir die KonferenzgrofSen und die geografischen Regionen, von de-
nen aus zugegriffen wird, variieren. Zuletzt werden wir zeigen, warum die 6f-
fentliche und gut dokumentierte API von CHISV das gesamte System fiir neue
Interaktionskonzepte und Formfaktoren offnet und wie wir uns darauf konzen-
triert haben, die Integration mit Drittanbietern in dem Kern der Anwendung zu
verankern.






xxi

Acknowledgements

At first, I would like to thank Prof. Dr. Borchers and also Prof. Dr.-Ing. Ulrik
Schroeder for examining this thesis.

I also want to thank my supervisor Christian Cherek, who was always available
and provided me with constructive feedback during my work, which helped me
improve this thesis. Also, without him pushing, this text would not exist yet.
Thank you!

Additionally, I would like to thank my family and the Student Volunteer Chairs of
CHI 2019/2020, MobileCHI 2020, and UIST 2020 for their feedback and ideas.
Furthermore, I am very thankful for every single volunteer of the SV commu-
nity who helped me to understand the needs and duties which come along with
volunteering.

Especially, I would like to thank my girlfriend, Jennifer, for your advice at any
time of the day and your strong support whenever I was not sure how to con-
tinue.






xxiii

Conventions

Throughout this thesis we use the following conventions.

Although all the work in this thesis has been done by my-
self, I will use the first-person plural pronoun when refer-
ring to things that have been done.

The terms "student volunteer", "volunteer", "student",
"SV", or "user" will be used synonymously referring to
a person interacting with the system.

We will use the terms "system", "application", and
"CHISV" synonymously when it is obvious to where the
term refers to.

We will often refer to a "user’s tasks" or a "user’s assign-
ments". Both express a user’s association with a task. We
will use these terms synonymously.

When we link to web pages of CHISV, we usually link
to the domain where it will reside later on ("chisv.org").
At the time of this thesis, the actual application is still
running under the subdomain of "new.chisv.org". Thus,
some references might require adaptation.



xXxiv Conventions

Text conventions

Definitions of technical terms or short excursus are set
off in colored boxes.

Excursus:

Excursus are detailed discussions of a particular point
in a book, usually in an appendix, or digressions in a
written text.

Definition:

Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

References to a specific requirement from the require-
ments chapter will be prepended with the pound sign

(e.g. #I} #54).

The whole thesis is written in American English.



Chapter 1

Introduction

Many conferences in the sphere of Human-Computer In-

teraction (HCI) usually consist of multiple events, talks,
sessions, or workshops. Several of these events need
some preparation or assistance. Thus, for a conference,
there are also always organizational tasks accompanying
the conference program. These tasks are usually un-
dertaken by so-called (student) volunteers (SVs). They
not only help with preparing events of the conference’s
schedule but also with supporting various other activi-
ties, like managing car traffic, checking attendance, or
helping out attendees.

Large conferences, for instance, the Conference on Hu-
man Factors in Computing Systems (CHI), tend to have
hundreds of tasks per day and more than one hundred
volunteers on-site. At that scale, it becomes very hard, if
not impossible, for the Student Volunteer Chairs to man-
ually schedule and manage task-volunteer associations.
Thus, they usually rely on a system that keeps track of all
important factors.

Conferences like CHI, UISTE], and many others use a sys-
tem called CHISV. It’s actively used by many conferences
every year to help manage volunteers, their enrollment,
and task assignments. Over the last ten years that the

!Conference for User Interface Software and Technology

Organizational tasks
around the actual

conference events

Large conferences
usually also have
many organizational
tasks

Task and volunteer
management can be
done with CHISV



1 Introduction

Redesign CHISV to
adapt new

requirements

Designing for the
users

Split in two entities

Evaluate new
version of CHISV

Extendability and
third-party
integration

system ran, many requirements changed, new technolo-
gies appeared, and old technologies vanished what made
keeping the application available and performant harder
every day.

We saw that the time had come to adapt CHISV to the
new requirements, new and more modern technologies,
and to overall include its users into every step of the de-
sign and implementation process. We will start in chapter
‘[Related Work!” by getting a broad overview of various
solutions that are used by other conferences in the same
field but also take a look at how conferences of other dis-
ciplines organize volunteers.

Before we were able to start our design process, we col-

lected ideas and requirements from a large pool of users.
During chapter (3] /{Requirements Analysis{’) we will see
how our studies, interviews, and surveys guided us in
creating a great experience and functional tool for the
SV community.

In chapter 4] {ICHISV", we will then dive into CHISV’s de-
sign and implementation and understand how all struc-
tures, extensions, and components interface with each
other to form two separate entities: A RESTful back end
and a modern and responsive front-end application.

Our evaluation in chapter[5|{Evaluation|’ will present the

results from our performance and scalability tests and
conclude with the users’ experience, which we acquired
through surveys. We will also shortly compare impres-
sions of the previous version of CHISV and ours.

Finalle af - fndings in [ “SimmaT

[and Contributions|’, we will give an outlook into the possi-
bilities the community now has thanks to the open design
and implementation (chapter [7] {Future Work]"). We will
show how new interactions can be created by extending
CHISV through its API and how a simple core extension
could bring realtime calendar support.




Chapter 2

Related Work

In this section, we will take a look at other student volun-

teer management systems other conferences use. While
we were collecting insight into other applications, which
provide similar features as CHISV, we noticed that many
conferences do not use any volunteer management sys-
tem at all.

Some of them utilize tools like Google Forms to collect
the required information online. They use a fixed set of
questions that every volunteer has to submit. We found
this technique at IMS| |SC| ICSE| |ACL| ICSA| |AEA| [CFP,
CITT, [POPL] HRI.

Others published PDF or plain text files for their volun-
teers to download, fill, and send back via e-mail (e.g.
CVPR)| [SSWR| [PASC|, [ECAI).

We also saw some conferences using the conference man-
agement system where participants submit their papers
for volunteer registration (e.g AAMFT], [HCII).

These different approaches are mostly taken due to the
expected number of volunteer applications. Another fac-
tor is the additional work and the financial aspects of
building an application for the sole purpose of managing
volunteer applications.

Many different ways
of volunteer

management exist

Google Forms is
often used

Management of
tasks and
assignment might
not always be

required



4 2 Related Work
In the following, we will take a look at volunteer manage-
ment systems that have been custom-built to register and
manage SVs as well as tasks. The Special Interest Group
on Computer Science Education (SIGCSE) and the Spe-
cial Interest Group on Computer Graphics (SIGGRAPH)
are using web applications for their student volunteer
and task management. We also compared our system to
its predecessor, which is hosted at the same facility. To
understand these systems and their abilities in detail, we
got in touch with the people who have built the system or
are currently keeping it operating.

. Multi Permission Schedule Internal Cal.
Name Built for .
Conf. system creation messages export
) Manage Super Admin
Previous volunteers, . .
. 1. Conf. Admin Reactive,
version of  task bidding Yes Moderator progressive No No
CHISV and lookup SV
of schedule
Manage
SIGCSE volunteers No Coordinator  Prior to the No No
and lookup SV conference
schedule
Manage
SIGGRAPH volunteers No Team Lead Prior to the No No
and lookup SV conference
schedule
Manage
volunteers, Admin
CHISV task bidding Yes SV Chair ' Reactive,. Yes Yes
and lookup Day Captain  progressive
or export SV

of schedule

Table 2.1: Comparison of four systems for student volunteer management in
regard to functions and their context of use. Two applications are build for multi-
conference use (Multi Conf.), all use a permission management. Only CHISV
allows for internal messaging and calendar export (Cal. export).

This gave us a solid overview of the features and needs
these systems have been built against.
them with respect to the features we find most impor-

We compared



tant in CHISV but also to the rather technical aspect
of hosting the application. We found that all systems
we looked into are web-based applications hosted on a
publicly available server. However, we also discovered
a clear division into two groups of systems. While the
systems of SIGCSE and SIGGRAPH implement a proce-
dure where the SV is mostly using the application to look
up a schedule that has been generated weeks before the
conference, we see a different approach with the reim-
plementation of CHISV and also it’s predecessor. For
these two the schedule is generated based upon bids sub-
mitted to the system. This allows the SV to express a
level of preference. The schedule is then generated fresh
for every day rather than being static (except for minor
changes), as we see it with SIGCSE and SIGGRAPH (see
column "Schedule creation" in table [2.T]).

fi
Name Hosting CDN Software
stack

Previous Computer science institute No Ruby (Rails)+MySQL
version of CHISV at RWTH Aachen University and Prototype]S
SIGCSE Comp}lter §01ence .D.epartment . No PHP+MySQL

at University of British Columbia and Bootstrap+]S
SIGGRAPH S'tudent Volunteer Sup Committee Yes Node.Js-k'PostgreSQL

via Amazon Web Services and Vue.js
CHISV Computer science 1n.st1tut.e No Laravel+.MySQL

at RWTH Aachen University and Vue.js

Table 2.2: Comparison of four systems for student volunteer management in
regard to hosting and framework related aspects. All but one application are
hosted at facilities of universities. Each approach has been built with a different
framework.

Apart from this major difference, we found all systems
solve the similar issue of scheduling shifts or assignment
of student volunteers such that the platform provides the
schedule afterward accessible via a web browser. All sys-
tems keep track of the hours the volunteer has worked.
This allows the SV Chairs/Coordinators to later refund
the conference fee for each volunteer that did complete
the expected amount of hours.

We will now explore the different characteristics of each
system one at a time.



2 Related Work

Hosting and web
frameworks

Two different web
interfaces for
different use cases

Shared login
credentials for SV
Chair and Day
Captain

2.1 Previous Version of CHISV

The predecessor (see |[SV-Portal) of our reimplementa-
tion is hosted by the Media Computing Group at RWTH
Aachen University (see table @ Its development
started in 2008 by Jonathan Dieh]E] and Christopher Gret-
zk The application is written in Ruby and uses the web
framework Rails. This enables the application to imple-
ment the Model-View—Controller paradigm. The system
interfaces with a MySQL database server and incorpo-
rates the JavaScript framework Prototype to provide in-
teractivity related aspects of the web interface.

SV Interface Management Interface

Super Administrator
SV Role Conference Administrator
Moderator

Table 2.3: Roles in the previous version of CHISV

The web interface for volunteers is separated from the
administrative interface, which can be used to create
conferences and tasks. We will call the interface used by
volunteers "SV Interface" and the interface used by con-
ference administrators "Management Interface". While
the system supports four different roles (see roles table
with different access abilities, we observed that only
the SV and Conference Administrator roles are actively
used. A Super Administrator usually creates a confer-
ence and assigns a newly created Conference Adminis-
trator for that conference.

The login of the Conference Administrator is then passed
to the SV Chair, which enables them to log in to the man-
agement interface. Any volunteer who is accessing and
enrolling for a conference via the SV interface holds the
SV role. We noticed that the job of managing assign-
ments of volunteers is usually done by a so-called Day
Captain. They check the volunteers’ badge and mark

Thttps://hci.rwth-aachen.de/diehl
Zhttps://hci.rwth-aachen.de/gretzki



2.1 Previous Version of CHISV

them as "checked-in". When the volunteer has completed
the task the associated assignment will be marked as
"done". For the task of managing the assignments the
Day Captains usually receive the login of the Conference
Administrator to log in to the management interface.

We will focus on the SV interface of CHISV first. This is
the interface most users will encounter and use. After
that we will take a look at the management interface,
which is used to manage the system, its conferences,
users, and tasks.

2.1.1 SV Interface

All volunteers have to register themselves on the SV in-
terface. Once logged in to this account a volunteer can
enroll in conferences that are open for enrollment. There
is no specific role for the SV interface. However, as the
volunteer’s account is represented by the system in a dif-
ferent datastore as the administrative accounts, we find
it easier to speak of the SV role for any user that can log
into this interface. Logically we have a separation be-
tween all four roles the system provides (see table [2.3),
albeit the accounts that can log into the SV interface have
no definitive role assigned. The SV interface displays and
explains the current state of the conference. This gives
the volunteers a chance to understand in which phase
the conference is in and if it is possible to enroll or bid
on tasks. A conference can be in one of six states:

¢ Planning - The conference is not displayed in the
SV interface but can be edited in the management
interface

¢ Enrollment - Volunteers can enroll in the confer-
ence

* Registration - Volunteers have been accepted and
will now have to register for the conference them-
selves

Accounts for the SV
interface are stored

separately



2 Related Work

Get a short
introduction to

volunteering

Update profile
information

* Bidding - The volunteers can now bid on tasks with
their preference

* Running - The conference is running and bids can
be placed

¢ Over - The conference is over and not visible in the
SV interface

After successful authentication the volunteers can navi-
gate between these different pages (views) of the SV in-
terface:

* News

* Profile

* Enrollment Status
* Bidding

* Assignments

We will now take a look at each of these pages and see
what they are used for.

News

When a volunteer navigates to the News view, informa-
tion from the Conference Administrators will be shown.
This can contain additional information for enrollment or
may also give a short introduction to the conference.

Profile

The Profile view gives the volunteers the ability to
change the essential attributes of their account. This
includes the full name, password, e-mail address, their
home country, university, and their desired T-shirt size
and fit. In addition to these, the SV can also give some



2.1 Previous Version of CHISV

insight into optional fields like spoken languages or city
of residence.

Enrollment Status

To enroll in a conference, the volunteer would navigate

to the Enrollment Status page and submit answers to a
fixed set of questions. In case the volunteer is already
enrolled this view will show the current status of the en-
rollment for the volunteer. An enrollment can be in one
of seven states:

¢ Unenrolled - The volunteer is not enrolled

¢ Enrolled - The volunteer is enrolled and waiting to
be accepted

* Waitlisted - The volunteer has a position on the
waitlist and is waiting to be accepted

¢ Accepted - The volunteer is accepted to the con-
ferences for volunteering

* Registered - The volunteer did successfully regis-
ter as an attendee for the conference

¢ On-site - The volunteer is on-site and awaiting as-
signments

* Dropped - The volunteer is rejected and cannot bid
on tasks

When the conference is in the state "Registration" or
"Bidding" the volunteer will have the possibility to dis-
play the waitlist. This shows all student volunteers who
could not yet be accepted due to the limitation on the
amount of SVs.

Enroll or see the
status of a pending

enrollment



10

2 Related Work

Limited number of
bids for "high" and
"medium"

Bidding on tasks is
restricted by the
SV’s and
conference’s state

State of a bid

See all associated
assignments with
their corresponding
state

Bidding

On the bidding page, the volunteer can express a prefer-

ence for a task by placing a bid with the desired prefer-
ence. The preference can be "high", "medium" or "low"
which are internally represented by the numbers 1, 2,
and 3. How many bids of one type can be placed is lim-
ited. A volunteer is able to submit up to three "high" bids
per day and up to ten per conference. Up to ten bids
with "medium" preference per day are possible. A "low"
preference bid can be placed arbitrarily often.

To be able to bid on tasks, the volunteer and the con-
ference have to be in a specific state. The SV has to be
enrolled with the state of "Registered", while the confer-
ence the task is associated with will have to be in the
state "Bidding" or "Running" (see [2.1.1] {SV Interfacel’).
Tasks will be shown with their start and end time as well
as their name, description, hours, and slots. For task bid-
ding, the SV would first have to pick the desired day. This
will show all tasks of the day sorted by their start time.

A placed bid is in an initial state called "Open". The
auction (covered in[2.1.2] {Auction]’), which is later run by
the SV Chair, will evaluate all bids and assign them a new
state such that the volunteer can see why or why not a
bid was successful. Whenever a bid was successful it will
yield an assignment. When a task has already been filled
with SVs or the desired task is conflicting with any of the
volunteer’s assignments, the bid will not be successful.

Assignments

When the conference is in the state "Running", the as-
signment page will show all assignments of the volunteer
sorted by day. This view will feature the same columns as
the bidding page but will, in addition, also show the state
of each assignment and the SV’s total accounted hours.



2.1 Previous Version of CHISV

11

An assignment can be in one of three states:

* Assigned - The volunteer has not started working
on the assignment

¢ Checked-in - The volunteer is currently working
on the assignment

* Done - The volunteer completed the assignment

2.1.2 Management Interface

Role Management

The management interface is used by the Super Ad-
ministrator, Conference Administrators, and Moderators.
These three roles (see roles table [2.3) are exclusive to
each other and give the users different permissions on
resources. The abilities the Super Administrator has are
total, being able to modify every aspect of the system.
This role is held by the institution that is hosting the ap-
plication. The Super Administrator will create a new con-
ference and a corresponding Conference Administrator
on request.

Conference Administrators can change details about
their conference as well as manage tasks, volunteers,
and their enrollment. This role is usually held by the
SV Chairs. They can also send e-mails to the volun-
teers, manually assign tasks to them and run the lottery

(see [2.1.2] “[Lottery’) as well as the auction (see [2.1.2]
"Auction").

We noticed that the Moderator role was not actively used
during any of our interviews. Furthermore, the Super
Administrators and Conference Administrators were not
even aware of this role, which would give the Day Cap-
tains just enough permission to manage assignments.
Day Captains were always relying on credentials from the
Conference Administrators.

Dedicated portal for
management
purposes with three
roles



12

2 Related Work

Maintenance mode

Changing the
enrollment state of
SVs

Algorithm
automatically
accepts SVs

Conference Details

The Super and Conference Administrators can change
the parameters of the conference. These include the
conference’s name and year as well as a start and end
date, the number of SV slots the conference has to be
filled with and the state it is in. This is also the place
where the SV interface can be temporarily disabled by
switching the conference into maintenance mode. This
prevents SVs from bidding but also takes their ability to
check on their assignments.

Enrollments

The Enrollments page is used by SV Chairs to check or
manually change the state of a volunteer’s enrollment.
This is often used to accept volunteers before running the
lottery. All enrolled volunteers are listed with the corre-
sponding attributes (see[2.1.T] {Profile]’) and their lottery
number when set. This view also allows the authorized
administrators to see the enrollment history, remove the
enrollment altogether or block the user from logging in.
This place can also be used to create new accounts for
volunteers and enroll them in the conference.

Lottery

The lottery view is used to run the lottery on the server.

A user with an administrative role (e.g. SV Chair) can
start the lottery. The lottery’s algorithm assigns a new
lottery position to every user with an enrollment that is
in the state "enrolled". To give the SV Chairs the ability to
automatically accept more SVs who have specific criteria,
the system uses a scoring system that is based on so-
called tickets. Each question of the enrollment form can
yield a positive or negative ticket.



2.1 Previous Version of CHISV

13

These questions are:

¢ Have you lived in the conference city, or are you
very familiar with it?

¢ Have you attended this conference before?
* Have you been an SV at this conference before?

* Do you need to apply for a travel visa in order to
attend this conference?

Moreover, the SV Chair can also configure if the degree
program, the SV is currently on, should yield a ticket.

Each question requires a binary answer. The SV Chair
can decide if a positively answered question should yield
a positive or negative ticket — or none at all. This can
be configured in the lottery configuration. A ticket is a
number that ranges from -3 to 3. The score, the so-called
lottery score, is then calculated by summing up all tick-
ets. All enrollments with a positive number (excluding
zero) will be processed first. How likely it is that an en-
rollment with a positive score is processed early on, also
depends on the lottery score. The higher the score, the
more likely it is that the enrollment is processed earlier
by the algorithm.

Whenever a volunteer’s enrollment gets processed the
algorithm marks it as "Accepted" if there are free slots
available for the conference (see states in “[Enroll{
[ment Status|’). Should there be no more free slots avail-

able, since all have been filled, the enrollment, and thus
the volunteer, is put on the waitlist.

When all volunteers with a positive lottery score have

been processed, volunteers with a negative score (or
equal to zero) will get processed. When there are more
enrollments with a positive score than there are SV slots
available, this means that volunteers with a negative
score cannot get a seat. In that case, all negatively
scored SVs will be put on the waitlist.

Positively evaluated
SVs get processed
first

Negatively
evaluated SVs might
not be considered in
the lottery



14

2 Related Work

Task can be created,
modified, and
transferred to

different systems
and conferences

Algorithm assigns
tasks to volunteers

Task Management

Tasks are jobs that need to be done during the confer-
ence. Tasks can be assigned to student volunteers manu-
ally or by running the auction. Within the system all ex-
isting tasks can be edited, deleted, or exported via CSV.
New tasks are creatable from scratch or based on an-
other task. The system also includes a CSV import to
enable the SV Chairs to import tasks from different ex-
ternal applications (e.g. Microsoft Excel or Apple Pages).
It is also possible to clone all tasks of entire conference
days or even conferences. Tasks are shown on a per con-
ference day basis with their attributes:

* Name

* Description

* Priority: "High", "normal" or "low" (0, 1, or 2)
* Conference day

» Start time

* End time

* Awarded hours: This can differ from the hours re-
sulting from start and end time

* Number of volunteers required

Auction

When all SVs have bid on the tasks of a conference day,
which is usually a day before that day, the conference ad-
ministrators run the auction. The auction tries to create
all assignments such that all tasks are filled with SVs.
The algorithm (see figure [2.1I) takes the task’s priority
and also the volunteer’s preference into account. How
many hours a volunteer has already worked will not in-
fluence the results. We noticed that this design can cause
many assignments and work for some SVs who have al-
ready completed many hours but are nevertheless still



2.1 Previous Version of CHISV

15

Auction

Start

Process priority-preference list

Process bids

G © Process bids by
edner.ate. foreach volunteer with
sorte pI‘lOI.‘lt}(l—) given preference
preference list'® and task priority
foreach®)
Y
Y
Process list of all
volunteers who bid Yes: )
with current Take next List empty?
preference and task volunteer
priority
No

Get and remove a
random bid(@

Bid has
task time
conflict?

Mark bid as

successful

Take next volunteer

Yes:
Try with

another bid
by volunteer

Figure 2.1: Algorithm running the auction to evaluate bids and assign tasks to
volunteers. See page@for an in-depth example of (a), (b), (c), and (d).



16

2 Related Work

Deeply nested data

objects

Groups of bids with
same preference

© 00 g O U o~ W N

N
w N = O

placing bids with preference "high". Each bid, which
could be accepted, will yield an assignment, therefore
binding the task to the SV.

The auction algorithm loops over cascaded dictionaries
to eventually get to an array that contains the volunteer’s
bids. To get a better overview of the data that is passed
from one loop to another, we will now cover a sample data
object in detail. In reality, this object would be by far
larger, containing more volunteers and bids. However,
how many bids are in the actual object depends on how
many and how often SVs have bid. Only bids that have
been placed will end up in the data object.

Our example data object has very verbose names for its
keys. The actual implementation uses a more efficient
approach. We now pretend that the step (a) in figure [2.7]
has produced the following object:

{
task-priority0_bid-preferencel: {
volunteer5: [bidl,bid2,bid3,bid4],
volunteer3: [bid5,bid6]
}
task-priority0_bid-preference2: {
volunteer8: [bid7],
volunteer5: [bid8,bid9]
}
task-priorityl bid-preference3: {
volunteer5: [bidl0@, bidll]
}
}

This object contains all bids with a specific prefer-
ence X for a task with a specific priority Y under one
key, which represents the priority and preference: "task-
priorityY_bid-preferenceX" (see line 2,6 or 10). The keys
are sorted such that tasks and bids with higher priority
or preference are iterated over first. Task priorities can
be 0 ("high"), 1 ("normal"), or 2 ("low") (see attribute list
at [2.1.2] {Task Management’). The bid preference can
take the values 1 ("high"), 2 ("medium"), or 3 ("low") (see




B W N e

2.1 Previous Version of CHISV

17

2.1.7] {Bidding]").

In the next step we will be looping through all these keys.
In every iteration we will be working with an object (b)
of this structure:

task-priorityO_bid-preferencel: {
volunteer5: [bidl,bid2,bid3,bid4],
volunteer3: [bid5,bid6]

In this particular example, any key of this object repre-
sents the bids of a volunteer with preference 1 ("high")
which have been placed on some task with priority 0
("high"). We will now loop over all the keys, each of which
representing a volunteer. The corresponding value (c) of
each key is a list of bids. Each bid has the same pref-
erence but has been placed on different tasks. All these
tasks however have the same priority of 0.

volunteer5: [bidl,bid2,bid3,bid4],

Should the key (in this case "volunteer5"), which is cur-
rently processed by the loop, not have any bids in the list
we simply skip to the next key (in this case "volunteer3").
In our example "volunteer5" has bids in the list.

In the next step, we randomly take and remove one bid
(d) from the list.

bid3

We then check if this bid is in a task time conflict with an-
other of the volunteer’s already assigned tasks. We don’t
want to assign tasks to volunteers that take place at the
same time. If there should be a time conflict we will try
to get another random bid from the volunteer’s bid list. If
the list is empty we will continue with the next volunteer
in the parent list ("volunteer3"). However, when we en-
counter no time conflict we assign the task, to which the
bid points to, to the volunteer. After a successful assign-
ment, we continue with the next volunteer in the parent
list (in this case "volunteer3").

Check task time
conflict



18

2 Related Work

Iterates over the
data object multiple
times

Can leave tasks

unassigned

Tracking
assignments and
their completion

Changing the status

of an assignment

Manually adding SVs

The entire auction algorithm is bound in a while-loop,
which only ends when no assignments could be made
anymore. This is important since the algorithm is de-
signed in such a way that it will only create one assign-
ment for a randomly chosen bid (d) in every loop for each
volunteer (c). This design, however, tries to fill tasks with
a high priority with high preference bids first. The al-
gorithm does not take the hours into account that have
already been awarded to the SV. We also noticed that
tasks for which no volunteer had bid will not be assigned
to any volunteer. These would have to be filled manually
after the auction has been run.

Assignments

During the conference, the SV Chairs and Day Captains
track the status of the volunteers’ assignments. Figure
shows the assignment view for all the assignments of
a selected day and their assigned volunteers. The inter-
face allows for adding new volunteers to a task and for
removing SVs from an assignment. How many SVs can be
manually assigned to a task is not bound to the slots the
task has. The system also allows the SV Chair and Day
Captain to modify the awarded hours a volunteer gets for
completing a task.

The status of an assignment can be cycled between the
three states of "Assigned"”, "Checked-in" and "Done" (see
[2.1.7] fAssignments|’). It is also possible to add a com-
ment to an assignment. This is often used to give a short
explanation when the awarded hours have to be adjusted.
If the SV went over the suggested hours, a warning will
be shown next to the name of the volunteer.

To add a new volunteer to a task manually, one can click
on the task’s name to open a popup (see figure [2.2). This
will show all SVs and mark those who are unavailable
due to a task time conflict, red. The list will present the
first and last name, the bid preference and also the com-
pleted hours. By clicking the name the volunteer will be
assigned to the selected task.



2.1 Previous Version of CHISV 19

Start End Hours Task Slots Assignment
: Smith, Juliano (20:45) 5:30 hours done X
07:00 12:30 5:30 Day Capt: 2/2
SR Johnson, Aehong(19:45) 5:30 hours done X
Williams, Sai shruthi(21:45) 2:30 hours done X
Johnson, Gabriella(20:30) 2:30 hours done X
. Brown, Kimia(19:15) 2:30 hours done X
07:30 10:00 2:30 Quick R 6/6
UicK Hespanse Jones, Shunan(20:15) 2:30 hours done X
Miller, Abigail(19:00) 2:30 hours done  x
Li, Pireh(20:30) 2:30 hours done x
07:30 11:30 | 4:00  Accessibility Guide 3/2 u Q
07:30 11:30 4:00 Quick Response = 2/2 a‘_’ld"g":z' o:';;_(:g:ﬁ) :$ :"”rs :L"e X | Lea Meier (22:00) 2 low
izon, Jacok(20:00) el e Lu Dou (18:15) conflict
08:00 09:00 1:00 Check rooms 27 | MEAIDEL bhan S0 00 100 hours done X | Ken Walker (21:15) conflict
Anderson, Yuki(20:00) 1:00 hours done X Abigail Perez (19:00) conflict
Zhao, Alannah(19:30) 1:15 hours done x Jacob Hall (20:00) no bid
Taylor, Marion(20:00) 1:16 hours done  x Tanya Young (22:30) no bid
08:00 09:15| 1:15 | Traffic Patrol 5/5 Thomas, Mirzel(19:30) 1:15 hours done x Andrew Ford (20:45) no bid
Meier, Matthias(19:00) 1:15 hours x Ciabhan Three (21:35) no bid
Moore, Katja(20:15) 1:15 hours done  x Gabriella Anderson (20:30) no bid
Ting, April(19:45) 2:30 hours done x %&thfaé\s_rﬂ{ﬂz)ﬂﬁ} no :I::
= 5 = Lina Davis (20:00, no bi
08:00 10:30 2:30 Floor Monitor 3 | IR (15:00) i 2
Dou, Srinjita(14:45) 2:30 hours done i
unassigned
08:00 10:30 2:30 Speaker Prep Roor 1/1  Lee, Nikhita(20:15) 2:30 hours done %
Harris, Arpita(22:00) 4:00 hours done X
08:00 12:00 4:00 RHegistration 3/3 Obon, Ihudiya(15:00) 4:00 hours done X
Thau, Janis(21:00) 4:00 hours done X

Figure 2.2: In the management view of the application SV Chairs and Day
Captains can alter the status of assignments that have been created manually
or by the auction. Authorized users can also change the awarded hours and add
a comment to assignments. This view is also used to assign new volunteers to

tasks.

Messaging

To keep the students up to date with changes in the sys- Keep volunteers
tem, the application will generate e-mails for changes in informed about
the enrollment status, the volunteer’s profile or any as- changes

sociated assignment. These messages are generated au-
tomatically but only sent when an administrator (e.g SV
Chair) decides to send them to the SVs. Each e-mail con-
tains information about the type of change, the changed
data and also some additional information, which can be
customized in the conference details.



20

2 Related Work

Exclusively used for
managing
volunteers at SIGCSE

The volunteers’
schedules are
created beforehand
- no task bidding

2.2 SIGCSE Volunteer Registration
Portal

Another system, which was specifically build to help with
organizing SV tasks, is the application that the Special In-
terest Group on Computer Science Education (SIGCSE)
uses. We had the chance to get some insight into the ap-
plication stack and learn about the purpose it was built
for. This insight was provided to us by the Student Vol-
unteer Co-Coordinator and the person who oversaw the
initial development.

The SIGCSE Volunteer Registration Portal is a web appli-
cation hosted at the University of British Columbia (BCU)
(see table[2.1)). It is reset every year to a clean state dur-
ing which all tasks and volunteers get wiped. Since this
system is exclusively used by SIGCSE, there is a clear
schedule to when the system is in use and when not. This
means that at any point in time there will only be one con-
ference. From a technical perspective, there have been
approaches to use the application with multiple confer-
ences simultaneously. Due to the introduced overhead
and the resulting need for more maintenance, these ap-
proaches were not evaluated further. Giving multiple
conferences access to the system simultaneously would
also have required adapting the user interface.

2.2.1 Area of Application

We learned that the SIGCSE Volunteer Registration Por-
tal was built for a different purpose. While the previous
version of CHISV we looked at before focuses on task
bidding with preferences on-site during the conference,
the SIGCSE application was built to generate a schedule
before it. The volunteers can submit their availability be-
forehand. There is no option to give any preference for
tasks. Furthermore, a volunteer does not even know how
many and what kind of tasks exist.



2.2 SIGCSE Volunteer Registration Portal

21

As soon as the schedule has been generated (see [2.2.4]
“Schedulert’) and published within the application, the
volunteers can log in and look at the final schedule. This
is when they get to know when their shift starts and ends.
At this point, it is still not apparent what kind of tasks
they will be working on. The volunteers have no option
to export this schedule to an external application. Thus,
they have to rely on the web interface. When it is time
to start the shift, the volunteers report to the so-called
SV Coordinators. These are also the ones who award the
hours of the shift after the volunteer has reported it to be
complete. This is verified by having the volunteers sign
a sheet of paper that they got from the SV Coordinators
when starting their shift. The paper gives a short intro-
duction to the task or session and also allows for later
attendance tracking of the event.

What this application does also include, and is missing
in the CHISV we looked at, is the ability to record the
attendance count of each session or task. The volunteers
will usually get a short introduction to the task/shift and
more details to it on a printed sheet of paper. When they
return, they will not only have signed the sheet to confirm
their attendance but have also added how many people
did attend this task or session. This data is very valuable
for the Program Chairs later on.

When a volunteer knows that it will not be possible to
do the shift it is possible to swap the shift and the tasks
with it. It is important to notice that not the SV Coor-
dinators nor the application will do any match-making.
The only way a volunteer can swap shifts is by finding
another volunteer to swap shifts with. The actual swap
is done by the SV Coordinators when two volunteers can
present a match. They will then update the schedule in
the application such that the two volunteers can see it.

Schedule generation
and access

Attendance tracking
is done by the SV

Manual task
swapping is possible
if the SV finds
another one to swap
with



22

2 Related Work

Software stack and

user experience

Sending e-mails to
volunteers and
subsets

Tasks are rarely
overlapping

2.2.2 Web Technologies

When we look at the software stack, we see the back-
end application consisting of PHP connected to a MySQL
database. The front end is driven by CSS and JavaScript
from the Bootstrap framework. This rather conservative
approach provides a clear and well-known structure to
most web developers. At the same time, however, using
this software stack cannot make use of new web tech-
nologies, which could improve the user experience fur-
ther. For every page change in the web interface, the
server at BCU needs to send the entire view with all the
data to the user. These responses are usually larger, as
they include not only the data. We discovered in our sur-
vey in 2019 (see [3.2.2] ‘{Surveyl’) that many volunteers
are using the system that provides their schedule on a
wirelessly connected device. Due to the nature of wire-
less connections, they are sometimes confronted with
bad coverage or an overloaded access point.

2.2.3 Messaging

The system can send e-mails to all volunteers and also to
certain subsets. Messages can be based upon templates
(e.g. details about and when the SV dinner will be) but
modified to fit the current target. There is no internal
system to hold a copy of e-mails such that the volunteer
can, later on, refer back to them in case of an unreceived
e-mail.

2.2.4 Scheduler

To ensure that all volunteers can work the expected
amount of hours but not many more, the scheduler tries
to find an optimal distribution between shifts. A shift is a
time slot with start and end time. There can be multiple
tasks in one shift. Most of the time tasks are aligned to
the conference schedule with breaks in between. Only a
few are overlapping between shifts. This makes it easier



2.2 SIGCSE Volunteer Registration Portal

23

for the scheduler to avoid collisions and fragmentation
within the volunteers’ schedule.

To create all volunteers’ schedules, the scheduler can
make use of these attributes of a task:

» Start date and time

¢ End date and time

* Location

* Description

¢ Minimal number of required SVs
* Desired number of SVs

¢ Maximum number of allowed SVs

Apart from these attributes, the scheduler also includes
a range of hours volunteers should at least and at most
work at the conference. A significant feature, however, is
the option to specify a range of volunteers per task. This
gives the scheduler the flexibility to meet the constraints
of getting SVs to work the hours they need while making
sure that all tasks get the optimal number of assigned
SVs.

Some tasks may require the volunteer to have some spe-

cial ability. This could, for instance, be a task that can
only be done by some very experienced SVs. It might
also happen that the volunteer has to meet some other
criteria. Another example is given by the so-called kids
camp. An SV would have to fit some extended criteria to
be able to be selected to work on this task.

Since the scheduler is not able to evaluate these ex-
tended requirements, the tasks that require special at-
tention are usually filled first. This is done manually and
will block the task from being used in scheduling.

Task attributes

Range for the
amount of SVs helps
scheduling

Some tasks require
special abilities



24

2 Related Work

Schedule
overlapping tasks
first

Three steps to get
registered and
submit availability

Making step one
required and all
others optional

When the manual assignment is complete, the sched-
uler is run, which will try to fill as many tasks while en-
suring an even amount of hours among all volunteers.
Tasks that are considered to be difficult to fill (due to
overlapping) are processed first. This makes it easier to
get these tasks filled since at the start of the algorithm
many SVs are available. Before the scheduling is done,
the volunteers have also the ability to specify shift time
slots in the web portal where they will not be available.
This is also the place where they can specify their arrival
time (see [2.2.5| {Step Threel’). This will be considered by
the scheduler as well.

After the scheduler has been run, the SV Coordinators
evaluate the output and make some last adjustments.
Once the schedule is found to be sound it is published
and students get notified via e-mail.

2.2.5 Getting Enrolled
Step One

The portal greets a new user with a simple three-step
process to get registered (we would call this "enrolling"
after successful registration in CHISV). In the first step
(see figure [2.3) the volunteer needs to give some general
information, like the name and e-mail address. Since this
step will create the account that the SV can later use to
login to the system, the volunteer has to set a password
at this stage as well.

This is equivalent to registering in CHISV. Yet, the CHISV
we looked at earlier would also ask for more personal de-
tails in this step, which SIGCSE is collecting in steps two
and three, as we will see later. As this first step creates
the account it cannot be skipped. However, steps two
and three can be skipped. The information the volunteer
would have provided can later be appended after logging
in.



2.2 SIGCSE Volunteer Registration Portal 25

SIGCSE 2020 Home Registration FAQ Privacy Statement

Step #2 Step #3

Registration Form

To begin the process you need to create an account. All information is required. While we try to maintain security on the
site, we recommend against using a password that would allow others to access your personal information. All information
is only used for student volunteer conference activities. See privacy statement.

After submitting you will be redirected to the login page. You will use the information you provided to login.

Warning! This site is not for registration to attend the SIGCSE conference. This site allows you to volunteer to help with the conference.

First Name Jacob
Last Name Smith
Email jacob.smith@example.com

Password | secesesesncsenns

Confirm Password =~ sseeeceeenceeeee

Register

Figure 2.3: Step one will have the potential volunteer create a new account
for the SIGCSE Volunteer Portal by requesting the SV’s first and last name, an
e-mail address and a password.

Step Two

Step two (see figure [2.4), which is skippable, is all about Personal details can
more personal details and contact information of the SV. also be submitted
The system asks volunteers about their earlier experi- later on

ence with volunteering at SIGCSE, their T-shirt size and
a phone number. Privacy-wise we see SIGCSE doing a
pretty good job by leaving any but the essential pieces of
information that are required for volunteering optional.
To be able to verify the validity of the request, the appli-
cation will require potential student volunteers to submit
a contact of the advisor. Besides, volunteers will also
have to specify their school and current degree program.



26

2 Related Work

* are required

First Name*
Preferred Name

Last Name*

Phone
T-Shirt Size*

Prior volunteer experience at
SIGCSE*

School*
Standing*
Advisor*
Advisor Email*

Volunteer with Kid's Camp*

The following information is needed. Your cell phone number will only be used to contact you during the duration of the
conference for urgent matters. We are asking for your t-shirt size because every volunteer receives a free t-shirt, Your
school and advisor information is needed for verification purposes; we do not routinely contact your advisor. If you don't
have an advisor, then an appropriate school administrator is acceptable.

Contact Information

Jacob

Smith

L 4 Some volunteers like to wear shirt over street clothes. Maybe order a size larger.

«

Once

RWTH Aachen University

«

Undergrad
Milton Waddams
milton@cs.rwth-aachen.de

Yes ® No
Explore computing with elementary and middle school aged kids through
applications like Scratch and Kodu.

Figure 2.4: Step two will have the volunteer submit more personal details and
contact information of the volunteer and the associated advisor.

Provide earliest

availability

Step Three

Step three (see figure [2.5), which is the last, is also op-
tional. The required data can also be submitted later on
after logging in. In this step, the volunteers will submit
the first possible time slot they are available to take a
shift. The system will consider this input and only sched-
ule possible shifts after this first time slot. The scheduler
will also not assign time slots that the volunteer declared
to be unavailable for, which can be set after logging in.



2.2 SIGCSE Volunteer Registration Portal 27

Availability

This time indicate the first available time you can volunteer. It is not arrival time of your flight. You should leave sufficient time
for local travel as needed. If you are a local person or available the entire time, please check the first available time. You
must be available for the full time slot (at begining on arrival). On the next page you will be able to indicate the last available
time.

Select the first time slot you would be available to volunteer.

Wednesday March 11, 2020 Thursday March 12, 2020 Friday March 13, 2020 Saturday March 14, 2020
8:00am - 11:00am 7:30am - 8:00am 7:30am - 8:00am 8:00am - 10:00am
11:00am - 1:00pm 8:00am - 10:00am 8:00am - 10:00am 10:00am - 12:00pm
1:00pm - 3:00pm * 10:00am - 12:15pm 10:00am - 12:15pm 12:00pm - 1:45pm
3:00pm - 5:00pm 12:15pm - 1:30pm 12:15pm - 1:30pm 1:45pm - 3:15pm
5:00pm - 6:45pm 1:30pm - 3:20pm 1:30pm - 3:20pm 3:15pm - 4:30pm
6:45pm - 10:15pm 3:20pm - 5:00pm 3:20pm - 5:00pm 4:30pm - 6:30pm

5:00pm - 7:20pm 5:00pm - 6:00pm
7:20pm - 8:30pm 6:45pm - 10:15pm

Created by Beloit College Computer Science Department

Figure 2.5: Step three will ask for the first possible time slot the volunteer will
be on-site to receive a shift.

Should the SV have selected a date for the first avail-
able time slot that makes it’s unlikely to gain all required
hours, which are needed to wave the conference fee, the
system will warn the user. The availability the volun-
teers specify is crucial to the scheduler, which tries to
create a fair distribution of shift time slots among all vol-
unteers. However, the volunteer has no further opportu-
nity to specify preferences for when the own shift will be
scheduled, let alone any preference regarding the tasks
of a shift.



28

2 Related Work

Purpose-built web
application similar to
SIGCSE system

Volunteers can
propose at which
venue they would
like to work at

Modern SPA with
AWS intergration

Serverless approach
with AWS CDN

infrastructure

2.3 SIGGRAPH Student Volunteer Sys-
tem

The Special Interest Group on Computer Graphics
(SIGGRAPH)) is, just like SIGCSE and CHI, using a web
application. This system was specifically built to register
and manage student volunteers and their tasks or shifts.
It was developed in 2017 by five members of the Student
Volunteer Sub Committee (SVSC). SIGGRAPH'’s so-called
SV Portal is more similar in terms of features to SIGCSE’s
system than to CHISV at which we looked at earlier. The
SV Portal is reset every year and seeded with the data
and dates for the upcoming conference by the SVSC. It
is specifically built for the needs of SIGGRAPH and not
intended to provide service to multiple conferences at a
time.

Just as with SIGCSE’s approach, student volunteers do
not work on tasks directly but rather on a shift. A shift
is a time slot that was assigned to the SVs either manu-
ally or by the scheduler. When we saw that with SIGCSE
student volunteers could block a time slot where they
would not be available, SIGGRAPH’s SV Portal is han-
dling this differently. Before the conference, student vol-
unteers can tell the SVSC about their preferred venues
they would like to work at. This information is then con-
sidered by the scheduler.

SIGGRAPH uses two distinct applications for handling
student volunteer-related matters. All details about SVs
and shifts are held within a PostgreSQL database. This
database is accessed by a Laravel application for admin-
istrative tasks and a single-page application (SPA), the SV
Portal, which is used by the student volunteers. This ap-
plication is built using Vue.js and Vuex interacting with
the database via Node.js microservices. These are run
via Amazon Web Services Lambda (AWS Lambda). The
Vue.js application is also hosted on AWS servers.

Due to this architecture SIGGRAPH can not only achieve
outstanding reliability but also use AWS content delivery
network (CDN) which can reduce the initial page load



2.3 SIGGRAPH Student Volunteer System

29

time for all volunteers worldwide. Since the SV Portal is
built as a SPA, it can not only dynamically react to con-
nectivity issues but also provide much richer feedback to
the users than a common request-driven approach.

The SV Portal is mainly used by three parties:

¢ Student Volunteer Sub Committee (SVSC)
¢ Team Leaders (TLs)

¢ Student Volunteers (SVs)

The members of the SVSC can be seen as the adminis-
trators of the SV Portal. Team Leaders and SVs will ap-
ply through the SV Portal (see [2.3.2] {Applying as Team]
[Leader or Student Volunteer]’) after registration (see
[2.3.7] /Registration!’). The members of the SVSC can ap-
point Team Leaders by accepting their application and
assign Student Volunteer applications to them. The Team
Leaders will then score those applications and make the
results available for the SVSC. They will then accept or
reject the SV applications, which have been scored by
the Team Leaders before. After being accepted, SVs, and
Team Leaders will have to confirm or decline their atten-
dance.

2.3.1 Registration

New student volunteers, who want to apply as an SV
or a Team Leader (TL), will first have to create a new
account. This is even necessary when the applicant has
had an account some years before since the application
is reset every year - wiping all user accounts. The ac-
count creation requires specifying a first and last name,
appending an e-mail address and also a password (see
figure [2.6). Submitting the registration will create and
log the user into the new account.

SVSC appoints Team
Leaders, which can
score SV

applications

Create new account

every year



30 2 Related Work

@ SIGGRAPH [
H[Y"NI] Eligibility Requirements Benefits Deadlines Expenses

2020 52020.51GGRAPH.ORG
STUDENT VOLUNTEER PORTAL

Applications are Open! FirtNarmo

Jacob

Team Leader Applications Are Due
14 January 2020

Last Name

Smith

Student Volunteer Applications Are
Due .
11 February 2020 milton@cs.rwth-aachen.de

Password

Email

¥ | have read and accept the terms on this page
Start Application

Already registered? Sign In

Eligibility
Age Full Time Student Status

Applicants must be 18 years of age or older (on or before 17 July Applicants must be high school, undergraduate, or graduate

Figure 2.6: New volunteers will start with creating an account for the system.
This requires them to specify their first and last name and to provide an e-mail
address as well as a password.

Personal details will After registration and login, the volunteer will have
later be used for the to provide some additional personal details (see figure
conference 2.7). These also include the date of birth, precise ad-
registration dress, phone number, spoken languages, and the pre-

ferred badge name. This is important as these details will
later be used for registering the volunteer for the confer-
ence. This is unique to SIGGRAPH’s SV Portal. Neither
SIGCSE nor the version of CHISV we have looked at pro-
vides such an integration.



2.3 SIGGRAPH Student Volunteer System 31

, THINK
é SIGGRAPH B[Y““II Dashboard Profile Logout

2020 52020.51GGRAPH.ORG
STUDENT VOLUNTEER PORTAL

Student Volunteer Settings (SV ID 7341)

Legal First Name (required)

Jacob

Last Name (required)

Smith

Name if different than legal name (If filled, this is the name that will appear on your badge)

Email (required)

milton@cs.rwth-aachen.de

Date of Birth (required)

1999-02-19
What is your gender? (required) Do you identify as an underrepresented group? (required)
© Male () Female () | prefer not to specify No © | prefer not to specify
I identify as: Yes, | identify with:
optional optional

Are you disabled? (required)
© No () | prefer not to specify

Yes, | have:

optional

Address Line 1 (required)

1 Office Space Road

Address Line 2

City (required)

Austin
State/Province/Region (required) Country (required) Zip/Postal Code (required)
Texas United States s 78701
Languages Phone Number (required)
German X English X Kirundi X hd +1107 87 5473

— Include International Dialing Code if outside U.S.
Only select languages you are comfortable communicating in on a

daily basis.

| can receive text messages in the U.S.
| can receive phone calls in the U.S.

Back to Dashboard Update Profile

Figure 2.7: Student volunteers can edit their preferences and details after
logging in to the portal.



32

2 Related Work

Team Leader
application is
optional and done as
part of the SV
application

2.3.2 Applying as Team Leader or Student Vol-
unteer

To be able to volunteer at the conference, volunteers will
have to apply. During this three-step process, the appli-
cant will have the option to also apply as a Team Leader.
The deadline for Team Leader applications is roughly one
month before the deadline of student volunteer applica-
tions. This ensures that the SVSC has a good number
of Team Leaders to score the SV applications once the
deadline passed.

The application process will pose multiple questions to
the potential volunteer:

* Step 1

- University/School/Institution name
- City, State, Country

- Expected graduation date + proof of enroll-
ment

- Professional reference (e.g. Teacher, Advisor,
Supervisor)

- Earlier SIGGRAPH experience as attendee or
S\

- Areas of interest (e.g. Arts, Web, Gaming)
— T-Shirt size

- Dietary Restrictions
* Step 2

- Explain motivation and conflict handling and
how to approach individuals from a different
background

* Step 3
- Financial assistance for transportation and
lodging

- Explain motivation and experience when ap-
plying as Team Leader



2.3 SIGGRAPH Student Volunteer System

33

In addition to the questions of steps one and two, poten-
tial Team Leaders will also have to express their motiva-
tion and level of qualification, which can include earlier
mentorship or other relevant leadership experience. This
can be done in step three together with the request for
additional financial assistance. Some of the details of the
application will later also be used for the conference reg-
istration.

Once the deadline for all applications has passed, the
SVSC will assign each Team Leader a set of SV applica-
tions to evaluate and score. Their work helps the SVSC to
not get overwhelmed by the amount of SV applications.

2.3.3 Shift Swapping

An outstanding functionality is found in the SV Portal’s
shift swapping procedure. It was added in 2018 and
shortly after disabled again. Students were able to find
other students to swap the shift with. To swap a shift,
students would mark their shift as swappable. Other
SVs would then see this shift in the overview of avail-
able swappable shifts. To then swap the shift, both par-
ties would accept the swap request, which modified the
schedule of both parties involved. As the whole process
required no participation of the SVSC, these unmonitored
changes made it more difficult for them to keep track.
Thus, task swapping was disabled shortly after its intro-
duction.

The current procedure to swap shifts is similar to how it
is done in our new version of CHISV. Requests and the ac-
tual change to the schedule are not done within the appli-
cation but in external tools (e.g. Slack or Google spread-
sheet). SIGGRAPH uses a shared Google spreadsheet to
have SVs list their shift swap requests. The SVSC will
evaluate the request, verify that the shift is swappable
and that no restrictions are violated. The change is then
made in the (Laravel) admin portal. This approach makes
shift swapping more structured such that the schedule is
only changed manually by the SVSC’s hand.

Team Leader duties
and financial
assistance can be
requested in step
three

Team Leaders
evaluate the SV’s

application

Shift swapping was
introduced in 2018
and disabled shortly
after

Task and shift
swapping not done
as part of the

application



34

2 Related Work

Volunteers can state
their preferred
venue

Special shifts are
manually filled

Team Leaders
check-in/out
volunteers

2.3.4 Schedule Creation and Accounting

After volunteers have been accepted, they will have to
confirm or decline their attendance. During this phase,
they also have the possibility to state their preferred
venue. Depending on the venue’s requirements, this
preference can be considered by the scheduling tool. All
the scheduling is done before the conference starts, usu-
ally a few months ahead and not on-site.

Shifts that require special training are manually filled
with certain student volunteers. Since the scheduler
will only fill free shift slots, these SVs will remain as-
signed when the scheduler is run. The scheduler tries to
distribute shifts among all student volunteers such that
their hours are usually kept below 30.

At the venue, Team Leaders will check-in SVs who ar-
rive for their shift. When the Team Leader checks the
SV out again the hours the volunteer has worked will be
awarded to the volunteer’s account. We see that this job
of assignment management is quite similar to the duties
of a Day Captain in the version of CHISV we have looked
at so far. Volunteers should check their schedules fre-
quently on their smartphones. This is part of the orienta-
tion from the SVSC. There is no option for the volunteers
to export their schedule to an external application. How-
ever, this is in any case not advisable, as the schedule
tends to change daily. Thus, the volunteers should rely
on the web application, which will show them their shifts.



35

Chapter 3

Requirements
Analysis

We started getting in contact with the Student Volun-
teer (SV) Chairs for the Conference on Human Factors in
Computing Systems (CHI) 2019 in fall 2018. We intended
to exchange ideas and feedback about the previous ver-
sion of CHISV while the CHI 2019 took place in Glasgow
(UK) between the 4™ and 9 of May:.

Before we started reaching out to the participants at the
conference, we defined our target groups of which we
assumed participants would fall in most likely.

3.1 Target Audience

To identify our target audience, we used knowledge of
the CHISV maintainers, previous CHISV users and the
Student Volunteer Chairs of CHI 2019. We identified
three groups of users of the application:

e SV Chairs
« Experienced student volunteers

¢ Novice student volunteers

Interviewing CHI
2019 SV Chairs



36

3 Requirements Analysis

First interviews
conducted at CHI
2019

Distinct feedback
from each group

Tasks of the
members of the SV
Chair and their

requirements

3.2 First Iteration

3.2.1 Interviews

During the CHI 2019, we conducted a study with six
participants of which two fell into each of our defined
audience groups (see [3.1] {Target Audiencel’). The study
was done as part of a video call with the participant in-
dividually. The participants performed all the tasks they
would usually perform during the conference. During the
execution, the participants were describing what they
were using the system for and reflecting on the series
of tasks they had to perform to accomplish their goal
(Think-Aloud).

This helped us a lot to understand not only the ways of in-
teraction the previous version of CHISV offered but also
to identify some of its shortcomings. Having the partici-
pants split into three groups based on their earlier expe-
rience with the system, gave us the unique possibility to
precisely look into the different domains the application
is used for.

SV Chairs

We were able to see the perspective of the members of
the organizing SV Chair. We got insights into how they
manage tasks and student volunteers and make sure that
all SVs are getting the tasks they bid for while keeping
an eye on fair assignments. The SV Chairs also use the
application to contact individual or groups of SVs. The re-
port generation is an important field for them such that
they can keep an eye on all the different fields intersect-
ing with the volunteer’s experience. This helps them to
fill tasks evenly and distribute the workload among all
student volunteers more even and fair. The reports are
subsequently also often used by other chairs of the con-
ference to give additional insight into demographics and
attendance. In the next year this may help SV Chairs to
accept a fair amount from each region or institution.



3.2 First Iteration

37

Experienced Student Volunteers

The feedback we got from the study with the experi-
enced student volunteers gave us more insight into the
Day Captain duties. Experienced student volunteers of-
ten get selected to be a Day Captain for some time. As
such, they need to know the application in more depth.
For instance, they have to use several more advanced fea-
tures of the application, which are hidden for the average
Sv.

Solving SV related issues is always a time-critical task
since all tasks are tightly scheduled. Volunteers will
check in with the Day Captain on every task start and
end. This can result in queues at the Day Captain’s
counter. Any implementation that aims at the tasks a Day
Captain does has to keep this in mind.

Day Captains are in close contact with the SV Chairs -
sometimes only via direct messaging. Both parties are
using the system to note down issues and create remarks
to assignments of volunteers. This gives them a defined
way on how to keep track of any assignments or SV re-
lated occurrences.

In the previous version of CHISV, Day Captains had the
same permissions and abilities in the system like the SV
Chairs (they were sharing the credentials). Any permis-
sion system in the new version of the application should
thus precisely evaluate the required permissions for all
created roles.

Novice Student Volunteers

Our third group of novice student volunteers helped us
to understand which needs may arise when SVs are new
to a system with which they have never worked before.
This can be especially difficult in a time-sensitive and
often unfamiliar environment. Student volunteers come
from all around the world. Thus, the application should
make it easy to get started and adapt to different require-

Day Captains are
experienced student
volunteers

Day Captains help
student volunteers

Day Captains require

special permissions

Focus on the
interface and
feedback



38

3 Requirements Analysis

Novice student
volunteers have
various qualities of
connectivity

Survey was filled by
69 volunteers

Focus on the user
experience (UX)

ments (e.g locales and timezones). While we saw a lot of
need for advanced functions with the other groups, we
noticed that for this third group we would have to focus
more on a user interface with a great amount of feedback
and visually aiding elements.

This group of volunteers was mostly interacting with the
system from a mobile device, like a tablet or smartphone.
Their internet connection wasn’t always the best as they
were staying in various locations with different connec-
tivity options. Many volunteers we spoke with were in-
teracting with the system on the go.

3.2.2 Survey

During CHI 2019 we also encouraged the student vol-
unteers and SV Chairs to partake in a survey. We used
this survey to get a good overview of what the needs of
the users are. Of all 200 available student volunteers,
69 provided us with details into their experience with the
previous version of CHISV.

We asked questions to determine their level of experi-
ence with the system and what they are mostly using the
system for. We were very open for requests for new fea-
tures or changes of the existing system. We laid out a
couple of questions to understand what works great for
them and what they think should be changed or adapted
to new requirements. We noticed that the user inter-
face of the previous version of CHISV was not particu-
larly suited for various form factors. This made us go
into greater detail about the user interface in the sur-
vey. It confirmed our theory in which we saw volunteers
mostly using the application on a mobile end device, like
a smartphone.



3.3 Second Iteration

39

3.3 Second Iteration

After CHISV had been reimplemented, we evaluated it

with the organizing SV Chairs of CHI 2020, UIST 2020
and MobileHCI 2020. Furthermore, some CHI 2020 SVs
agreed to evaluate registration, enrollment, filtering for
desired tasks, placing bids, and using the new calendar
UL The feedback from the SVs and the SV Chairs was
then later used to revise some features or to provide
missing functionality, which was initially not part of the
requirement set.

3.3.1 Interviews

For each SV Chair, we conducted an in-depth group
interview. We structured the interview to simulate the
tasks an SV Chair would have to do before and at the
conference. Since they were seeing and interacting with
the application for the first time we were able to collect
unbiased feedback. While we were going through our
prepared sequence of tasks, the participants were in-
teracting with the system and simultaneously providing
feedback about their experience.

Fortunately, all participants have experience in the do-
main of Human-Computer Interaction (HCI) and were
also able to provide feedback about what they think could
be improved to be better suited for student volunteers.

3.3.2 Survey

To be able to compare the results of the survey from the
first interaction, we asked the SV Chairs to fill out a new
survey. For this, we copied the first survey and adapted
its questions to target the new system. Yet, the content
of the questions was mostly kept in place such that com-
parison was possible.

Additional feedback
from CHI, UIST, and
MobileHCI

In-depth group
interview

UX knowledge



40

3 Requirements Analysis

Demo conference for
SV experience
testing

Sorting feedback
into two sets

The same survey was also filled by volunteers who
agreed to evaluate the new system as an SV. For that
task, and as CHI 2020 was canceled, we set up a demo
conference for these participants. We seeded the con-
ference with real data from CHI 2019 and had them go
through the steps of registration, enrollment, and finally
task bidding. No guidance was given to them that could
influence their first time experience with the interface
or the application. After having gone through all steps,
some volunteers filled the survey and gave us insight into
the SV experience.

3.4 Requirements

Since the requirements from the group of novice and ex-

perienced volunteers overlap, we bundled them into one
group. The feedback we got from the SV Chairs and the
Day Captains, which was mostly organizational, was put
into the requirements set of "SV Chairs". Requirements
from the Day Captains, which focused on the topics stu-
dent volunteers come into contact with while bidding and
planning their schedule, was put into the "Student volun-
teers and Day Captains" set of requirements.

Since the feedback of the people we spoke with mostly
covers changes or additions to the system, we will begin
each of the six domains (introduced on page by de-
scribing the basic requirements, which were obvious for
all participants, therefore not mentioned to us directly.
We call this set of requirements "General aspects".

This gives us three requirement setsE]:

* General aspects
e SV Chairs ll

 Student volunteers and Day Captains ll

'The colors in the listing correspond to the colors used in the con-

cept map E}



3.4 Requirements

41

Each set of requirements has a different focus. While
"General aspects" tend to sketch more the demand for
structure and functionality, we see that requirements
from the set of "SV Chairs" fall more into the domain of
manageability and accountability of resources and volun-
teers. Finally, the requests we got for the "Student vol-
unteers and Day Captains" group are more referring to
topics that volunteers have while volunteering and work-
ing on their tasks. This also includes their schedule man-
agement and task bidding.

After filtering and aggregating all requests, improve-
ments, and feedback we got from the three interest
groups, we evaluated their feasibility also with respect
to technical limitations and visual esthetics. We also took
into consideration the factor of maintenance. This is an
important aspect to ensure that the system can be kept
up to date and provide service. For all requirements, we
also considered data protection and privacy following the
General Data Protection Regulation (GDPR).

The following section will present all requirements for
each of the three requirement sets. This includes the
feedback that we were able to collect in the second itera-
tion (see[3.3] “/Second Tteration|’). This makes this section
a complete list of all desired functions the system should
implement.

We will evaluate the requirements for each set in the fol-
lowing six domains:

[3.4.7] fWeb Application/’

‘{Enrollment of Volunteersl’

[3.4.3] {Accepting Volunteers and Lottery”
[3.4.4] ‘Task Bidding["

[3.4.5] {Task Assignment and Auction|’
[3.4.6] {Notifying Volunteers/’

To get a better overview of all requirements and the as-
sociated domains, we organized them into one concept

Distinct

requirements

Feedback was
filtered, aggregated,
and evaluated



42

3 Requirements Analysis

Use modern

standards

Hosting at RWTH

Aachen University

Compatible with
third-party

applications

Be able to scale out

map in figure 3.1} The different domains are presented
in the middle, whereas each requirement is shown in its
requirement set’s color (see the listing on page [40).

3.4.1 Web Application

1.

General aspects

Web application built with modern frameworks

CHISV should be an application that is accessible
from a web interface. It has to be compatible with
all major web browsers. The implementation has to
put special emphasis on the maintainability of the
entire product. Thus, it should only rely on well-
known frameworks and tools.

. Integrate with given infrastructure Since the

aim is to host the application with the infrastructure
of the Media Computing Group of RWTH Aachen
University, it has to be compatible with the stack in
use there. To tackle these requirements most effi-
ciently, the implementation should be coordinated
with one of the administrators of this facility.

. Extendability with third-party applications To

make further extension possible without any addi-
tional work, the application should provide a native
application programming interface (API) for third-
party applications. This should be realized by ap-
plying commonly used approaches, like publishing
a RESTful? API with token authentication.
Furthermore, the application should be back-end
independent, meaning that the back end could
adapt to the environment where it is deployed.
Since this is likely a framework-related require-
ment, this has to be evaluated when the framework
is chosen.

. Performance and scalability Since CHISV is

used by various users accessing it from different re-
gions of the world, the required network bandwidth

2Standardized API to access resources



43

3.4 Requirements

aj0uap g £o1b 10700 Y] uI sexoq -

DUIIJU0D
PUE JUSUI[[0IUS JO 3}e}S
a2y} Jnoqe J2eqpasy dp1Aoid ‘8T

3[qerpa suonsanb urroy
JUSWI[[OIUD PIPTWANS D[EIA *LT

SI92)UNJOA WOIJ
so1gaw [euonrppe 3sanbay ‘9z

suonsanb
urefdxa 03 Aem e apnpuy ‘sz

suonsanb
Jo sad£} saydynur apraoig ‘Fg

dduaIdyu0d 13d dyqezIuro}snd
ULIOJ JUSWI[[OIUD 3} D[EIA ‘€T

SULIOJ JUSWI[[OIUD }IM
Ayreuonpuny juswI[oIuy ‘7

p1q pasejd ay jo

Jouarayard 3y moys sAemyy “zh

SIOLId 10J SJUNODOE
YoIYM ‘adeyIa3ur dArIsuodsay ‘IH

Apuary
-3[IqOW 3DeJIJUL 3} RN "0F

mmdur feuonyippe £q
I9)[J pue SYSe} IeJIWIS PUL] ‘6€

Iepuafed
® uI syse} paudisse Juasai] ‘g

Spiq s,193junjoa padsur
0} 3[qe 3q 0} dARY SITRYD) AS "LE

Surppiq ysey
10§ $3dUAI3Jxd 10§ MOJTV "9€

212 duo YIm paserd aq 03
31qe 2q proys spiq d[dnmN ‘se

Surppiq >jse}
103 Sur}I0S pue SId}[Y IPIAOL] “FE

sassaIppe
[rewr-3 urefd yroddng §g

syuardmar yo sdnoid aaey ‘¢g

PIAI2)31 133}UN[OA € SUOI}EdYIjOU
YPIYM SITEYD AS MOYS ‘TS

s139)unjop SurkyroN

SI29JUNJOA
Jo Juawjoruy

Surpprg >seL,

A131307] pue
s1dajunjop Sundarny

Apyuaredsuen
A1ap0] 2y urerdxg ¢g

suorjsanb juswiorus
woiy A13)30] YoeRd( 'z

Kxanog
a3 03 Jouxd sxadjunyoa 3daddy ‘g

uorsendo [enads uo L1301
W—.ﬁu EOHW mhww«ﬁﬂ——c.\v Wﬂusﬁu. q "0€

uryjroSe £13)301 Ip1aoi] "6

0} sAem [euonIppe apIAoI{ ‘IS

sajerduray apraoig “0s

Pa3SI] 2q ued sagessawx
JUIS [[© JBY} YINS 123U
SurSessawr e ajexodioduy ‘6%

sureilde) Ae( oYl PuUR SI99JUN[OA JUSPN]S JO sjuswaiimbal
1ST] i SOX0(q 19[0IA ‘SITey) AS JO sjuswaamba juesead gg sexoq xnespiog °(,s108dse [e1suen),) sjuswaiinbal [ereush

SAS 03 Ino yoeas INO/UI-PIYD-J3S ‘8F

SAS
pue spuawugisse uo sajoN Ly

uonoNe Ay}
19)3e pue Sunmp Noeqpasg ‘9%

s193junjoA [re Suowre
simoy paugisse aduefeq ‘G

Is1y
Kyuoud ySry ypm syse} [ b

INO/UI-IYD pue spuswuisse
[enuew 1oy suorjdo pue
wyjIoS[e uoyoNe APIACIJ €F

uondny
pue juawudIssy ysey,

uogeorddy qam

sajepdn juswuSisse
10y suoedyoU YsnJ ‘Ig

UoI}IIUU0d
3[IqOUI YEaM e 103 JUNOIDY 0T

moawry
01ss3s a81e] € Ip1A0L] ‘6T

sAep apdymur
103 uado Surppiq e ‘8L

310dxa anpaypds pue Juruueyq ‘41

Peqpasy
[ensIA pue SUOHeIARIqqY ‘9T

SIDIAIP 0}
jdepe pmoys adeyIajur 1as) ‘ST

obed uo Burst 9os) g urewop J1oy) Aq peIsI[ sjusweambal ASIHD :T°E 2anbig

apour
dduBUIIUTEW d3edIpUT A[Tes]) FT

j10dxa pue juswaSeueur ysey, ‘€L

BLIDILD [e1dads YjIm SAS
puy 03 sjr0dax 310s pue 1)1 ‘TL

2218ap
3} UO [IEJP I0W JALD) ‘[T

3s1] & woxy pasprd
398 LjIs12ATUN 313 ARH QL

deads
ued A S ue sagenSuey ayy mouy] ‘6

sreur-a Surpuag g

wa)sAs [0y

$32IN0SAY ‘9

safgoxd
195N pue UOIIEdHUINY G

AjIIqeress pue sadurULIONId

suongeordde
Kyred-pinp yim Ayriqepuaixg ‘g

aInpnijseryur
udAIS ym djerdajug g

SHIOMaurery wapow
ym jmq uoyeorjdde qam ‘T



44

3 Requirements Analysis

User authentication
and management

Manage and assign

resources to users

Assign and revoke
permissions to
manage access

rights of users

Connect with mail
servers to deliver
notifications

and latency should be kept as low as possible. When
many users engage with the application this should
not be noticeable for the user. The system should
be able to scale to the required size. One could for
example evaluate the option to deploy multiple ver-
sions of the application and then load-balance the
requests. This has to be supported with minimal
adaptions to the configuration or code.

. Authentication and user profiles Student vol-

unteers should be able to register on the website,
provide some personal details about themselves,
and log in with their e-mail address and password.
Users have to be able to reset their password and
manage their details with the help of the system.
Users with special roles need be able to view role-
specific subsets of users.

. Resources CHISV has to provide a way to cre-

ate and modify resources like conferences, tasks,
reports, and associations of volunteers to some of
these resources.

. Role system A role system should be used to man-

age the view and access levels of users. Special fea-
tures (like assigning tasks) may only be available
for specific roles. Permissions have to be used to
permanently or temporarily grant access to users.
These roles have been proposed:

e Administrator - Has access to all views and
resources

e SV Chair - Has access to one specific confer-
ence and all its associated resources

* Day Captain - Has access to task-related re-
sources of one specific conference and can
modify the assignments of SVs of this confer-
ence

¢ Student Volunteer - Has access to task bid-
ding and basic schedule management

8. Sending e-mails The application has to be able to

connect to e-mail gateways and use those to deliver
e-mails to student volunteers or other users of the



3.4

Requirements

45

10.

11.

12.

13.

system. E-mails should be able to be sent by SV
Chairs and Day Captains.

SV Chairs

. Know the languages an SV can speak Student

Volunteers should be able to specify the languages
they speak. The choices should come from a pre-
defined list of languages from the back end. This
enables the SV Chairs to find SVs with a special
language ability whenever it is needed for a spe-
cific task. This field should also be available in a
report such that demographic reports can include
this metric.

Have the university get picked from a list Hav-
ing the SVs pick their university from a list of prede-
fined universities can help to ensure that SVs from
all known universities are equally present. This
would make it possible to filter for institutions that
have a lot of enrolled SVs and the ones with only
a few. Additionally, holding this data can also help
SVs to find other SVs from the own university or
one nearby.

Give more detail on the degree Extending the
data collected on the degree can help to filter for
SVs. Especially the options for PhDs can be ex-
tended to also show and give an option for the year.

Filter and sort report to find SVs with special
criteria The application should provide a way to list
SVs based on specific criteria. Sorting and filtering
the collection would greatly improve the options an
SV Chair has to find students with a special ability.
For example, this would provide an option to filter
out SVs who need additional information to get a
VISA or all SVs who speak a specific language.

Task management and export One of the key fea-
tures of the application is task management. A sim-
ple and fast user interface is inevitable. Addition-
ally, the system has to provide a routine to create

Collect
characteristics of the

volunteer

Find volunteers by
criteria

Task batch creation
and modification



46

3 Requirements Analysis

Sorting and filtering
of tasks

Clearly indicate the
state of the system

Adapt to different
device sizes

Design for errors

14.

15.

or update tasks via comma-separated values (CSV)
import.

Task management has to provide a way to interac-
tively update modified tasks. It should also be possi-
ble to only update a small subset of attributes of all
tasks (e.g the location). The import has to be com-
patible with the results exported from the reports
section.

The interface has to provide a way to filter and sort
for tasks of a given day, name, location, or priority.
This requires the view to provide ways to input a
name, location, and other criteria. Having the abil-
ity to see tasks of multiple days could help while
comparing tasks. It would also give an overall bet-
ter overview of the tasks of a common category.

Clearly indicate maintenance mode The previ-
ous version of CHISV made use of a maintenance
mode. A conference was put in said mode while the
auction was running and the manual assignment
was being done. While the conference was in main-
tenance mode SVs were unable to access the ap-
plication, their assignments, or the task overview.
The maintenance mode did not clearly explain why
it was there, leaving many SVs confused. The new
version of CHISV should clearly indicate in which
mode it is and what this mode is for.

Student volunteers and Day Captains

User interface should adapt to devices While
we saw a lot of the SV Chairs using the system on a
laptop many SVs were interacting with the user in-
terface from a smartphone or tablet. These devices
not only make use of smaller screens with different
aspect ratios but also are often used in different en-
vironments than a laptop. The interface of the web
application has to account for the different display
sizes and aspect ratios.

Smartphones and tablets are usually used by touch
input. When showing interface components the
user interface will have to account for this as well.



3.4

Requirements

47

16.

17.

18.

19.

These components will have to be touchable - even
when the user is in a busy environment. Any error
that might occur has to be correctable on the spot.

Abbreviations and visual feedback Whenever
abbreviations have to be used in the interface, they
have to be explained beforehand or get explained
when used. To not clutter the interface on mobile
devices, it could be beneficial to have one central
place in the application where users can read up
about abbreviations and features that are not in-
stantly reasonable. This is especially required for

the lottery and auction (see [4.4.3] ‘{Lotteryl’ and
[4.4.4] YAuction/’).

Planning and schedule export To help the vol-
unteers organize their day and to ease the planning
of tasks they like to bid for, it requires an appropri-
ate visual representation. To create a more visually
appealing interface, which is also easier to grasp,
the integration of a calendar should be considered.
This gives the SVs a better understanding of how
tasks and assignments are placed to each other.
To bridge the gap between the SVs’ private calen-
dar and the schedules in the application, schedules
from it should be exportable. This could either be
per event or for an entire day, week, or month. For
the SV, this could heavily simplify the planning of
their day. The export has to be in a well-known for-
mat.

Make bidding open for multiple days Student
volunteers want to be able to plan ahead. The abil-
ity to bid on multiple days (as long as the SV Chair
allows for it) should be included in the system. In
combination with additional filters for the task se-
lection, the SV can then create a schedule before
the conference begins.

Provide a large session timeout The previous
version of CHISV featured a rather short session
timeout. The SVs reminded us that having to log
back in to the application every few hours inter-
rupts the interaction with the system heavily. The
session timeout should be greatly increased.

Explain
abbreviations and

describe algorithms

Calendar export

Allow bidding on
arbitrary time

intervals



48

3 Requirements Analysis

Users connectivity

might be limited

Keep the user
informed about
changes in the

system

Customizable
enrollment forms

20.

21.

Account for a weak mobile connection Our sur-
vey from 2019 showed us how and where student
volunteers interact with the system. SVs also in-
teract with the system while walking or commut-
ing. The system has to account for slow and dis-
ruptive connections. As all information that gets
transferred back and forth between the user and
the system might also count against a user’s mobile
data quota, the latency and request size has to be
kept to a minimum.

Push notifications for assignment updates The
survey also showed us that SVs want to get an-
nouncements whenever something task or assign-
ment related changes in the system. This could give
the SV feedback on a successful task completion
without having to manually peek into the applica-
tion. There could be multiple channels like E-mail
or Slack to quickly push notifications to the user.

3.4.2 Enrollment of Volunteers

22.

23.

General aspects

Enrollment functionality with enrollment
forms The application will have to provide a
function to associate student volunteers with a
conference. This process is called "enrolling".
During this enrollment, the SVs answers a set of
questions to give the SV Chairs more insight about
their abilities, disabilities, and additional needs.

SV Chairs

Make the enrollment form customizable per
conference Since each conference has different
requirements towards the SVs, the set of questions
has to be customizable. A set of questions is the ba-
sis for every enrollment form. These forms should
be able to be manually weighted to enable the SV
Chairs to filter for student volunteers with specific
needs or criteria. This can also be used to provide



3.4

Requirements

49

24.

25.

26.

27.

28.

additional information back to the volunteer. For
example, this often happens to volunteers who need
additional information to get a VISA.

Provide multiple types of questions There
should be different types of questions. SVs will have
to be able to answer simple binary questions, input
a predefined amount of text or provide a number
as an answer. All quantifiable questions have to be
considered when the enrollment form weight is cal-
culated.

Include a way to explain questions Some ques-
tions might require additional information to better
understand them. Every question should be able to
contain a hint, which is shown to the user on re-
quest.

Request additional metrics from volunteers
Apart from the enrollment form, the student volun-
teer should also be able to provide nationality and
country of residence. This information may only be
available once for each user, rather than on a per
conference level. The SV must also be able to pick
the current degree and the spoken languages from
a list with predefined choices.

Student volunteers and Day Captains

Make submitted enrollment form questions
editable Once an enrollment form is submitted the
information should still be editable. This is espe-
cially important as the answers a volunteer has pro-
vided might change between the time of enrollment
and the start of the conference — which can be mul-
tiple months.

Provide feedback about the state of enroll-
ment and conference As long as unenrolling is al-
lowed by the SV Chair, a student volunteer should
be able to do so without further consequences. The
application should also provide feedback about the
current status of enrollment to the user. This could
additionally also tell the user about the position on

Different types of
questions

Collect additional
metrics for each

volunteer

Allow for
modification of
submitted forms

Show state of
enrollment and

conference



50

3 Requirements Analysis

Lottery is random
with exception of
SVs on the waitlist

Be able to exclude
volunteers from the
conference

the waitlist if needed. To be able to understand
when enrolling and unenrolling is possible, the ap-
plication will have to precisely provide the state
each conference is in.

3.4.3 Accepting Volunteers and Lottery

29.

30.

General aspects

Provide lottery algorithm The lottery (see [4.4.3
“Lotteryt’) is an algorithm that is used to automati-
cally change the state of volunteers from the initial
"enrolled" to "accepted". The algorithm should be,
with exception of SVs on the waitlist, completely
random. This means that all volunteers in the ini-
tial state of "enrolled" have the same chance to
be accepted. No questions from any enrollment
form are taken into consideration. Any volunteer
who could not be accepted due to the limited slots
for volunteers of each conference should be put on
the waitlist. The order on the waitlist should be
the same random order the algorithm calculated
when started. Whenever the algorithm is run, vol-
unteers from the waitlist will be accepted first be-
fore randomly accepting new volunteers that are in
the state "enrolled". On the first run of the lottery,
the waitlist has to be empty.

SV Chairs

Exclude volunteers from the lottery on spe-
cial occasion Some student volunteers might have
reported themselves as not being able to partici-
pate while still being enrolled. The application will
have to provide a way to manually drop enrolled
users to not participate in the lottery. This could ei-
ther be done by removing the association altogether
or by setting the association to a predefined state
("dropped").



3.4

Requirements

51

31.

32.

33.

Accept volunteers prior to the lottery Before
the lottery is run for the first time, it should be pos-
sible to accept some volunteers based on some cri-
teria. These criteria should be able to be expressed
by weighting the enrollment form or by filtering for
SVs by any of the available attributes of the user.

Detach lottery from enrollment questions To
make the algorithm of the lottery more transpar-
ent, it should only rely on randomness rather than
on any of the answers of a given enrollment form.
How this algorithm works will have to be explained
in a way that is available within or through the ap-
plication.

Student volunteers and Day Captains

Explain the lottery transparently We learned
from the interviews and the survey that one ma-
jor issue with the lottery of the previous version of
CHISYV is its transparency. This could be improved
by simplifying the algorithm to not take any enroll-
ment form data into consideration. This could also
mean cutting back on the features and questions
the algorithm evaluates.

Being able to comprehend why a student volun-
teer was accepted or not would greatly improve the
trust in the system and overall make the applica-
tion feel more robust. This is why the lottery al-
gorithm should be reconstructed and precisely ex-
plained such that everyone interacting with the sys-
tem can develop a mental modal of what is happen-
ing in the background when the lottery is run.

3.4.4 Task Bidding

34.

General aspects

Provide filters and sorting for task bidding

Task bidding is one of the major features of CHISV.
It requires the SV to make complex decisions to cre-
ate a suitable schedule. Student volunteers have

Manually accept
volunteers

Make lottery
unbiased

Evaluate the lottery
algorithm in terms of
transparency to the
users

Allow for filtering
and sorting before
bidding



52

3 Requirements Analysis

Bid on multiple tasks

Provide option to
express a preference
for a task

Give SV Chairs
insight to
volunteer’s bids

Show tasks in
calendar

35.

36.

37.

38.

to obtain all the required hours while evaluating
for themselves if they like to apply for a specific
task. Tasks might conflict with other events or other
tasks.

Multiple bids should be able to be placed with
one click Student volunteers should be able to
create a selection of tasks by one or more days, a
timespan as well as by specifying the name or loca-
tion. It should be possible to bid on the resulting
collection of tasks by placing a single bid that will
be applied to all the filtered tasks.

Allow for preferences for task bidding The ap-
plication should provide a way to have volunteers
bid on tasks with a specific preference. These pref-
erences need to also include a way to express un-
availability at the task’s time. Apart from that,
there should be three additional levels of prefer-
ence. Overall the application may provide these
four preferences, which need to be pickable per
task:

* Unavailable
e Low

* Medium

* High

SV Chairs

SV Chairs have to be able to inspect a volun-
teer’s bids The application should provide a way
to check on all bids of an SV. This is important to un-
derstand why tasks have or have not been assigned
by the auction. There should also be a report that
gives an overview of all SVs and their placed bids.

Student volunteers and Day Captains

Present assigned tasks in a calendar To further-
more assist the SV while making the task selection,
the application should incorporate some sort of cal-
endar. Seeing how tasks are aligned to one another



3.4

Requirements

53

39.

40.

41.

42.

could help the SVs to avoid collisions and help them
to get a better understanding of the duration of a
task.

Find similar tasks and filter by additional input

Student volunteers also told us that they like to be
able to find similar tasks in the system. It should
also be possible to limit a given selection down by
the day and time. This could for example help the
SVs to only bid on tasks in a specific interval, which
is giving them more flexibility in planning.

Make the interface mobile-friendly The inter-
face of the previous version of CHISV was not op-
timized for any mobile form factor. Thus, we got a
lot of feedback pointing out the urgent need for an
adaptive interface - especially for task bidding. The
volunteers are often using their smartphones to bid
on tasks. This has to be considered when laying out
the interface components of the application.

Responsive interface, which accounts for er-
rors When the user bids on tasks, the interface has
to provide immediate feedback. Due to the environ-
ment, the connection to the application can be dis-
rupted or drastically slowed down during bidding.
The application has to present a consistent and up-
to-date representation of a bid that was placed.

Always show the preference of the placed bid
After the auction has been run and tasks have been
assigned, SVs should be able to still see their sub-
mitted bids regardless if they were successful or un-
successful. This can help when understanding why
they have or have not been assigned. Additionally,
some student volunteers like to refer back to their
choice in retrospect.

Allow bidding for
time interval

Interface for bidding
has to adapt to
various form factors

Account for
connection
disruption

Always show placed
bids



54

3 Requirements Analysis

Algorithm to
automatically fill
tasks

Explain the auction
algorithm

Fill important tasks
first

Help create an even
distribution of
workload among all

volunteers

Display summary of
the auction

3.4.5 Task Assignment and Auction

43.

44.

45.

46.

General aspects

Provide auction algorithm and options for
manual assignments and check-in/out The ap-
plication should provide an interface to assign tasks
to volunteers. For each potential SV, it should show
a small summary of the number of bids, hours, and
the selected task’s bid preference. Any assignment
should be instantly visible to the volunteer. Another
option to assign volunteers to tasks should be the
auction (see [4.4.4] {Auction|’). That is an algorithm
that will automatically assign tasks to volunteers
based on preference, completed hours, and task pri-
orities. Just like the lottery algorithm, the auction’s
algorithm has to be explained in detail in a separate
section of the website.

SV Chairs

Fill tasks with high priority first Whenever tasks
get filled by the auction, they should be filled in
descending order of priority. This will ensure that
tasks that are critical to the conference can be filled
more securely.

Balance assigned hours among all volunteers
Assigning tasks to SVs will account the task’s hours
for the SV when the task has been marked as done.
Any task assignment, manual, or automatic, has to
account for the hours the SV has already done. It
is important to ensure that on average all SVs work
the same amount of hours.

Feedback during and after the auction Feed-
back is also inevitable for the auction, which au-
tomatically assigns tasks to SVs. This algorithm
should also report any tasks that could not be au-
tomatically filled and also provide feedback while it
is running to give the SV Chairs a feeling for how
good tasks are being filled.



3.4

Requirements

55

47.

48.

Notes on assignments and SVs Another impor-
tant feature is the ability to provide feedback via a
note on any volunteer’s assignment to explain man-
ually added hours or report the absence of the vol-
unteer. These notes have to be manageable for SV
Chairs as well as for Day Captains. Additionally,
notes could also be extended to cover volunteers.

Student volunteers and Day Captains

Self-check-in/out Our survey showed the desire
for a function where student volunteers can check
themselves in and out of their assignments. How-
ever, this request conflicted with the usual way how
assignments are being tracked. This might thus
only be an optional feature that has to be explic-
itly enabled by the SV Chair. Once enabled the stu-
dent volunteer can change the state of associated
assignments. Since this function will mostly be di-
rectly used by the volunteer before and after the
task, the interface has to account for the specific
environment and the device’s form factor.

3.4.6 Notifying Volunteers

49.

General aspects

Incorporate a messaging center such that all
sent messages can be listed Staying in contact
with student volunteers is crucial. This is especially
true for the time before the conference has begun.
To inform the volunteers about important steps they
have to take or to provide additional information,
the system should feature a section where mes-
sages can be sent to the volunteers. Apart from
any external channels where the notification will be
delivered, it would be beneficial to also keep a copy
of every message. This would enable all users to
lookup messages even when they have missed them
on other channels. They could always rely on the
notification section of the application to get all the
important messages.

Notes for volunteers
and assignments

Evalute a method for
self-check-in/out

Provide central place
for all messages



56

3 Requirements Analysis

Enable SV Chairs to
choose
pre-composed
messages

Build the application
to support multiple
channels for delivery

Have groups with
multiple recipients

Deliver notifications
to users who are not

known to the system

50.

51.

52.

53.

54.

SV Chairs

Provide templates Messages should be able to
get composed based on templates. The templates
are stored within the system’s database and have
to be manageable by the SV Chairs. Additionally,
text building blocks could simplify the creation of
messages. These could also contain placeholders,
for instance, to automatically fill in the correct year
and location based on the conference.

Provide additional ways to reach out to SVs
The system should not only rely on e-mail mes-
sages to reach the user. Having alternative chan-
nels where users can be contacted could be ben-
eficial. This could, for example, be a notification
center that holds all messages that have been sent
by the notification system.

Show SV Chairs which notifications a volunteer
received Every conference associated notification
that has been sent to the volunteer should be visible
to the SV Chair to ensure the SV got the message.

Have groups of recipients The system should
provide predefined groups of recipients such that
a user would not have to select all recipients of a
group manually. There should be groups for the
different enrollment states of volunteers as well as
internal groups, for example, to reach all Day Cap-
tains. It could later also come in handy when the
interface enables the user to fill the recipient list
with users from other parts of the application.

Support plain e-mail addresses SV Chairs
should be able to append plain e-mail addresses to
the list of recipients. The message should be deliv-
ered just like all other messages with the difference
that no copy will be kept by the notification system
(as there is no associated user).



57

Chapter 4

CHISV

4.1 Overview

In this chapter, we will take a look at CHISV, our reim-
plementation of the CHISV we looked at earlier as part
of the {Related Workl’. We built CHISV in multiple feed-
back cycles where we always asked our users (SV Chairs
and SVs) about the functionality and feature first and
then later on re-evaluated the outcome with them (see
1Requirements Analysis|’). During these cycles, we went
over 190 distinct features, requirements, and bugs. In
the end all requested functionality was in a state such
that all parties involved were happy with them. Our de-
velopment started in February 2019. At the time of this
writing CHISV is at version 1.0.7/and has undergone mul-
tiple automatic security audits. In CHISV’s|GitHub|repos-
itory[] everyone can track all 664 commits of CHISV de-
velopment history and easily contribute to the project.
We think open-sourcing the entire application and hav-
ing its code accessible to everyone is very important for
transparency and maintainability in the long run. If the
reference to the repository above is no longer valid an
updated location can be requested from the administra-

torsEl

Thttps://github.com/dwhoop55/chisv
Zhttps://hci.rwth-aachen.de/contact

CHISV is
open-source with its
code residing on
GitHub


https://github.com/dwhoop55/chisv/releases/tag/v1.0.7
https://github.com/dwhoop55/chisv
https://hci.rwth-aachen.de/contact

58

4 CHISV

Identifying previous
CHISV's

shortcomings

Node.js and PHP are
often used for
backend
applications

In this chapter we will use the notation for referencing
to requirements from the chapter 3| {Requirements Anal{
ysis|” as explained in the “Conventions”.

sion of CHISVI’) we ﬁrst evaluated its shortcommgs re-

lated to the software foundation it is built on. We found
that some major issues are related to the maintainability
and the hardware it runs on. Furthermore, due to the
need for some customizations, we quickly learned how
important a well maintained software ecosystem will be.
This also includes the language the application is written
in. Another aspect we will have to consider is the scala-
bility and availability at all times (#{4).

For our search of a well-suited software ecosystem we
were quickly able to identify the criteria we think are
most important:

1. Maintainability
2. Written in a widely-used programming language

3. Built with a renowned framework

We will now have a look at our choices for the back-end
and front-end application, and why using these technolo-
gies will not only benefit our reimplementation of CHISV
but also tackle issues that might arise in the future as
requirements may change (#3).

4.2 Back End

When looking at the landscape of server-side frame-
works and programming languages one does quickly
see that two languages stand out: PHP and JavaScript
(Node.js). There are several frameworks available built
with both languages.



4.2 Back End

59

Node.js has seen a strong uptake in recent years due to

its performance (Lei et al.|[[2014]]) and language, which
could also be used for web front-end applications (Tilkov
and Vinoskil [2010]). Having to switch between multiple
languages can be difficult at times. Using one language
for the server-side application as well as for the client
application (front end) can overcome this issue. |Lei et al.
[2014] also found that Node.js is especially suited for I/O
intensive back ends. Given their numbers, we see that
the performance increase in choosing Node.js over PHP
is negligible in our scenario.

Maintainability

Looking into frameworks built using PHP we find vari-
ous solutions, like [CakePHP, |Yii, |Symfony| or Laravel. We
found that Laravel is especially suited. Reconsidering
our three crucial points (see page [58), especially main-
tainability, we see that we have to be able to rely on good
documentation. Furthermore, this also includes good in-
tegration with other frameworks or plugins. We found
that Laravel has great documentation and does also pro-
vide good integration for the features we are especially
targeting. Given that Laravel follows a very strict princi-
ple of how code is organized and how entities interface
with each other, we find that this framework gives us a
solid foundation that can be reliably maintained in the
long run.

Laravel:

Laravel is a free and open-source PHP framework for
creating web applications. It’s intended for the de-
velopment of applications that follow the model-view-
controller (MVC) design pattern. Laravel is using many
of the components of |Symfony and provides a modu-
lar packaging system to extend functionality in vari-
ous ways without shipping with too much overhead for
fresh installations. Laravel provides different drivers
for relational databases and helps with syntactic sugar
and wrappers to streamline development with PHP.

Node.js is fast and

performant

Laravel is best
suited for our
long-term support
requirements

Definition:
Laravel



60

4 CHISV

PHP is the most
commonly used
scripting language
on the internet

Large community

Has all required
functionality already
included

Written in a widely-used programming lan-
guage

We stated that we want to use a framework that is writ-
ten in a widely-used programming language. Laravel is
built with PHP. Recently |[Yadav et al.| [2019] found that
PHP is still the most commonly used scripting language
(82%) on the internet. [Tatroe and Maclntyre| [2020]
found a similarly high number of 79% for March 2019.
We think this is an indicator of it being around for some
more years. Interestingly about 70% of the installations
are using an old version of PHP 5. PHP itself has contin-
ued to improve syntax and functionality with the releases
of PHP 7.24+. We are requiring a minimal version of PHP
7.2 for CHISV.

Built with a renowned framework

Laravel has a very large community (laravel.io) and
there are numerous places to find material to study
(Laracasts, Udemy). Additionally, [Laracon|is the related
conference for Laravel developers. With all that we can
say that Laravel is a renowned framework (#I). It is used
in numerous business-critical environments and has de-
veloped over the years to a very capable and highly sta-
ble platform for server-side application processing. We
noticed there are also many job offerings especially tar-
geting developers with expertise in this framework. Lar-
avel’s ecosystem has many first-party extensions and ser-
vices, which, for example, help with hosting, authentica-
tion, payment processing, or real-time applications.

Laravel utilizes many other smaller frameworks to pro-
vide all its functionality. This includes solutions for job
queues, mailing, notification handling, authentication,
and authorization. Furthermore, with additional authen-
tication extensions, we have the ability to give access to
third-party applications easily. Laravel provides all the
small building blocks a developer would need to build
various applications. While not having to use and know
about them all, they are available should requirements



4.2 Back End

61

change. Given that these tools and features are already
integrated into the framework their compatibility and
stability are far better than if one would have to collect
different frameworks and extensions manually.

4.2.1 Database

Most of our data will be stored and fetched from a cen-

tral database. Laravel uses a highly capable database
model, called Eloquent ORM, which makes it easy to in-
teract with models in an MVC environment. We built
our application on top of a MySQL database. However,
all of the code we wrote is database independent. Any
database driver available in Laravel would be able to
store and retrieve our models. This makes it possible to
move the entire application to a different hosting facility
in the future (#2).

We embraced the way how things are done in Lar-
avel. This means we always tried to go with the frame-
work as long as possible for any functionality. This can,
for example, be seen in database handling. We wrote
database-independent migrationsE] which make it possi-
ble to spin up the application on any other Laravel sup-
ported database without any modifications. Laravel sup-
ports all PHP Data Objects (PDO) compatible databases,
like MySQL, PostgreSQL, SQLite, and SQL Server (see
Documentation).

We are also using the database for session handling for
logged in users and as our queue driver. This enables
CHISV to scale-ou such that multiple CHISV instances
can be run simultaneously as long as they are connected
to the same database. Traditionally one would use a load
balancer (e.g. HAProxy or Nginx) to improve the over-
all reliability and performance of the application by dis-

3A database migration is a small set of instructions to create, alter,
or delete tables in various database implementations.

4Scaling-out (in contrast to scaling-up) describes the process of
providing additional and new instances to handle an increase in de-
mand.

Models built with
Eloquent ORM

Database

independent

Session handling
with multiple
instances



62

4 CHISV

Prevent mutual
execution of jobs

Thin wrapper around
Laravel’s job model

tributing the load among multiple instances (nodes) of
the same application [[Yusuf and Nuhal 2018, [Pramono
et al., 2018]. For this approach to function we had to
make sure that sessions are either accessible to all nodes
or design the application such that it can work in a state-
less manner (. One could for example use ]W“Tﬁ a
concept we will later pick up again when we look at the
third-party client integration.

4.2.2 Job Queue

Laravel uses a queue to schedule jobs and have them
be processed by a queue worker. The queue worker is a
separate process, waiting for scheduled jobs in the queue
by continuously checking for updates. Usually, there are
multiple queue workers per installation (node). Before
a job is executed it is locked to prevent mutual execu-
tion. There are multiple drivers available for the queue’s
store. We chose the database driver to persist our queue.
Hence, any scheduled job is accessible to any node. Due
to the job being locked before execution we ensure that
only one queue worker can process a job at a time.

Our long-running jobs (lottery, auction) are also pro-
cessed by one of the queue workers. Laravel provides a
very simple implementation of jobs, having them vanish
when succeeded. For better UX, we also wanted the jobs
to produce feedback while running, giving the user an es-
timate of how long the job will continue to run. Thus, to
be able to use Laravel’s job queues we had to implement
a thin layer on top of the original job model. We go into
more detail in this in [4.4.2] ‘Job Extensionl’. This allows
us to have a very simple interface for developers to imple-
ment their functionality, yet also provide rich feedback to
the user interface while a task is running.

>JSON Web Token are stateless since they rely on a cryptographic
signature of the server.



4.2 Back End

63

4.2.3 Authentication

Laravel provides great scaffolding for any authentication

and authorization related tasks (see |[Documentation). We
used this to generate all required controllers and to en-
sure that the User model can authenticate with a pass-
word against the login endpoint. Using this approach
configures the Laravel installation to use Cookies for au-
thentication. Cookies are session-based and not suited
for third-party applications. Since our initial aim, to keep
the system maintainable, also includes having the appli-
cation be open for third-party clients, we felt the need to
also provide token-based authentication.

To implement this requirement, we opted for Laravel
Passportﬂ Passport is a first-party extension and devel-
oped together with Laravel. It provides OAuth authenti-
cation and authorization. With the help of this package,
we were then able to also provide token-based (JWT) au-
thentication and authorization to our application (#3).

To interface with the OAuth API of CHISV, one would first
have to request a client_id and client_secret from
the administrators. If the application does not require
an OAuth compliant endpoint, authorization can also be
done via a different endpoint that does not require the
developer to own a client id and client_secret. We pro-
vide a small example for authentication and API access in

“Authenticationl”.

After successful authentication, a client may then inter-
act with any of the available API endpoints (see
“Endpoints|’) the same way our first-party web applica-
tion does. While a single-page application (SPA) is usu-
ally also built to make use of token-based authentication,
we used Cookie-based authentication as this allowed us
to overcome certain security-related attack vectors. Nev-
ertheless, as all authentication is handled by Laravel be-

51t should be noted that Laravel Airlock/Sanctum was not released
when we decided to use Passport. Laravel Airlock/Sanctum would
minimize the footprint for token-based authentication and remove all
the logic of OAuth that is not required for simple client applications.

Laravel’'s
authentication
scaffolding only
provides
Cookie-based
authentication

Add token-based
authentication with

Laravel Passport

Authentication
handled internally by
Laravel independent
of the method

Equal APl endpoints
for all clients



64

4 CHISV

ER model omits
non-essential
attributes and
relations

Uniform vs
polymorphic
relationships

Images have
polymorphic owners

fore the request hits any controller, the implementation
does not have to account for any Cookie- or token-based
authentication. Whenever a request is authenticated,
Laravel will prepare a User object of the currently au-
thorized user.

4.2.4 Model Relations

Laravel makes it extremely easy to link model entities.
Thus, we have specified numerous bidirectional relations
between models. Expressing all of them in an entity-
relationship model would overfill any figure. We made
two simplifications: First, we will focus on a smaller sec-
tion of the application at a time. Second, we have omitted
any non-essential attributes and bidirectional relations.
For example, the User model used to have more at-
tributes than we express in figure 4.1} Since these are
simple attributes and not contributing to any relation be-
tween models, we found it sufficient to only cover at-
tributes that play an important role in connection with
other models.

In our application we made use of simple uniform re-
lations, such as between a User and a Task model but
also connected some models via polymorph relationships.
This can, for example, be seen in the relation between a
User and a Note. Users and assignments (Assignment)
can have many notes. Thus, the Note model has to have a
polymorphic relation to the model it is for. In Laravel this
is accomplished by providing the model id (for_id) and
the model class (for_type). In this example the for_type
of a note would either be App\User or App\Assignment.
Using this approach it is very easy to, later on, extend
notes to be pointing to any desired model. Let’s say we
would have to extend CHISV to also allow for notes on
tasks then this would require no structural change in the
database nor the code.

Our Image model has also a polymorphic relation to its
owner. Images can be owned by a user or a confer-
ence. Furthermore, conferences can have two different



4.2 Back End

65

images, one for the artwork and one for the icon. To ac-
complish the same relation, one could also have created
something like a UserImage and ConferenceImage. We
found this approach to introduce a lot of overhead since
we would have to duplicate a lot of our logic for each
model. As we are strongly focused on the maintainabil-
ity of the entire application we always tried to reuse our
models as much as possible.

Take the State model for instance. It expresses any
state of multiple models and relations. It's used by the
Conference, Permission, Job, Bid and Assignment mod-
els. Every state object combines a name with a short de-
scription. The description explains what the state means
for the object it is attached to. Since we will always re-
turn the associated state object with any resource we
send to the front-end application, we can improve the ex-
perience of the application drastically. Whenever a user
is not sure about the meaning of a state, the description
will try to help clear any confusion (#16). Since the struc-
ture of how such a state object will look like is always the
same, implementing front-end components is getting eas-
ier. To see how the state object is playing an important
role in the user-permission relation, we will now take a
deeper look into the relations between a conference, it’s
users and the associated permissions, which bind those
users to the conference.

Conference, Users, and Permissions

Figure [4.1I] shows our conference-user relations in
CHISV. This figure focuses on the conference and user-
related aspects but leaves out any other relations (e.g.
the Task-Bid relation). A conference may have multiple
users. This relation is defined by a Permission object,
which acts as the mapping model between users and con-
ferences. It is an integral part of CHISV. Any ability and
association of a user is expressed by a Permission ob-
ject (see figure "Permission" at the lower-left corner).
As explained, this object maps users with certain roles to
conferences. Some roles go together with a state.

State model
represents every
state needed in the
application

Permission objects
associate users to

conferences



66 4 CHISV
Note DatabaseNotification Image Conference
+id: Integer +id: String +id: Integer +id: Integer
+ creator_id: Integer | | + type: String + name: String + artwork: Image
+ conference_id: + notifiable_type: String + owner_id: Integer 1 1] +icon: Image
Integer —
+ notifiable_id: Integer + owner_type: String + name: String
+ for_id: Integer . .
+ data: JSON + type: String + key: String
+ for_type: String . . . : ;
+ read_at: Datetime + diskPath: String + location: String
+ text: String . . . .
+ created_at: Datetime + web_path: String + timezone_id: Integer
+ created_at: 1
Datetime n + start_date: Date
n 1 I 1 1 + end_date: Date
User + description: String
EnrollmentForm +id: Integer + enrollment_form_id: Integer
+id: Integer + notes: Array<Note> + state_id: Integer
+ parent_id: Integer + firstname: String + url: String
+name: String + lastname: String + url_name: String
+ is_template: Boolean + email: String + volunteer_hours: Integer
+body: JSON + password: String + volunteer_max: Integer
+ total_weight: Integer + past_conferences: Array<String> + email_chair: Integer
+ permission(): Permission + past_conferences_sv: Array<String> +bidding_start: Date
+ biddi : D
+ user(): User . bidding_end: Date
+ avatar: Image
0.1 n| + bidding_enabled: Boolean
. + bids(): Array<Bid> —<>
n
+ assignments(): Array<Assignment> + users(): Array<User>
! + permissions(): Array<Permission> * assignment§()z
.. Array<Assignment>
Permission
: + permissions(): Array<Permiss
i ntger 1 1 '
n + tasks(): Array<Task>
+ user_id: Integer
1
+ role_id: Integer n
) Role State
+ conference_id: Integer
+id: Int +id: Integer
+ state_id: Integer n 1 1 integer 8
Y— | name: String + name: String
+ enrollment_form_id: Integer
. + description: String + for: String n
+ lottery_position: Integer n
0alt description: String | Task |

Figure 4.1: Relations between conferences, users, permissions, enrollment
forms, notes, and images. We see that a user can have multiple notes, notifica-
tions, and an avatar. A User does also have multiple enrollment forms, permis-
sions, bids, and assignments. A permission has a specific role and is in a certain
state. A conference can have multiple users (associated by a permission), per-
missions, tasks, and assignments. Like the permission model, a conference is in
a certain state.



4.2 Back End

67

Based on our requirements (#7), we have defined four
roles:

¢ Administrator - The user can modify any aspect of
any resource and can grant and revoke any permis-
sion.

* SV Chair - The user is a member of the SV Chair for
a specific conference. This role allows granting the
"Day Captain" permission and to modify any aspect
and resource about the conference it is bound to.

* Day Captain - This role is usually granted only for
a few days and allows the user to modify assign-
ments of SVs and to edit tasks. However, modifying
an SV’s enrollment state is not possible.

¢ Student Volunteer - The user is associated with
the conference as an SV, can bid on tasks and check
the calendar for any assignments.

To express an SV’s current state of enrollment we also
defined four states:

* Enrolled - The user is enrolled and waiting to be
accepted, waitlisted, or dropped

¢ Accepted - The user is accepted to the conference
as SV

* Waitlisted - The user is waiting to be accepted
when other SVs are dropped

* Dropped - The user has been manually dropped
from the conference

When users register with CHISV they have no permis-
sion object at all. While the SV Chair role (2.) has
to be manually granted by an administrator to a user,
the SV role is created as soon as a user enrolls for a
conference. A user with the SV Chair permission can

"SV Chair" and "Day
Captain" only get
assigned manually



68

4 CHISV

Enrollment forms

can be modified

(like the administrator) grant or revoke Day Captain per-
missions to or of a user. Figure [4.I] shows the rela-
tion of a role to a permission object. Any permission
has to have a reference to a user (user_id) and a role
(role_id). We left the relation to a state object op-
tional (state_id) since only permissions with the "SV"
role need to express a state. The same is true for the rela-
tion to a conference (conference_id) and the enrollment
form (enrollment_form_id). A reference to the confer-
ence is not needed in the case of the "Administrator" role
and Enrollment forms can only exist for permissions ex-
pressing the "SV" role.

For the user to be able to enroll for a conference, the
conference has to be in a certain state. We have defined
five states for a conference:

* Planning - The conference is invisible for users
without an associated "SV Chair" or "Day Captain"
role. This state allows for setting up the conference
with details and images before it is opened for en-
rollment.

* Enrollment - The conference is open to the public
for volunteers to enroll. During this phase, any SV
can unenroll or edit the enrollment details.

* Registration - Volunteers can no longer enroll.
SVs have been accepted, notified, and are now re-
quired to register for the conference.

* Running - The conference is taking place and tasks
are given out to SVs.

e Over - The conference is over and has the same
visibility as in the "Planning" state.

Bids (Bid) and assignments (Assignment) are, other then
an enrollment form, directly bound to a user. They ex-
press their relation by an user_id attribute. The enroll-
ment form is also associated with a specific user, which
is done by using the permission object as a proxy. This
way we can also ensure that a user has to have the "SV"



4.2 Back End

69

role for a specific conference to be able to have an enroll-
ment form (#22] see enrollment_form_id on Permission
model). The enrollment form can be customized on a per
conference basis (#23). Any SV who has enrolled can
still edit the enrollment form as long as the conference is
in the "Enrollment" state (#27).

Users of CHISV have access to all notifications that have

been sent through the system (#49). These are repre-
sented as DatabaseNotifications. A user may have an
arbitrary amount of notifications — or none at all. Each
notification is marked read when the owner reads it by
setting read_at to the current UTC date (#52). The con-
tent of the notification is stored in the data attribute as a
JSON string. We use this data attribute to render an op-
timized version of the notification based on the channel
it is delivered over.

To do this, we have split the information into subject,
greeting, valediction, and a message elements array. This
array can consist of multiple markdown message pieces
and one call to action button. Laravel can send special
call to action e-mails. It ensures that the button with
the primary action is always correctly displayed, even in
text-only e-mails. Since we have separated the notifica-
tion’s message data into multiple entities, messages can
be displayed more efficiently (see figure |4.18).

CHISV can deliver notifications as e-mails and through
the internal messaging system (#51] #54). However,
Laravel also supports delivering messages over addi-
tional channels, like Slack, Telegram, or SMS. When we
consider SMS, for instance, we see a need to limit the
transmitted characters to a minimum. In this example,
we could only send the call to action and prevent any
unnecessary content (greeting, valediction). Having this
additional information (like URLs) already stored in a
computer-readable format (rather than plain text), we
can also make use of additional API features of Slack or
Telegram when delivering messages via them. We could,
for instance, render a button and improve the user expe-
rience (UX) by not making the recipients scroll through a
long text with non-clickable URLs.

All sent messages
are visible in the
internal messaging
center

Store subject,
greeting, and
valediction
separated from the
actual content

Seperating the
content of a
notification helps
when working with
different channels



70

4 CHISV

Notification system
is extendable to
allow notifying any
kind of ressource

Polymorphic note
system for
assignments and

users

Need to limit access
to notes

We implemented the default notification handling, which
is provided by Laravel (see [Documentation). This scaf-
folds the required table, model (DatabaseNotification)
and controller. However, this enables any model that
uses the Notifiable trait to own and receive notifica-
tions. This helps with our goal of keeping the CHISV
system open for changes and new requirements in the fu-
ture. One could, for example, add notifications for groups
of users (e.g. Day Captains), rather than having to send
notifications to each group member manually. We will
go into more detail about the notification system in[4.4.7]
“Notifications and Reports|’.

In our second iteration (see [3.3] {Second Iteration]’) we
used the feedback we got from SV Chairs and other user
groups of the application. In particular, our attention
was drawn to the ability to store short notes associated
with assignments. This feature was requested by the SV
Chairs of CHI 2020 during the interviews we did (#47).
As we explained in [£.2.4] {Model Relations!’, we used a
notes model with a polymorphic relation to its owner
to implement this requirement. Since we were also fo-
cused on extendability for future requirements, we took
the chance and extended this requirement to also cover
notes on SVs. While we will focus on notes on assign-
ments later in [4.2.4] [Tasks, Bids, and Assignments}’, we
will now take a look at how we designed the notes model
to also cover an additional need for data privacy when
associated to the user model.

Notes on SVs (which are User models) can be created,
viewed, and deleted by the SV Chairs and Day Captains
of a conference. We quickly saw the need to limit access
to a specific note to the conference in which context it
was created. We cannot prevent an SV Chair member
or Day Captain to create a note containing negative im-
pressions about an SV. We can, however, ensure that this
information is contained and only visible for SV Chairs
and Day Captains of the conference in which context it
was posted in. As the SV can enroll for multiple confer-
ences over time, we think it is best to not show internal
notes that were created associated with an SV at other
conferences. This might negatively affect the SV selec-



4.2 Back End

71

tion process of conferences in the future. Thus, we saw
the need to associate any note to a conference.

A note that is bound to a specific assignment can be
easily mapped to a conference. The assignment has a
relation to a task, which again belongs to a conference.
We check if the accessing user is an SV Chair member or
Day Captain for the conference and grant access. A note
that is associated with a user had no further association
with a conference in the early design we approached. We
introduced a relation to a conference, which is expressed
via the conference_id on the Note model. This allows
us to only show notes on the "SVs" view (see figure [4.3)
which have been created in the context of the currently
selected conference. For notes on assignments we won't
need this additional relation, thus leave it unset.

Tasks, Bids, and Assignments

Apart from conferences and users one of CHISV’s in-
tegral features is the ability to manage tasks, bids, and
associated assignments. Each task is bound to a con-
ference via the conference_id attribute (see figure [4.2).
While a conference may have many tasks, one task can
only be assigned to one conference. Tasks themselves
have relations to bids, assignments, and the associated
users. The users are not directly connected to the task
but rather through the assignment model. Since a task
may have multiple assignments there can be multiple
users assigned to one task.

There may also be multiple Bid objects associated to one
task and one user via the task_id and user_id attributes
on the Bid model. Bids and assignments are in one spe-
cific state.

Using an additional
relation to the
conference for
enhanced privacy

Tasks are bound to

conferences

Bids have five states



72 4 CHISV

Task Assignment
+1d: integer +1d: Integer <
] + conference_id: Integer Ll task_id: Integer !
+ name: String L user_id: Integer
+ description: String J> + state_id: Integer
+ location: String + hours: Float
+ date: Date
+ start_at: Time
+ end_at: Time Note
+ priority: Integer +id: Integer
+ slots: Integer [+ creator_id: Integer
+ hours: Float + conference_id: Integer n
+ assignments(): <1>_ + for_id: Integer
Array<Assignment> . + for_type: String
+ bids(): Array<Bid> < + text: String
+ users(): Array<User> + created_at: Datetime
n
! n o .
—< Conference User S Bid
! +id: Integer
State ! ML+ user_id: Integer
1 n
+id: Integer + task_id: Integer
+ name: String + preference: Integer
+ for: String + state_id: Integer
+ description: String + created_at: Datetime

Figure 4.2: Relationships between tasks, assignments, and bids. Each task is
bound to a conference via the conference_id. A task may have multiple assign-
ments and bids. Both are bound to the task via the task_id property. A bid and
an assignment are furthermore also bound to a user via the user_id attribute.
Both models are in a certain state, associated via the state_id value. An assign-
ment may have notes. These are, on the one hand, linked to the assignment via
the for_id and, on the other hand, to the creator (creator_id). The Note model
also features a conference_id attribute, which is used to limit the visibility of
notes on users for SV Chairs and Day Captains.



4.2 Back End

73

We have defined these five states for bids:

* Placed - The bid was submitted by the volunteer
and will be evaluated by the auction.

¢ Successful - The bid won the auction. An assign-
ment was created.

¢ Unsuccessful - The bid did not win the auction as
all slots for the associated task are already filled.

¢ Conflict - The bid was skipped due to a time con-
flict with another task.

¢ Unavailable - The bid was skipped since it signals
SV’s unavailability.

For assignments we adopted the states from the previous

version of CHISV (see[2.1.7]| {Assignments|’):

* Assigned - The assignment is scheduled. The SV is
currently not working on the task.

¢ Checked-In - The SV is working on the task at the
moment.

¢ Done - The task has been completed by the SV.

These states are expressed by pointing to the desired
state via the state_id property on the assignment or
bid. Keeping track of the states allows the volunteer to
precisely understand how many hours have already been
completed and why a certain bid might not have yielded
an assignment. Improving transparency and explaining
the algorithms was one of the requirements of SV Chairs

and volunteers (see #33] #42]and #46).

Assignments can be created manually or automatically
by the auction (see [4.4.4] {Auction’, #43). The auction
will use two key attributes for each task: Priority and
slots. The priority can be one of three options, which
are internally stored as a number: "Low" (1), "medium"

Assignments can be
in one of three
states

State helps SVs to
understand the
situation better

Priority of tasks



74

4 CHISV

Slots express how
many volunteers are
needed for the task

Assignments can
have notes

Using notes on
assignments to give
an additional
explanation of a
change

(2) or "high" (3). A priority of "low" would be chosen for
tasks that should be filled by the auction but are not as
important as tasks with preference "medium" or "high".
Since tasks with "high" (then "medium") priority are pro-
cessed before any "low" priority task is evaluated (#{44),
it can happen that these tasks cannot be filled with vol-
unteers. This means that all available volunteers have al-
ready been assigned to tasks with higher priorities. This
is very likely to happen when tasks with a higher priority
have many slots.

The amount of volunteers needed for a task is expressed
by the slots attribute and stored as a number on the task
model. This number expresses how many volunteers the
SV Chair thinks are required for this task. While a task
may be manually under or overfilled, the auction will re-
spect the precise value. An option for expressing a min-
imum, desired, and maximum amount of volunteers (like
SIGCSE's application, see[2.2.4] ‘{Scheduler}’) was not im-
plemented and may be re-evaluated for future develop-
ment with an adjusted set of requirements.

We looked at notes on users earlier in this chapter. Just
like users, assignments may also have notes (see figure
[4.2). We incorporated this feature (#47) in the second
iteration. It was part of the feedback from SV Chairs of
CHI 2020 (see “Second Iteration|’). SV Chairs and
Day Captains can create notes on assignments on the
"Assignments" view (see figure [4.3). These will be shown
on the detail view of the SV on the "SVs" view and are
only visible to SV Chairs and Day Captains. Another hint
to the note will also be present on the assignment itself
on the "Assignments" view.

Usually, Day Captains use the note-taking system to let
the SV Chairs know about some specific change concern-
ing the assignment. This can, for example, be that the
SV did work for more hours than scheduled. While the
hours can be easily adjusted on the same view, a note
may help to understand why the change had to be in-
troduced. While the Note model has a conference_id
attribute to reference the conference on which this note
is visible, this attribute is only used for notes on users.



4.3 Front End

75

Notes on assignments do not require the conference_id
to be set since the conference can be referenced from the
assignment-task-conference relation.

We now know about the user-conference relation and
learned that it is expressed through a permission object,
which binds together user and conferences with a cer-
tain role and state. Just as relevant as the structures
we build to handle user-conference associations is the
domain of task-conference management and assignment
accounting. We saw how tasks are bound to conferences
and how the relation of assignments and bids enable the
application to keep track of which SV is assigned to which
task and how many hours have been completed. We also
saw how the note-taking system for assignments and vol-
unteers enabled more efficient communication between
Day Captains and SV Chairs.

With all this background knowledge we can now shift our
attention to the front-end application. For most users
interacting with the application, the front end "is" the
application. They don’t know about all these back-end
structures, and little do they need to.

4.3 Front End

4.3.1 Frameworks

As we have seen in ‘Back End"” we are using Lar-

avel for our back-end logic. Laravel also brings con-
cepts to the table with which one can create user inter-
faces for the web. With Laravel, web pages are defined
in plain Hypertext Markup Language (HTML) utilizing
Blade templates (see [Documentation). Each URL path
(route) would usually be matched to a template view by
a controller handling this specific route. It would then be
the responsibility of the controller to prepare the Blade
view and fetch any required data from the data store/s.
Blade templates (views) provide much functionality one
could hope to find for implementing large applications.

Summary of

back-end logic

Laravel Blade
returns static,
pre-filled websites to
the client



76

4 CHISV

Server-side

rendering

Returning
server-side rendered
websites requires
the user to interact
with the Ul to induce
changes

We started
development with
Vue.js

This includes branch logic (if/else) and markup for iterat-
ing through data structures (for each/while). Since each
Blade template is also a valid PHP document, even more
advanced logic could be inlined. Usually, this would be
moved to the controller and only passed to the view.

It is important to notice that these views are generated
and prepared server-sided. Any data that hits the client’s
device is already formatted (sorted if required) and will
only be parsed and rendered by the browser. Without
the use of any additional front-end framework, we would
get a static website for any request we make without the
need to sort, filter, or manipulate results in the client’s
browser with the use of JavaScript. The returned result
only consists of plain HTML markup, which can be inter-
preted by any browse

Laravel does not dictate which front-end framework the
developer uses. In fact, none may be used at all. Given
these techniques, one can build an application that re-
quires no JavaScript on the client’s end device. All Blade
templates are filled with the desired HTML elements
based on the request on the server-side. This approach,
where we pre-render each view server-sided, is with re-
spect to the current state of JavaScript and it’s adoption
in the web (Wirfs-Brock and Eich! [[2020], [Eich| [2005]]) a
rather conservative approach. It follows a request flow
where data is retrieved only when the user interacts with
the interface. While, over the years, we have seen a lot of
improvement by enhancing the underlying components,
like HTTP (Grigorik! [2013]], |Stenberg| [2014]], Yamamoto
et al.[[2017]]), the control flow remains the same.

When we started development on CHISV we were using
Blade templates. We noticed in the very beginning that
we would need to use a front-end framework that can
handle changing form factors of end devices and pro-
vide generally improved responsiveness (#15] to
users interacting with the graphical user interface (GUI).
Since Laravel and it’s community provides great support
for Vue.js (#]1), we settled for Vue.js for our front-end

"We expect that the template does not contain any modern HTML5
or advanced CSS, which would again limit the compatibility.



4.3 Front End

77

framework. Our Laravel installation (pre 7.0) also came
with the popular UI framework Bootstra However, we
opted to use a different Ul framework, which we will
present later.

Vue.js:

Vue.js is an open-source and community maintained
model-view-viewmodel JavaScript framework. It helps
with building user interfaces and single-page applica-
tions (SPA).

We see Vue.js’s approach for reactively updating the
Document Object Model (DOM) perfectly fitting our re-
quirements for a reactive UI (#15). Furthermore, re-
evaluating our three crucial points for choosing a back-
end and front-end framework (see [4.1] {Overview]’) we
noticed that Vue.js is one of the most popular front-end
frameworks of the time, standing right next to Angular
and React (Medium.com)). At its core, Vue.js focuses on
only keeping the UI in sync with the data model. Thus, it
provides a very shallow learning curve, which helps with
keeping the application up to date and maintainable.

Bulma:

Bulma is a free and open-source Cascading Style
Sheets (CSS) framework based on Flexbox. It contains
HTML and CSS based design templates for typogra-
phy, forms, buttons, tables, grid systems, navigation,
and other surface design elements. Bulma’s appear-
ance can be customized via SASS to create a distinct
look.

With Vue.js we found a valuable framework to help with
keeping our Ul in sync with our data models. As we also
intended to provide great support for different form fac-
tors, we picked a Ul framework appropriate for this task.
We chose Bulma (Documentation)) as it is detached from
any design trends, keeps the markup clean and gives us
a lot of space to craft a distinct look for CHISV. Bulma

8A fresh Laravel 7.0+ installation will no longer pre-install Vue.js
and Bootstrap.

Definition:

Vue.js

Definition:
Bulma

Bulma as CHISV's Ul
framework



78

4 CHISV

Binding Vue.js and
Bulma with Buefy

Definition:

Buefy

Buefy provides great
table components
with lots of space for
customization

Persist Ul state

during page loads

does not dictate any JavaScript framework and only con-
centrates on providing the CSS markup to create a re-
sponsive Ul with a modern look.

As Bulma does not ship with any JavaScript, it inte-
grates very well with Vue.js. One can use plain HTML
and decorate the elements with Bulma directives. Since
we are using Vue.js we can use a wrapper around Bulma,
called Buefy (Documentation), to integrate its features
into Vue.js and greatly improve responsibility.

Buefy:

Buefy is a user interface component library created on
top of Vue.js and Bulma. Buefy can be seen as the
JavaScript layer for Bulma. It extends Bulma design
by integrating reactivity and bindings to Vue.js while
respecting both frameworks’ design principles.

We chose Buefy as it provides a very feature-rich and
responsive table user interface component. CHISV is
mostly about organizing resources (like tasks, users, or
assignments) inducing the need to handle multiple rows
of data. We found that especially Buefy’s approach of
responsive and intuitive integration of table components
was a perfect fit for CHISV. It can not only display, sort,
and filter data that is present in the DOM but also asyn-
chronously fetch more data from a back-end service. This
became inevitable to handle a large set of tasks or SVs
where we use pagination to only show and display a small
subset of data for each page. Yet, the user can make the
assumption that all selectable rows are available and al-
ready loaded — while in reality, they are fetched from the
back end on request.

Our initial approach towards the reimplementation of
CHISV was based, as we presented earlier, on a request-
driven approach where any major interaction with the UI
would trigger a page load in the browser. While Vue.js ap-
plications can contain and hold a certain state and data
when loaded and used in the client’s browser, a page re-
fresh or navigation triggers an entire page load. During
this reload, the Vue.js application is stopped and then



4.3 Front End

79

started again once the new page finished loading. Any
data or state that may have been present on the previous
page is lost as a result of the page load. To counter this
issue, we integrated Vuex into our application to hold any
data and UI state that we want to persist.

Vuex:

Vuex is a library bringing the state management pat-
tern to Vue.js applications. It provides a centralized
data store for all components of an application. As
Vuex is a first-party plugin for Vue.js, it integrates with
the official Vue.js development tools and allows the de-
veloper to inspect, backup, or restore certain states of
an entire application.

We equipped Vuex with the plugin "vuex-persistedstate"
(Documentation) which persists and rehydrates the Vuex
state store between page reloads. The Vuex store is
stored as JSON in the browser’s local storage. This al-
lowed us to have a persistent appearance of UI compo-
nents between any navigation, which was done by a user.
This included search inputs, tab, and dropdown selec-
tions or a shortcut to the last viewed conference.

Earlier we have been talking about Laravel’s Blade tem-

plate system and how we initially used it for CHISV to
render out our views. During the course of development,
we noticed that to fulfill our requirement of accounting
for weak or limited connectivity (#20), we were forced
to redesign our request handling approach. From our
interviews in 2019 (during CHI 2019, see [3.2.1] ‘{nter
[views]’) we got an insight into the available connectivity
volunteers and SV Chair members might encounter when
on-site.

While the connection might be good in most places on-
site, we saw the need to also consider that the volunteer
might have bad connectivity at the hotel or hostel. 70% of
all 69 volunteers told us that they are bidding on tasks on
hotel or hostel WiFi. Furthermore, we learned that 25.4%
of all volunteers were also interacting with the bidding
system while commuting (bus, train, or subway). Even

Definition:

Vuex

Persist Vuex store to
browser’s local

storage

Surveys help
understand

connectivity issues

Connection quality
might fluctuate



80 4 CHISV

more, 38.8% noted that they were using the system while
walking in an open area. With these numbers, we noticed
the clear need to also design the application and how re-
quests to the back end are made in a fail tolerant way. To
implement this, we need to abandon the request-driven
approach, which Blade’s template system offers, and in-
stead use an approach where we can use JavaScript code
in the front end to update the Ul accordingly. This would
then also allow us to provide richer feedback in the case
of a failed request.

Conversion to To accomplish this, we reverted our Blade view to a bare
single-page minimum where one view would only return the Vue.js
application Javascript bundle. The entire front-end application would

then run in the user’s browser while already incorporat-
ing all views of the application. This approach is called
single-page application or SPA.

Single-page application:

A single-page application (SPA) is a web application that interacts with the
user’s input by dynamically rewriting the active page rather than loading
entire pages from a web server. As there are no requests necessary to
fetch the structure (user interface) of the requested page, the application
avoids interrupting the user experience between page load, creating a more
responsive experience similar to a desktop application.

A SPA fetches only the desired data from a back end and dynamically
adds it to the application’s views. The page does never reload at any time,
nor does the actual page in the browser change. Modern SPAs can, however,
alter the browser’s URL to make it look like a different page is being viewed.
Overall this approach can minimize network load and provides numerous
ways to more precisely control the user’s experience.

Minimized network As our application is now a SPA it only needs to talk to
requests the back-end service to fetch new data. Rendering the
according view and presenting it to the user is handled
entirely by Vue.js and does not require any interaction
with the back end. By this, we drastically limit the num-
ber of requests to the back end, while also minimizing

the transferred data.



4.3 Front End 81

h

Access SV

Navigation (always visible) i 1
See and modi .
FAQ All personal Ll Calendar B Notifications
Conferences details users Jobs

Choose conference View SV Appear

Appear

Select SVs as recipient

Conference specific view I v
Enroll and Conference A Generate Send

Figure 4.3: CHISV’s user interface structure: After the users logged in, they
are greeted with the conference selection. Selecting one specific conference will
drop the user into the conference-specific view where one can interact with the
resources of the conference. Grey boxes Ml denote views that can be accessed
by any registered user. Bordeaux boxes M present views visible for SV Chairs
and Day Captains. Violet boxes Ml mark the views that are shown to SVs.

This helps us in case of weak connections (#20) and also Provides new ways
enables us to provide a much better user experience. For to enhance UX
instance, we can show distinct loading indicators before

we actually proceed to load a view to the DOM and can

also provide a much better explanation in case of a back-

end timeout. As views won’t have to be loaded from the

back end, the entire application feels more responsive to

the user. For example, a view can be shown even before

any data is present. We can then use skeleton elements

to visually hint where data is going to appear — without

having even talked to the back end.

4.3.2 User Interface Structure

Register
To be able to access the application, users have to reg- Using CHISV
ister first (see figure [4.4). Without a valid login, no page, requires an account

except the authentication and register pages, can be ac-



82 4 CHISV

Sign up
Firstname Lastname
Jacob Smith
E-Mail (use an institutional address)
milton@cs.rwth-aachen.de

Languages

German X  English X
Home Country

Germany v Aachen

University

Rheinisch Westfélische Technische Hochschule Aachen

Preferred locale

English (United States) v
Degree program T-Shirt
Master v Straight cut, size L v

Past conferences you have attended

CHI2019 X CHI2020 X

Past conferences you have attended as SV

CHI2019 X

Password Confirm

................ ©® TTTTITITTIT T ©®

Figure 4.4: New volunteers, which have no account yet, need to register and
provide some personal details to use CHISV. We collect personal details like the
full name and e-mail and are also asking for the spoken languages, the asso-
ciated institution as well as the home country. To present dates in the user’s
appropriate format we collect the preferred locale. To get the SV Chairs the
required details, we also ask for the T-Shirt, attended conferences, and the cur-
rent degree program. Lastly, the user needs to set a password to use with the
new user account at CHISV.



4.3 Front End

83

MobileHCI 2020
Registration

Sign in to CHISV

Forgot Your Password?

No Account? Sign up

Figure 4.5: CHISV’s Login: An image carousel shows
currently open conferences the user can enroll for or bid
on tasks.

cessed. The registration process collects some details
about the user, which is required to create the account
and make it uniquely identifiable. This info will later
also be used by the SV Chairs to selectively accept volun-
teers with special criteria. Users can later always update
the provided details at the personal profile (see "See and
modify personal details" in figure 4.3).

Login

When users have created an account they can log in.
CHISV’s login page greets the users with an image
carousel of currently open conferences (see figure [4.5).
This way the users who have no account can quickly ver-
ify that they are on the correct website. After logging
in, we use a Cookie to store the session such that our

CHISV uses Cookies
for authentication to
prevent leakage of
the session



84

4 CHISV

Some views and
features are only
visible and
accessible for
certain users

Entering a
conference by
selecting it in the

overview

Enrolling is required
to see other SVs and
to bid on tasks

SPA can always make requests to the back end as the
browser automatically appends it. This approach has the
benefit that we are protected against Cross-site scripting
(XSS) attacks as the JavaScript SPA cannot retrieve the
Cookie and thus cannot leak it. We go into more detail on
this in [4.4.1]| {Cross-Site Scripting (XSS) and Cross-Site-|
[Request-Forgery (CSRF) Mitigation/”.

After the login, the user can always refer to the navi-
gation bar at the very top of the page. From there the
user may jump directly to different parts of the applica-
tion (see "Navigation" in figure [4.3). Based on the user’s
roles, different parts of the application are accessible. A
student volunteer would, for instance, not be able to see
the "Background Jobs" queue. Some views, like the "All
Conferences" view, may be accessible for all users but
will reveal less or more information based on the role the
user has. An SV Chair member can, for example, see the
own conference, which is in the "Planning" state. The
same conference would not be shown to SVs even if they
can access the "All Conferences" page.

Navigation within a conference

After a user has entered a specific conference by se-
lecting it in the "All Conferences" view, the application
will present all conference-related features in the main
content area. The navigation bar stays visible all the
time. We introduced an additional navigation level where
the user can view different aspects of the conference by
changing the active tab (see figure [4.6).

Before student volunteers can fully interact with the con-
ference, they need to enroll for the conference on the
"Overview" tab (see figure . This will require them to
answer a few questions, which later on help SV chairs to
optimize the SV selection. For example, SV Chairs could
be interested in accepting at least a bunch of volunteers
who are local to where the conference is. This might,
later on, help to tackle issues related to the location. We
will take a look at custom enrollment forms later in



4.3 Front End 85

chisv Conferences Calendar FAQ CHI 2020 _ Jacob v

A " :

’-" CHI 2020 Runn Bidding open 2
Honolulu, Hawai‘i, USA | May 22, 2020 - May 28, 2020 <hi2020.a0m.on
svchair@chi2020.acm.org g -org

Overview SVs Tasks

I 22.5.2020, 23.5.2020, 2 10:00 AM - 6:00 PM capta C] Only my tasks C Reload
: Columns
Unavailable ~ Low  Medium m 2 Date Starts v Ends Hours Name Location
1 Unavailable Medium  High 5/28/2020 3:00PM  530PM  02:30 Plenary Team Captain Kalakua Ballroom
Unavailable Medium  High 5/28/2020 2:00 PM 5:30 PM 03:30 Plenary Rehearsal & Plenary Team Captain
Unavailable Medium  High 5/28/2020 12:00PM  6:00PM  06:00 Day Captain
Low  Medum  High 5/27/2020 12:00PM 6:00PM  06:00 Day Captain

Low | Medum | High 5/26/2020 12:00PM  6:00PM  06:00 Day Captain

Unavailable [EI Medium  High 5/25/2020 12:00PM  6:00 PM 06:00 Day Captain

Unavailable | Low m High 5/24/2020 12:00PM  6:00PM  06:00 Day Captain

Unavailable | Low | Medium m 5/23/2020 12:00PM 6:00PM  06:00 Day Captain

9 tasks matching criteria

I Unavailable | Low m High 5/24/2020 12:00PM  4:00PM  04:00 Day Captain

chisv  Conferences Calendar FAQ Users System v  CHI 2020 _ Jacob v

*

'-" CHI 2020 Runnii Bidding open x
Honolulu, Hawai‘i, USA | May 22, 2020 - May 28, 2020 <hi2020.a0m.0n
svchair@chi2020.acm.org b .0rg

Overview SVs Tasks Assignments Conference Notify Reports

I 22.5.2020, 23.5.2020, 2 10:00 AM - 6:00 PM capta Priorities 3/3 ~
I ete all Tasks of the selected days

i Columns

Manage Date Starts Ends Hours Name Location Slots Priority
5/28/2020 3:00 PM 5:30 PM 02:30 Plenary Team Captain Kalakua Ballroom 1 1
| 5/28/2020 2:00 PM 5:30 PM 03:30 Plenary Rehearsal & Plenary Team Captain 1 1
5/28/2020 12:00PM  6:00 PM 06:00 Day Captain 2 1
5/27/2020 12:00PM  6:00 PM 06:00 Day Captain 2 1
5/26/2020 12:00PM  6:00 PM 06:00 Day Captain 2 1
I 5/25/2020 12:00PM  6:00 PM 06:00 Day Captain 2 1
5/24/2020 12:00PM  4:00 PM 04:00 Day Captain 1 1
I 5/24/2020 12:00PM  6:00 PM 06:00 Day Captain 1 1
‘ 5/23/2020 12:00PM  6:00 PM 06:00 Day Captain 2 1
‘ 9 tasks matching criteria

Figure 4.6: Comparison of the task view for SVs (top) and SV Chairs/Day Cap-
tains (bottom). The Ul adaptively shows and hides the required UI components.



4 CHISV

86

*(3ybr1) maia Aep pue ‘Yoom ‘YUOW YHMm

Jepusled ayj} pue ‘(a[pprwr) seouaiajald yiim Burppiq yqsel ‘(3Jo]) WLIOJ JUSWI[0IUS S[qRZIW0lISnd 9y} burtemsue Aq 90uo
-I9Ju09 ® 10J Bul[[oIuy :SAS J0J S9INJLdJ PAsN }SOW 991U} 9} BUIMOYS SI99IUNOA JUSPN]S 10] MIIA I[IGOIN :L°F dInBI]

J101u3 pue 3316y

:9INQLIUOD UBD | JeyM SEap] aWos 06 osje
oA iJeak sy} AHuUnwWWod AS a3 jo 1ed aq o} pajoxe Jadns w|

:90UB13JU0J S} 1B AS UE 8¢ 0} Juem nok Aym ure|dxs ases|d

ozo

(0ua1aju09 8y} Jo A13UN0d 8y} 1oy
weiboid 1oAiem YSIA B 10) 9]q1612 818 NOA JI OU JOMSUR) (80UBIBJUOD
SIY} pualie 0} Japlio Ul esIA [9Ael) e Jo) A|dde o) pasu nok og °

[+ F =]

£210§3( SOUBIBJUOD SIY} 1B AS U Ud3Q NOK dABY Sawi} Auews MoH

|

[uozawi}

MalA siy1 10X SUOINEOO| J1aY) Ul pake|dsIp e S)UsAT

urerden
00:12 feq
00:02 uterded
feq
00:61 weiden
. . 00:8L feq
SL6L-SLiLL
uieyde:
0953048 oL leyden
feq
00:9L
sweN
00:5L
00:7L
00:€L
00:ZL
00:LL
00:0L
00:60
00:80
00:£0
00:90
(¥) 020Z IHD fep v
< Avaor 0202 ‘415z AeW Aepuopy >
o Keq PEETVY YIUON

|

a abedsad 1 son g
¢1eak siy} aq [|Im 90UBIBJUOD B} B13YM O} [220| NOk 81 @)
0z0z/L2/S

Wd :suonsanb Buimo||o} ay1 Jomsue ases|d
00:ZL  020Z/92/S UBH - paw Mol
WV 00:£ 0202/L2/S ubIH E M1 | X [ 51N ‘6L0ZIHO B X 8LOZONW X  6LOZIHD
AS Se pep aAey nok JU0D 15Bd
WV 00:£  0202/92/S E PW | Mol | X
v suelg oleg & WM P w1 X 5L0ZIHO B X 020ZIHO X  6LOZIHO

aAey nok JUO0D ISBd

a1ay 1ybu ajiyoid 1nok wouy spiay oml asay) isnipe Aew nox

-a1ep 01 dn ||iis a1e 9a168p pue 8ziIs HIys-| 31|

suwnjo) 3 saouasayald Jua1Ino ay) Ji 9|yoid INOA 3408y 0} JusWOW € 3)e) 8ses|d

a lloauz

sysey hw Auo ()
90UB19JU0D SIYl Ul Pa||0JuD 10U 3l NOA

Ui}y 0202'S°£Z '0202'S'92

SYSBl  SAS  MIIAIRAQ SYsel  SAS  MIIABAQ

B0 woe gzozIyo 610 woe 0zozZIYodIBYoAS
020 ‘82 ke - 0202 ‘2Z ABIN | ¥SN ‘l,1leMEH NnjouoH

610°woe'gzozIYd bio woe gz0zZIYI@IIBYOAS
020z ‘82 ke - 020z ‘2z Ae | vSN ‘I,lemeH ‘ninjouoH

hald

—

GIZD 0202 IHO ¢

uado Buppig



4.3 Front End

87

‘ICustom Enrollment Forms/”.

After enrolling, SVs can unenroll as long as they have
not been dropped from the conference (#28). They will
be greeted with their current enrollment state whenever
visiting the "Overview" tab. After unenrolling, they could
re-enroll as long as the conference is in the "Enrollment"
state.

To be able to see other student volunteers on the "SVs"
tab the volunteer has to be accepted first. This can ei-
ther be done manually or automatically when the enroll-
ment phase ends and the lottery is run by the SV Chair.
Accepted SVs can then also see other SVs, their name,
university, and home country.

SVs

The "SVs" tab will list and show all associated student
volunteers. Based on the permissions and roles of the
currently authenticated user, we adapt the available in-
formation dynamically. For SVs, the view features a sim-
ple table with every other volunteer’s name and home
country. This view will present a lot more detail for SV
Chairs and Day Captains.

They can see every important detail about any SV by
clicking on the table row. This will expand the row for
the selected user to show:

* Key profile details - E.g. all spoken languages and
the current degree program

¢ Assignments - Shows accounted hours and any as-
sociated note

* Notes - Lists all notes posted for the user or on
associated assignments

¢ Bids - Shows all bids placed by the user including
their state (e.g. "Won" or "Conflict")

Unenroll as long as
not dropped

Only see other SVs
when "accepted"

Information is
limited for SVs

Shows certain
details about a

volunteer



88

4 CHISV

Sort and filter
columns

Changing SVs’
enrollment state

Submit new form
weights

* Notifications - Any notification that has been sent
to the user will be listed here including the time the
message was read

* Enrollment Form - The complete enrollment form
with all answers

» Statistics - Shows the number of completed hours,
placed bids, and all assignments

While most of these sections are just presenting facts,
SV Chairs and Day Captains may post or delete notes
for the volunteer at this place. The lists showing assign-
ments, bids (#37), notifications, and notes can be sorted
per column or searched for a specific occurrence (e.g.
date). Furthermore, SV Chairs will have the option to
look into posted notifications of the user and the active
conference.

The "SVs" view is also the place where SV Chairs can
manually drop, accept, or waitlist volunteers (#6] #30).
This is independent of the lottery, which can always be
run to fill the conference with waiting ("waitlisted") or
new ("enrolled") SVs. Since we have implemented cus-
tom enrollment forms (see [4.4.5] ‘Custom Enrollmenti]
[Forms]’), we also made the evaluation of enrollment form
questions possible from this view.

An SV Chair member can submit new weights for each
custom enrollment form question and by doing so update
the column "Weighted form" for each SV on this "SVs"
view. While we will better understand this process when
we later take a deeper look at it, we can now think of this
value as a "best suited" index. SV Chairs will have the
possibility to sort by this column and then modify the en-
rollment state of the most suited SVs (according to their
submitted weights). While this is most commonly used
for accepting SVs, it can also be used to waitlist or drop
volunteers.



4.3 Front End

89

Tasks and bidding

Another tab that is available for SVs is the "Tasks" tab
where volunteers can bid on tasks after selecting the de-
sired day, time, and name filter (#34] #39). SV Chair
members and Day Captains can use the same view to
modify tasks. The interface adjusts dynamically based
on the roles the user has. In figure one can see
the differences in the "Tasks" view between SVs and SV
Chairs/Day Captains. The SV’s view lacks any Ul com-
ponents for modifying tasks but provides components for
task bidding. The view for SV Chairs/Day Captains allows
for modifying tasks but hides the elements for bidding.

Figure [4.7] gives us a similar view on tasks (view in the
middle) but focuses on the experience on a mobile de-
vice. We can clearly see how some Ul components are
truncated (preferences) or left out (conference state) to
not clutter the interface and degrade the users’ experi-
ence. As commonly seen on mobile web applications, the
main navigation bar is hidden and visible only when trig-
gered on the upper right hamburger men

Multi-bid

We added functionality for bidding on all filtered tasks
with just one click (#6] #35). We call this "multi-bid"
or "multi-bidding". A set of filtered tasks can be de-
termined by expressing the desired days, time, or task
name with the Ul components of the "Tasks" view (see
figure . To submit a bid for each task in the table (in-
cludes all pages), a volunteer would click in the column’s
header on the desired preference. To make this concept
easier to understand, we added an in-place explanation
(question mark next to the component). Also, before a
multi-bid is submitted, the volunteer is presented with a
short overview of the number of bids that are about to be

9The hamburger menu is named after it’s often used three stacked
horizontal lines, which appear like the stacked ingredients of a ham-
burger.

Interface only
exposes interactions
that are important
for the user

Mobile view adapts
to the screen space

Multi-bid on all
filtered tasks



90

4 CHISV

The "Assignments"
view is only visible
for SV Chairs and
Day Captains

placed. The explanation pop-up, which the SV can trig-
ger by clicking the question mark next to the component,
will also offer a link to the FAQ section where we explain
multi-bidding in even greater detail. After a multi-bid has
been sent to the back end, the state of each placed bid is
reflected in the front end automatically.

Assignments

A good example for a page that only SV Chair members
and Day Captains can access, is the "Assignments" view
(see figure [4.3] and [4.8). On this page, SV Chairs and
Day Captains can add or remove SVs to or from a task
(#0). Clicking on the "Add SV.." input (see figure 4.8]and
figure [4.9] for a closer look) will show a dropdown with
SVs best fitting the task. We sort the volunteers by their
bid preference descending and ascending by their num-
ber of completed hours. We show the completed hours
as well as the assigned hours such that these manual as-
signments won’t accidentally put too many hours of work
on the SV. Furthermore, we show the SV’s bid to the task
(if there was any) and also a short statistic about the SV’s
bidding behavior.

While manual assignment creation is always possible, SV
Chairs usually only pick some specific SVs for certain
tasks (e.g. for a task that requires special skills). After
that, the auction is usually run to most efficiently fill any
free tasks with SVs (see [4.4.4] ‘{Auction!’). The auction
can be started for the selected day at the "Assignments"
view. If SV Chairs want to redo the schedule, they can
delete all assignments of a given day. Any assignment,
which is shown in the assignment view, is also present in
the associated volunteer’s calendar including its current
state.




4.3 Front End 91

chisv Conferences Calendar FAQ Users System v  CHI 2020 ‘ Chisv v

2% CHI2020 NS

Honolulu, Hawai‘i, USA | May 22, 2020 — May 28, 2020

) ) chi2020.acm.org
svchair@chi2020.acm.org

Overview SVs Tasks Assignments Conference Notify Reports

l 25.5.2020 Capt ? Fill free Tasks of this day (Auction)
1 Delete all Assignments of this day
l B

: Columns

Starts ~  Ends Hours Name Slots Priority Assignments

7:00 AM 12:30 PM  05:30 Day 2/2 1
Captain

did 11 hours | bid won with
I preference High

7:30 AM 10:30 03:00 Plenary 2/1 1
AM Team
Captain
12:00PM  6:00 PM 06:00 Day 172 1
Captain
Sven Miller remove Will get 6 hours assigned
10 per page v

3 tasks matching criteria

Figure 4.8: CHISV’s assignments view allows SV Chairs and Day Captains to
modify an SV’s assignment state (see [4.2.4] ‘{Tasks, Bids, and Assignments|’) and
to remove or add volunteers from/to a task. This is also the place where the
SV Chairs start the auction and where they and Day Captains can add notes
to assignments (see "Danilo Guero", "Daehwa Kadesh") or adjust the accounted
hours (see "Daehwa Kadesh"). When SV Chairs or Day Captains hover over the
SV’s name, a blue pop-up will give insight about the SV’s hours and the bid
for the selected task. We used the same filters as we did in the "Tasks" view.
However, only one day can be selected at once.




92

4 CHISV

Minimize network
load of the calendar

view

Showing first 5/5 SVs | SVs already assigned or unavailable are not shown

Danilo Guero
HOURS DONE (+NOT DONE) BID BIDS PLACED

5.5 (+5.75) 00

A A Caroline Smith
HOURS DONE (+NOT DONE) BID BIDS PLACED

xr 26.75 (+0) 04

~ 4 Arissa Arina

HOURS DONE (+NOT DONE) BID BIDS PLACED

r -
S 22.75 (+2.5) Low 23

Figure 4.9: Creating an assignment with CHISV: Users
with a strong preference for the task are shown first.
We sort them ascending by the hours they’ve completed.
By typing a name, a specific SV can be found. SVs who
would have a time conflict by creating an assignment for
this task, are not shown. If an SV has more hours than
required for the conference the hours will be colored red.

Calendar

For CHISV’s calendar view (see on the right in figure[4.7)
we optimized all required network requests to only trans-
fer as few data as possible. The survey ‘{Surveyl’)
showed us the importance of this feature (#17] #38). We
learned that SVs will most likely be on the go, before,
or after an assigned task when using the calendar. This
could hint at an unstable connection to the application.
To ensure that we do not waste any valuable network re-
sources, we will only load the assignment for the cur-
rently visible view. Any static content, like the days a
conference is scheduled for, will not be loaded. These
are available after the Vue.js application booted and are
stored in our Vuex store (see page[79). This way we will
only load the assignments and ensure an up to date view
for the SVs. CHISV’s calendar is accessible through the
main navigation (see "Calendar" in figure [4.3). The cal-
endar will show all assignments a volunteer has and also
the days of all conferences, as the calendar is not bound



4.3 Front End 93

Conferences  Calendar FAQ  MobileHCI 2020

P e ]

Who is responsible for chisv.org? (#1)

Chisv.org is maintained by and hosted at the Media Computing Group at RWTH Aachen University. It was developed by
Florian Busch and Christian Cherek in 2020.

The system is open-source. The repository is here. Please refer to this e-mail address for questions. We are open for
contributions to this project!

Chisvorg  Website  Contact 46 views

What features does chisv offer? (#2)
How does bidding work? (#4)

How does the auction work? (#5)
How does the lottery work? (#9)
Multi-bid (#7)

How to build an app? Accessing chisv's APl via JWT (#11)

branch master commit 853ebb0

Figure 4.10: FAQs in CHISV: Helping users of the system understand its ter-
minology and algorithms. Keywords can be selected at the top. Topics based
on the selection will show up below. Each topic is expandable and will show it’s
view count and tags in grey at the bottom. The FAQ view is also the place where
we expose CHISV’s current version and branch.

to a specific conference.

FAQs

Apart from the personal profile, which we covered ear- FAQs and the

lier, student volunteers have access to two more new notification center
features we have added to CHISV as result from vol- are results from our
unteer’s feedback on the previous version of CHISV. We user-centered
introduced a section to answer Frequently Asked Ques- development

tions (FAQ or FAQs), where we got the chance to explain
the system in more depth. We also added a notification
center. We will look at the FAQ system (see figure @
now and later on present the notification center as part
of[@.4.7] {Notifications and Reports!”.




94

4 CHISV

FAQ page helps the
volunteers to catch
up on terms and
procedures

Interviews with the
SVs and SV Chairs
showed how
inaccurate the

assumptions were

Introducing a central
place for all
questions and

explainations

When we started looking into the previous version of
CHISV we quickly noticed that it uses many abbrevia-
tions and unknown terms. As we were approaching the
system the same way any other volunteer would, we saw
the need to dive deeper into the terminology of CHISV
and figure out how transparent and precise the wording
and documentation is. We noticed during our interviews
and while reading CHISV’s code, how imprecise — and of-
ten wrong - the assumptions were that have been made
about the software.

Most notably have been the assumptions of how the
lottery and auction work. However, we also saw some
shortcomings in the representation of states around
many instances like conferences and volunteers. We
think it is important that users of a system feel not intim-
idated by it. This may happen when functionality is not
explained precisely enough such that the system tends
to look complex or when the user might fear to break
it. As we have addressed earlier (see [4.2.4] “IlConference)]
[Users, and Permissions!” and [£.2.4] /Tasks, Bids, and As-
[signments|’), we tried to expose the meaning of each
state by adding a description to the model. Whenever a
state is shown in the web application, the user can click
or touch the state’s name to see the description. We see
this as a first step. Furthermore, we think, it is also im-
portant to revisit the states in the documentation, which
covers the relations and backgrounds more broadly than
a short pop-up description can.

To be able to better explain the terminology, like the
meaning of states or the algorithms CHISV uses, we in-
troduced a Frequently Asked Questions (FAQ) section
(see figure[4.10). FAQs are accessible from the main nav-
igation and are presented like the calendar component by
taking all available space in the main content area. The
view will show different help topics ranked by their pop-
ularity (view count) and is accessible for any registered
user. Our primary intention was to help new SVs under-
stand how CHISV works.



4.3 Front End

95

During our interviews and continuous feedback, we no-
ticed that there are also a lot of topics only intersecting
with tasks of SV Chairs or Day Captains. We, later on,
added the ability to limit certain help topics to specific
user roles. This was required as some topics may contain
internal information or may be confusing for new student
volunteers.

Help topics can contain multiple tags. These are se-
lectable from a dropdown shown on the top of the page.
SVs can, for instance, filter for any help topic tagged
for "Lottery" and will then only see topics related to the
lottery. Furthermore, help topics can be created, edited,
or deleted right where they are shown. This functionality
is available for all SV Chairs such that we can shorten the
paths required for creating new or updating existing help
topics. Also, this allows SV Chairs to adapt the documen-
tation of a specific topic when they feel the need without
reaching out to the CHISV administrators, making ad-
justments quick and easy. We see this as an important
point for keeping the FAQs up to date.

All FAQs are also available from the API endpoints for
third-party applications (like any CHISV resource). Fur-
thermore, we found it helpful to be able to directly link to
a topic. This is possible by appending it’s number to the
URL making it easy for SV Chairs to reference a specific
topic when sending e-mails or other related materials.
This wraps up our overview of CHISV’s user interface
and front-end functionality. We will now take a look at
some more advanced features, which make CHISV stand
out, as they provide a strong foundation for the years to
come and are often a response to the requirements and
ideas many volunteers shared with us.

Help new SV Chairs
and Day Captains to
learn more about the
advanced features
of CHISV

Topcis can be tagged
and modified right
on the spot

FAQs support
hard-linking and are
stored in the back
end



96

4 CHISV

Definition:
JSON Web Token

4.4 Selected Features In-Depth

4.4.1 Cross-Site Scripting (XSS) and Cross-
Site-Request-Forgery (CSRF) Mitigation

It is important to notice that applications that interface
with CHISV can use Cookie-based or token-based authen-
tication. The later one is handled by the OAuth driver of
Laravel. Our SPA does only use Cookie-based authenti-
cation. For that to work, the SPA and the API endpoints
have to share the same domain. As we have control
over the domain (chisv.org) we used this Cookie-based
approach. While this approach is uncommon for a SPA,
we opted for it due to security reasons.

JSON Web Token (JWT)

First, let’s take a look at a commonly used method to
connect a SPA to an API endpoint. When we think of a
Vue.js single-page application that makes use of Vuex we
would usually obtain a JSON Web Token (JWT) by sending
an HTTP POST request to an API login endpoint. This
request needs to contain our credentials, for example, an
e-mail address and password. In case the credentials are
correct the API would return a JWT. This token is Base64
encoded!]

JSON Web Token:

A JSON Web Token (JWT) is a compact and URL-safe
claim of possession between two parties. Such a claim
is signed and integrity protected with a Message Au-
thentication Code (MAC). The JWT’s content can also
be encrypted, while for authentication and authoriza-
tion the token’s payload is usually in plaintext. JWTs
are prepended with a header, which signals the type
and signature. To sign the header and the payload, a
simple secret or public/private key pair can be used.

19Base64 encodes binary data to ASCII characters


https://chisv.org

Bw N e

S s W N e

4.4 Selected Features In-Depth

97

Consider this JWT, for example:
eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.eyJ1lc2VyX21
kIjoiMTIiLCJuYW1lIjoiSmFjb2IgU21pdGgiLCIpYXQi0jE
IMTYyMzkwMjIsImV4cCI6GMTkxNjIzOTAyMnO.zXg01lYr8pnt
rDu22xLxzwDgGMaN5k5ZpgWIoYY210PY

This token consists of three parts. We set each part in a
different color. Each part is delimited by a period. Every
JSON Web Token is structured in this way: The first and
blue part is the header of the token. It states the type
and the algorithm used for its signature. JWT supports a
variety of different algorithms (HMAC, RSA, and ECDSA)
which differ in terms of speed and architecture (secret
or key pair) [Rahmatulloh et al., [2019]. When we decode
the blue header (Base64 string) we obtain a JSON object,
which shows us that the token is of type "JWT" and uses
HMAC with SHA-256:

{

lla'Lgll: IIH8256|| ,
ll.typll : IIJWTII

The next bordeaux colored part is the token’s payload.
When we decode it we again get a JSON object:

{

"user_id": "12",

"name": "Jacob Smith",

"iat": 1516239022, // 01/18/2018 1:30am
"exp": 1916239022 // 09/21/2030 4:37pm

In this example, the payload is not encrypted and can
be read by anyone with access to the token. While the
payload can contain any arbitrary amount of keys and
content, the "iat" and "exp" are reserved to handle the
expiration of a token. The "issued at" ("iat") and "expira-
tion time" ("exp") are optional but when set signal when
the token was issued and when it will expire. One might
think exposing the expiry date editable in the payload in-

duces security-related issues. However, since the header

First part is the
token’s header

The header is
followed by the
payload

Token can carry its

expiry date



98

4 CHISV

Signature

generation

Checking validity

The stateless design
of JWT makes it
especially suited for
distributed
environments

and the payload are used for the signature generation, a
modified token can be quickly identified and rejected.

The signature is stored in the last (violet) part of the to-
ken. Decoding its Base64 representation yields a binary
blob (the output of the signature function) and no JSON
object like with the first two parts. For a HS265 JWT to-
ken the signature is calculated by using the header, the
payload, and the chosen secret passphrase:

HMACSHA256 (
base64 (header) + "." + base64(payload),
256-bit-secret-passphrase

The generated signature is then appended to the Base64
encoded header and payload with a period.

Since every token is signed by the server when handed
out to the client, the server does not need to keep a state
associated with the authenticated client. As long as the
server’s secret does not change, the server can verify the
validity of the token again by generating the signature
with the configured secret. The generated signature and
the signature of the requesting token have to match. If
they match the server verifies the expiration date ("exp")
to see if the token is still valid. If the token has not ex-
pired yet the server can safely assume that the request
is authentic and check for authorization of the requested
resource.

Using a JSON Web Token for authentication has the ben-

efit that it is stateless. We will not need to hold a refer-
ence to the token in the back end and thus can scale bet-
ter [Madwesh and Nadimpalli, 2019]. Think of our earlier
example where we described how CHISV can scale-out
by adding additional instances to a load-balanced group
of instances. By exclusively using JWT for authentication
we could relinquish providing a shared session store via
our database. As long as all instances share the same se-
cret or public/private key pair, every instance can verify
the integrity and validity of a request’s token.



4.4 Selected Features In-Depth

99

As well suited as JWTs tend to be for our application, we
see some strong security issues when integrating token-
based authentication into our SPA. Usually, tokens are
requested and stored by JavaScript code. For a Vue.js
SPA, one would typically tend to store the token in the
Vuex data store and persist it to the website’s local stor-
age. This way the token can be loaded again from the
local storage when the user reload the website (which
resets the Vuex store). This approach however is prone
to Cross-site scripting (XSS) attacks.

Cross-site scripting (XSS):

Cross-site scripting (XSS) is a security vulnerability
commonly found in web applications. An XSS attack
allows a user of the website to inject client-side scripts
into web pages that are viewed by other users (vic-
tims). The injected code is then interpreted and run
in the victim’s local environment, having access to the
victim’s memory. This is often used to exfiltrate au-
thentication tokens or Cookies.

A malicious user could inject malicious code into an un-
sanitized field or form. In this example, we assume that
the application is not sanitizing inputs from users and
allows for injecting a JavaScript script tag into the in-
put field for the first name in the profile settings. We
assume that the injected script reads the JWT from the
Vuex store (or local storage), and sends it to an external
server. All this would happen whenever a web page is
shown to any user (victim) that contains the first name of
the attacker. The attacker can thereby get hold of multi-
ple valid tokens. By simply overwriting the local storage
with the stolen token, refreshing the website, is sufficient
to be logged in as the victim the token belongs to. [Ahmed
and Mahmood| showed how the design of JSON Web To-
kens can be strengthened. However, we see the possibil-
ity that by deviating too far from a standardized path of
how authentication with JWT works we make it harder to
maintain the application.

JWT tokens are
stored in memory or
the website’s local
storage

Definition:
Cross-site scripting
(XSS)

Carrying out an XSS
attack



100

4 CHISV

JWT revocation and

expiry

Authentication
Cookie is httpOnly

While the user can simply remove a valid token from
the Vuex data store and the local storage to logout, the
JWT token itself remains valid. Consider a stolen token,
for example. The user could log out (remove the token)
without affecting the validity of the stolen token. The
JWT is stateless by design und thus not easily revokable.
This can be overcome by storing a list of revoked tokens
in the back end - but this again induces the problem with
the shared back-end database [Janoky et al., [2018]. An-
other countermeasure to this is to keep the lifetime of
the token short by setting an early expiration date ("exp"
field in the payload). This, however, on the one hand,
only reduces the timeframe a stolen token can be used
and on the other hand, requires additional mechanisms
to constantly renew the token without the user noticing
or interacting with the SPA.

To summarize, we think CHISV’s SPA is more vulnerable
to XSS attacks when paired with token-based authentica-
tion. To overcome the XSS problematic many web appli-
cations try to restrict access to the session secret (token/-
Cookie) such that it cannot be exfiltrated or used with-
out the user’s knowledge and consent [[Grossman et al.,
2007]. A rather conservative approach to this is by using
a Cookie that cannot be accessed from JavaScript at all.

Cookie-based Authentication

As we described earlier in chapter ‘Loginf’, we
opted for Cookie-based authentication for CHISV’s SPA.

We can configure the webserver (Nginx) which runs the
Laravel application and also serves the SPA. We ensured
that whenever Laravel would issue a Cookie, which can
be used for authentication, Nginx also ensures it is ap-
pended with the string httpOnlyEL Modern browsers
understand this modifier and ensure that the Cookie can
never be read from any JavaScript code. This shields
our application against any XSS attacks that try to get
hold of the Cookie (session). Unfortunately, this causes

We also append the secure modifier to ensure the Cookie gets
only passed to the client via HTTPS



4.4 Selected Features In-Depth

101

the application to not know the current status of authen-
tication. We solved this by fetching the API endpoint
/api/vl/user/self which returns the currently logged
in user as JSON or 403 Unauthenticated. This way the
Vue.js application knows when it boots if the Cookie is
available and valid. Our JavaScript library for talking to
the API endpoints (Axios) is also not aware of the Cookie
and is just carrying out the requested calls.

The browser will always send the authentication Cookie
along with every request to CHISV’s domain. This way
once logged in, the browser will take care of passing the
Cookie to the back end whenever called by our Vue.js ap-
plication. Each time Laravel issues a Cookie for a user
the resulting session is linked to an entry in the session
database. Every authenticated user has a session in this
database. Different from using JWTs, we can now quite
simply end a user’s session by removing the session from
the session database. This happens whenever the user
decides to logout. A HTTP POST request to the logout
URL (/logout) is made. The response clears the authen-
tication Cookie of the user, which has also been invali-
dated in the session database by the back end. This way
a leaked Cookie cannot be used past logout.

While with JWT tokens the SPA will always need to man-
ually add the token to the request’s header, this does
not apply to Cookie-based authenticated session. The
browser will always append the Cookie based on the do-
main. This makes an application prone to Cross-site re-
quest forgery (CSRF or XSRF) attacks.

Browser appends
the Cookie

Cookies can suffer
from CSRF



102

4 CHISV

Definition:
Cross-site request
forgery (CSRF or
XSRF)

Using a URL-based
method to transfer
the session id

Relying on the HTTP
Referer header

Hidden CSRF-tokens
to mitigate the
attack

Cross-site request forgery (CSRF or XSRF):
Cross-site request forgery (CSRF or XSRF) is a security
vulnerability commonly found in web applications. A
CSREF attack allows an attacker to instruct the victim’s
browser into carrying out arbitrary HTTP requests to a
website for which the victim holds an active session. If
the attack succeeds the attacker can manipulate data
on the target website as if committed by the victim.
While this does not leak the session itself (see XSS),
it utilizes the fact that the web application trusts the
victim (session).

Jovanovic et al.| found that there are multiple ways to
mitigate a CSRF attack. One could design an application
to not use the session id from a Cookie but to expect it in
the query as a parameter (?session_i1d=23817361...).
This however has the disadvantage that it is captured in
bookmarks the user creates and is overall quite easy to
obtain by an attacker (e.g. in a public space). Addition-
ally, submitting a large form via an HTTP GET request is
sometimes not possible due to the length limitation.

Another approach to this problem is by using the HTTP
Referer header. However, this would induce privacy con-
cerns as the application would always leak the previous
website and overall not solve the issue to the fullest, as
modern browsers can be configured to omit the HTTP
Referer header.

As [Jovanovic et al.| points out, a good solution to this
problem is the use of special CSRF-tokens. The idea be-
hind this approach is that the application will always ap-
pend a hidden input field to any form and pre-fill this
field with a random string that is hard to guess. When
the user is then validly submitting the form the hidden
CSRF-token field will be transmitted along with the form
data. The application will then only have to compare the
expected CSRF-token value (which was pre-filled) with
the one present in the request. This way only a user who
has knowingly loaded the web page can submit it.



OB W N

4.4 Selected Features In-Depth

103

Jovanovic et al.| argue that implementing such a drastic
change for every request can be quite cumbersome to in-
tegrate into an existing application and also induces a lot
of overhead for building new applications. Fortunately,
Laravel provides support for this right out of the box for
any Blade template (enabled by default). Any submitted
form is expected to contain a hidden CSRF-token field. To
include it into a Blade template’s form we would use the
macro @csrf within the forms body. Consider this simple
example for editing a user’s first name:

CSRF protection is
already built into
Laravel

<form action="/user/{{ user.id }}" method="POST">
@csrf
<input type="text" id="firstname" value="{{ user.firstname }}">
<button type="submit" value="Save">

</form>

This will make Laravel generate a hidden input form and
pre-fill it with a CSRF-token only known to the applica-
tion. On submit (HTTP POST) the token will be checked
again by the back-end application and the request will be
processed or rejected.

As we explained earlier, we started CHISV’s devel-
opment with Blade templates (and its CSRF mitigation
strategies). However, after the point where we moved
away from Blade templates, we could no longer make
use of this concept. Fortunately, Laravel integrates with
Vue.js and the HTTP client Axios, which we used for all
calls to our API (see [Documentation).

To protect our API endpoints from CSRF attacks, Lar-
avel issues three Cookies when the user logs in. Each of
those Cookies will be sent along with every request auto-
matically. The first one (chisv_session) is the classical
authentication (session) Cookie that cannot be read by
JavaScript. It is used for authenticating the session. The
other two Cookies are used for CSRF protection. One
of them (laravel_token) holds an encrypted JWT token
that can only be decrypted by the back end (Laravel) and
is not readable by JavaScript. This JWT token includes a
"csrf" field in its payload with a 40 characters long ran-
dom string. This is the string that will later be compared

Hidden field
generated by @csrf

Also applicable to
our SPA approach

Cookie’s structure

explained



104

4 CHISV

Axios will
automatically use
the XSRF-TOKEN
Cookie

One needs to be
present and valid,
none may fail when
existing

Using both ways
follows best practice

against the headers and Cookies. The other Cookie, the
third one in our list, is called XSRF-TOKEN and does also
carry the same JWT token that can only be decrypted by
Laravel. This Cookie, however, can be read by JavaScript.

When Axios boots it will automatically search for the
XSRF-TOKEN Cookie and if found add a new header to
the "common headers" list that contains the Cookie’s
content. This header is called X-XSRF-TOKEN. All these
steps until this point would suffice to fight CSRF. How-
ever, Laravel will also add an HTML meta tag to the web
page that holds the "csrf" string from the JWT token.
As it’s best practice, Axios will also pick up this token
from the DOM and also add it to its "common headers"
list. However, this entry will be called X-CSRF-TOKEN.
Any request to the back end will from then on contain
the encrypted laravel_token Cookie, which cannot be
read by JavaScript, a bunch of XSRF/CSRF tokens (Axios’
X-XSRF-TOKEN and X-CSRF-TOKEN, and the XSRF-TOKEN
Cookie).

The back end (Laravel) will then decrypt the
laravel_token Cookie and validate that it’s the same
one it issued earlier. If the Cookie is intact Laravel will
require at least one of the following to be present and
true:

1. The X-CSRF-TOKEN header exists and its value is
the same as the decrypted laravel_token’s "csrf"
string

2. The X-XSRF-TOKEN header and the XSRF-TOKEN
Cookie exist, both can be decrypted and the result-
ing JWT’s "csrf" string is the same as the decrypted
laravel_token’s "csrf" string

If only one of these two checks fail Laravel will
reject the request and return an HTTP response
of 401 Unauthorized. While it is completely suf-
ficient to only use either the X-CSRF-TOKEN or the
XSRF-TOKEN/XSRF-TOKEN approach to fight CSRF, both
ways are actually the default design for protecting API



4.4 Selected Features In-Depth

105

endpoints with Laravel Passport and Axios. Since we
would like to deviate as little a possible from the official
documentation, we chose to use both approaches in par-
allel. With this approach of Cookie-based authentication
combined with CSRF mitigation, we think that our appli-
cation can rely on a strong foundation for authentication.

4.4.2 Job Extension

Laravel comes with a very capable Job scheduling
and queueing system (see Documentation)). It supports
queueing a Job for later async executing, allows for pri-
oritization, and provides multiple different queue drivers
right from the start like Beanstalk, Amazon SQS, Redis,
or even a relational database. We have chosen to use a
relational database as our queue driver, as this is also
where we are storing our resources.

Typically multiple queue workers are running on the
webserver where the Laravel application is hosted.
The Laravel documentation recommends launching them
with supervisor - a Linux tool for automatically restart-
ing crashed or ended processes. We have set up our con-
figuration to launch 8 concurrent queue workers. Due to
our relational database and the fact that Laravel’s queue
workers lock a job before processing it, we can ensure
that a job will only be processed by one queue worker at a
time. This even applies to multiple web hosting instances
when configured to use the same relational database.

While Laravel supports having multiple queues for differ-
ent priorities, we chose to use only one queue for CHISV.
This made development easier and brought no tangible
downside, as we have multiple queue workers running in
parallel, which ensure that queued jobs are processed
relatively quickly after insertion. These many queue
workers become really important when CHISV sends e-
mails. E-mails are also queued. Since for large confer-
ences many e-mails (e.g. 300) need to be sent quickly, we
adjusted the number of workers.

Laravel jobs can be

queued

Lock jobs before
execution

One queue for

everything



106 4 CHISV
Job (Elloquent) Dispatchable, InteractsWithQueue, Queueable <<Interface>>
A ExecutableJob
+id: Integer
+ execute()

+ name: String

+ handler: String

+ result: JSON

+ payload: JSON

+ progress: Integer

+ status_message: String
+ state_id: Integer

+ ended_at: Datetime

Job
+ setState(State): Job

+ state(): State

PendingDispatch
+ setProgress(Integer): Job
+ setResult(Object): Job
+ markAsProcessing(): Job
+ markAsFailed(): Job
+ markAsSoftFail(): Job
+ markAsSuccessful(): Job

+ setEndedNow(): Job

+ setStartIn(Integer): Job

+ construct(Array<Attribute>):

implements

Advanced]Job

+job_id: Integer

+ construct(JobParameter): AdvancedJob
+ handle(): Void

+ setProgress(Integer): Void

+ setStatusMessage(String): Void

+ failed(Exception): Void

extends

updates database model

+ saveAndDispatch(Datetime):

1 i
JobParameter Handler
e.g. Auction/Lottery/...

+job_id: Integer
+ payload: Integer
+ payload: JSON

+ construct(JobParameter): Auction
+ construct(job_id, payload): )
JobParameter + execute(): Void

Figure 4.11: We extended Laravel’s Job system to allow for additional feedback
while the job is processing (setStatusMessage, setProgress). Each job/handler
is referenced in a permanently stored Eloquent model before, while, and after
completion. A handler, for example the auction, will implement an interface
ExecutableJob and extend our AdvancedJob wrapper. By calling methods on
$this, the handler implementation (e.g. Auction/Lottery) can provide additional
feedback, which can then be show to the user.

Jobs vanish after
successful execution

We noticed that whenever Laravel successfully finished
processing a job, the job would vanish from the queue.
While jobs that ran into an exception during execution
are placed into a separate table until they can be success-
fully processed, jobs that end successfully can no longer
be referenced. Furthermore, a job that is processing can



4.4 Selected Features In-Depth

107

provide no further information about its state. It’s not
possible to express an estimate for the remaining time,
nor any information about what is currently happening
within the job. However, we especially felt the need to ex-
press additional information about the job after its com-
pletion. For instance, for the auction, we would like to
get additional information about any task that could not
be filled after the auction ran successfully (#46). For
the lottery, SV Chairs would like to get feedback on how
many SVs have been accepted or waitlisted. Even while
a job is running (especially for longer running jobs) feed-
back is important. When taking a look at the auction,
for example, the job may run multiple minutes until com-
pletion for many SVs, tasks, and bids. Providing feedback
during the auction can help SV Chairs to understand how
well bids can be factored in, if there are many conflicts
or if they are short on SVs such that certain tasks cannot
be filled.

All this feedback during and after the execution is im-
portant and needed to provide a good UX for CHISV. Un-
fortunately, Laravel’s job system cannot provide this for
us. This is why we chose to implement a thin layer on
top. We will now see how this extension is composed of
four simple entities (see figure [4.17T).

Advanced]ob Class

The AdvancedJob class (App\Jobs\AdvancedJob.php) is
the central entity that holds all the logic to interface with
the native job implementation from Laravel and to up-
date the Eloquent model according to its state (see (a) in
figure [4.12). The class can be seen as an abstract class,
meaning one would never instantiate AdvancedJob. Its
sole purpose is to act as a wrapper around the native
Job API and the Eloquent Job model. For that, it pro-
vides a handle method for Laravel and a reference to the
Eloquent Job model to persist its state and provide feed-
back. Since any actual job (e.g. auction) extends the
AdvancedJob class (see figure [£.11), it also inherits the
handle method but will never overwrite it. We call this

Thin layer on top of
Laravel’s Job class

AdvancedJob class
connects native job
system to an
Eloquent
representation



108

4 CHISV

Handle method
(AdvancedJob) will
call the execute
method (handler)

(8)
Create new Job, M dat Handler (CHISV Job)
set handler (©)May update progress NS Advanced]Job

and payload and statusMessage with logic in execute ()

(c) calls execute
(c) Sets state to "processing” on execute

(d) Sets state to "Successful", "Softfail"
or "Failed" after execute

(f) Elloquent Job
(stored in
database)

(a) Advanced]ob
(native Laravel job)

T ) (h) saveAndDispatch (now)
' Handler ! | Pushes handler's class
(reference) | | (reference) along with

" | payload to the queue

(b) Instantiates handler
! with payload and
y calls handle on superclass

Takes from Queue Laravel Queue

Worker

Laravel Job Queue

Figure 4.12: Overview about CHISV’s job extension pro-
gram flow (blue) and its integration into the existing Lar-
avel job system (bordeaux). To create a CHISV job one
creates a new Job, sets the handler (e.g. Auction), and
payload (input). The job object can then be persisted and
the associated handler pushed to Laravel’s job queue.
Laravel will call the handle method on the handler’s su-
perclass (AdvancedJob), which will update the Eloquent
Job model and also execute the code of the (subclass)
handler. After execution, the job’s status will be updated
in the database.

actual implementation of a job, which makes use of our
job extension, a "handler" - not to be confused with the
handle method on the superclass (AdvancedJob).

To start a job, Laravel reaches into the job it wants to
process and calls the handle method on it (see (b) in fig-
ure [4.12). Our handle method will then mark the Elo-
quent Job model as "processing" and calls the execute
method on itself (see (c)). This method contains the ac-
tual job’s code and resides in the inheriting class, the
handler (e.g. App\Jobs\Auction.php).



4.4 Selected Features In-Depth

109

The execute method was called by the handle
method implementation in the AdvancedJob class. It
will take care of updating the Eloquent model on comple-
tion or failure when the program flow returns from the
execute method (see (d)).

Eloquent Job Model

The Job model (App\Job.php), represented as (f) in fig-
ure[4.12] is an ordinary Laravel Eloquent model. It repre-
sents an entry in the jobs database table, similar to any
other Eloquent model (Task, User, Conference). A Job
uses our state system we talked about earlier (see [4.2.4]
““Conference, Users, and Permissions!” or [£.2.4] “Tasks)]
[Bids, and Assignments|’). We express its current state
with these five options:

1. Planned - The job is planned to be run in the future
2. Processing - The job is currently running

3. Successful - The job finished successfully

4. Failed - The job stopped and failed

5. Softfail - The job encountered an error and will
restart shortly (e.g. for e-mails)

In addition, a job can also have a status message and
progress (0%-100%). This additional information can be
shown to the user in front-end applications. To persist
the result of a completed job, we encode it as JSON and
save it as the result in the job model. Each job has a
field called handler which points to the job’s class, which
inherited from AdvancedJob. If the Job model is repre-
senting an auction, for example, its handler field would
be set to the string App\Jobs\Auction. As many jobs re-
quire some input to work with (e.g. the auction needs a
conference and date), we save the job’s input as JSON in
the payload field.

The Eloquent model
is the jobs
representation in the
database

Additional fields for
feedback



110

4 CHISV

Using a PHP object
to carry multiple
parameters

JobParameters Model

Native Laravel jobs can only have one input object.
As we have to provide two inputs to our extended jobs
(the Eloquent Job id and the job’s payload) we built the
JobParameters object whose only purpose is to hold the
job’s id and payload. Laravel can serialize the object and
later on pass it to the job when it is executed. This al-
lows the job (which is a subclass of AdvancedJob) to set
the progress, state, and status message on the associated
Eloquent Job by id.

Executable]Job Interface

We introduced this PHP interface to ensure that every job
we try to execute contains a method called execute. This
is important as it gets called by the AdvancedJob from the
handle method.

Handler

The handler is the class a developer would have to create
to implement a new job in CHISV’s job extension. Since
it implements the ExecutableJob interface, we will need
to provide a execute method. We also want to extend the
AdvancedJob class. This way we get access to the meth-
ods that we can use to persist the handler’s current state
to the database and integrate with CHISV’s job exten-
sion. Without the inheritance, our execute method would
never be called. To better understand how a handler can
look like we will take a look at our lottery implementation
in App\Jobs\Lottery.php:



4.4 Selected Features In-Depth 111

1 class Lottery extends AdvancedJob implements ExecutableJob

2 {

3 public $conference;

4

5 public function __construct(JobParameters $params)

6 {

7 parent::__construct($params);

8 $this->conference = Conference::find(

9 $params->payload->conference_id

10 )&

11 }

12 public function execute()

13 {

14 // This is the place where we implemented the

15 // Lottery algorithm. Anything returned from

16 // this function will be saved in the Eloquent

17 // Job by the AdvancedJob’s handle code

18 }

19

20 }
As we can see, all we need to implement for a handler Implement the
is the constructor (in case we need to provide input) and execute method and
the execute method (Wlth the a]gorlthm) The execute optionally overwrite
method will contain the handler’s logic and algorithm. the constructor

The constructor will get the JobParameters object, which
contains our payload and associated Eloquent Job id. The
job id will be used by the AdvancedJob to update the
Eloquent model in the background. This is why it is im-
portant to call the super constructor, in the case we de-
cide to overwrite it. Anything returned from the execute
method will be persisted in the database through the as-
sociated Eloquent Job model.



© 0 N O U s W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

112 4 CHISV

To better understand the underlying logic, we take a look
at the constructor and handle method:

class AdvancedJob implements ShouldQueue

{
public $job_id; // points to the Eloquent Job
public $tries = 3; // retry 2 times
public $delayOnFail = 5; // 5 seconds
public function __construct(JobParameters $params)
{
if (!$params->job_id) {
throw new Exception(
"JobParameters are invalid: Contains no job_id’
)&
}
$this->job_id = $params->job_id;
}
public function handle()
{
$job = Job::find($this->job_id);
$job->markAsProcessing();
try {
$result = $this->execute();
$job->markAsSuccessful($result);
} catch (Throwable $e) {
if ($this->attempts() <= $this->tries) {
$job->markAsSoftFail();
$job->setStartIn($this->delayOnFail);
$this->release($this->delayOnFail);
} else {
$this->fail(%e);
}
}
}
}
A job may fail once We can now see why it is so important that the subclass
or multiple times, of AdvancedJob calls the super constructor when over-
which is reflected by writing it: Without it, the association to the Eloquent Job
its state is not set and the loop for providing feedback is cut (see

(c)-(e) in figure [£.12). In the handle method we see how
we first load the associated Eloquent Job by id and then



© 00 N O U s W N

4.4 Selected Features In-Depth

113

set its state to "processing” (see c) in figure 4.12). We
then continue and try executing the execute method. In
case that this is successful we save its results to the as-
sociated job. If the execution fails we either "softfail" and
reschedule the job to be executed later again or we set
the Eloquent Job to the "failed" state since we tried all
defined times (see $this->tries).

We now know about the Lottery handler and its super-
class AdvancedJob and how these two components work
together. To conclude the example, we will now look into
how to create and start a job instance. For this, we take
a look at this PHP code:

public function runLottery(Conference $conference)
{
$job = new Job([
"handler’ => "App\Jobs\Lottery’,
"name’ => "Lottery for " . $conference->key,
"payload’ => ["conference_id" => $conference->id]
1);
$job->saveAndDispatch();
}

As we can see, we create a new Eloquent Job model,
set its handler to point to our lottery handler imple-
mentation, and set the payload to carry the confer-
ence’s id for which the lottery should run (see (g) in fig-
ure 4.12). Next, we call the saveAndDispatch method
on the Eloquent Job itself (see (h)). This persists the
job to the database and creates a new instance of
App\Jobs\Lottery in Laravel’s native job scheduling sys-
tem. After this step Laravel queue workers will take
care to start the job. The handler itself will then use the
job_id from the payload to update its state on the Elo-
quent Job model in the database - closing the feedback
loop (see (d),(e)).

With this extension to Laravel’s job system, we enabled
our jobs to provide rich feedback during and after the
execution. We think it brings better user experience and
makes the application feel overall more robust, as the
user can now precisely see what the job is processing.

Saving and
dispatching the
handler

Improves UX by a lot



114

4 CHISV

Definition:
Lottery

The lottery is
accepting SVs for
the conference

4.4.3 Lottery

Lottery:

The lottery is an algorithm to accept student volun-
teers (SVs) for a conference. When a lottery is exe-
cuted, lottery numbers greater than any existing num-
ber are randomly assigned to "enrolled" SVs. The algo-
rithm will then accept SVs in ascending lottery number
order until all available SV slots have been filled. Any
SV who could not be accepted is "waitlisted" to get the
chance to be accepted in a later run.

In this section, we will make heavy use of the state
names we introduced in [4.2.4] “IlConference, Users, and]
[Permissions|’. The lottery is one of CHISV’s most used
features. It helps SV Chairs with accepting multiple stu-
dent volunteers at random (#29). Nearly all conferences
have to limit the amount of available SV slots for a con-
ference. This means that not all volunteers who enroll2
can be accepted. Some of them will have to be appended
to the waitlis We make sure that any available SV spot
is first filled with SVs from the waitlist before any newly
enrolled SVs are considered. Any SV who could not be
accepted, due to the limited spots, is appended to the
waitlist.

Our algorithm runs in two phases:

1. We make sure that each SV in the state "enrolled"
has a lottery_number. SVs on the waitlist already
have a lottery_number from a previous run.

2. We loop through all SVs in the state "wait-
listed" and "enrolled". We do this in ascending
lottery_number order. For each SV we check if
there are free SV slots available. If a slot is avail-
able we set the SV’s state to "accepted" or "wait-
listed" otherwise.

2Enrolling places them in the initial "enrolled" state
13gVs on the waitlist are in the state "waitlisted"



g W N

4.4 Selected Features In-Depth

115

As we have to iterate over all SVs in the worst case, our
algorithm runs in O(2n). Since n (number of enrolled
SVs) is considerably small (< 1500) the proposed algo-
rithm runs in well under one minute in our production
environment. We go into more detail about this in
“[Scalability and Performance’ and seed our application
with very extreme values. As the lottery job is realized
by implementing a CHISV job with our job extension (see
[4.4.2] ‘Job Extension!’), we can provide concurrent feed-
back to the user while the algorithm is running. We know
this algorithm has the potential for improvement but at
the cost of maintainability and transparency. We see no
practical benefit of inducing more complexity than nec-
essary.

Phase 1

We will now take a quick look at each of the two
phases mentioned above. First, we need to set the
lottery_number for every enrolled SV. For that, we get
all SVs who are in the state "enrolled" and shuffle the
list such that no preference exists when we iterate of
this list. While the following code samples are extracted
from our lottery handler (App\Jobs\Lottery.php), we re-
named some variables for readability in this context. We
also removed the additional method calls to provide rich
feedback to the UI while the handler is running.

$newEnrollments = $this->conference->permissions
->where(’'role_id’, $svRole->id)
->where(’'state_id’, $enrolled->id);

$newEnrollments = $newEnrollments->shuffle();

Next, we get the highest lottery_number any SV of the
conference has. We want to make sure that we assign
only numbers that are larger than the existing ones to
the new SVs. We start setting the new lottery_number
to the SVs we hold in $newEnrollments. We increment
the number before each assignment.

Improving
complexity at the
cost of
maintainability and
transparency

Get "enrolled" SVs
and set

lottery_number



116

4 CHISV

End of phase one

© 0 9 O

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

// max() returns null if none exists
$maxPosition = $this->conference
->permissions->max(’lottery_position’);

foreach ($newEnrollments as $enrollment) {
// ++$maxPosition equals 1 if
// $maxPosition is null
$enrollment->lottery_position = ++$maxPosition;
$enrollment->save();

After these lines, we know that all SVs in the state
"enrolled" now have random numbers assigned to them.
These numbers are larger than any number from the
waitlist. It might also happen that the waitlist is empty
(no "waitlisted" SV). In this case, the algorithm will gen-
erate a random distribution of numbers 1 to n (length of
$newEnrollments) for all "enrolled" SVs.

Phase 2

To accept SVs, we check how many available slots there
are. For this, we subtract the number of already "ac-
cepted" SVs from the number of defined slots of the con-
ference. We continue by creating a list of all SVs we need
to process, which are in the state "enrolled" or "wait-
listed". We sort the list ascending by lottery_number.

$availableSlots =
$this->conference->volunteer_max -
$this->conference->permissions
->where(’'role_id’, $svRole->id)
->where(’state_id’, $accepted->id)
->count();

$enrollmentsToCheck = $this->conference->permissions

->where(’'role_id’, $svRole->id)

->where(function ($query) {
$query->where('state_id’, $enrolled->id);
$query->orWhere(’'state_id’, $waitlisted->id);

1)

->sortBy(’'lottery_position’, 'asc’);




30
31
32
33
34
35
36
37
38
39
40
41
42

4.4 Selected Features In-Depth

117

The last step remaining is to finally accept SVs or ap-
pend them to the waitlist. Accepting is done by asso-
ciating the state "accepted". To append an SV to the
waitlist we only need to associate the state "waitlisted".
The position on the waitlist is already given through the
lottery_number:

foreach ($enrollmentsToCheck as $enrollment) {

if ($totalAccepted < $availableSlots) {
// Still slots available for SVs,
// make the current SV ’'accepted’
$enrollment->state()->associate($accepted);
$totalAccepted++;

} else if ($enrollment->state != $waitlisted) {
// No more slots, put the SV who is not on
// the waitlist yet on the waitlist
$enrollment->state()->associate($waitlisted);

}

$enrollment->save();

This concludes the lottery algorithm and the excerpt
from the handler. The lottery can be started multiple
times. In each run, it will accept as many SVs as there are
slots available and append remaining to the waitlist. Vol-
unteers from the waitlist are accepted first. The lottery
is not limited to any conference state. The lottery can
always be run to fill available SV slots.

4.4.4 Auction

Auction:

The auction is an algorithm to assign student volun-
teers (SVs) to tasks. Its result is constrained by task
priorities, SVs’ preferences, their aggregated hours
and time conflicts with other tasks.

The auction will iterate over all tasks of a day and try
to fill any free task slots with SVs. SV Chairs and SVs
have some requirements for the auction algorithm. The
SV Chairs want to make sure that tasks with high priority

End of phase two:
Accepting or
waitlisting SVs

Lottery can be run
multiple times

Definition:
Auction

Auction is heavily
constrained by

multiple variables



118

4 CHISV

Decision against
using a linear
optimization

get more likely filled than tasks with lower priority. They
also want that as many tasks are filled as possible. Stu-
dent volunteers, on the other hand, want the auction to
respect their bid preference and also consider the num-
ber of hours they have already fulfilled. Our algorithm
tries to find a good tradeoff between both sides. Besides,
we also need to account for other constraints before we
create a task assignment. We aim for an average work-
load among all SVs and we have to ensure that we never
assign an SV multiple tasks at times that overlap.

To summarize, our auction has to:

1. Fill tasks in descending priority: "High", "medium",

IIlOW” (#@

2. Assign a task to SVs descending by preference:
"High", "medium", "low" (#36)

3. Never assign a task to SVs who bid "Unavailable"

4. Create an average distribution of worked hours
among all SVs (#45)

5. Never assign more than one task for a specific time-
frame (task time conflict)

6. Handle SVs who did not bid as if they bid with "low"
preference

7. Mark any processed bid according to the algo-
rithm’s decision (#42)

8. Report any task that could not be filled (#46)

CHISV’s auction algorithm is, similar to the lottery al-
gorithm, implemented in our job extension to provide ad-
ditional feedback during execution. As the amount of in-
formation processed is drastically more compared to the
lottery, the auction algorithm runs considerably longer.
It’s not uncommon for it to take multiple minutes. We
ran extensive benchmarks (see “IScalability and Per
[formancel’) and heavily improved the algorithm over time
to provide a reasonable quality and performance. While




4.4 Selected Features In-Depth

119

a linear optimization approach seems like an ideal fit for
this application, we turned away from this solution as
it requires administrators specialized in Linear program-
ming (LP) to maintain the auction.

We opted for an iterative approach with two phases. In
the first phase, we will only handle SVs who have less
than the expected hours completed. In the second phase,
we will then focus exclusively on SVs having more than
the expected hours. This approach makes sure to first
only process SVs who should still work more hours. The
second phase is then used to fill any tasks that could not
be filled before. While we always respect the "Unavail-
able" bid (excluding an SV from the task), this design en-
sures that SVs who have worked less than the expected
hours will always be assigned before SVs who completed
all expected hours. For example, SVs who bid "low" (or
did not bid at all) on a task will be assigned before any
SV who bid "high" and completed more than the expected
hours.

Through figure we can get a good overview of the

two phases the auction algorithm runs in. We start by
preparing a list of tasks that have free slots that need to
be filled with SVs (see (a) in figure [4.13). This list is or-
dered by the task’s priority in descending order. Next, we
iterate through the list and process each task one by one
(see (b)). Due to the list’s order, we process tasks with
"high" priority first. The block that processes one task is
colored in blue, while the outer loop is set in bordeaux.

For each task, we generate a list of all accepted student
volunteers (see (c)). This includes students who might
already have an assignment conflicting with the task’s
timeframe we are currently processing. This list does
also contain the SVs who bid "Unavailable" and the ones
who did not place a bid a all. If the SV did not place a bid
we set the SV’s preference for this specific task to "low".

In our next step (see (d)) we are removing those SVs
from the list who bid "Unavailable" or have a task time
conflict with another task/assignment. We also remove
them if we are in phase 1 and the SV has already worked

Two-phased
algorithm ensured to
first assign SVs with
less than expected
hours

Generate a list with
tasks that have free
slots

Creating a list of all
SVs and setting the
preference to "low"
if no bid was placed

Removing some
invalid candidates



120

4 CHISV

Set phase=1 @)

(a) Generate list of
unfilled tasks

All tasks

(b) For each task
in descending
order of priority

Task

(c) Generate list of all "accepted"”
SVs and set preference to "low"
if no bid for this task was placed

All SVs

(d) Remove SV if:

« phase 1 & hours > expected
« bid "Unavailable"

. task time conflict

All SVs
(filtered)

(e) Sort by preference
descending and
hours ascending

All SVs
(filtered &
sorted)

(f) Take required number
of SVs from top of list,
create assignment,

mark the bids

List has (g) Yes:
another Process next task of list

(next)
task?

End of
Phase 2?

Figure 4.13: CHISV’s auction algorithm runs in two
phases. In the first phase, we process tasks and SVs

who worked less than the expected hours.

In the sec-

ond phase, we process tasks and SVs who completed all
expected hours hoping to fill all remaining tasks.



4.4 Selected Features In-Depth

121

more hours than expected. This is only true for phase 1.
In phase 2 we would only remove SVs if they match the
other two criteria.

This gives us a list of possible candidates for the task.
Next up, we need to sort the list to account for the SVs
preference and also make sure we take SVs with a few
hours first. For this, we introduced the concept of Pref-
erence Groups and Preference Group Lists.

Preference Group:

A Preference Group is a list of SVs (usually candidates
for task assignments) where all SVs have the same
preference and are sorted descending by the hours
they have completed.

Preference Group List:

A Preference Group List is a list of volunteers for one
specific task that is sorted in a certain way. Since each
volunteer can only bid once per task each volunteer
will only exist once in the list. The list consists of
up to four Preference Groups, one for each preference
("High", "medium", "low", "Unavailable"). The Prefer-
ence Groups are sorted in descending preference or-
der starting with "high".

Consider this example of a Preference Group List with
the format [SV, Preference, Hours completed]:

¢ [Jacob, High, 3]
¢ [Alice, High, 5]
e [Bob, Medium, 0]
e [Jannis, Low, 10]

e [Kimia, Low, 12]

Sort in Preference
Group List

Definition:

Preference Group

Definition:
Preference Group
List



122

4 CHISV

Not all Preference
Groups have to be
present

After filtering SVs we
create the
Preference Group
List

Either continue with
the next task or drop
into phase 2

Phase 2 tries to
aggressively fill
tasks

After the auction the
SV Chairs see a
summary of the

process

We see that Jacob and Alice form a Preference Group, as
does Bob or Jannis and Kimia. Note how each Preference
Group is sorted by the hours the SVs have completed and
that not every preference has to be present in a Prefer-
ence Group List. This valid example is missing the "Un-
available" Preference Group as no SV placed such a bid.

Back to our auction algorithm: We left off after gen-
erating a list of all SVs for one specific task. We have
already filtered the SV list to only include valid candi-
dates for the currently processed task. We now create
a Preference Group List based on our SV list (see (e)).
This gives us a list where we have all candidates for the
current task sorted in descending preference order. We
can now safely start picking the first n SVs from this list
to fill n available slots of the current task (see (f)). For
each of the n volunteers, we create a new assignment in
the state "scheduled" which associates the student to the
task. We also mark the corresponding bid (should the SV
has placed one) as "successful".

We proceed with the next task in the list of tasks (see
(g)) if there are more. In case there are none we have
to check if we are in phase 1. If we are in phase 1 we
enter phase 2 and start over again with creating a list
of tasks (see (h)). The difference between phase 1 and
phase 2 is the filter in step (d). In phase 2 we will no
longer remove SVs who have completed more than the
expected hours and if all other constraints are fine also
create an assignment for them.

Phase 2 can be seen as the extra emergency loop in case

the SV Chairs set the expected hours too small. As our
main goal is filling tasks, we continue to do so, even if this
means that the SVs go over their expected hours. Nev-
ertheless, the overall workload will still be distributed
among all SVs, due to the Preference Group Lists.

At the end of phase 2, when there are no more tasks in
the task list, the auction ends. We will provide a list of all
tasks that could not be filled and also some key values of
how many assignments could be created and how many
task time conflicts were encountered. This gives the SV



4.4 Selected Features In-Depth

123

Chairs a better understanding of why a task could not be
filled and how good the overall outcome of the auction is

(#46).

4.4.5 Custom Enrollment Forms

While maintaining the previous version of CHISV, we no-
ticed how many SV Chairs reached out to us with the
desire to include some special question in the (static)
enrollment form, to update the wording or to disable a
question. As the previous version did not allow for such
adjustments, we focused even more on this topic with
our reimplementation. Our first interviews and surveys
in 2019 showed us the urgent need for a more flexible
enrollment form system. SV Chairs liked the idea that
an enrollment form could be fully customized on a per
conference level (#23).

As we anyhow aimed to treat the enrollment form and
the lottery as two separate entities (#32), we would not
have to include any enrollment forms into the logic for
the lottery. The previous version of CHISV used so-called
tickets on a per question level to make it more or less
likely that a student volunteer gets accepted. Many users
of the previous version of CHISV saw themselves con-
fronted with problems in understanding the algorithm
behind the lottery. This was mostly induced by the en-
rollment form questions and how they altered the result
of the lottery. While SV Chairs had full control over the
tickets for every question, the default values were used
in all cases that we observed, as the implications of mod-
ifying them were unknown.

For us, this was a clear indication that we would need
to improve the transparency of enrollment forms while
also making each form fully customizable on a per con-
ference level. While SV Chairs can search for SVs with
special criteria (#12) in the "Reports" section of CHISV
(see [4.4.7] INotifications and Reports!’), we also wanted
to give SV Chairs a powerful tool to make accepting SVs
easier. As the lottery used to make decisions based on

Urgent need for
more customizable

enrollment forms

Keeping enrollment
forms and the
lottery detached

New solution was
needed for
enrollment forms



124

4 CHISV

Enrollment forms
stay editable for the
time of "Enrollment"

An enrollment form
has static attributes

and a dynamic body

One model for
enrollment forms

Body is a dynamic
JSON that is adapted

per conference

the enrollment form questions in the previous version of
CHISV, we liked the idea of scoring enrollment forms to
achieve a similar result — yet more controllable. We will
now take a look at how an enrollment form is structured,
the process of how it can be customized, and finally how
scoring forms can help with accepting SVs with a special
skill.

One should notice that a student volunteer can always
modify a submitted enrollment form as long as the state
of the conference allows for it (#27). This is very useful
as the SV’s skills or answers might change over time and
enrollment forms are usually submitted months before
the conference takes place.

Structure

To realize our custom enrollment form, we introduced
a new class - The EnrollmentForm (see figure 4.1I). An
enrollment form has multiple attributes like an id, a ref-
erence to a parent, a name to identify it, a flag denot-
ing whether it is a template, a total_weight (we’ll cover
later) and its actual body. The body is the part that
makes the difference between forms. It can be dynam-
ically adapted to the conference’s need and is stored as
a JSON string.

Only forms that are set to be a template can be used
for conferences. A form that is no template is an enroll-
ment form filled by a student volunteer. We decided to
keep both (unfilled and filled) enrollment forms in one
model (and database table), such that we don’t introduce
too much complexity. Having different models and tables
would require us to duplicate a lot of our logic or use
higher-level Laravel concepts, which again would make
it harder to maintain.

We now want to focus on the body attribute of an enroll-
ment form, as it’s the part that makes all the difference
and enables conferences to have customized enrollment
forms.



© 00 N o s W N e

= = =
N = O

4.4 Selected Features In-Depth 125

An enrollment form’s body has the following structure
and can contain multiple "fields":

{
"header": "Please answer the following questions:"
"fields": {
"know_city": {
"description":"Are you local to the conference?",
"hint": "Helps us in picking you for certain tasks",
"type": "boolean",
"value": false,
},
},
"agreement": "SVs will have to work during the conference.",
}
While the above is only a small example, actual enroll- Some variables are
ment forms contain many more questions of different optional - "fields"
types. We implemented the enrollment forms in a way have to be provided

such that the "header" and "agreement" variables are op-
tional and will not be shown if the SV Chairs decide to.
An enrollment form can contain many questions (#24).
Each question has an entry in the "field" dictionary. We
called it "fields", as this allows for future expansion of
different types of fields — not only questions.

We defined three types of questions, which will make
use of special interface components on the front end:
"Boolean", "Integer" and "String". These types will later
also help us to score an enrollment form.



1
2
3
4
5
6
7
8
9

10
11

126

4 CHISV

Let’s look at the structure of a question in detail:

"how_many_times_sv": {
"description": "How many times have you been an SV?",
"hint": "This will make selection more fair",
"required": true,
"type": "integer",
"range": [
0,
5
1,
"value": 0,

}

Questions may
provide more
information through

a hint

Additional options
for different types

To define questions in the "fields" dictionary, each ques-
tion has to be defined with a unique name. We will now go
over all the keys that are available for all types of ques-
tions.

Available for all types The "description" will be the
question that is rendered on the SV’s web application.
If the SV Chairs feel the need to clarify some terms or
provide additional information to the question they can
do so by setting a "hint" (#25). This field is optional and
will only make the front end show a question mark next
to the question when set. Next, we have the "required"
field. It denotes if specifying an answer to the question
is required for submitting the form. This is especially
useful if SV Chairs want to force an answer to a question.
Another variable that is common on all question types is
the "value". It expresses the default value that the Ul
component will be in.

Additional options based on the type Each type
can make use of some additional variables. While the
"Boolean" type does not provide any additional variables,
the "Integer" type does. If a question is set to be of type
"Integer" the SV Chairs can limit the range of possible an-
swers. This is possible by setting a key "range" with an
array of the form [min value, max value]. With this key



4.4 Selected Features In-Depth

127

set, the back end and front end will limit the available
numbers (see above for an example). This also applies
to the type "String". SV Chairs can set the "maxlength"
key and by doing so limit the number of available charac-
ters for the answer. Furthermore, the UI component will
adapt to the number of allowed characters and render
either a small or a large text field.

A visual example of an enrollment form that uses multi-
ple different types of questions can be seen in figure
This figure also shows the hint a question may have. It
will show the message when hovering or clicking on the
question. As we know how users interact with CHISV in
these early steps, we put special emphasis on the experi-
ence with a mobile device.

Individual Forms per Conference

We have adapted the enrollment form of the previous
CHISV. It is set as the default enrollment form for any
new conference created on CHISV. While we give new
SV Chairs the introduction into the system, they are also
told that it is possible to customize the enrollment form
if they feel the need to. In our short production phase,
this has happened a couple of times but not for every
conference. We think this is mainly due to the current
situation with COVID-19, as many conferences got can-
celed, and attributable to the fact that the entire process
of customized enrollment forms is rather new for the SV
Chairs. How well the ability to customize the form is
adopted, will become clearer in the following months.

Should an SV Chair decide to adapt an enrollment form
to their needs, they can create an enrollment form them-
selves by utilizing the template from our |GitHub| reposi-
tory. As each enrollment form is just plain JSON, it can
be easily sent to the administrators of CHISV. To make
the new template available for all conferences, the new
form is inserted into the database while giving it a unique
name. SV Chairs can then again select the newly inserted
enrollment form in the conference settings. Any volun-

Situation-related
request for custom
enrollment forms

Process of creating a
custom enroliment
form



128

4 CHISV

teer enrolling after this step will be greeted with the new
enrollment form.

Scoring with Weights

Another important part of the new custom enrollment
form system is the ability to score submitted enrollment
forms. As we described earlier, we decoupled the lottery
from the enrollment form questions. However, we saw
great potential in using the knowledge available in these
forms in a semi-automatic way. It can help SV Chairs with
their SV selection process. While the lottery will only ac-
cept SVs at pure random, they need a way to precisely
filter for SVs with special criteria before the lottery is
run. For this, we made it possible to weight enrollment
forms.

SV Chairs can open a new menu in the CHISV web appli-
cation on the "SVs" page where they can define weights
per question. These questions are the ones from the en-
rollment form the SV Chairs selected earlier for their
conference. A weight is a positive or negative integer
number. Currently, CHISV will evaluate forms and take
questions with the type "Boolean" and "Integer" into con-
sideration. The answer to the question will be multiplied
by the weight the SV Chair set for that specific question.
Let’s take a look at this example:

1. How many times have you been an SV?
Type: Integer
Answer: 2
SV Chair set weight: -10

2. Are you local to where the conference will be?
Type: Boolean
Answer: Yes
SV Chair set weight: 50

3. Please explain why you want to be an SV:
Type: String
Answer: The SV gives specious arguments
String questions cannot be weighted



4.4 Selected Features In-Depth

129

When "Boolean" questions get evaluated false is equiv-
alent to 0 and true to 1. In the example above the
total_weight of the enrollment form is 30, which is the
result of the term 2 - (—10) + 50 - 1 = 30.

Each question’s value is multiplied by the weight the SV
Chair defined. The total_weight is then simply the sum
of all these products. This example will yield a larger
number for any SV who has not been an SV but is local to
where the conference will be. To give an even more high-
level definition: We are looking for SVs who are local but
have not been volunteering before.

The weights of all enrollment forms are then available to
the SV Chairs in the web application. They can sort all
SVs by their enrollment form weight and then accept as
many of them as they need. After that, they might adjust
the weights and pick some additional SVs who match dif-
ferent criteria. Only then, when they know they have a
solid set of SVs available and accepted, they would run
the lottery to fill all other available SV slots of the confer-
ence automatically.

As we can see, scoring the SV’s enrollment forms pro-

vides a very powerful tool for SV Chairs to pre-accept
(#31) certain SVs to account for special needs. How
beneficial this feature can be for accepting or rejecting
SVs solely depends on the questions the SV Chairs de-
cide to put in the enrollment form. We think that through
the use of enrollment form weights we compensated the
loss of having a lottery that takes enrollment form ques-
tions into consideration by far. Furthermore, we now also
have a versatile tool with which SV Chairs can pick vol-
unteers based on many different criteria until they feel
confident about the selection - all in a semi-automatic
but very transparent process.

The total_weight is
the sum of all
questions’ products

SV Chairs can pick
as many SVs with
certain criteria as

they need

No hidden and
hard-to-track
algorithm



130

4 CHISV

Calendar is the most

requested feature

Dedicated view in
CHISV - not bound to

conference

One calendar per
conference might

confuse users

4.4.6 Calendar

One of the features we added to CHISV, which was miss-

ing in the previous version, is the calendar. As 21 of
all 69 interviewed student volunteers requested it (#38),
we first considered the environment where SVs would
use the calendar in (#40] #41). As we saw a twofold
area of application we decided to provide multiple views
to better adapt to the changing requirements. This is
why we equipped the calendar with three different views:
A month, week, and day view (see figure [£.14). While
the day view is mostly suited for a device with a mo-
bile form factor, the month and week view help getting a
broader overview and are usually seen with devices from
the desktop form factor category.

Month, Week, and Day View

We noticed that to give users a good experience with the
calendar, we would first have to reduce distraction while
we show the calendar. One could argue that placing the
calendar view into the conference view, as we did with
"SVs" or "Tasks", would be a great fit since this would al-
low us to only show tasks associated with the conference.
We thought it would be a better fit to extract the calen-
dar view and give it its own place in CHISV (just like the

FAQs, as explained in[4.3.2] FAQs]").

On the one hand, we made this decision because we
think that a user would expect to see all tasks or assign-
ments that are present — not only the ones of the active
conference. To clarify this, we would have had to put
additional visual hints in place. This would clutter the
interface even more. We would have to build a mental
model where the user expects to see one calendar per
conference. This could be remotely compared to as if one
would use a different calendar for each occasion. While
this might also have certain benefits, we saw no point in
having dedicated calendars on a per conference basis.



131

4.4 Selected Features In-Depth

‘Aep
911 pue s8dUaIdJu0d ButoHuo [Te ISI] [[Im I9peay S,Aep yoed -aI19(] 110dxo oyl BuriebhHLI) pue qsel 9yl uo BUROIpD Aq
polI0dxe o URD SYSB] [ENPIAIPU] "WI0}}10q 973 18 uoiIng a3 Bun(dNo Aq Ma1A 9ATIOR 9] 110dXd URD SISS[) "OUI] [RJUOZLIOY
Aoa1b e YuM UMOUS ST W) JUSIIND BY, ‘g Uuseib qeadde [[Im 11 pels[dwiod uss( sey yse] e Sk U00S Sy "Paysiuy 104
10U sey Inq yse] ay] uo Bursiom palIels AS a3 1ey] SejedIpul gy obueI) "WeY) Uo HurjIiom palrels j0u sey AS oyl 1ng
‘poubisse aIe 1ey] syse] juasaidal  Ao1b 10702 9Y] UI S3SBL, 1010®] uLio] (3ybrI) ariqowr pue (1391) do{sap o1 01 sidepe
Jepuoled 9y ‘MOIA ABD pUR ‘J[09M ‘YIUOW B Ul S3SB] poubIsSe [[B I99IUNJ0A 9} SMOUS JepUa[ed ASIHD FI'F 9Inbrg

- “

2UOZaWI} SUOIEI0| ma1A siy} podxa
119y} Ul pake|dsip ale sjuang

2U0Za3LWI) SUONEDO] 4B} Ul pake|dsIp ale SJuaAg

MBIA S1Y} Jodx3

00:€2
00:€C |
0022
00:ze
00:12
00:12
00:02
00:0¢
00:6L
0061
00:8L
00:81L
00:LL
00:LL
00:9L
0g6L - 0€'GL 0091
1qt 00:GL
0051
00:L
0071
00:€L
00:€L
00:ZL
00Tl
00:LL
00:LL
00:0L
00:0L
00:60
00:60
00:80
00:80 000
00:£0 do:00
0090 00'50
00:50 00:70
0070 00:€0
00:€0 00:20
00:20 00:L0
1UaAg ON 1UdA3 ON 1U9A3 ON 1UaAg ON 1UaA3 ON
00:L0 00:00
0000 (£)020Z1HO  (9)020ZIHO  (S)020ZIHO  (¥) 020Z IHO fep v
(9) 0202 IHO fep 11y Lg Aepuns 0€ Aepinies 62 fepliq gz Aepsinyl  /z Aepsaupap 9z Aepsan] Gz Aepuopy
< Avaol 0202 ‘.z A Aepsaupap > < AvaoL (0z0z AeWN) ZZ Yoom >
o fe@  9dM Lo o Re@  >esm Yo
= ASIYd A qooer q Dv4 Jepusje)  S80UaIBJUOD  ASIYD



132

4 CHISV

A dedicated view
gives the calendar
more space

Prepare all
conference days
beforehand

Month and week
view for desktop
form factor

The day view is

mostly used on-site

On the other hand, breaking free from the per confer-
ence navigation gave us a lot of more visual space to
better render events and present the calendar in a full-
screen setting. While in theory, our calendar also fea-
tures a year view, we found this rather unsuitable to use,
as events were merged and becoming indistinguishable.
Every view will have a small grey horizontal line showing
the current day and time (see figure [£.14). This is giv-
ing SVs on-site using the application in-between tasks a
quicker entry to the calendar.

However, showing all conferences in the day’s header
also forced us to have the timeframes of them available
at all times when the user scrolls through the calendar.
The timeframe of all conferences is available from our
Vuex store as soon as the web application finished load-
ing. This enables us to only fetch events for the days the
user currently views. As the days that a conference takes
place on rarely change after they've been set, caching
the conferences timeframes is a feasible approach.

As some SVs would like to use the calendar to create
their daily schedule, they prefer a view that gives them
the ability to look at all tasks at once. This is usually done
on a device that would be represented by the desktop
form factor (including tablets), how we learned through
our user surveys in 2019. For this, we integrated the
month and week views. This is great for getting a broad
overview of all tasks and estimating how long they take.
Usually, SVs would also use the month or week view to
export the calendar. We will take a deeper look at the
calendar export in [4.4.6] {Universal Event Export]’.

SVs requested a way to quickly check on their assigned
tasks while in-between tasks or at the end of the day. For
this, we integrated the day view (see figure [4.14). It will
show all assigned tasks of one specific day, ranging from
and to midnight. The view is designed to give as most
space as possible to the calendar and the events in it.
Again, just like in any other view, we will show a grey
horizontal line to represent the current time.



4.4 Selected Features In-Depth

133

Accessibility Guide

Help attendees that require assistance with navigation

c Pacific/Honolulu (conference timezone)

¢ Starts: May 27, 2020 3:30 PM
* Ends: May 27,2020 7:30 PM
¢ Location: Entrance WEST 2

e Status: Assigned

¢ Hours: 04:00
Export this event

Figure 4.15: Event detail view: A user can see the de-
scription, location, current state, and the precise time-
frame. The timezone used to show the time can be tog-
gled between the conference’s and the user’s zone. Be-
sides, the user can export the event.

Currently, any event in CHISV’s calendar represents an

assignment for a task. We thought it’s beneficial to be
able to get more details about a task while in the calen-
dar without having to go back to the conference’s "Tasks"
view. To get more information, a user can click or touch
the desired event and get a short overview of the event
(see figure A.15). As SVs use this in-between tasks, we
show the location and accurate time. To account for SVs
who work on tasks from remote, we also included a way
to display the task’s time in the user’s local timezone.
SVs can also use this event detail view to export a single
event.

As we can see in figure assignments in the calendar
can have different colors. Those represent the assign-
ment’s current state.

Any event can be
clicked or touched to
get more details



134

4 CHISV

Colors help to reflect
the assignment’s
state

Conference’s
schedule is

important

Different
conferences use
different tools for
scheduling

Focus on export
rather than import

. How we _explained earlier (see M 2 4] “Tasks. Bids_and]

IAssignments|’ for a state description), an assignment can

be in one of three states:

* Assigned
* Checked-In

¢ Done

We attached three colors to the states (grey, orange,
green) to make the current state instantly visible in the
calendar. This enables SVs to check on their assign-
ments’ state with a simple page reload - no further in-
teraction is necessary.

Universal Event Export

We found through our survey that integration of CHISV’s
calendar with other external calendars would help even
more to plan the own daily or weekly schedule. Often
times SV’s want to attend certain sessions at a confer-
ence and want to make sure that no task is interfering at
that time.

Integrating conference schedules into CHISV is rather
hard, if not impossible to maintain. There are many dif-
ferent formats and applications with which different con-
ferences manage their schedule. Sometimes it is even
not possible for the SV Chairs to get hold of the con-
ference schedule in a structured digital format. All this
makes it very hard to integrate conference schedules into
CHISV. We think that providing adapters to read all these
various formats will be impossible to maintain in the long
run.

This is why we put great emphasis on providing a uni-
versal export of CHISV calendar events. This is also true
for other resources like we will see in ‘INotifica
[tions and Reports|’. For calendar events, we decided to
use the universal Internet Calendaring and Scheduling




4.4 Selected Features In-Depth

135

Core Object Specification (iCalendar, see |Desruisseaux
[2009]]) which is more commonly known by its file exten-

sion ".ics".

Internet Calendaring and Scheduling Core Object
Specification (iCalendar):

The iCalendar specification defines an interchangeable
format to present components in a calendar. One of
these components is the event component. Most calen-
dar applications can process event component defini-
tions, including Google Calendar, Apple Calendar (for-
merly iCal), IBM Notes (formerly Lotus Notes), Evolu-
tion, Yahoo! Calendar, Mozilla Thunderbird, and par-
tially Microsoft Outlook.

Each of our exported iCalendar files may include one or

multiple events. Whenever an event has a location set,
we will provide it in the native LOCATION attribute in the
event component. This means if SV Chairs decide to use
locations known to (e.g.) Google or Apple Maps, users
will be able to navigate to the location after importing it
into their calendar. Each event that we export has also
a time. We set it in the components start and end time
(DTSTART/DTEND). As we also know the event’s timezone,
we append it as TZID. This is especially important when
SVs import tasks while being in a different timezone. The
task’s description gets set into the DESCRIPTION attribute
such that volunteers can quickly check on those in their
private calendar as well.

Any export from CHISV’s calendar is of course static,
meaning that any tasks that have been imported into
a private calendar will not update when it changes in
CHISV. This is also the main reason why we do not ex-
port the task’s current state. To overcome this issue we
propose a solution for further development in ‘Real
[fime Calendar Integration|’. This approach will still pre-
serve all the interoperability with various calendars but
will also enable some to receive updates in semi-realtime.

Definition:

Internet Calendaring
and Scheduling Core
Object Specification
(iCalendar)

Exports preserve the

timezone

Static export



136

4 CHISV

CHISV needs to send
out e-mails

Notifications get
dispatched to
Laravel queues

4.4.7 Notifications and Reports

Notification System

The previous version of CHISV was also used by the SV
Chairs to send announcements and other SV related in-
formation to the volunteers. These messages were deliv-
ered as an e-mail to the volunteer’s e-mail address. As
we replicated many of CHISV’s earlier functionality, the
notification system was no exception (#49). Laravel pro-
vides native abilities to send notifications to users what
enabled us to stick closely to the reference implementa-
tion from the [Documentation. As we explained earlier
(see [4.2.4] “Conference, Users, and Permissions!’, page
[69), notifications in CHISV are not simply stored as text
but in a special internal structure, which allows us to han-
dle it more efficient on different destination channels.

Each notification is dispatched to a Laravel queue
and later picked up by a queue worker (see [4.2.2] ‘Job]
[Queuel’) to deliver the message to the different channels.
We incorporated a template system (#50) where every
SV Chair can add, edit, and delete templates. These
act as small building blocks of messages and announce-
ments, which get regularly sent for each conference.

To make it easier to direct a message to multiple users,
we added predefined groups (#53) to the available desti-
nations:

e All SVs - All SVs currently associated to the con-
ference regardless of the state

* Accepted SVs - Only SVs who are currently in the
state "accepted"

* Waitlisted SVs - Only SVs who are currently on
the waitlist

* Captains - Only users who currently carry the "Day
Captain" role



4.4 Selected Features In-Depth 137

Honolulu, Hawai‘i, USA | May 22, 2020 - May 28, 2020

chi2020.acm.org
svchair@chi2020.acm.org

Overview SVs Tasks Assignments Conference Notify Reports

® Templates Send > ‘

Destinations

Accepted SVs X milton@rwth-aachen.de X

Subject Preview: Get registered!
Get registered!

Hello {firstname},
Greeting (clear for personalized 'Hello {firstname},)

It's time to register for CHI 2020!

Salutation (supports markdown)

Regards As time goes by, please remember to register for the conference. We
will only be able to wave your registration fee when you have

SV Chairs CHI20, Honolulu, Hawai‘i, USA registered in time. Click the button below:

[svchair@chi2020.acm.orgl(mailto:svchair@chi2020.acm.org) Gl A e e

Add Elements RegIes,
" SV Chairs CHI20, Honolulu, Hawai‘i, USA

= Markdown ¥ Action
svchair@chi2020.acm.org

Markdown

chi2020.acm.org
B I T HLH2H3I == i & Ppreview

[}
&

### It's time to register for CHI 2020!

As time goes by, please remember to register for the
conference. We will only be able to wave your
registration fee when you have registered in time. Click
the button below:

Action

CHI 2020 Registration https://chi2020.acm.org/t LIy

Figure 4.16: CHISV’s notify view used for sending out announcements and
other messages to users. The interface is structured into a destination field on
top, an edit panel (left), and a preview (right). Any changes in the edit panel are
instantly reflected in the preview. Templates can be used to store and retrieve
a complete view with all settings. A message’s text is Markdown compliant and
will render correctly on all devices.

These get resolved to a list of user models in the back Groups are resolved
end and do not represent any role model. Due to the de- to users models
sign of the notification system with Laravel, any Eloquent
model may become a notifiable model (see page [69).

However, we opted to resolve these predefined groups
our self, rather than introducing a more complex struc-
ture by making role and state models notifiable.



138

4 CHISV

Destinations

Accepted SVs X  milton@rwth-aachen.de X

group All SVs

group Accepted SVs
group Waitlisted SVs
group Captains

user Jacob Mill

user Shen Yu

Figure 4.17: Users of the Notification system can pick multiple recipients from
a dropdown field. While predefined groups can be selected, every associated SV
may also be included as well as any manually typed e-mail address.

Available
destinations include
all SVs, predefined
groups, and
manually added
e-mail addresses

Realtime updates of
assignments

SV Chairs can freely pick from the available destination

(see figure [£.17) in the "Notify" view (see figure [4.16).
These include the aforementioned groups, an entry for
every single user associated with the conference, and
any manually typed e-mail address. Any group or user
who is picked from the destinations will receive the no-
tification over all configured channels. CHISV currently
offers e-mail and internal messaging (#51) and is easily
extendable to other channels like SMS, Slack, or other
instant messengers. Nevertheless, we will always deliver
the message as an e-mail (#054] #8) as all conferences
could agree on this common channel. For manually typed
in e-mail addresses, this is, of course, also the only avail-
able channel as we have no reference to an actual user
object.

As CHISV may get access to more channels in the fu-
ture, this could help to push realtime updates (#2I) to
SVs. While providing realtime updates is already possi-
ble via e-mail, we decided to postpone the feature further
as to us e-mail is not the ideal channel for delivering real-
time updates. We don’t want to fill SV’s inboxes just to let
them know that their assignment was marked as "done".
In our eyes, channels like Slack or other instant messen-
gers are more appropriate for this type of message.



4.4 Selected Features In-Depth

139

Some channels also can keep track of if the message
was already read or not. As this is not possible in a re-
liable manner for e-mail, we focused on our internal no-
tification system. Every notification that is sent through
CHISV will also be stored in the database should it be
able to match it to a registered user. This is true for any
message that is not manually sent to an e-mail address.
After logging in, users of CHISV can read notifications
through the internal notification center. When the user
opens the message we set it as "read". This allows SV
Chairs to keep track of delivered messages more easily

(#22).

Earlier we talked about how we abstracted the content
of the notification such that we can dynamically render
different parts of the message based on the channel (see
[4.2.4] “[Conference, Users, and Permissions|’). Figure[4.18]
gives an example of a message that was sent through the
notification system. The message on the top is the re-
ceived e-mail, while the message on the bottom repre-
sents the same message viewed from the internal notifi-
cation center.

One may notice that the message at the bottom of the
figure does only include the messages content and the
call to action button. We will not show all the other parts
of the message, which one would usually see in an e-mail.
Not only does this save some transferred data but also
does it let the user focus more on the action that has to
be carried out.

Reports and Export

SV Chairs require the ability to export statistics from
CHISV. This is used by other conference chairs to gener-
ate reports based upon this data. This is also used by the
SV Chairs of the next year, as it helps them to accept a
fair amount of every minority group. We build the report
view (see figure to be as versatile as possible. That
means that users with access can sort and filter reported
data directly in CHISV, and also export it as a CSV file.

Marking read
messages
appropriately

Appearance similar
on different
channels

Message adapts to
the channel

Reports help other
conference chairs



140 4 CHISV

Hello!

It's time to register for CHI 2020!

As time goes by, please remember to register for the conference. We will
only be able to wave your registration fee when you have registered in
time. Click the button below:

CHI 2020 Registration
Regards,

SV Chairs CHI20, Honolulu, Hawai'i, USA
svchair@chi2020.acm.org

chi2020.acm.org

If you're having trouble clicking the "CHI 2020 Registration" button, copy and paste the URL be-
low into your web browser: https://chi2020.acm.org/register

< Get registered!

It's time to register for CHI 2020!

As time goes by, please remember to register for the conference. We will only be
able to wave your registration fee when you have registered in time. Click the button

CHI 2020 Registration

below:

Close

Figure 4.18: CHISV Notification System: The image on the top represents
a notification received by e-mail, while the image on the bottom is the same
notification viewed through the internal notification center.



4.4 Selected Features In-Depth

141

Honolulu, Hawai‘i, USA | May 22, 2020 - May 28, 2020
svchair@chi2020.acm.org

Overview SVs Tasks Assignments Conference Notify Reports

chi2020.acm.org

Notify users.. a

c Paginated o Multi-column sort Use all 8 users on Notify tab
8 records Use 3 selected users on Notify tab k
(0  Firstname Lastname 2 #Bids #Bids #Bids  #Bids #Bids >= #

Unavailable Low  Medium Hi

Evgeny Smith 0 0 0
Daehwa Cooper 0 0 0
Germaine Meier 0 0 0
()  Arissa Peters 2 3 2
()  Florian Anders 2 4 3
()  Danilo Cambero 0 0 7
(0  caroline Shutter 0 4 9
()  sven Christ 0 831 0
10 per page ¥

. L RO,
gh Medium Bids

0 0 0
0 0 0
0 0 0
3 5 10
2 5 11
10 17 17
8 17 21
2 2 833
-

Figure 4.19: CHISV’s Reports: Example for filtering for SVs who have no bids

placed. We can select them (checkboxes on the left) an

d transfer them to the

"Notify" view to send them a message (see button and dropdown on the right).

We give the users many options for the CSV export, such
as which delimiter to use or whether or not Excel support
should be provided. The CSV export can be done for an
entire report or only for a filtered and sorted subset that
is currently visible to the user.

Furthermore, as reports get presented in a table, we not
only support sorting a single column but also to use mul-
tiple columns to sort based on multiple criteria. This is
especially asked for by SV Chairs as they use the report
view to filter for certain volunteers. This helps them to
find SVs with certain language skills or few bids (#12).
For some reports, the user can also adjust query param-
eters that affect the outcome of the report (e.g. adjust

Universal CSV export

Multi-column sort



142

4 CHISV

minutes for the "SVs accepted in the last X minutes" re-

port).

CHISV features 11 reports:

10.

11.

The r

. SV T-Shirt - This will create a report with all re-

quired T-Shirt sizes that the SVs selected

. SV Hours - Shows how many hours every SV has

completed

SV Bids - Shows the bidding behavior for each SV

. SV Detail - Shows all personal data and enrollment

form answers of each SV and is often used for pick-
ing SVs for tasks and preliminary acceptance

. SV Doubles by Name - Lists volunteers with same

name

. SVs accepted in the last X minutes - The min-

utes (X) on how far to look back can be adjusted,
resulting in a list of SVs who have been accepted in
the last X minutes

. SV Demographics (Country) — Will list all known

countries and the associated volunteer count

. SV Demographics (Language) — Will show all lan-

guages and how often they are being spoken

. Task Overview - Shows all conference days and

how many hours have been completed in total or
how many slots have been filled

Tasks with free Slots - Will show all tasks that
have not been filled to the fullest

Tasks Table Dump for later Import - Dumps all
tasks associated with the current conference such
that they can later be used in the "Tasks" view for

reimport (#0)

eports 2-6 contain uniquely identifiable users. Any

report that returns uniquely identifiable users will show



4.4 Selected Features In-Depth

143

checkboxes on the left of each table’s row. SV Chairs
can then select multiple users and send them to the "No-
tify" view (see figure [£.19). This will push the users to
the "Destinations" field (see figure such that they
can receive the notification via all available channels. In
figure [4.19|we see how we can either send all or only the
selected users to the "Notify" view. As with any report,
we can sort by multiple columns. In the example figure
from above, we have sorted the table by the number of all
bids ascending first, followed by the last name descend-
ing. This is especially useful when preparing a report for
export.

As we have seen CHISV reports are very versatile. Not
only do they allow for sorting and filtering the data but
also integrate with other features of CHISV perfectly. Ex-
ported tasks can be imported again and will update ex-
isting tasks (#13). Reports that contain users can be
used to send those users notifications. We think that
with the versatility and expressiveness CHISV reports
provide, SV Chairs can much more easily find volunteers
with certain criteria and organize them more efficiently.
Task-related reports give the SV Chairs a single pane to
check for unfilled tasks or evaluate the tasks with uncom-
pleted hours. CHISV’s reports provide them with a way
to quickly check on all important conference topics — SVs,
tasks, bids, and the completed hours.

Sending SVs from
report to the "Notify"

view

Reports integrate
with Notifications
perfectly






145

Chapter 5

Evaluation

5.1 Requirements Coverage

We ] efined . in detail in [ Re]

[quirements Analysis|’. Since then we have always ap-
pended a reference to each requirement in the form
# Number when we explained the functionality we intro-
duced to fulfill the requirement. From all of our [54] re-
quirements, we covered 45 of them so far, leaving us with
9 to cover.

For 8 of these requirements, we will present our solution,
and explain why we had to back away from one requested

feature (#48).

Authentication and Profiles

We introduced CHISV’s available authentication meth-
ods earlier. CHISV uses Cookie-based authentication for
it’s Vue front-end application (see [4.3.2] [Login|’), as this
helps us to protect the application against multiple at-
tack vectors (see [4.4.7] “/Cross-Site Scripting (XSS) and
[Cross-Site-Request-Forgery (CSRF) Mitigation|’). While
it might be obvious that we would need authentication
to secure our application and to give users different lev-

9 requirement left to
cover

We require
authentication for
accessing CHISV



146

5 Evaluation

Additional
information about

the SV are collected

Profile details should
be available for
every SV Chair

Extending the
session timeout

OAuth tokens are

valid for one year

Enable bidding for
only certain days

els of permission, we also formulated it in a requirement
(#E]). To authenticate users we need them to sign up (see
4.3.2] {Register}’) before they can use the application.

During the registration and after, users can submit ad-
ditional details to let the SV Chairs know a bit more
about their abilities. These include the languages a user
can speak (#9), the university currently associated with
(#10), and also the volunteer’s current degree program
(#11). These details become part of the user’s profile.

Collecting these additional metrics (in addition to the
enrollment form questions) was requested by SV Chairs
(#26). The information should be kept on a global access
layer such that these personal details are bound to a user
rather than a user’s enrollment. This is important as it
enables other SV Chairs to look into the details as well.

Every user who logs in to CHISV on our Vue applica-
tion will be using Cookie-based authentication to access
CHISV’s API endpoints under the hood. From the pre-
vious version of CHISV, we’ve learned that the session
timeout was set to a too low number. This forced vol-
unteers to log in again multiple times while being at the
conference. Thus, it was of high demand to extend the
session timeout (#19).

CHISV will issue Cookies and tokens that are valid for
multiple months. Tokens for third-party applications will
be valid for one year. This is especially important for na-
tive applications (like for iOS and Android), as the gen-
eral expectation for a native app is to see the login only
once.

Conference Settings

Another requirement we covered is a change to how
a conference is opened for task bidding (#18). In the
previous version of CHISV, the SV Chairs would switch
the conference’s state from "Running" to "Bidding" — and
back again to disable bidding. We thought that having a



5.1 Requirements Coverage

147

simple flag to signal whether or not volunteers can bid
on tasks is modeling the reality better. Furthermore, this
allows us to set a range of days for which volunteers can
bid on tasks. Not only will this avoid the SV Chairs for-
getting to switch the conference state to disable bidding,
but also give the volunteers a better understanding of the
days for which they can place bids.

In the previous version of CHISV, an SV Chair mem-
ber would usually turn on the so-called "Maintenance
Mode" for a conference while the auction is being run.
This prevented SVs from adding or altering bids while
the algorithm was running. Unfortunately, the mainte-
nance mode was poorly explained to the SVs. Thus, many
did not understand why the system is periodically in-
accessible and in maintenance mode. While many only
wanted to check on their assignments, the entire web
front end blocked access for volunteers. We think that
CHISV should always be accessible and only limit access
in the front end and back end partially. We thus did not
implement a maintenance mode (#14) but focused on re-
flecting and explaining certain limitations within the web
interface where they applied.

Extending SV’s Abilities

During our survey and interviews, many student volun-
teers expressed their desire to be able to alter their state
of an assignment themselves (#48). For example, they
desire to set their assignment’s state to "Checked-in" or
"Done". While this is not a complicated thing to include
for SVs in the calendar or "Tasks" view, we first wanted to
discuss this rather important change with the SV Chairs.
During this discussion, we noticed how adding this func-
tionality could negatively impact certain conferences.

We think that this feature has great potential for the
overall UX with CHISV when implemented right. We
have postponed the integration for now. However, we
think that future development wants to focus on this topic
again, to integrate a solution with which every party is

CHISV has no
maintenance mode

for conferences

Desire to alter the
own assignment’s
state

Develop a solution
with every group
first



148

5 Evaluation

CHISV works in a
multi-instance
cluster

Adding more
instances for more
performance with
multiple clients

User’s latency is
highly dependent on
the geographical
location

satisfied.

Up to now, we have seen how we could integrate all 53
requirements, which we collected from users in multi-
ple iterations. We went through each of the solutions for
the requirements with our users after we have integrated
them, and got valuable feedback on how well they see the
requirement covered. We used this in our next iteration,
such that in the end we were able to deliver a solution
that covers our requirements and also satisfies the users
by the way how we integrated them.

5.2 Scalability and Performance

In [4.2.1] YDatabase” we briefly explained how we de-
signed CHISV’s back-end application to be able to scale-
out to withstand any number of requests. While we fo-
cused more on the shared session database between mul-
tiple instances, we always took special precautions to
ensure that CHISV would always be able to be run by
multiple instances that simultaneously process requests.
For every extension we wrote to the Laravel core (e.g.
[4.42] ‘Job Extension’), we made sure that our applica-
tion would also perform while being spread over multiple
instances.

We are certain that by adding more CHISV instances to a
cluster and then using all these instances in that cluster
in parallel, we can withstand any realistic amount of de-
mand. While we would expect some reduction in perfor-
mance by the load-balancer, we could naively expect to
be able to process n-times as many requests in a cluster
with n instances. However, to evaluate the performance
of our application we think it is important to look at the
performance of a single instance, rather than on a cluster
of instances.

To measure the application’s latency, we will run our
testing from the same machine that hosts CHISV. This
will give us nearly constant network latency. As these
tests only model the application’s response time, any ac-



5.2 Scalability and Performance

149

Figure 5.1: Map showing the additional latencies from different regions. All
values are in milliseconds and taken from table

tual request from active users would be traveling addi-
tional paths to reach our infrastructure. These additional
latencies are highly different for every connection as we
deployed our application in a centralized environment
without any CDN.

5.2.1 Geographic Latencies

While CHISV is currently deployed in a centralized lo-
cation, it is also possible to host CHISV’s API endpoints
with any of the large CDN providers, like Amazon Web
Services (AWS), Google Cloud Platform (GCP), or Mi-
crosoft Azure. Since our web application is a SPA, it only
needs to be loaded once. After that, the application runs
within the user’s browser. That means it does not need
to load any views from the server, as it already ships with
all views compiled into the JavaScript bundle. The only
interactions that need to be carried out are the calls to
the API endpoint to get the raw data for the views.

We can see in figure [5.1] and table [5.1] that with our
exemplarily chosen 11 Points of Presence (PoPs) we ex-

CHISV can be served
from a CDN

Additional latency
added by location



150 5 Evaluation

Frankfurt, London, Cape Town, New York ;:gncisco
Germany UK South Africa City, USA ’
USA
Latency g 5 2824  171.05 96.90 168.54
(in ms)

Sydney, Tokyo, Bangalore, Sao Paulo, Shanghai,

Australia  Japan India Brazil China Singapore

Latency

. 315.29 261.58 164.54 198.04 233.93 179.10
(in ms)

Table 5.1: Table showing the different latencies CHISV users will encounter
while using the application from different regions. It is important to notice that
these numbers can fluctuate depending on the distance to our infrastructure
and how utilized a link is.

pect CHISV to have relatively low latency. In multiple
tests with 50 PoPs (CDNPerf) we encountered that CHISV
servers show the highest latency in Australia (around

350ms).
Europe and the USA CHISV is most commonly used from locations in Europe
is where CHISV is or the United States, as that is where the conferences
mostly used from are. When we look at Europe we see that we have laten-

cies way below 100ms. The east and west coast of the
United States connect to CHISV’s servers with around
100ms to 150ms. While this is notably higher than in Eu-
rope, it will not interfere dramatically with CHISV’s user
experience.

5.2.2 Test Setup

Performance As we now know about the additional latency CHISV
measured with one users will be confronted with when accessing the appli-
instance cation from different regions, we can now focus again on

the performance of a single instance. This will help us
understand how well CHISV scales with different confer-
ence sizes and users.



5.2 Scalability and Performance

151

For our tests, we will be using a clone of our production

instance with the same hardware and the same amount
of provisioned resources. CHISV runs in a Linux con-
tainer where we deployed Ubuntu Server 18.04 and gave
it 12 cores of the installed dual 10-Core Intel Xeon E5-
2670v2 CPUs. We run 8 queue workers, and the Linux
container (kernel 5.3.18-1-pve) has access to 4 GB of sys-
tem memory. We use the Linux TCP congestion algorithm
CUBIC (see RFC831. Laravel is run by Nginx version
1.14.0 and interfacing with PHP-FPM 7.2.24 for running
the PHP code of CHISV v1.0.7.

PHP-FPM will start answering requests with workers
from a pool of 5. We set the pool size adjustment to
dynamic and limited it to 100 workers. PHP-FPM will al-
ways try to keep 5 workers idle and increase the pool size
appropriately, as any request we make will be handled by
one worker.

There are four variables that affect CHISV’s response
time. As the connected models are bound to a confer-
ence, increasing or decreasing the number of objects will
only affect the associated conference. Thus, we will look
at these variables for one conference at a time only:

e Number of users
¢ Number of tasks
e Number of bids

* Number of assignments

Thttps://tools.ietf.org/html/rfc8312

Configuration details

Limited to 100
PHP-FPM workers


https://tools.ietf.org/html/rfc8312
https://tools.ietf.org/html/rfc8312

152

5 Evaluation

Test setup and
database seeding

Auction gets more

complex over time

We will test different conference sizes (scenario), namely
these four:

1. Small conference - 20 SVs and 50 tasks per day

2. Medium conference - 50 SVs and 100 tasks per
day

3. Large conference — 100 SVs and 200 tasks per day

4. Huge conference - 300 SVs and 400 tasks per day

One of the biggest conferences that uses CHISV is the
CHI. It’s reflected by the "Large conference" scenario.
We have added the "Huge conference" scenario to see
where CHISV’s limits are when run by only a single in-
stance.

For each scenario, the conference will run for 7 days
and we generate bids for SVs as if they were bidding on
30% of all tasks for a day. In case we generate a bid
its preference will be "Unavailable" with a probability of
20%. When a bid’s preference is not "Unavailable" each
other preference ("low", "medium", "high") has the same
probability and is randomly chosen. We generate tasks
randomly between 8:00 AM and 6:00 PM once for each
scenario. A task has a random duration between 15 and

135 minutes.

We will be measuring the response time SVs encounter
while accessing the "SVs" and "Tasks" views (see figure
[4.3) and the time it takes for the lottery and auction to
complete. As both views support pagination we will al-
ways request the recommended default amount of items
but also as much as the UI allows for. For the "SVs" view,
this means that we will first load 10, then 40 items at
once. Our tests for the "Tasks" view will first request 10,
then 300 items at once. We will always request the first
page, and for the "Tasks" view, we will not limit the se-
lection by days or time.

As the number of assignments SVs are associated with
will increase over the course of the conference, we will



5.2 Scalability and Performance

153

be measuring the response time of the auction for each
day separately. The auction will run longer for each day
as the algorithm also evaluates all completed hours of all
SVs while searching for a good fit. Thus, we will mark
all assignments as "Done" before running the auction for
the next day.

To simulate multiple requests we are using the tool Wrk
by Will|Glozer. Each test will run for 60 seconds. We are
running at most 6 threads and will be opening ¢ connec-
tions to account for 30% of all SVs continuously refresh-
ing the view.

From the insight we have with hosting the previous ver-

sion of CHISV, we know that this assumption is (most of
the time) highly exaggerated. Even during the highest
peaks of access, we would rarely encounter so many re-
quests. Thus, the response times we will measure rep-
resent the worst expected experience for each scenario
respectively. Each test we run will give us:

¢ Latency per thread

¢ Requests per second per thread

¢ Actual requests per second of all threads combined
¢ Total number of all requests

* Detailed percentile spectrum

We will take a look at each conference scenario sepa-
rately and run all our tests for one scenario before pro-
ceeding to the next one. After each test, we clear all Lar-
avel caches and wait 10 seconds before starting the next
run. We will start with the "small" conference scenario
with 20 SVs and 50 tasks per day.

Simulate access of
30% of all SVs
simultaneously

Test is set up to
show CHISV’s limits

Test procedure



154

5 Evaluation

Latency
measurements are
noisy by design

Similiar results for

10 items per request

For 40 items per
requests Laravel’s
caching changes the
results

5.2.3 Results

We tested the raw response time in milliseconds (ms).
Due to the nature of process scheduling, paging, and
the fact that the test (virtual) machine was running on
a shared server along with other services, we expected
somewhat noisy data. We expected that a measurement
can be wrong by about 100ms or more. Thus we tested
for 60 seconds to average out some of these outliers.
Nevertheless, we expect that our results are affected by
these factors. Depending on the hardware and amount of
CHISV instances, these response times can be decreased
further. As we discovered some unexpected results dur-
ing our testing, we verified our setup and run the same
tests multiple times. The outcome was similar. Neverthe-
less, we think that our results are representative of how
good CHISV scales with different conference scenarios.

SVs View

In our tests for the response time of the "SVs" view (see

figure [5.2), we found that most of the values we mea-
sured are below 500ms for any realistic conference sce-
nario ("small", "medium", "large"). We also see that the
results for the tests where we requested 10 items are
very similar. However, we also notice that in these cases
our data contains more random spikes, due to the in-
creased number of overall requests.

As we said earlier our test run for 60 seconds. While we
also cleared all Laravel caches before we started each
test, during a 60 seconds test Laravel will make use
of a newly created cache. This can (and did) influence
the response times. We can see, for instance, that the
"large" conference scenario for 40 items is actually faster
(Q1 — Q3 quartile) then the "medium" sized conference.
For the unrealistically "huge" conference, we see the ex-
pected trend again. The increased latencies can be easily
improved by load balancing all requests across multiple
CHISYV instances.



155

5.2 Scalability and Performance

"SON[RA XRW

pue ‘uertpow ‘urx 9y} popuadde aary am “ord yoes I0J ‘PU0ISS B J[RY Jopun A[1Sou SI oawr} asuodsal 9y} ‘SOLIRUSDS
90U8I8JU00 O1ISI[Ral 10 "(0F/01) 1sonbaa Jod swa) WNWIXLW PUR WNWIUTW 9] Y1IM Pal1sa] om (pasunyo) palreuibed st
elRp pojsenbal oy} Sy 1S9} INO0 Ul POULSP SB SOLIRUSIS 90USI9JU0D SNOLIRA JI0J 9w} 9Suodsal MaIA ,SAS, :2°G dInbig

Sul U1 2ully ASUOASY

0011 0001 006 008 00 00¥ 00€ 002 001 0
* H
6901 6rF  SOF
OF AS 23nH
;

0S¥ €7 ctl

01 AS 28ng
:
059 /ST SIT
OF AS 28407
sze 061 6

01 AS 28407

16t 6€€ Vadi
OF AS wnipapy

96¢ 081 L
01 AS wnipapy
oIt 61 8/

0F AS 11vus

I

Srl 9¢1
0l AS [[puis



156

5 Evaluation

Requesting 10 items
for the "Tasks" view
yields equal
response time

Lottery runtime

always very short

Auction takes longer
over time

Tasks View

Figure shows our results for testing latencies with
the "Tasks" views. We found that for 10 items per re-
quest we see no difference (with respect to measurement
inaccuracies) between all conference scenarios. For our
tests with 300 tasks per request, we see similar unex-
pected results as we did for the "SVs" view. We think
this is mostly because of Laravel’s query caches and
measurement inaccuracies. However, while requests for
realistically sized conferences are below 1 second, re-
sponse times for the "small" scenario are higher than the
ones for the "medium" or even the "large" conferences.
For the "huge" scenario we see quite high results with
around 1 second of response time. When confronted with
such high demand, we recommend scaling-out CHISV by
adding more instances to a load-balanced cluster.

Lottery and Auction

Apart from the response time of the "SVs" and "Tasks"
views we did also measure the runtime of the lottery and
the auction. We found that the lottery took more time to
complete as the number of SVs rose. The largest runtime
we measured was the one for the "huge" scenario with
300 SVs. For this test, it took 3 seconds to complete.

Day 1 2 3 4 5 §) 7

Small 0:05 0:05 0:06 0:09 0:09 0:13 0:15
Medium 0:12 0:14 0:17 0:31 0:38 0:44 0:52
Large 0:40 0:49 1:01 1:51 2:22 3:06 8:56
Huge 1:.47 2:32 3:36 5:15 6:16 7:43 9:12

Table 5.2: Table showing the auction runtime for differ-
ent conference scenarios in m:ss format.

For the auction, we measure the completion time per
scenario and per day, as described in the test setup. We
found that the auction takes longer to complete as the



157

5.2 Scalability and Performance

‘SON[eA XeW pPUR ‘UeIpaW ‘Ut 9y} popuadde aaey am “101d yoes 104 ‘seoueisul ASIHD Puippe Aq paaoadurr
9 ued awr} asuodsal s,0L1RUIS 06Ny, 9YJ, 'PU0IAS B J[BY I9pun A[ISOUW SI 9UIT} 9su0odsal 91} ‘SOLIRUIIS 90USIdJU0D
onsteal 104 (00g/01) 1senbal 1ad sura)l WNWIXRUI pUe WNUWITUIUW 89Ul YIIM Palsal am ‘(paxunyod) pajreutbed sI eiep
polsenbal oy} Sy °1S931 INO Ul POULYOP SE SOLIBUSIS 90USI9JUOD SNOLIBA I0] 9WI} 9suodsal MaIA ,S3SBL, :€°G aunbig

Sul U1 2ully aSUOASY
00LI 0091 00s1 00rI 00€1 oocl 0011 0001 006 008 002 009 00§ 00r 00& 00C 001 0

2091 £26 618
00€ SV 23nf

E
861 LTI [49
0[ ysv asng

£88 S6¢ +9€
00€ v 28407

.
0]

L 96 OF
01 SV 28417

orL 60¢ 86C
00€ ASPL wnmpap

0I¢ [6 £8
O ASVL wnipap

109 #E¢ e
00€ ASPL J1vug

1

61 88 Ly
OI 2SPL [pus



158

5 Evaluation

Auction runtime is
below 10 minutes

Comparing surveys
from 2019 and 2020

Different
participation

numbers

Questions targeting
reported issues

days go by (see table [5.2). This is also true for the sce-
narios: The more SVs and tasks, the longer the runtime.

We noticed that for a "large" conference, like the CHI,
the auction is going to take less than 10 minutes on the
7% day - an acceptable value.

5.3 User Experience

In chapter [3] /Requirements Analysis” we already ex-
plained how we implemented CHISV with our users and
how we used concurrent feedback to iterate over our
features. As all these interviews, opinions, and evalua-
tions won'’t give us any precise numbers to compare the
user’s experience to the previous version of CHISV, we
also asked our users to express their opinion by filling
out a survey.

The first survey we prepared was filled by SVs, Day Cap-
tains, and SV Chairs in 2019 for CHI 2019 while still
working with the previous version of CHISV. In 2020 we
presented a very similar survey to the first users of the
new version of CHISV. Unfortunately, we could not get
hold of as many SVs in 2020 due to CHI 2020 and many
other conferences being canceled. The survey in 2019
was filled by 67, the one in 2020 by 7 users.

Some of the questions we posed were targeting reported

issues with the previous version of CHISV. An example
can be seen in figure [5.4] Here, where we asked about
the experience with the task bidding process to see if the
new interface and it’s structure does equally or better
suit the users’ needs. We found that users like the new
interface and how it expresses the available options. The
instant feedback, for example, on placing a bid makes
it a lot easier for users to understand when the desired
action has been fulfilled and if the system will preserve
the changes.



Relative frequencies

5.3 User Experience

159

The bidding system’s interface |## Predecessor
was easily understandable lx Successor

The process of task bidding
is well structured

1 | | | | 1
0.8] y 2 0.8
G
g
0.6] 5, 06
(4]
&
0.4 2 04f
i)
©
[¢))]
0.2 I I 2 0.2f
0 . | ‘ ‘ o

@Q’ @Q’ &{z} @Q’ @Q’
) ) S &) &)
il Cid J v © il
SO 3§ &
3 & S
S <O S
,(’OQ %\: (’o’(}'
(o\v (o\a

Figure 5.4: The survey showed us that users of the new CHISV found the user
interface easy to understand and the steps required for bidding well structured.

Since we are using advanced front-end frameworks, like
Bulma, Buefy, and Vue, it was very simple to provide a
responsive and visually appealing interface. This is also
what our users found, as can be seen in figure 5.5 An-
other big improvement is that the interface adapts to mo-
bile devices’ form factors. As this is something the previ-
ous version of CHISV was not built for, it is apparent that
our rebuilt with modern web frameworks would greatly
improve in this field.

We also see a huge improvement in how appealing users
find the web interface. Again, when CHISV’s predeces-
sor was built the field of web frameworks was not nearly
as popular as nowadays. This can also be seen in how
polished the existing web frameworks looked. As a con-
sequence, it is drastically easier to create a visually ap-
pealing interface nowadays. As the frameworks we used
(Bulma and Buefy) embody well-known interface design

Enhanced Ul's
appeal and
responsiveness

Visual appeal
improved due to
Bulma and Buefy



Relative frequencies

160

5 Evaluation

Rate the visual appeal
of the web interface

0.6 |-

$ S >
& <@ 6@6 s
Ko A
&

I8 Predecessor Rate the responsiveness
IE Successor of the web interface
1 | | | |
g 08f
(3
5
g, 0.6 [
[«}]
)
2 04p
T
Q
M I I
< 0! I ,(/ I é I 6 x,
& & & F
® & a) S
@‘{v (5:0,‘5 4@ Qﬁ’
X

Figure 5.5: Overall, users stated that they like the visual appeal of the new ver-
sion of CHISV more. We also see an increase of responsiveness when compared

to the previous version.

Similiar trend across

all questions

Summarizing
evaluation

guidelines, interfaces look better and are also easier to
work with.

These four graphs only represent a small subset of our
questions. However, we mostly see the same trend. Due
to the incorporated modern web technologies and new
features, CHISV improved in many areas in contrast to
its predecessor. We think another important area, which
users typically not tend to see or notice this often, is the
back end. We saw that many of our presented structures
not only work great today but also leave enough room for
future changes, increased demand, or new requirements.

Since we have precisely chosen each part of CHISV to
be extendable, maintainable, and scalable, we think that
this paves the way for others to extend, maintain, or de-
velop applications on top of it.




5.3 User Experience

161

This is true for the back end how we saw earlier in
“Scalability and Performance|” but also for the front end,
as we saw how a front-end framework can make it easier
to create a responsive and appealing interface.

However, as our front-end application incorporates all
of CHISV’s functionality, we thought it is also important
to loosely couple our back end and front end. Thus, we
are also giving direct access to CHISV’s API for other ap-
plications. These, developed by third-party developers,
can then make use of other usability concepts and, for
example, also only focus on a certain area of application
of CHISV. We will go into more detail about the API end-

points in[7.1.2] /Endpoints}”.

Apart from the back-end and front-end applications, we
see the API as CHISV’s third major contribution. It will
enable future developers to create personalized, fast, and
responsive native applications to run, for instance, on
smartphones. Unfortunately, we can yet not evaluate the
experience for these applications. However, we are cer-
tain that through CHISV’s API endpoints we paved the
way for future applications that can adapt to recent tech-
nology trends and the users’ devices to provide an even
better personalized user experience.

Decoupling from
quickly changing
front-end
frameworks

Native mobile
applications have

great potential






163

Chapter 6

Summary and
Contributions

In this thesis, we have seen how we built the multi-
conference student volunteers application CHISV by fo-
cusing on our users and closely evaluating all their needs
and requirements. In the beginning, we started with an
overview of the broad field of solutions various confer-
ences use to manage student volunteers. While some
conferences use simple online forms to gather the vol-
unteers’ data, others use more sophisticated software,
as we have exemplarily seen with CHISV, SIGCSE, and
SIGGRAPH.

~Lhese systems_which we looked at as part of the “Re]
Tated Work]’, have been custom-built for the conferences
they host. We compared the ways how volunteers sign
up and enroll and took a look at the different features
that the application provides. As this thesis focuses on
the reimplementation of CHISV, we took a deeper look at
how the previous version of CHISV handled the lottery
and auction.

In the next chapter, we identified our user groups that
are using the new CHISV. For each group, we explained
how we collected requirements and ideas in multiple it-
erations via interviews and surveys. Before we continued

Various solutions

Evaluation of CHISV,
SIGCSE, and
SIGGRAPH

Collecting
requirements from

the users



164

6 Summary and Contributions

Back-end application

Front-end stack

Selected features
in-depth

Scalability and

performance

with presenting all requirements, we sorted, filtered,
grouped, and enumerated them. In the following of the
thesis, we used the requirement’s number whenever re-
ferring to it.

With all this knowledge about the users and their needs,
we started with the introduction of our reimplementa-
tion of CHISV. First, we looked at the structures we de-
veloped for our back end, which is the part of CHISV
that provides the requested data to front-end applica-
tions. We explained how different models, like Users
and Assignments, are related and how we specifically al-
ways kept maintainability and scalability in mind for ev-
ery structure that we put in.

For the front-end application, we then focused more on
the user experience and ease of use. This was possible,
as we chose to go with modern web frameworks that
made it easier to focus on the experience and compati-
bility with various devices. We explained the structure of
our web application and how we tried to approach each
of the important Ul requirements.

After describing our back-end and front-end solutions,
we drew attention to selected features of both. We
learned how the lottery and auction work and how we
try to provide a fair and transparent algorithm. We intro-
duced the new enrollment forms, which can be weighted,
saw how the new calendar can ease schedule creation for
SVs, and how our enhanced reports can assist SV Chairs
with volunteer selection and statistics generation. Fur-
thermore, we explained how our extension on Laravel
jobs can improve the feedback for users on long-running
jobs.

To get an idea of how well our solution scales, performs,
covers the requirements, and is experienced by the user,
we took CHISV to the test. First, we looked at all
requirements and evaluated the ones we haven’t men-
tioned before. After that, we focused on the latency we
measured from Points of Presence from all around the
world to get an estimate of how responsive our applica-
tion is. We found that the latency is relatively low in all



165

regions where CHISV is used.

As we now knew the induced latency of the users’ con-
nection to our servers, we concentrated on the appli-
cation’s response time for the most used features and
views, which turned out to be reasonably low. In the end,
we evaluated and compared the results from our two sur-
veys in terms of user interface efficiency and appeal. This
gave us an idea of how users experienced the new CHISV
in comparison to the previous version. As expected due
to the use of more modern web frameworks, the new ver-
sion of CHISV scored better.

CHISV turned out to be of great value for the HCI com-

munity in all the years that the previous version was in
use. We think that with the new version of CHISV we
were able to tackle some of its shortcomings and obscu-
rities. While our main aim was always to build an ap-
plication for the community, we never lost sight of the
essential need for maintainability and extendability. As
we have designed the entire application to be publicly
accessible, well-documented, and easily extendable by
third-party applications, we hope that the community can
easily pick up where we left off and create even better ex-
periences for SV Chairs and student volunteers.

Response and user

experience

Contributing to the

community



166 6 Summary and Contributions




167

Chapter 7

Future Work

7.1 Third-Party API Access

We built CHISV to consist of a back-end and front-end
application. We chose to expose all of the back end’s fea-
tures directly via a RESTful API to provide a standardized
interface that not only we can use. Our idea was to build
a front-end application that could as well be written by
a third-party developer. This means that our front-end
application does not get more or less access to CHISV’s
back end than any other application would.

7.1.1 Authentication

To authorize requests we made CHISV OAuth 2.0 compli-
ant (RFC 6749, see Hardt/ [2012]]). OAuth offers different
grant types that not only allow for authorizing users but
also machines. However, with CHISV our scope lies in
the user authentication. This is why we only enabled (as
of now) "Password Grant" requests, as these are required
for authorizing a user with credentials to access the API.

Designed to provide
a RESTful APl from
the beginning

Authentication is
OAuth 2.0 compliant



168

7 Future Work

True OAuth
authentication
requires client_id
and client_secret

Client credentials
have to be protected

S s W N

In the context of OAuth we have the following roles:

* Resource Owner - The user
* Resource Server - CHISV back end
¢ Authorization Server - CHISV back end

* Client - Any third-party application

To obtain an access token from the Resource Server the
Client will have to send a request to the Authorization
Server. In our implementation those two roles are hold
by the back end. Such a request will have to contain five
parameters:

» grant_type - Set to "password"

e client_id and client_secret - Have to be re-
quested from CHISV’s administrators

e username - The user’s username, in our case the
e-mail

» password — The user’s password

A POST request with valid client and user credentials to
/oauth/token will yield a response similar to this:

{
"token_type": "Bearer",
"expires_in": 31535999,
"access_token": "eyJlOeX...cNO",
"refresh_token": "def...2d4"

}

The Client can then send requests to the Resource
Server while appending the access_token to fetch the
desired information. While this procedure is OAuth com-
pliant, it poses a great security risk at some types of
client applications as the client_id and client_secret
can get easily exposed. An example of this would be a



7.1 Third-Party API Access

169

single-page web application written in JavaScript, which
exposes the credentials in the source code.

Furthermore, it also requires the developer to contact
CHISV’s administrators before being even able to talk to
the API. We think that this can dramatically slow down,
or even prohibit, development of third-party applications.
For any native application (think of iOS and Android), us-
ing the OAuth interface has clear benefits, as it allows
for revocation of client credentials or custom API limits.
On the other hand, the OAuth interface makes it hard
for any non-native application to access CHISV. To tackle
this issue, we introduced a second token authentication
endpoint.

This second endpoint enables authentication with only
the user’s credentials (e-mail and password). When we
think of SPAs or Progressive Web Apps (PWAs), we re-
quire this sort of endpoint. To request a token, an ap-
plication would send a POST request to /api/v1l/login
and supply the user’s email and password. We provided
an example of this process in our API Reference (see Ref-
erence)). Internally, we proxy the request to the OAuth
interface while supplying an internally used client_id
and client_secret. As a result, the Client will receive
the same response as in the example above. The only
difference is that the Client did not need to know the
client_id and client_secret. On the downside, revo-
cation of the internally used client credentials would ren-
der all tokens issued via this endpoint invalid.

As we have seen, both endpoints issue a token via the
OAuth interface. This makes it easy for the back end to
process token-based requests since each token is a valid
OAuth access_token and can be handled by the Laravel
OAuth core package.

Getting access to
the API has to be
possible without the
interaction of the

administrators

Second token
endpoint for SPAs
and alike

Two different options
for authentication
with equal request
processing



170

7 Future Work

CHISV’s resources
and actions are
available via 77

endpoints

Content-Type is JSON

Append associated
models to the
requested resource
whenever

reasonable

Future clients can
focus on user

experience

7.1.2 Endpoints

To interface with CHISV’s resources and actions we have
created 77 API endpoints, which are all covered in our
API [Referencel For each endpoint, we provide an exam-
ple request that shows not only what the available param-
eters could exemplarily be but also their type and if they
are optional or required. Each endpoint that requires au-
thentication (either by token or Cookie) is marked with
"Requires authentication".

While all resources can be accessed by their internal
id, for conferences we chose to reference them by their
unique key (e.g. chi2019, uist2020). Each API endpoint
will expect the data in a request’s body (Content-Type)
to be in application/json format. Every response will
also be in the JSON format. Sometimes a request to a
resource will not only return the requested resource but
also connected models that are likely also required. With
this approach, we can reduce the number of required re-
quests drastically, and make a big difference in terms of
response time and transmitted data.

A good example of this is the conference preview API
endpoint. It does not require authentication and re-
turns all conferences that are currently open to be
displayed in an image carousel above CHISV’s login
form (see figure [4.5). Whenever a request is made
to /api/vl/conference/preview, the returned confer-
ences will not only contain the requested conference
model with keys pointing to the icon, artwork, and state
objects. Instead, we eager-load the associated models
and append them to the model such that the client can di-
rectly render the conference without having to fetch the
icon, artwork, and state in separate requests (see figure

7.1).

We have taken all these steps to open up CHISV to a
broad variety of end devices, developers, and users. With
the publicly available and well-documented API, we are
excited about the experiences others can now create to
make volunteering even more fun and accessible.



© 00 N o U W N e

N N N R =R R R R e
N —m O © 0 N O Ul b= W N ~= O

7.2  Realtime Calendar Integration

171

"id": 5,
"name": "UIST 2020",
"key": "uist2020",
"location": "Online",
"state_id": 2,
"icon": {

"owner_id": 5,

"web_path": "\/storage\/images\/1l..H.jpeg"

¥
"artwork": {
"owner_id": 5,

"web_path": "\/storage\/images\/V..1l.jpeg"

}
"state": {
"id": 2,
"name": "enrollment",

"description": "Students can enroll in the conference"

Figure 7.1: Example response of the conference preview endpoint with eager-

loaded icon, artwork, and state models.

7.2 Realtime Calendar Integration

\ ] i lained in AR 10 IE Fxd
[portl’, we found out that users would like to see their as-
signments in a calendar view with options for the month,
week, and day. Thus, CHISV offers a calendar view and
additionally an export in iCalendar format. This exported
file contains all the selected events and can be imported
into any compatible calendar software. However, once
generated and downloaded the content of the export is
no longer updated and may not reflect any updated de-
tails of an assignment.

iCalendar exports
are static



172

7 Future Work

Personalized
iCalendar URL

Using a long random
string in the URL

Optional query

parameters

One approach to overcome this limitation could be the in-

tegration of new and personalized API endpoints. When-
ever a request is sent to this URL, CHISV would answer
with an update-to-date listing of all assignments in iCal-
endar format. The calendar solutions of Google and Ap-
ple both provide the option to subscribe to iCalendar
URLs. These subscriptions are then also available on
mobile devices. Google and Apple servers will periodi-
cally poll the given endpoint for updates and will always
provide the latest polled version to the user. While this
version might not be updated in realtime, it’s more up-
to-date than the static export CHISV produces at the cur-
rent level of implementation.

The URLs used for the personalized calendar subscrip-

tions have to contain some long and random string that
is hard to guess. One could extend the user model to
also hold a calendar_key, a 64 characters long random
ASCII string. This string could be regenerated in the
case it gets compromised. We could envision a URL of
the form /api/vl/calendar_for/USERS_CALENDAR_KEY
which would then return the user’s up-to-date iCalendar
file.

To limit the selection further it would make sense to have
optional query parameters. CHISV currently uses start
and end for the existing calendar. One could also add a
parameter for the conference’s key, such that users can
subscribe to only a certain conference, rather than hav-
ing to give a time range, which might not precisely cover
the conference.



173

Bibliography

AAMFT. Volunteers - aamft19, May 2020. URL https:
//networks.aamft.org/conference/volunteers.

ACL. Student scholarship applications and volun-
teers, May 2020. URL http://www.acl2019.0rg/EN/
student-scholarship-applications-volunteers.
xhtml.

AEA. Aea - american evaluation association : Evaluation
2019: Paths to the future of evaluation: Contribution,
leadership, and renewal : Student volunteers, May
2020. URL https://www.evaluationconference.
org/p/cm/1d/fid=687.

S. Ahmed and Q. Mahmood. An authentication based
scheme for applications using json web token. In
2019 22nd International Multitopic Conference (IN-
MIC), pages 1-6, 2019.

CakePHP. Cakephp, June 2020. URL https://cakephp.
org/.

CDNPerf. Cdn benchmark, July 2020. URL https://
www . cdnperf.com/tools/cdn-latency-benchmark/
?id=c7a6fe70632f061bfe72d4bb93dfabc2.

CITT. Annual conference - student volunteer program,
May 2020. URL |https://www.citt.org/student_
volunteer_program.html.

CVPR. Submission site, May 2020. URL http://
cvpr2019.thecvf.com/attend/student_volunteer.

Bernard Desruisseaux. Rfc 5545: Internet calendaring
and scheduling core object specification (icalendar).
Technical report, 2009.


https://networks.aamft.org/conference/volunteers
https://networks.aamft.org/conference/volunteers
http://www.acl2019.org/EN/student-scholarship-applications-volunteers.xhtml
http://www.acl2019.org/EN/student-scholarship-applications-volunteers.xhtml
http://www.acl2019.org/EN/student-scholarship-applications-volunteers.xhtml
https://www.evaluationconference.org/p/cm/ld/fid=687
https://www.evaluationconference.org/p/cm/ld/fid=687
https://cakephp.org/
https://cakephp.org/
https://www.cdnperf.com/tools/cdn-latency-benchmark/?id=c7a6fe70632f061bfe72d4bb93dfa6c2
https://www.cdnperf.com/tools/cdn-latency-benchmark/?id=c7a6fe70632f061bfe72d4bb93dfa6c2
https://www.cdnperf.com/tools/cdn-latency-benchmark/?id=c7a6fe70632f061bfe72d4bb93dfa6c2
https://www.citt.org/student_volunteer_program.html
https://www.citt.org/student_volunteer_program.html
http://cvpr2019.thecvf.com/attend/student_volunteer
http://cvpr2019.thecvf.com/attend/student_volunteer

174

Bibliography

Authentication Documentation. Authentication, June
2020a. URL |https://laravel.com/docs/7.x/
authentication.

Buefy Documentation. Documentation | buefy, June
2020b. URL https://buefy.org/documentation/.

Bulma Documentation. Bulma: Free, open source, and
modern css framework based on flexbox, June 2020c.
URL https://bulma.io/documentation/.

CSRF Protection Documentation. Csrf protection, June
2020d. URL |https://laravel.com/docs/7.x/csrf.

Database Documentation. Database: Getting started,
June 2020e. URL https://laravel.com/docs/7.x/
database.

Laravel Blade Documentation. Authentication, June
2020f. URL https://laravel.com/docs/7.x/blade.

Notifications Documentation. Notifications, June
2020g. URL |https://laravel.com/docs/7.x/
notifications.

Queues Documentation. Queues and jobs, June 2020h.
URL https://laravel.com/docs/7.x/queues.

Vuex Persisted State Documentation.
robinvdvleuten/vuex-persistedstate: Persist and
rehydrate your vuex state between page reloads., June
2020i. URL https://github.com/robinvdvleuten/
vuex-persistedstate.

ECAI. Call for volunteers - ecai 2020, May 2020. URL
https://ecai2020.eu/call-for-volunteers/.

Brendan Eich. Javascript at ten years. Proceedings
of the tenth ACM SIGPLAN international conference
on Functional programming - ICFP °05, 2005. doi:
10.1145/1086365.1086382. URL |http://dx.doi.org/
10.1145/1086365.1086382.

GitHub. Chisv: Conference student volunteer system
with tasks, assignments, and statistics, June 2020. URL
https://github.com/dwhoop55/chisv.


https://laravel.com/docs/7.x/authentication
https://laravel.com/docs/7.x/authentication
https://buefy.org/documentation/
https://bulma.io/documentation/
https://laravel.com/docs/7.x/csrf
https://laravel.com/docs/7.x/database
https://laravel.com/docs/7.x/database
https://laravel.com/docs/7.x/blade
https://laravel.com/docs/7.x/notifications
https://laravel.com/docs/7.x/notifications
https://laravel.com/docs/7.x/queues
https://github.com/robinvdvleuten/vuex-persistedstate
https://github.com/robinvdvleuten/vuex-persistedstate
https://ecai2020.eu/call-for-volunteers/
http://dx.doi.org/10.1145/1086365.1086382
http://dx.doi.org/10.1145/1086365.1086382
https://github.com/dwhoop55/chisv

Bibliography

175

Will Glozer. Modern http benchmarking tool, July 2020.
URL https://github.com/wg/wrk.

Ilya Grigorik. Making the web faster with http 2.0.
Communications of the ACM, 56(12):42-49, Dec 2013.
ISSN 1557-7317. doi: 10.1145/2534706.2534721. URL
http://dx.doi.org/10.1145/2534706.2534721.

Jeremiah Grossman, Seth Fogie, Robert Hansen, Anton
Rager, and Petko D Petkov. XSS attacks: cross site
scripting exploits and defense. Syngress, 2007.

Dick Hardt. Rfc 6749: The oauth 2.0 authorization frame-
work. Technical report, October 2012.

HCII.  Student volunteers | hci international 2020,
May 2020. URL http://2020.hci.international/
student-volunteers.html.

HRI. Student volunteer program - hri 2020, May
2020. URL https://humanrobotinteraction.org/
2020/student-volunteer-program/.

ICFP. Icfp 2019 - student volunteering - icfp 2019,
May 2020. URL |https://icfpl9.sigplan.
org/track/icfp-2019-Student-Volunteering#
Call-for-Participation-Student-Volunteers.

ICSA. Student volunteers - icsa 2020, May 2020. URL
http://icsa-conferences.org/2020/attending/
volunteers/index.html.

ICSE. Student volunteers - international conference
on software engineering 2019 in montreal, canada,
May 2020. URL https://2019.icse-conferences.
org/track/icse-2019-Student-Volunteers#
Call-for-Student-Volunteers-|

IMS. Student volunteers, May 2020. URL https://
ims-ieee.org/students-main/student-volunteers.

Laszl6 Viktor Janoky, Janos Levendovszky, and Péter Ek-
ler. An analysis on the revoking mechanisms for json
web tokens. International Journal of Distributed Sen-
sor Networks, 14(9):1550147718801535, 2018. doi:
10.1177/1550147718801535. URL https://doi.org/
10.1177/1550147718801535.


https://github.com/wg/wrk
http://dx.doi.org/10.1145/2534706.2534721
http://2020.hci.international/student-volunteers.html
http://2020.hci.international/student-volunteers.html
https://humanrobotinteraction.org/2020/student-volunteer-program/
https://humanrobotinteraction.org/2020/student-volunteer-program/
https://icfp19.sigplan.org/track/icfp-2019-Student-Volunteering#Call-for-Participation-Student-Volunteers
https://icfp19.sigplan.org/track/icfp-2019-Student-Volunteering#Call-for-Participation-Student-Volunteers
https://icfp19.sigplan.org/track/icfp-2019-Student-Volunteering#Call-for-Participation-Student-Volunteers
http://icsa-conferences.org/2020/attending/volunteers/index.html
http://icsa-conferences.org/2020/attending/volunteers/index.html
https://2019.icse-conferences.org/track/icse-2019-Student-Volunteers#Call-for-Student-Volunteers-
https://2019.icse-conferences.org/track/icse-2019-Student-Volunteers#Call-for-Student-Volunteers-
https://2019.icse-conferences.org/track/icse-2019-Student-Volunteers#Call-for-Student-Volunteers-
https://ims-ieee.org/students-main/student-volunteers
https://ims-ieee.org/students-main/student-volunteers
https://doi.org/10.1177/1550147718801535
https://doi.org/10.1177/1550147718801535

176 Bibliography

N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross
site request forgery attacks. In 2006 Securecomm
and Workshops, pages 1-10, Aug 2006. doi: 10.1109/
SECCOMW.2006.359531.

Laracasts. Laracasts, June 2020. URL https://
laracasts.com/.

Laracon. Laracon online | the official laravel online con-
ference, June 2020. URL https://laracon.net/.

Laravel. Laravel - the php framework for web artisans,
June 2020. URL https://laravel. com.

laravel.io. Laravel community, June 2020. URL https:
//laravel.io.

K. Lei, Y. Ma, and Z. Tan. Performance comparison and
evaluation of web development technologies in php,
python, and node.js. In 2014 IEEE 17th International
Conference on Computational Science and Engineer-
ing, pages 661-668, 2014.

Mahith Madwesh and Sandeep Varma Nadimpalli. Sur-
vey on authentication techniques for web applications.
Available at SSRN 3510088, 2019.

Medium.com. Top 3 Dbest javascript frame-

works for 2019, June 2020. URL |https:
//medium.com/cuelogic-technologies/
top-3-best-javascript-frameworks-for-2019-3e6d21leff3d0.

PASC. Student volunteer program - the
pascl8 conference, May 2020. URL |https:
//pascl8.pasc-conference.org/about/
student-volunteer-program/index.html.

Passport. Laravel passport, June 2020. URL https://
laravel.com/docs/7.x/passport.

POPL. Popl 2020 - student volunteers - popl 2020, May
2020. URL |https://popl20.sigplan.org/track/
POPL-2020-student-volunteers.

L. H. Pramono, R. C. Buwono, and Y. G. Waskito. Round-
robin algorithm in haproxy and nginx load balancing


https://laracasts.com/
https://laracasts.com/
https://laracon.net/
https://laravel.com
https://laravel.io
https://laravel.io
https://medium.com/cuelogic-technologies/top-3-best-javascript-frameworks-for-2019-3e6d21eff3d0
https://medium.com/cuelogic-technologies/top-3-best-javascript-frameworks-for-2019-3e6d21eff3d0
https://medium.com/cuelogic-technologies/top-3-best-javascript-frameworks-for-2019-3e6d21eff3d0
https://pasc18.pasc-conference.org/about/student-volunteer-program/index.html
https://pasc18.pasc-conference.org/about/student-volunteer-program/index.html
https://pasc18.pasc-conference.org/about/student-volunteer-program/index.html
https://laravel.com/docs/7.x/passport
https://laravel.com/docs/7.x/passport
https://popl20.sigplan.org/track/POPL-2020-student-volunteers
https://popl20.sigplan.org/track/POPL-2020-student-volunteers

Bibliography

177

performance evaluation: a review. In 2018 Interna-
tional Seminar on Research of Information Technology
and Intelligent Systems (ISRITI), pages 367-372, 2018.

A Rahmatulloh, R Gunawan, and F M S Nursuwars. Per-
formance comparison of signed algorithms on JSON
web token. IOP Conference Series: Materials Sci-
ence and Engineering, 550:012023, aug 2019. doi:
10.1088/1757-899%x/550/1/012023. URL https://doi.
0rg/10.1088%2F1757 - 899x%2F550%2F1%2F012023|

API Reference. Chisv api reference, July 2020. URL
https://chisv.org/docl

SC. Sc20 submission site, May 2020. URL |https:
//submissions.supercomputing.org.

SIGCSE. Sigcse volunteer registration, May 2020. URL
https://www.cs.ubc.ca/~sig-cse/sigcse/user/
index.php.

SIGGRAPH. Siggraph student volunteer system, May
2020. URL https://sv.siggraph.org/.

SSWR. Society for social work and research - stu-
dent volunteer opportunities, May 2020. URL
https://secure.sswr.org/2020-conference-home/
student-volunteer-opportunities/.

Daniel Stenberg. Http2 explained. ACM SIG-
COMM Computer Communication Review, 44(3):
120-128, Jul 2014. ISSN 0146-4833. doi: 10.
1145/2656877.2656896. URL http://dx.doi.org/
10.1145/2656877.2656896.

SV-Portal.  jdiehl/svportal: Student volunteers por-
tal, May 2020. URL https://github.com/jdiehl/
svportal.

Symfony. Symfony, June 2020a. URL https://symfony.
com/.

Symfony:. Laravel (projects using symfony), Au-
gust 2020b. URL https://symfony.com/projects/
laravel.

Kevin Tatroe and Peter Maclntyre. Programming PHP:
Creating Dynamic Web Pages. O’Reilly Media, 2020.


https://doi.org/10.1088%2F1757-899x%2F550%2F1%2F012023
https://doi.org/10.1088%2F1757-899x%2F550%2F1%2F012023
https://chisv.org/doc
https://submissions.supercomputing.org
https://submissions.supercomputing.org
https://www.cs.ubc.ca/~sig-cse/sigcse/user/index.php
https://www.cs.ubc.ca/~sig-cse/sigcse/user/index.php
https://sv.siggraph.org/
https://secure.sswr.org/2020-conference-home/student-volunteer-opportunities/
https://secure.sswr.org/2020-conference-home/student-volunteer-opportunities/
http://dx.doi.org/10.1145/2656877.2656896
http://dx.doi.org/10.1145/2656877.2656896
https://github.com/jdiehl/svportal
https://github.com/jdiehl/svportal
https://symfony.com/
https://symfony.com/
https://symfony.com/projects/laravel
https://symfony.com/projects/laravel

178

Bibliography

S. Tilkov and S. Vinoski. Node.js: Using javascript to
build high-performance network programs. IEEE In-
ternet Computing, 14(6):80-83, 2010.

Udemy. Laravel | udemy, June 2020. URL https://www.
udemy.com/topic/laravel/.

Allen Wirfs-Brock and Brendan Eich. Javascript: The first
20 years. Proc. ACM Program. Lang., 4(HOPL), June
2020. doi: 10.1145/3386327. URL https://doi.org/
10.1145/3386327.

N. Yadav, D. S. Rajpoot, and S. K. Dhakad. Laravel: A php
framework for e-commerce website. In 2019 Fifth In-
ternational Conference on Image Information Process-
ing (ICIIP), pages 503-508, 2019.

Kazuhiko Yamamoto, Tatsuhiro Tsujikawa, and Kazuho
Oku. Exploring http/2 header compression. Pro-
ceedings of the 12th International Conference on Fu-
ture Internet Technologies - CFI’'17, 2017. doi: 10.
1145/3095786.3095787. URL http://dx.doi.org/
10.1145/3095786.3095787.

Yii. Yii, June 2020. URL https://www.yiiframework.
com/\.

Raka Yusuf and Rizza Syah Pasha Ulin Nuha. Compar-
ative analysis of haproxy& nginx in round robin algo-
rithm to deal with multiple web request. International
Journal of Computer Techniques, 5:90-94, 2018.


https://www.udemy.com/topic/laravel/
https://www.udemy.com/topic/laravel/
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
http://dx.doi.org/10.1145/3095786.3095787
http://dx.doi.org/10.1145/3095786.3095787
https://www.yiiframework.com/
https://www.yiiframework.com/

179

Index

Amazon Web SEIVICES .....ouvvriiiiiiiteeeeeeiiiiiiiieeeeann. 238
APL......coiiiiiiiiin.. see Application Programming Interface
Application Programming Interface...................... [42]
/2N ot o ) o S [[T7HI23]
AWS see Amazon Web Services
BCU...ooviiiiiiiin see University of British Columbia
Calendar.........ooviii e
Cascading Style Sheets ........cooviiiiiiiiiiii i
CHI see Conference on Human Factors in Computing Systems
CHISV ..ttt [57HI43]
Comma-separated values ... [4gl
Conference on Human Factors in Computing Systems....... [35]
Cross-site request forgery...................oooi [96] [T07]
Cross-site SCripting ...........ccoveiiiiiiiiiiiiiniin.n. [84} [96] [99]
CSRF ..t see Cross-site request forgery
CSS see Cascading Style Sheets
CSV . see Comma-separated values
Day Captain . ...ttt [6l 37]
Document Object Model ............cooiiiiiiiiiiiiiiiiin.., 77
DOM. .o see Document Object Model
Enrollment forms ........coooviiiiiiiiiiiii i [123H129|
Entity-Relationship Model ...............ooooiiiiiiiiiiiiinn. [64]
ERmodel....................oooLL. see Entity-Relationship model
Evaluation ........c.ocoiiiiiiiiiii i [145H161]
7 see Frequently Asked Questions
Frequently Asked Questions...............oooooiiiiiiiiii.. O3
Future WorK.....ooiiiiii e 167H172]
General Data Protection Regulation........................... AT
Graphical userinterface ......................oon [76]
GUI. i see Graphical user interface



180 Index
HTML.....ooon see Hypertext Markup Language
Human-Computer Interaction.................cooveiiieennn... [39]
Hypertext Markup Language........ccooveeiiieineinenennnnn..
Hypertext PreproCessOr. .. ... uueeeeeiieeeeeeiiiieeeeennnn. 53|
iCalendar...... see Internet Calendaring and Scheduling Core

Object Specification
Internet Calendaring and Scheduling Core Object Specifica-

1710 R 135
INETOAUCEION - o . e ettt e e e [TH2]
JSON Web TOKEN . ... .uveittiie e [96]
JWT e see JSON Web Token
LOtEOTY .ottt [TT4HIT17]
Notifications..........cooiuiiiiiii i [136H143]
OAUth. ... 1168l
OWN WOTK ... B7HI43]
PDO . see PHP Data Objects
PHP.....o see Hypertext Preprocessor
PHP Data Objects............cooiiiiiiiiiii i [61]
Related WOTK ... BH37]
20CY oo £ [T36H143|
Requirements Analysis................cooiiiiiiiiiiin. ... [35H56]
Requirements Coverage...............cooeeeuieeennnn. [T45H148
RESTIUL. ..ot 7]
Scalability and Performance............................. [T48H158|
SIGCSE...... see Special Interest Group on Computer Science
Education

SIGGRAPH.see Special Interest Group on Computer Graphics
Single-page application................c.ocooiiii 28} [77]
SPA e see Single-page application
Special Interest Group on Computer Graphics ............ @ 28
Special Interest Group on Computer Science Education .4} 20]
Student VOIUNLEeT. ... ..t
Student Volunteer Sub Comittee.................coooiiiaaen. 28]
Summary and Contributions............................. [163HI65|
SV e see Student volunteer
SVSC..ovviiiiiiiin see Student Volunteer Sub Comittee
Third-party applications ...........ccoeeeeieiiiiiiiiiiiennn. [167]
Ul o see User interface



181

Index

University of British Columbia ....................coooilil.
USEr eXPETieNCe. ....uveutieinieeanneennnenns [38] [39} [69] [I58HIGT]
Userinterface..........c.ooiiiiiiiiiii i
User Interface Software and Technology...................... 39
UX i e e see User experience
XSRFE .o see Cross-site request forgery

XSS see Cross-site scripting



Typeset August 26, 2020



	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related Work
	Previous Version of CHISV
	SV Interface
	Management Interface

	SIGCSE Volunteer Registration Portal
	Area of Application
	Web Technologies
	Messaging
	Scheduler
	Getting Enrolled

	SIGGRAPH Student Volunteer System
	Registration
	Applying as Team Leader or Student Volunteer
	Shift Swapping
	Schedule Creation and Accounting


	Requirements Analysis
	Target Audience
	First Iteration
	Interviews
	SV Chairs
	Experienced Student Volunteers
	Novice Student Volunteers

	Survey

	Second Iteration
	Interviews
	Survey

	Requirements
	Web Application
	Enrollment of Volunteers
	Accepting Volunteers and Lottery
	Task Bidding
	Task Assignment and Auction
	Notifying Volunteers


	CHISV
	Overview
	Back End
	Database
	Job Queue
	Authentication
	Model Relations
	Conference, Users, and Permissions
	Tasks, Bids, and Assignments


	Front End
	Frameworks
	User Interface Structure

	Selected Features In-Depth
	Cross-Site Scripting (XSS) and Cross-Site-Request-Forgery (CSRF) Mitigation
	JSON Web Token (JWT)
	Cookie-based Authentication

	Job Extension
	AdvancedJob Class
	Eloquent Job Model
	JobParameters Model
	ExecutableJob Interface
	Handler

	Lottery
	Auction
	Custom Enrollment Forms
	Structure
	Individual Forms per Conference
	Scoring with Weights

	Calendar
	Month, Week, and Day View
	Universal Event Export

	Notifications and Reports


	Evaluation
	Requirements Coverage
	Scalability and Performance
	Geographic Latencies
	Test Setup
	Results

	User Experience

	Summary and Contributions
	Future Work
	Third-Party API Access
	Authentication
	Endpoints

	Realtime Calendar Integration

	Bibliography
	Index

