
Rapid Prototyping for Wearable Computing

Daniel Spelmezan, Adalbert Schanowski, Jan Borchers

Media Computing Group , RWTH Aachen University

{spelmezan,borchers}@cs.rwth-aachen.de

adalbert.schanowski@rwth-aachen.de

Abstract

We present tools for prototyping and for testing

wearable computing applications. The hardware

platform consists of a mobile phone and a custom-built

box, which can be equipped at runtime with different

sensors and actuators. Software libraries for signal

processing and classification complement the toolkit.

Users without expertise in electronics or in signal

processing can quickly create fully functional wearable

prototypes that sense human motion and trigger tactile

feedback as response to specific postures in real-time.

1. Introduction

Despite advances in hardware platforms for

wearable computing, we lack tools that allow non-

experts to put their ideas into practice. Sensor platforms

require expertise in electronics and in microprocessor

programming. Limited sets of built-in sensors restrict

application areas. Knowledge in signal processing is

mandatory. Moreover, activity and context recognition

rely on algorithms that train classifiers in advance.

These conditions make it difficult to quickly prototype,

test, and deploy wearable applications. We would like

end-users to participate and shape the wearable

computing domain. A standard Java-enabled mobile

phone and an inexpensive open-source electronics

prototyping platform serve as initial test bed.

2. Related Work

Only few toolkits allow non-experts to experiment

with sensors and actuators. Buechley [2] presented a

construction kit for electronic textiles. iStuff Mobile

[1] helps explore new ubiquitous computing scenarios

using a visual programming metaphor and sensor

enhanced mobile phones. Exemplar [3] supports

designers in authoring sensor-based interactions but

does not support conducting experiments in the field.

3. Toolkit Design and Goals

We designed our toolkit to foster experimentation by

lowering the threshold [5] and reducing the time required

for creating initial wearable prototypes. Users can

exchange sensors, such as accelerometers, bend sensors,

or force-sensitive resistors, and actuators, such as

vibration motors, buzzers, or LEDs, at run-time.

Software libraries offer basic signal processing

techniques as well as classification algorithms, which set

thresholds on sensor signals to classify posture and

activity. This approach does not scale to continuous

motion but reliably detects transitions between postures,

including different levels of weight distribution, joint

flexion, or body inclination, and user activities composed

of standing, walking, and running. Moreover, setting

thresholds on sensor signals is quick and thus promotes

more prototyping cycles compared to techniques that

require training of recognition models in advance.

3.1 Hardware Platform

A standard mobile phone acts as host device for our

custom-built sensor/actuator box (SensAct). Bluetooth

allows the host device to control up to seven boxes

concurrently. Figure 1 illustrates the tasks of each unit.

Each SensAct box (Figure 2) contains an open-source

Arduino BT
1
. A custom-built motor controller for the

Arduino provides vibrotactile feedback similar to [4].

SensAct box (Arduino BT)
- sensing
- control actuators
- basic signal processing
 (low-pass filters, ...)
- classification algorithms
 (posture, activity)

Host device (Java ME)
- control SensAct box
- data logging
- visualize sensor data
- basic signal processing
- classification algorithms
- higher application logic

8 sensors

Bluetooth
communication

6 actuators

Figure 1: The system architecture of our platform.

1
 http://www.arduino.cc

Sensor / Actuator
connections

Status
LED

Accelerometer

Vibration motors

Figure 2. The SensAct box allows replacement of

sensors and actuators at runtime.

3.2 Software Tools

We developed software libraries for the SensAct

box and the host device. The libraries include

algorithms for posture classification and activity

recognition used for implementing stand-alone

programs. These programs can be freely distributed

between several SensAct boxes, if desired. End-users

only decide which posture or activity recognition they

want to run, and upload the appropriate programs to

specific boxes. On the host device, users then link

classification results to vibrotactile feedback patterns

or to audio and visual feedback produced by the host.

All classification algorithms can alternatively run on

the host, using raw sensor measurements streamed in

real-time from one or from multiple SensAct boxes.

iSenseMobile is the core application that runs on

the host device, a Nokia N70 in our case. The host

sends control messages to the SensAct boxes. These

messages define, for example, the sampling rate for

sensors or trigger actuators for rendering vibrotactile

feedback. Other control messages start and stop the

streaming of raw sensor data or of classification

results. Moreover, the host visualizes raw sensor

measurements as graphs and as numerical values.

This facility supports users in exploring how different

body motions affect sensor measurements and allows

quickly identifying sensors that got displaced due to

movement while testing the prototype in the field.

iSense (Figure 3) is the offline desktop companion

to iSenseMobile and supports refinement of initial

wearable prototypes. Users can inspect logged sensor

measurements or classification results and synchronize

these data with video footage recorded during field

tests. This tool provides the same signal processing

techniques and classification algorithms that are

implemented on the mobile platform. iSense offers

arithmetic operations that combine sensor signals and it

allows to experiment with different filter and threshold

parameters for posture and activity recognition.

Figure 3. Analyzing sensor recordings and video

synchronization with iSense.

4. Conclusions and Future Work

To advance the field of wearable computing, we

need to bring new user groups to the table, such as

designers, industrials, and artists. These users need

appropriate tools that enable them to rapidly prototype

and test wearable computing applications with minimal

effort. The presented toolkit is a first step in this

direction. Our mobile platform allows end-users to

experiment in the field with different sensors and

actuators on the fly, using a standard mobile phone and

inexpensive off-the-shelf components. Classification

algorithms yield a posture model, whose results can be

linked to real-time feedback. We intend to add new

algorithms for posture and motion detection using

alternative sensors. Non-experts also need support in

designing complex vibrotactile feedback patterns

rendered by multiple actuators. Furthermore, end-users

expect an interface that allows for quickly defining

higher application logic for interactive systems.

5. References

[1] R. Ballagas, F. Memon, R. Reiners, and J. Borchers,

“iStuff Mobile: Rapidly Prototyping New Mobile Phone

Interfaces for Ubiquitous Computing”, Proc. CHI 2007,

ACM, New York, pp. 1107–1116.

[2] L. Buechley, “A Construction Kit for Electronic

Textiles”, Proc. ISWC 2006, IEEE, pp. 83–90.

[3] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer,

“Authoring Sensor-based Interactions by Demonstration with

Direct Manipulation and Pattern Recognition”, Proc. CHI

2007, ACM, New York, pp. 145–154.

[4] R. W. Lindeman, J. L. Sibert, C. E. Lathan, and J. M.

Vice, “The Design and Deployment of a Wearable

Vibrotactile Feedback System”, Proc. ISWC 2004, IEEE,

Washington, pp. 56–59.

[5] B. Myers, S. E. Hudson, and Randy Pausch, “Past,

Present, and Future of User Interface Software Tools”, ACM

TOCHI 7 (1), ACM, New York, 2000, pp. 3–28.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /FRA ()
 /PTB ()
 /DAN ()
 /NLD ()
 /ESP ()
 /SUO ()
 /ITA ()
 /NOR ()
 /SVE ()
 /ENU ()
 /JPN ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

