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ABSTRACT
Recent advances in touch and display technologies are sup-
porting a wide-spread use of touch-based direct manipulation
techniques as well as 3D displays that give a perspectively
correct view. Both techniques have consistency constraints
including the following: With direct manipulation, a dragged
object should stick to the finger tip. With viewer centered
projection, head movement should update the scene’s projec-
tion to preserve a sound 3D impression, e.g., leaning around
a house should reveal its backyard. Unfortunately, these two
contradict each other, making a combination, e.g., moving
the head while touching or dragging an object, non-trivial.
We introduce a design space of perspectively adjusted meth-
ods for direct manipulation to cope with this limitation, se-
lect nine different strategies from it, and evaluate six of them
in depth. Participants dragged a box through a 3D maze with
multiple, partially occluded levels. We identified one method
to be among the fastest while yielding up to 32% less colli-
sions than the other fast methods.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

Keywords: motion parallax, direct manipulation, co-planar
dragging, 3D interactions, 3D tabletops

General terms: Design, Experimentation, Human Factors

INTRODUCTION
More and more consumer displays are able to generate 3D
output. One visual cue for this is stereoscopy: You render
slightly different images for each eye and display them to
each eye using shutter glasses or special lenses. Another
important visual cue to perceive spatial relations is motion
parallax: As soon as the user moves his head, a viewer cen-
tered projection is updated. This requires head-tracking but
can be done using low-cost cameras found on devices such
as smartphones, notebooks, or tablet PCs.

Orthogonal to this evolution, many current displays are touch
enabled and employ the direct manipulation paradigm in which
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Figure 1: Direct manipulation in a naı̈ve fish tank VR
implementation. The colored lines show the gaze di-
rection and the bars are the projections of the boxes.
Bright blue is before and dark red after the movement;
dotted green shows where the object would look to
be “below” the finger from the user’s point of view.
Left) Moving the head does not change the 3D po-
sition of the object. Right) Moving the finger to the
side moves the object equally. In both cases, the pro-
jections behave differently than the objects. Thus, the
object is no longer below the finger, breaking the direct-
manipulation metaphor.

a dragged object always sticks to the finger. Our study looks
into the combination of the two paradigms: Users touch and
move the projections of 3D objects, thereby manipulating the
objects themselves. To isolate our study from stereoscopic
effects, such as the ones described in [18], we augmented
our touch enabled tabletop exclusively with viewer centered
projection.

One way to map the (x, y)-touch is to move the object in the
same two dimensions and omit the third. We refer to this
as co-planar dragging. Adding viewer centered projection
causes head movement to change the projection of the 3D
scene on the 2D display to provide a 3D impression. This
means that the projections are moved on the display. In a
naı̈ve mapping (Fig. 1), touching one of these projections
while moving your head will result in the projection of the
touched object slipping off the finger—violating the sticks-
to-finger property of direct manipulation. Another naı̈ve op-
tion would be to move the touched object in 3D space based
on the head movement—that way, the object would stick to
the user’s finger as expected, but now it would appear to
move around in relation to its 3D environment as the user
moves his head.

In this paper, we contribute new ways to perspectively ad-
just direct manipulation by presenting: (i) a design space for
different input methods and (ii) a quantitative and qualitative



analysis of six selected methods.

RELATED WORK
Part of our research is related to the field of Virtual Real-
ity (VR). While VR strives for perfect immersion covering
multiple senses, we limit ourselves to a table size (150 cm
x 80 cm) horizontal display, simulating 3D vision through
motion parallax. These non-immersive systems are known
as Fish Tank VR [19] and usually employ stereoscopy in ad-
dition to motion parallax. An early VR -motivated advance
in the tabletop domain was the Responsive Workbench [1].
It featured a fully head-tracked stereo display for two users.
However, its focus was on displaying content more than in-
teracting with it as it only implemented indirect interaction
through cyber gloves.

A comprehensive overview of other systems that use 3D tech-
nology on tabletops was done by Grossmann et al. in 2007
[6]. They defined a 3D tabletop taxonomy, differentiating
systems by their physical properties as well as display and
input properties. In this scheme, our setup joins the Immer-
saDesk [5] in the group of table-sized systems with 2D input
on a perceived 3D volume. While the ImmersaDesk was ca-
paple of device-based input on its planar surface, its focus lay
on interaction using six degrees of freedom flight sticks, also
used in fully immersive VR systems like the CAVE [4]. Our
setup differs as we strive for direct touch interaction [16],
with no need for additional input devices.

Hachet et al. showed multitouch interaction with 3D objects
hovering in the air [7]. They use an abstract 2D represen-
tation (based on handles) projected below the objects to al-
low for rotating, scaling, and translating them. We, how-
ever, focus on single touch direct manipulation and objects
are shown beneath the physical interaction plane.

Steinicke et al. investigated the mix of stereoscopic and mono-
scopic content in a single GUI [17]. They also analyzed how
people interact with stereoscopically rendered content [18],
making it highly related to our work. However, we use view
point correlation to monoscopically render our scene instead
of showing fixed stereo images. While Steinicke et al. are
trying to cope with the disparity of two different images dis-
played on the interaction surface, we are interested in the
perceived alignment of touch point and virtual object.

Chan et al. [3] examined users’ performance in 3D direct
touch with an intangible reach-through display, realized with
a fresnel lens. Similar to our motion parallax approach, the
fresnel lens only displays a 2D projection, which is perceived
as three dimensional. Chan et al. use two infrared cameras to
calculate a 3D touch point above, on, or behind the image
plane, which seems to be floating in mid air. Their results
show that interaction in the z-axis (depth) is difficult, as there
is no haptic feedback, neither active nor passive.

Interacting with 3D content does not necessarily require 3D
displays; often 2D displays with a useful set of control op-
tions suffice. Recently, this field has branched towards table-
top displays with direct touch interaction. Interactions in the
Air [12] controls content in three dimensions by additionally
allowing contactless gestures above the table surface. Han-

cock et al. looked at direct touch gestures using one, two, or
three contact points to manipulate objects with six degrees
of freedom [9]. To keep interaction direct and feasible, they
limited themselves to a shallow depth approach, where inter-
active content is reasonably close to the surface. Reisman et
al. [15] present an in-depth analysis of the de-facto standard
Rotate-Scale-Translate (RST) technique for manipulating 2D
content and port it into the third dimension, using three or
more contact points with novel interaction gestures.

Martinet et al. evaluated techniques for three dimensional ob-
ject positioning on multitouch tabletops [13]. Their proposed
Z-technique uses direct movement control on a plane with
one finger, supported by a secondary indirect gesture to con-
trol depth. The use of single touch co-planar direct object
movement gives a strong relation to our own work. Yet, we
are facing the additional problem of a dynamic perspective
and focus on techniques to cope with touch offset.

Hancock et al. showed how people (mis)interpret 3D orien-
tation on tabletops when viewing off-axis [11] and offered
insights in how to visualize content when perspectively ac-
curate projection is not available or possible, e.g., when mul-
tiple users are involved [10].

An early version of the design space shown in this paper has
been presented at a non-archival workshop at CHI 2012 [14].

INTERACTIONS IN A FISH TANK
It is an often used paradigm that dragging an object makes it
follow the user’s finger or cursor. However, in a head tracked
fish tank VR system, the two-dimensional dragging input can
not be mapped to the 3D object easily.

The problem is the offset between the touch point on the sur-
face and an object’s projection on the same surface (Fig. 2).
The offset depends on the current system state, which con-
sists of the current head or view position v, an object handle
h, and a touch position t. During a dragging operation, the
following happens: The hand moves from t1 to t2 = t1 + ~m.
The object naı̈vely mimics the movement of the user’s finger,
thus, being far below the interaction surface, appearing to be
moving slower. Consequently, the object does not stick to the
finger. To describe this effect, we use the offset ~a. Moving
the object to hi would eliminate the offset ~a.

Furthermore, the illustration displays movement of the user’s
head from v1 to v2. The resulting additional offset is marked
as ~b. This offset is of special consideration when the user
holds his hand still and tries to look around. By keeping
track of head and touch movement, ~a and ~b can be easily
distinguished. This gives us the option to deal with these
effects either separately or in unison.

Design Space
Offset occurs when a set of v, t, h are not in a line. To com-
pensate, we can either change the virtual object’s position or
we can change how the system takes the user’s head into ac-
count by adjusting the virtual view point: Instead of moving
the person’s head, we move the digital representation of the
head and ignore further updates (besides z movement, i.e.,
the person moving closer to the table). This means, we then



Figure 2: Offset created by dragging an object in a
head tracked environment. Total offset can be split
into a touch induced offset~a and a head induced offset
~b. From a graphics point of view, the near plane lies
60cm above the table, the projection plane matches
the surface of the table, and the interaction plane is
set to the top of the object.

have a new eye position and a changed viewport. This will
shear the scene from the user’s point of view. Table 3 shows
a 2 × 2 matrix scheme where we oppose the offset triggers
with the correction methods. For each type of offset we can
choose one of two correction methods or none at all. This
gives us three possible ways to deal with each offset: ignore
the offset, move the object to compensate, or shear the scene
to compensate. Linear combination of two corrections is an
interesting field for future research.

{0,1} {0,1}

{0,1} {0,1}

Move Head Drag Finger
Trigger

Move Object

Shear Scene

Correction

Figure 3: Design space for perspectively adjusted di-
rect manipulation.

This leaves us with nine control methods in total, all of which
were examined in a pilot study. Six promising methods were
selected for further analysis regarding speed and accuracy.
The following sections summarize all of the nine method’s
properties and implementation details as well as the reasons

for the removal of the three.

Interaction Methods
The overall algorithm works as follows (cf. Figure 2):

0. Given positions last frame; head v1, finger t1, object h1.

1. Drag finger to t2 and move head to v2. Note: t2− t1 = ~m.

2. Cast ray from v1 over t2. Intersection with object plane
yields hi. Note: hi − h1 = ~m+ ~a.

3. Cast ray from v2 over t2. Intersection with object plane
yields hc. Note: hc − h1 = ~m+ ~a+~b.

4. Move object to h1 + ~m.

5. Select method. Update offsets.

6. Move object by offset assigned for positional correction.

7. Shear scene by offset assigned to be shifted.

8. Draw. Update v1, t1, h1. Repeat.

All nine methods perform the same direct object movement
~m. They then differ in the way they treat the offsets ~a and~b.
Their naming is loosely based on the following scheme:
• Correction if they move the object to compensate for off-

set,

• Shift if they shear the scene to compensate for offset,

• Team if they do both,

• Adaptive if offset is mitigated over time,

• Cross if the compensations are switched, e.g., head in-
duced offset is corrected by object movement.

Additional impressions can be gathered from our supplemen-
tal video figure.

[ 0 0
0 0 ] UNCORRECTED

No correction is applied and the resulting offset is tolerated.
The object is naı̈vely moved only by vector ~m.

[ 1 1
0 0 ] OBJECTCORRECTION

This method can be found in literature under the term Sticky
Finger [2]. The object position is constrained to a plane and
determined based on head and touch position. In our model
this correlates to an applied movement of

~m+ ~a+~b

This way, the object always appears to be precisely under the
touch. The consideration of~b leads to head movement alone
causing the object to move. Offset can only be forced when
this movement can not be applied due to other constraints,
e.g., boundaries in the virtual world.

[ 0 1
0 0 ] ADAPTIVECORRECTION



When the finger is moved, the object follows precisely. Head
movement, however, does not cause the object to move and
lets the touch slip off. This method is designed to appear to
a user as ~m + ~a object movement, yielding the described
effects. However, mathematically the total applied object
movement is:

~m+ ~a+ |~a| · f ·
~b

|~b|

That means ~b is only corrected alongside ~a if the latter is
dominant. This also causes an offset touch to ease back to-
wards alignment while it is moved. This has been done to
avoid an offset ~b to be retained indefinitely which would
make the method feel indirect despite the ~a correction ap-
plied.

The factor f ∈ [0,∞] determines the dependance of~b on~a,
i.e., how quickly alignment is restored from an offset state.
During our study, it was set to 0.8 as a trade-off between
offset reduction and predictability.

[ 0 0
1 1 ] SCENESHIFT

In this mode, we avoid the perceived offset between touch
point and object without repositioning the object itself. While
an object is grabbed, we take explicit control over the vir-
tual view point to keep it in alignment with object and touch.
This can make the scene look sheared from the user’s point
of view. However, from the manipulated view point the scene
geometry is still soundly determined by the fish tank VR pro-
jection. This is the same effect a bystander would experience
when another user’s head position is tracked, not his own.

We achieve this viewpoint transformation by multiplying the
projection matrix with the following shearing matrix:1 0 0 0

0 1 0 0
x y 1 0
0 0 0 1

 ; x =
ax + bx

z
; y =

ay + by

z

When only the head is moved, this perspective correction
exactly counteracts the perspective change created through
head movement. This makes the scene appear frozen to the
user, leaving him unable to look around obstacles. If the
touch is moved, the object is naı̈vely moved along by ~m, and
the correction of the remaining offset ~a + ~b causes a view
point translation, making the scene shear in the direction
of movement. In contrast to OBJECTCORRECTION, SCE-
NESHIFT is even applied when the object is dragged into a
boundary, never permitting the touch to be offset.

Releasing an object restores the correct perspective defined
by the user’s head position. Instead of snapping back in-
stantly, we decided to ease back the scene using sine curve
smoothing over a second.

[ 0 0
1 0 ] ADAPTIVESHIFT

This method is derived from SCENESHIFT but differentiates

between offsets. Without touch movement, the view point
stays locked, maintaining alignment. Touch movement may
cause offset, which is slowly mitigated by additional head
movement. The same factor f = 0.8 applies, analog to
ADAPTIVECORRECTION. The resulting values x and y fed
into the shearing matrix are as follows:

x = ~b+
|~b| · f · ax

|~a| · z
; y = ~b+

|~b| · f · ay

|~a| · z

[ 0 1
1 0 ] TAGTEAM

This method not only differentiates between offsets, it cor-
rects them differently: additional object movement compen-
sates touch induced offset; perspective shearing compensates
head induced offset. That means, moving the touch causes
the object to stick to the finger. Without touch movement the
view point gets locked, as in SCENESHIFT. The total applied
object movement, therefore, is:

~m+ ~a

The factors to be fed into the shearing matrix are

x =
bx

z
; y =

by

z

During object movement, view point changes are limited, as
the head-coupled projection only reacts to the user as long
as it counteracts the touch induced offset. In this method,
touch offset is only possible when objects get dragged against
a boundary, although contrary to the OBJECTCORRECTION
method, head movement can mitigate this offset to a degree.

[ 1 0
0 1 ] CROSSTEAM

This method is an adaptation of TAGTEAM with switched
roles. Here, touch induced offset is compensated by perspec-
tive adjustment and view offset by correcting object position.
Note that the following formulas for total object movement
and shearing show switched roles for ~a and~b, but otherwise
are the same as for the TAGTEAM method. Total movement:

~m+~b

Shearing factors:

x =
ax

z
; y =

ay

z

Dragging the object in this environment automatically shears
the scene, while moving the head has the potential of actively
moving the object, depending on the direction of offset and
existing projection adjustment.

[ 1 0
0 0 ] CROSSCORRECTION

This methods applies adaptive positional correction, but un-
like the ADAPTIVECORRECTION method, the correction here
is linked to the other trigger, so here it is head movement that
causes positional correction. Touch movement, on the other
hand, causes no correction and can lead to offset. The offset



is steadily corrected when the head is moved similar to other
adaptive methods. The total applied object movement is:

~m+~b+ |~b| · f ·
~a

|~a|

The known factor of f = 0.8 applies.

[ 0 0
0 1 ] CROSSSHIFT

This methods applies adaptive projectional correction, but
unlike the ADAPTIVESHIFT method, the correction here is
linked to the other trigger. Touch movement drags the box
along with ~m and shears the scene to preserve alignment.
The factors used in the shearing matrix are the following:

x = ~a+
|~a| · f · bx
|~b| · z

; y = ~a+
|~a| · f · by
|~b| · z

Here, head movement causes no correction and can lead to
offset, enabling the user to look around freely without loos-
ing control of the box. When the touch is moved, existing
offset is steadily corrected by shearing the scene, similar to
adaptive methods.

STUDY
The aim of this study is to evaluate the aforementioned dif-
ferent control methods for object dragging. To analyze this
(in)direct manipulation, we designed a task in which the user
needs to move a box through a maze with several levels.

During initial testing that used a within-subject design, the
three CROSS methods consistently received negative com-
ments as touch induced offset could lead to viewport changes
and head movement could move the object. All in all, users
were very unhappy with (a) their head movement causing
collisions, (b) the need to release the object to safely look
around, and (c) the unexpected jumping of the box shortly
after releasing it. Many users stated confusion and frustra-
tion. Some interpreted this kind of control as “moving the
space around the object”. CROSSSHIFT, e.g., was described
as “weird”, “unsettling”, and “confusing”.

Consequently, we focused on the remaining six methods:
UNCORRECTED, OBJECTCORRECTION, ADAPTIVECORREC-
TION, SCENESHIFT, ADAPTIVESHIFT, and TAGTEAM.

System Setup
A sketch of the system used is displayed in Figure 4. The
base of our system is a multi-touch table with outer mea-
sures of 155x136x92 cm. The visible size of the horizontal
display is 140x80 cm. It is backlit by three Full-HD pro-
jectors, giving us a total resolution of 3240x1920 px on the
tabletop. The table uses FTIR [8] for touch detection. Two
120 fps cameras with 640x480 px resolution scan the surface
for reflected infrared light from the user’s fingertips. This
lead to an input resolution of 20dpi. The system is powered
by a Mac Pro with a single ATI Radeon HD 5870 graphics
card.

To augment the tabletop with head tracking, we used an in-
dustry grade tracking solution. Five cameras were mounted
on a frame above and to the right of the table yielding sub

Figure 4: User standing in front of the tabletop. In-
frared cameras in the background track the markers
on the user’s head. Head position is translated into a
perspectively correct view of the virtual scene.

millimeter accuracy around and over the table. To be seen by
the cameras, users had to wear a hair circlet on which four
reflective markers were mounted.

Task
To accustom themselves with the hardware prior to the test,
participants had two minutes to play around in a 2D drag-
ging setting. Afterwards the previously assigned interaction
method was activated and the participants could play around
with it in a single level 3D playground for as long as they
liked before they entered the maze itself. Participants had
to drag a cuboid through this maze, avoiding collisions with
its walls (Fig. 5). The maze was divided into three stages.
Starting on the top level, participants progressed downwards
by moving the box into a marked hatch on the end of each
level. Levels did not disappear when finished, so participants
had to deal with the added challenge of occlusion.

The box can be touched at one of two visible handles on its
top (Fig. 5). Other objects would be controlled via similarly
placed touch anchors or dynamically via ray casting to deter-
mine a touch anchor. We restricted grabbing the box to single
touch interaction. The box follows the user’s touch, accord-
ing to the rules defined by the underlying design paradigm.
While grabbed, the box is subject to a simple physics en-
gine that allows it to pivot around its touch point depend-
ing on speed, direction, and friction. The physics layer is
strictly two dimensional and works with the projections of
the box and maze to calculate movement and collision be-
havior. When the box is released it immediately stops, so
no flinging operations can be performed. However, to coun-
teract touches getting lost while dragging, due to, e.g., bad
tracking or blind spots, a small but noticeable delay is coded
into the action of releasing an object. Yet, this allows for head
induced box movement a few milliseconds after release.

The shape and physical movement model of the box gave the



Figure 5: Task design: Participants had to drag the
box through the maze, starting from the far left corner
on top level to the green field on the bottom level. The
boxes touch anchors are highlighted in blue.

users a task they found intriguing, challenging, and enjoy-
able. Many users described dragging the box as “driving a
truck”, referring to the tendency of the box’s rear to cut cor-
ners when pulled behind. In case of collisions, a sound is
played to encourage more careful behavior.

Procedure
We measured completion time in seconds, number of occlu-
sions, and number of re-grabs. We used a between-subject
design for the test with three repetitions. A within-subject
design for six techniques was not feasible with the long task
time and three repetitions. Before the test we collected de-
mographic data: gender, age, height, prior experience with
touch devices. During the playground settings, we encour-
aged participants to share their impressions. However, dur-
ing the actual test we asked them to focus on moving the box
without too many collisions or slowdown. Participants were
offered breaks between each level of the maze and each of
the three trials. Relax times were part of the schedule, as
each level began at the first touch of the box.

Because users tended to cause multiple contacts or follow-
up collisions due to the physical properties of the box, we
decided to measure a maximum of one collision every two
seconds. Besides time and collisions, we also recorded the
number of re-grabs, counting one for every time the box is
released and grabbed again, either to reposition it for corners,
set back the perspective, unlock the camera to look around,
reduce the touch offset, or personal preference. Participants
were not told that re-grabs were tracked or in any way im-
portant for their performance.

The study host took notes based on the feedback during the
playground and while observing. After the test, users filled
out a questionnaire consisting of nine statements rated on a
five point Likert scale: The input method (1) allows for pre-
cise control, (2) lets me control the box directly, (3) forces me
to keep my head still, (4) allows for good orientation while
dragging, (5) is taking away my control over the system, (6)
is comprehensible, (7) causes unpredictable jumping of the
box, (8) tempts me to re-grab often, (9) negatively influences
my 3D impression.

While users were filling out the form, an open dialogue with
the study host was offered to convey additional comments or
answer open questions.

Participants
A total of 91 participants aged 18-30 (M = 24.59, SD = 2.97),
78 male, took part in our study. 91% were students, almost
all of them computer science or related. 88% had previ-
ously experienced 3D vision, 87% had experienced mobile
multi-touch, and 30% had already interacted with a touch-
interactive tabletop. Half of the participants had some kind
of vision impairment, but all of them had them corrected or
only had minor impairments.

Results
Means and confidence intervals of time, collisions, and re-
grabs are reported in Figures 6, 7, and 8. We opted to stack
the bars for each level, but will point out significant effects
between levels when they exist. To increase readability, we
focus on significant and impactful results of our analysis,
e.g., we do not elaborate on the fact that trial almost al-
ways had a (strongly) significant effect on every independent
variable as this can be interpreted as a learning effect. The
full factorial analyses as well as all pairwise comparisons for
each method and independent variable can be found in the
supplemental data.

Uncorrected

ObjectCorr

AdaptiveCorr

SceneShift

AdaptiveShift

TagTeam

0

50

100
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200

Level 3 Level 2 Level 1Estimated Marginal Mean: Completion Time in seconds

Figure 6: Mean completion time in seconds. Mean
bars are sub-divided into single levels. 95% Confind-
ence intervals are shown for the sum over all levels.

Time measurements were found not to be normally distributed
(Shapiro-WilkW = .68, p < .0001) but were sufficiently
normal after a log(y + 1) transform (W = .99, p =
.54). Mixed effect analysis of variance (treating the user as
a random effect) revealed significant main effects of method
(F(5,208.7) = 3.49, p = .0048) and level (F(2,680) =
471.56, p < .001) on time. No interaction between method
and level was found (Fig 6).

Collision was analyzed as Poisson distributed count data us-
ing Generalized Estimating Equations (reported as Wald’s
Chi-Square). We found a significant main effect of method
(χ2

(5,N=91) = 14.11, p = .015) and level (χ2
(2,N=91) =

390.32, p < .0001) on the number of collisions. Interac-
tions were found between method and level (χ2

(10,N=91) =



57.75, p < .0001). In level 1/2/3 the method had a signif-
icant main effect on the number of collisions (χ2

(5,N=91) =

24.98/12.46/15.39, p < .0001/ = .029/ = .009).

Uncorrected

ObjectCorr

AdaptiveCorr

SceneShift

AdaptiveShift

TagTeam
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Level 3 Level 2 Level 1Estimated Marginal Mean: Number of Collisions

Figure 7: Number of collisions. Mean bars are sub-
divided into single levels. 95% Confindence intervals
are shown for the sum over all levels.

Re-grabs were also analyzed as Poisson distributed count
data using Generalized Estimating Equations (reported as Wald’s
Chi-Square). We found a significant main effect of method
(χ2

(5,N=91) = 114.26, p < .0001) and level (χ2
(2,N=91)

= 557.56, p < .0001) on the number of re-grabs. Interac-
tions were found between method and level (χ2

(10,N=91) =

45.99, p < .0001). In level 1/2/3 the method had a sig-
nificant main effect on the number of collisions (χ2

(5,N=91)

= 81.38/76.48/111.24, p < .0001).
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Figure 8: Number of re-grabs. Mean bars are sub-
divided into single levels. 95% Confindence intervals
are shown for the sum over all levels.

The significant results of the pairwise comparisons for time,
collisions, and re-grabs can be found in Fig. 9. All three in-
dependent variables are significantly correlated (p < .0001):
collisions and time, r(89) = .35, re-grabs and collisions,
r(89) = .29, and re-grabs and time, r(89) = .79.

In our questionnaire, users rated statements on a five point
Likert Scale from 1 (strongly disagree) to 5 (strongly agree)
(see Table 1). Kruskal-Wallis revealed a significant effect

Level Time Collisions Regrabs

∑

1

2

3

5   1   6   4   3   2

5   6   1   3   4   2

5   1   4   6   3   2

5   6   3   1   4   2

4   1   2   5   6   3

4   5   1   6   2   3

2   1   4   5   6   3

4   1   2   3   6   5

5   1   6   3   4   2

5   6   1   3   4   2

5   1   6   3   4   2

5   1   3   4   6   2

Figure 9: Results summed and by each level. Tukey’s
HSD for time and Wilcoxon signed rank sum test for
collisions and re-grabs. Arrows denote a significant
difference. Methods are sorted descending by their
mean and are labeled as follows: (1) Uncorrected,
(2) ObjectCorrection, (3) AdaptiveCorrection, (4) Sce-
neShift, (5) AdaptiveShift, (6) TagTeam.

of the method on criterion (5) loss of control (χ2
(5,N=91)

= 18.28, p = .0026). For this criterion, a pairwise com-
parison using Wilcoxon rank sum test revealed that UNCOR-
RECTED is lower than OBJECTCORRECTION, ADAPTIVECOR-
RECTION, and ADAPTIVESHIFT. Also, OBJECTCORREC-
TION is higher than ADAPTIVECORRECTION.

precise control 3.0 3.7 3.9 3.5 3.3 3.5
direct control 3.3 4.0 4.0 4.1 3.7 4.1

keep head still 1.5 2.6 1.6 1.5 1.7 1.8
good orientation 3.9 3.3 4.1 3.1 3.4 3.4

loses control 1.3 2.6 1.9 2.4 2.4 1.7
comprehensible 4.3 4.5 4.2 3.9 3.6 4.7

unexpected jumping 2.0 2.7 1.8 2.1 1.9 2.6
requires re-grabs 3.7 3.4 2.5 2.6 3.3 2.9

lessens 3D impression 1.7 1.7 1.4 2.1 2.3 1.6
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Table 1: Average ratings of the questionnaire state-
ments. A five point Likert scale was used.

DISCUSSION AND DESIGN SUGGESTIONS
Before taking a closer look at each method, we can see that
re-grabs and time have a tight connection. Obviously, per-
forming a re-grab takes time. However, after a re-grab the
offset is nullified, yielding more precise control, which in
turn might speed up task time. The positive correlation (.79)
indicates that the former is the stronger effect, yet we recom-
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Figure 10: Collisions for each level across all methods. They primarily occurred at bottlenecks and in corners.

mend to allow methods to use re-grabs to let the user correct
offset while minimizing the amount of re-grabs the user has
to perform.

The number of collisions increased with the depth and pri-
marily occurred at bottlenecks and in corners. This was sim-
ilar for all methods. We observed that the box was mostly
controlled using the front handle. However, to navigate around
corners, some people used the back handle to rearrange the
box.

OBJECTCORRECTION was in the group of fastest methods
and its (insignificant) leader. They same is true for the num-
ber of re-grabs. However, many users stated confusion and
frustration with OBJECTCORRECTION due to (a) their head
movement causing collisions, (b) the need to release the ob-
ject to safely look around, and (c) the unexpected jumping of
the box shortly after releasing it. ADAPTIVESHIFT should
be avoided regardless of the expected occlusion or interac-
tion depth as it was slow and required a lot of re-grabs (Fig.
6,8,9). UNCORRECTED required many re-grabs but users did
complete with average times. This could hint that re-grabs,
though necessary, were easier and faster to execute for this
method.

The number of collisions can vary greatly with the level due
to the amount of occlusion and interaction-depth. However,
SCENESHIFT and UNCORRECTED performed badly overall
(Fig. 7,9). OBJECTCORRECTION worked well at least for
the first level, but did have problems with lower levels due
to the aforementioned implicit box movement. The ADAP-
TIVESHIFT method was one of the worst on the first level
and the best on the last level regarding collisions. Partici-
pants also criticized the view snapping back, classifying the
method as precise but weird. ADAPTIVECORRECTION per-
formed great among all levels (32% fewer collisions), closely
followed by TAGTEAM. Both methods offer direct control.
While TAGTEAM is restrictive about object-finger alignment,
ADAPTIVECORRECTION allows to break it in case the user
just wants to look around a bit.

With ADAPTIVECORRECTION being received so well, we
propose it to be the first choice. This method seems to be a
confusion free, surprise free, accurate, low entry barrier ap-
proach to 2D direct manipulation of 3D media. Although
OBJECTCORRECTION is (insignificantly) faster, the method

received bad feedback on unexpected behavior. Also, ADAP-
TIVECORRECTION has a comparably low number of re-grabs,
which might be important for some groups of users such as
physically handicapped people.

All in all, we have identified head movement interfering with
box control as one of the main problems. We also found that
offset is a problem users struggle with and that performance
seems to decline whenever offset is involved. However, not
all methods that allow for offset perform poorly. Dealing
with offset smartly seems to be a viable option, other than
avoiding it completely.

Several extensions to our study setup may lead to further
interesting results: using multiple fingers for single object
control, controlling multiple objects at once, or adding stere-
oscopy to enhance the 3D impression. Further extensions to
our methods are also possible by changing the adaptive cor-
rection factor f , or by trying to linearly combine correction
methods for given offset triggers.

Another option would be to “zoom in” on the object to inter-
act with. That means, we would set the projection plane to
the object’s top, thereby lifting it up and removing the prob-
lems introduced due to object depth. However, this would
mean we would break the fish-tank metaphor thereby loos-
ing context (e.g., the upper floors) and realism. Still, in other
domains, this might be a feasible approach that would war-
rant further studies.

Non-flat objects could benefit from more sophisticated touch
processing as people would expect or prefer objects to mimic
physical behavior: start rotating (along the axis orthogonal to
the plane defined by the drag begin point, drag end point and
the object’s center of gravity) until the object ”tails” behind
the finger. Separated manipulation modes could be another
option, we would then try to adapt or compare some of the up
to three finger combinations [9]. Another question is how to
deal with varying heights of the scene, e.g., moving an object
along a slope.

RepliCHI
As proposed in [20], we encourage replication of this study.
To this end, all our datasets can be found at http://tinyurl.
com/buygrmq for replication and further analysis.

http://tinyurl.com/buygrmq
http://tinyurl.com/buygrmq


CONCLUSION
In this paper, we presented a design space of interaction meth-
ods for touch-enhanced displays that use motion parallax for
3D. These methods address problems that arise with perspec-
tively adjusted dragging in which users interact with an ob-
ject’s projection rather than the object itself. The two main
problems identified are the perceived offset between touch
and object projection, and head movement inferring object
translation. We presented nine different control methods and
evaluated six of them in depth. We identified the ADAP-
TIVECORRECTION method to be among the fastest, while
yielding up to 32% less collisions than other fast methods.
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