StatWire:

Visual Flow-Based
Programming for
Statistical Analysis

Bachelor’s Thesis

submitted to the

Media Computing Group
Prof.Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

by
Johannes Maas

The5| advisor:
Prof.Dr.Jan ers

iner:
Prof. Dr. Chat Wacharamanotham
Registration date: 7.2017
Submission date: 82011 (






Eidesstattliche Versicherung

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

selbstandig und ohne unzulassige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Fiir den Fall, dass die Arbeit zusétzlich auf
einem Datentrager eingereicht wird, erklare ich, dass die schriftliche und die elektronische
Form vollstandig tbereinstimmen. Die Arbeit hat in gleicher oder &hnlicher Form noch keiner
Prifungsbehorde vorgelegen.

Ort, Datum Unterschrift

*Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zusténdigen Behoérde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlassiger Falscheid; fahrlassige fals  che Versicherung an Eides Statt

(1) Wenn eine der in den 88 154 bis 156 bezeichneten Handlungen aus Fahrlassigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Tater die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnhis genommen:

Ort, Datum Unterschrift






Contents

Abstract xiii
Acknowledgements XV
Conventions xvii
1 Introduction 1
1.1 Tools for Statistical Analysis . . . . ... ... 1
12 Trends . ... ... ... .. .. ... ..., 2
13 StatWire . . ... ... ... ... ... .. .. 3
14 Overview. ... ... ... ........... 4
2 Related Work 5
2.1 Statistical Programming . . .. ... ... .. 5
2.2 Visual Programming . .. ........... 6
3 Tools 9

3.1 Statistical Analysis . ... ... ........ 9



vi

Contents

3.1.1 Data-Centered . . . . . . ... ..
3.12 Non-Linear . ...........
3.1.3 Structured . . ...........
3.2 Textual Programming . . . . .. ... ..
321 ControlFlow . ..........
322 Dumping .............
3.3 Visual Programming . ... .......
34 Hybrids...................
Concept
41 Keyldea ..................
42 Components . . ..............
421 Code . ...............
422 Canvas . .. ............
423 NodePool . ............
424 Additional Features . ... ...
4.3 UsageScenarios . . . ... ........
43.1 Placeholders. . ... ... ....
432 Education . ............
433 Collaboration . .. ........

434 Advanced Visual Programming

44 DesignProcess. . . ... .........



Contents

vii

441 Statlets .. ...............

442 Application to Real-Life Analyses

5 Evaluation

51 Benefits . .. .. .. ... .. ... .. . ...,

5.2 Suggestions for Research Questions . . . . .
521 Power ................ ..
522 Easeofuse................
52.3 Modularization . . . ... ... .. ..
524 Acceptance ... ............

53 Issues . . . ... ... .. ...

6 Summary and Future Work
6.1 Summary.....................

6.2 FutureWork ... ... ... . ... ... ...

A Differences between Prototype and Concept

Bibliography

Index

30

33

33

34

34

35

35

36

36

38

38

39

41

43

45

47






ix

List of Figures

4.1

4.2

4.3

44

Overview of Components . . . .. ... ... 18
CloseupofNode . ............... 20
Data Viewer . . .. ... ............ 21
Subset Selection . . . .. ... ... .. .... 23






xi

List of Tables

A.1 Differences between Prototype and Concept

44






xiii

Abstract

We introduce StatWire, a tool for statistical analysis that combines the power of
statistical programming with the ease of use of visual programming. While exist-
ing approaches already offer both statistical and visual programming and allow
the user to switch between them, StatWire provides the user with a simultaneous
integration of both modes. Because of this symbiotic integration, the user can write
code in a powerful statistical programming language, but is naturally encouraged
to modularize the code he produces in a visual structure. Splitting up the analysis
into modules allows the user to efficiently modify and reuse parts of it. Addi-
tionally, StatWire provides a visual overview over the main steps in the analysis,
making it easier to understand.

This thesis contributes the artifact design for StatWire which is accompanied by a
prototype serving as a proof of concept. We explain the significance of StatWire by
presenting scenarios that showcase its benefits. To pave the way for future work,
we suggest research questions to explore. Other domains can also potentially ben-
efit from the advantages that StatWire brings to statistical analysis.






XV

Acknowledgements

My first thank you goes to my supervisor, Krishna Subramanian, for his patience
and support. He offered great feedback on various levels and taught me about
statistics, scientific research and chocolate marshmallows along the way.

I also thank Prof. Dr. Chat Wacharamanothan for agreeing to be the second exam-
iner for my thesis and coming up with the new name StatWire. His feedback was
very valuable and intriguingly succinct.

I am grateful to Prof. Dr. Jan Borchers who is the first examiner of this thesis.
Additionally, I want to thank him and Dr. rer. nat. Simon Volker for having a
meeting with Krishna and me that pointed us in a better direction to take this thesis.

Thank you to the members of the Media Computing Group, who provided feed-
back during the talks and cake during birthdays.

A last thank you goes to the students, research assistants and professor who pro-
vided us with some of their code for statistical analysis to pick apart.






xvii

Conventions

The whole thesis is written in American English.

No special conventions are used.






Chapter 1

Introduction

Statistical analysis is an essential method for validating
experimental findings. Especially null hypothesis signifi-
cance testing is used across many different domains, in in-
dustry as well as research, to objectively judge the results
of tests and experiments. This broad spectrum of users re-
sults in wildly different requirements for the tools used in
statistical analysis.

In this chapter, we introduce the challenges that the tools
for statistical analysis face. This is followed by a short pre-
sentation of statistical and visual programming, as these
two approaches show a recent trend of growing interest.
We explain briefly how our concept manages to bring those
approaches into a symbiosis and end on an overview over
the different chapters of this thesis.

1.1 Tools for Statistical Analysis

To accommodate the vast differences in requirements, the
tools for statistical analysis target very specific user groups.
Those range from novices with no experience with statis-
tics to experts with a very deep understanding of the math-
ematics behind it. Accordingly, many tools provide ded-
icated interfaces that guide novices through the different

Statistical analysis
has a wide
applicability.

Tools for statistical
analysis specialize
for different
requirements.



1 Introduction

Powerful tools are
often harder to use.

Usability is important
for experts, too.

Both power and
usability are
important qualities
for professionals.

Statistics software
loses interest of
academics.

Statistical
programming gains
interest.

steps of an analysis while others provide immense adapt-
ability and power to sophisticated analysts. A tool’s power
is negatively correlated to its ease of use and learnability;
improved capabilities require more complex controls and
deeper understanding. This relationship causes the most
powerful tools to be primarily used by experts who in-
vested time and energy in learning them.

This difficulty in using the tool, however, is not only an im-
pediment for novices who still need to learn it. By exploit-
ing the user’s experience, understanding and intuition, im-
proved usability benefits experts, too. It reduces the effort
being spent on handling the tool and allows to work more
naturally and directly on the subject. An expert profits even
more from a well designed tool than a novice, since the ex-
pert uses the tool frequently and extensively.

While power is a very important factor, usability is crucial
as well. A tool should not only allow its user to accomplish
a task, it should do so conveniently and intuitively in order
to allow for efficient, reliable work.

1.2 Trends

Classic statistics software, such as IBM SPSS Statistics or
JMP, provides a reasonable compromise between power
and ease of use. Their menu-based interfaces expose a set
of commonly used functions which suffices for most use
cases. Muenchen (2017) shows data indicating that those
programs enjoyed very high interest from scholars up un-
til around 2010. The number of articles on Google Scholar
about especially SPSS is less than half in 2016 of what it was
atits peak in 2010. The data suggests that academic interest
in such packages declines.

Those data also show the rising interest in the statisti-
cal programming language R, as Google Scholar holds
more and more articles about it. If the trend continues,
Muenchen states, R would become the most used statistics
package for scholarly data science by the end of 2018.



1.3 StatWire

This trend is relevant, because arguably the most power-
ful tools are statistical programming languages like R. They
provide their users complete control over every aspect of
the analysis. A big disadvantage, however, is that those
languages typically require substantial time and effort to
learn. Moreover, as we will discuss in chapter 3, they do
not lend themselves particularly well to the characteristics
of statistical analysis. Statistical programming languages,
while offering immense power, lack ease of use.

There is, however, another trend that Muenchen notes on:
Software using what he calls a workflow control style in-
stead of being menu-driven. Examples are KNIME! and
RapidMiner? that use visual programming to build anal-
yses out of resuable widgets. In chapter 3 we will com-
pare them to statistical programming and explain why vi-
sual programming is particularly well suited for statistical
analysis. While they solve the key problems of statistical
programming, they themselves lack its power.

The tension between those approaches, statistical versus vi-
sual programming, arises because choosing one over the
other sacrifices either power or ease of use. Visual pro-
gramming does not offer the same control over the analy-
sis as statistical programming, whereas statistical program-
ming is more tedious and error-prone than visual program-
ming. Because the advantages of one approache mitigate
the other’s drawbacks, a combined tool that keeps the best
of both worlds would be powerful yet easy to use.

1.3 StatWire

There exist different projects that try to combine statistical
and visual programming that we will introduce in chap-
ter 3. While they provide the user with a free choice be-
tween both approaches, they still force the user into only
using one of them at a time.

'https:/ /www.knime.com/
*https:/ /rapidminer.com/

While powerful,
statistical
programming lacks
usability.

Visual programming
becomes more
popular, too.

Both statistical and
visual programming
have advantages
over the other.

Existing approaches
do not combine the
programming modes
well enough.


https://www.knime.com/
https://rapidminer.com/

1 Introduction

Our approach
integrates both
modes to gain both
their benefits.

Because the user still has to choose one over the other, the
different approaches are not able to complement each other
fully and thus fall short of reaping the full potential of a
symbiosis.

StatWire integrates visual programming tightly into statis-
tical programming. The approaches can complement each
other, because the user takes advantage of both at the same
time. This allows for a true symbiosis that keeps the power
of statistical programming while bringing in the conve-
nience and intuition that comes along with visual program-
ming.

1.4 Overview

This thesis contributes the artifact design for StatWire and
showcases its use. We will discuss why it is different from
existing research and how it benefits statistical analysis.

Chapter 2 will present research that aims to improve both
statistical and visual programming. We will explain how
our concept differs or benefits from this work.

In chapter 3 we will discuss how these two programming
approaches suit statistical analysis differently and why ex-
isting hybrid approaches fail to consolidate their benefits.

With chapter 4 the key idea, components and use cases of
StatWire will be explored. It serves to communicate what
makes up our concept. We will also discuss our design pro-
cess when developing StatWire.

Chapter 5 will discuss the benefits of our concept and sug-
gest research questions that serve as a basis for evaluation
of those benefits. We will also point to issues we discovered
when applying the concept to real-life analyses.

We will conclude with chapter 6 by summarizing the key
motivation, components and benefits StatWire provides.
Finally, we will point to the different directions future work
can go into based on the contributions of this thesis.



Chapter 2

Related Work

A lot of existing research aims to improve on established
technology and methods. This chapter will showcase work
that tackles statistical and visual programming and briefly
explain its relevance to StatWire.

2.1 Statistical Programming

There is active research to alleviate the inconveniences of
traditional programming languages. While for example
modularity of a program is widely accepted as desirable, it
is difficult to measure and define. The inherent difficulty to
navigate text efficiently is another issue that is researched.

Modularity Modular software is made up of distinct
components, its modules. Separating functionality into a
self-contained module helps to structure the program in a
manner that makes it easier to understand, test and change,
because each part can be worked on individually. Since
modules are ideally isolated from each other, changes or
errors in one part will not influence other parts. All these
benefits come out of good modularity and help with main-
taining software.

Modularity has many
benefits for code.



2 Related Work

The benefits for code
also count for the
analysis.

Navigating code is
not StatWire’s aim. It
provides program
visualization for the
analysis.

Because modularity is such a desirable yet hard to objec-
tively measure quality, there is research that tries to define
it. One of the most important characteristics of good mod-
ular design is a low coupling between the modules. Offutt,
Harrold, and Kolte (1993) propose a definition and measure
of such coupling.

Such work is of relevance for this thesis because the anal-
ysis is specified as a program. Improving the code’s mod-
ularization positively affects the structure of the analysis,
which is the key goal of StatWire. As will be discussed in
chapter 5, evaluation that tries to validate whether StatWire
improves modularity needs a measure of it. Research such
as Offutt, Harrold, and Kolte, 1993 provides a foundation
for such an evaluation.

Code Navigation Bragdon et al. (2010) present Code Bub-
bles as a method to facilitate navigation in, and understand-
ing of, textual programs. In contrast to classic code edi-
tors’ file-based interface, Code Bubbles displays fragments
of codes (bubbles) side by side and provides hints of the ref-
erences between these.

The difference to StatWire is summed up nicely by the state-
ment from Myers and Baniassad (2009) that program visual-
ization is different from code visualization. We do not pri-
marily aim to improve navigation in the code but rather to
visualize the data flow of the analysis. While this is a dif-
ferent goal, navigating the analysis is still easier because of
the virtues of visual programming we bring to traditional
programming.

2.2 Visual Programming

There is broad variety in the landscape of visual program-
ming and therefore there exist attempts to classify it into
taxonomies. While the advantages of visual programming
seem clear, it is surprisingly hard to find rigorous quantita-
tive evaluations. However, there are some interesting pit-



2.2 Visual Programming

falls to acknowledge when using visual programming.

Taxonomy Myers (1990) provides a general taxonomy for
classifying visual programming and program visualization
systems. He also discusses some general benefits and is-
sues.

A very extensive survey of different visual programming
languages was done by Hils (1992). It explores specifically
data flow visual programming languages, a category to which
StatWire’s visual programming component belongs.

Hils suggests alternatives to a pure data flow model. Exam-
ples of such features are procedural abstraction and distribu-
tors. We propose similar functionality for StatWire in the
context of use cases in section 4.3.

Pitfalls Meerbaum-Salant, Armoni, and Ben-Ari (2011)
provide interesting insights into the pitfalls of visual pro-
gramming. During their research with Scratch they noticed
two problematic techniques students employed.

e Bottom-up programming

e Extremely fine-grained programming

They defined bottom-up programming as starting devel-
opment of basic components which are later linked up to
form the system, but their students” extreme variant of this
was described as programming by bricolage in reference to
Turkle and Papert (1992). Extremely fine-grained program-
ming was defined as the tendency to break down compo-
nents into their elements beyond the point of logical cohe-
sion, such that the resulting program was fragmented.

We encountered the issue of extremely fine-grained pro-
gramming to some extent ourselves during our research.
We will this discuss this issue in section 5.3.

StatWire employs
data flow visual
programming.

Students tend to fall
into bad habits when
using Scratch.

We encountered and
counteracted similar
habits.






Chapter 3

Tools

This chapter will discuss the characteristics of statistical
analysis and how they are neglected or exploited by statis-
tical and visual programming respectively. We will also ex-
plore why the approach of existing hybrid systems does not
provide a good combination of these programming modes
and introduce how a more intimate symbiosis can be cre-
ated.

3.1 Statistical Analysis

Some aspects of statistical analysis stand in stark contrast
to inherent characteristics of statistical programming while
those same aspects are naturally exploited by visual pro-
gramming. We will first present some key characteristics of
statistical analysis.

3.1.1 Data-Centered

Statistical analysis is inherently data-centered. Because the
goal of any analysis is to understand and evaluate a data
set, every action taken revolves around manipulating and
transforming data.



10

3 Tools

Traditional software
is concerned with
control flow.

What counts in
statistical analysis is
the data flow.

The data flow in
statistical analysis is
often two-
dimensional.

In menu based software and statistical programming, how-
ever, the system accepts different commands from the user
to execute, and is designed around this sequence of com-
mands, the control flow.

Yet ultimately it is not relevant to the user when he did what
action. It is much more important to know what data the ac-
tion was directed at. Whether a plot is based on data before
or after transformation is an essential piece of information.
Control flow, however, obscures the data flow by focusing
on the chronology of actions.

3.1.2 Non-Linear

A closely related aspect is the fact that the data does not
flow linearly from one step in the analysis to the next. It
is crucial to notice when steps are based on different ver-
sions of the data. If for example a visualization is based on
transformed data, while a test uses the data before transfor-
mation, the analyst has to know about this fact to prevent
misjudgment.

This aspect differentiates statistical analysis from other
domains, where a one-dimensional data flow would be
sufficient. Because of the importance of such non-linear
paths in the data flow, statistical analysis requires a two-
dimensional approach to its representation.

3.1.3 Structured

An analysis generally falls into a rough skeleton with four
different categories of tasks.

1. Data loading
2. Data processing
3. Visualizations

4. Tests



3.2 Textual Programming

11

All analyses we encountered and could think of can be cat-
egorized in this way. Inside of each category, there are tasks
that are common among analyses. Loading data from a file,
visualizing it as a boxplot and using one of the different test
statistics are all functions that are needed in the majority of
analyses. In fact, statistical software such as SPSS and JMP
is based on the premise that most use cases are satisfied by
the limited set of functions they ship with.

While it is important to provide these commonly needed
functions, it is impossible to have a complete tool set that
satisfies every single use case. Statistical analysis investi-
gates the properties of a unique data set, therefore it needs
some flexibility to adapt to the unique case at hand. Pro-
viding commonly needed functions is important, but so is
the ability to control precisely how the data is treated.

In general, though, these four categories outline an analysis
and can be used as a basis to provide a set of commonly
needed functions.

3.2 Textual Programming

As explained in section 1.2, statistical programming lan-
guages enjoy a steep rise in interest. Examples of such lan-
guages include

o R!
SAS?

Python3

SQL

To differentiate these text-based languages from visual pro-
gramming, we will use the terms statistical and textual pro-
gramming interchangeably.

'https:/ /www.r-project.org/
*https:/ /www.sas.com/
3https:/ /www.python.org/

Analyses follow a
structure.

Inside this structure
flexibility is needed.


https://www.r-project.org/
https://www.sas.com/
https://www.python.org/

12

3 Tools

Statistical
programming
provides precise
control.

There are issues with
statistical
programming.

Textual programming
is control-centered,
not data-centered.

Analysts treat code
structure as an
afterthought.

The growing interest can be explained with the power those
languages provide. With a complete programming lan-
guage any specialized algorithm or procedure can be im-
plemented. They are arguably the most powerful tools
available for executing statistical analysis.

Nonetheless textual programming has some inherent dis-
advantages when used for statistical analysis. We will dis-
cuss those peculiarities in this section.

3.2.1 Control Flow

Textual programming languages are inherently linear and
control flow oriented. Code is just a sequence of com-
mands, which does not fit the analysis’s focus on on data.

Packages such as dplyr4, a “grammar of data manipula-
tion” as the title of their website states, tackle this prob-
lem and offer a way to manipulate data more directly.
But because code is a one-dimensional sequence, it cannot
naturally represent the non-linearities mentioned in sec-
tion 3.1.2.

While this issue does not prohibit the use of programming
languages for statistical analysis, it is a discrepancy that
hinders intuition and understanding, and obscures the ob-
ject of interest, the data flow.

3.2.2 Dumping

During our research, we collected a small sample of code
written in R from different types of people. The samples
were meant to be used as examples to reproduce with our
concept, but we noticed a peculiarity present in every single
instance.

Each of our subjects wrote their entire analysis in a single
file with sparing use of functions.

*http:/ /dplyr.tidyverse.org/


http://dplyr.tidyverse.org/

3.3 Visual Programming

13

The small sample size hinders the generalizability of this
statement, but this habit can be explained by considering
the circumstances under which analyses are written. An-
alysts typically only care about the results of the analysis
and often do not have a background in software engineer-
ing. Even if they know refactoring techniques they might
not consider them worthwhile after having put together
code that gets the job done. And because the programming
language does not actively encourage a good structure, its
users can get by without paying attention to it.

Clean code is important, however, because in statistical
analysis the user often has to go back to tweak parameters
and change her approach. Lack of a good structure makes
this tedious. Additionally, components that can be reused
in future analyses are not isolated and therefore more diffi-
cult to extract. Sharing and explaining the analysis is diffi-
cult as well, since the entirety of the code might overwhelm
someone unfamiliar with or returning to it.

These issues are solved elegantly by visual programming
software.

3.3 Visual Programming

A very intuitive form of specifying an analysis is visual pro-
gramming. Examples of tools include

e KNIME®

e RapidMiner®
e IBM SPSS Modeler”
Visual programming heavily uses visual metaphors and

communicates the data flow clearly. It matches the anal-
ysis’s focus on data and can naturally represent non-linear

>https:/ /www.knime.com/
Shttps:/ /rapidminer.com/
"https:/ /www.ibm.com /us-en/marketplace/spss-modeler

Good structure and
modularity is
important for efficient
work.

Visual programming
fits statistical
analysis well.


https://www.knime.com/
https://rapidminer.com/
https://www.ibm.com/us-en/marketplace/spss-modeler

14

3 Tools

Visual programming
cannot replace
textual programming.

Orange provides a
choice between
textual and visual
programming.

data flow. It usually comes with a set of commonly used
functions that fit right into the general structure of statisti-
cal analyses.

While it fits statistical analysis much more naturally and
solves important issues of textual programming, it unfor-
tunately is no replacement for it. Visual programming soft-
ware has the same disadvantage as statistical software like
SPSS and JMP; it provides the users with a fixed set of func-
tions.

Often such software allows users to extend its functionality
through scripting languages. But implement a new func-
tion is completely different from specifying what should
happen to the data at hand. This results in a context switch
that loses the benefits of visual programming.

Visual programming alone is thus not suited for providing
the same control over the analysis that textual program-
ming allows for.

3.4 Hybrids

We found two projects that combine textual and visual pro-
gramming. This section will present them and show their
common difference to StatWire.

Demsar et al. (2004) present Orange, originally a framework
that integrated C++ procedures with Python scripts. Rele-
vant for our case is the GUI it offered, that allowed using
visual programming as an alternative to writing the analy-
sis in code. By the time of writing, Orange® has evolved to-
wards promoting its visual programming capabilities over
the C++/Python integration.

With Orange, the user has the choice to program textually
or visually and thus can utilize the method most suitable
for his case. However, Orange does not allow the user to

Shttps:/ /orange.biolab.si/


https://orange.biolab.si/

3.4 Hybrids

15

start an analysis with visual programming and then, upon
running into limits, continue it with a textual language.

A system that integrates statistical and visual programming
more tightly is ViSta, developed by Young and Bann (1997).
It allows users to switch between a graphical view and the
underlying code at any point. This mitigates the respective
disadvantages of the two programming modes somewhat,
because whenever a user runs into issues with one of them,
she can switch to the other easily.

While this brings textual and visual programming closer
together, they still are treated as different representations
and interaction modes. When switching from the visual
representation to programming in the textual language, the
benefits of visual programming are lost. Similarly, when
switching from textual to visual programming, the power
and expressiveness of the textual language is lost to the ab-
stract visual language.

The difference of these approaches to ours is that StatWire
brings together textual and visual programming simultane-
ously. The user can hence utilize the full capability of a sta-
tistical programming language while having the structured
overview that visual programming entails. Only through
such simultaneity can the two modes work in symbiosis.

ViSta allows to
switch between
textual and visual
programming.

Any separation
between the
programming modes
loses their
complementary
benefits.

Combining the
modes
simultaneously
makes them
complement each
other.






17

Chapter 4

Concept

The key idea of StatWire for structuring an analysis will be
introduce in this chapter. Subsequently, we will go through
the components that make up the core functionality of
StatWire and present some scenarios in which StatWire
proves useful. Finally, we will discuss the design process.

4.1 Key Idea

Our concept’s key idea is that the analysis be broken down
into steps. Each step, defined using textual programming,
is laid out on a canvas where it can be connected to other
steps to form an entire analysis.

Breaking down the analysis into steps is the key to mod-
ularizing the code, making it easier to glance over, under-
stand, implement, reuse, explain and share. StatWire’s con-
cept makes this modularization tangible using visual pro-
gramming and integrates this power into the workflow of
textual programming.

While users are anticipated to write many functions them-
selves, providing a set of pre-made functions is important.
In contrast to other software, though, StatWire does not rely
on providing a complete such pool, and instead explicitly

StatWire encourages
to break down the
analysis into steps.

Steps make
modularization
tangible.

Shipped functionality
can easily be
extended.



18

4 Concept

€ Mostused v (%]
» | Data loading
» Data processing

v | Visualization

plot ®

edata

» | Tests

split

1 function(data) {

print (data)

sites = datasSite|

upvotes = datasPoints
return(sites, points)

auswN

1
2
3
a

o
EEY
EEY
EEY
EEY
EEY

1

a

5
6 :
(Other):4s:

Figure 4.1: A mockup of a session in StatWire showing the components. The main
areas are the code at the bottom half, the canvas at the top half to the right, and the
node pool at the top-left.

StatWire encourages
modularization,
which has important
benefits.

StatWire is
composed of a code
area, a canvas and a
node pool.

provides the users with integrated means of writing own
steps.

We hypothesize that this focus on steps, especially when
compared to traditional textual programming, encourages
users to think intuitively about modularization of their
code and analysis. This would counteract the dumping
habit we observed in textual programming and provides
many benefits, making working on and especially revisit-
ing an analysis much more convenient and efficient.

4.2 Components

The components that make up the core of StatWire will be
presented in this section. They can be broken down into
three areas, which can be seen in figure 4.1. The code area
at the bottom is used for textual programming, the canvas
above that is used for visual programming and the node pool
at the top-left provides a collection of nodes to the user.



4.2 Components

19

Figure 4.1 shows an example analysis. The different steps
are to load a data set and indicate that the subjects” IDs
should be treated as factors to prevent their interpretation
as interval data. That cleaned data is then visualized as a
boxplot as well as split to be validated using a ¢-test.

The prototype that accompanies this thesis follows the de-
sign presented here, but please note that it deviates slightly
concerning some details because of implementation consid-
erations. The prototype is not feature-complete and serves
as a proof-of-concept and basis for future development. A
table of most important differences between the concept
and the prototype can be found in appendix A.

We will now present in more detail the components that
make up StatWire. This presentation is structured by the
three main areas: Code, canvas and node pool.

421 Code

The bottom half of the screen is dedicated to the code editor
where the user can program in a statistical programming
language such as R. The code of a node is a regular function
with input parameters and return values'.

Inside this function the user is free to utilize the program-
ming language as usual. StatWire provides the typical
setup for development: An editor and a console.

StatWire’s editor supports common features such as syn-
tax highlighting, auto-completion and linting. The user can
run his code at any time. Alongside the editor, all errors
and print statements generated during execution are ren-
dered in a console, allowing the user to debug his code.

'While e. g. R does not allow multiple return values from a func-
tion natively, multiple outputs are essential for a node, in order to e. g.
split data into columns. The prototype handles wrapping multi-returns
behind the scenes.

The prototype is
incomplete, but
serves as a
proof-of-concept.

The editor allows the
analyst to use textual
programming.



20

4 Concept

The canvas allows
for visual
programming.

Nodes represent the
steps of the analysis.

loadFirstEntriesOfFile >

@ file ‘ s

Choose File prefsAB.csv

® entries | >_ .100

data @

Figure 4.2: A node using both a file and an expression in-
put. The type of input can be toggled by clicking on the
button displaying the currently active type.

4.2.2 Canvas

The canvas provides the visual programming interface. It
holds the nodes that represent the steps of the analysis. The
input and output parameters of the node can be connected to
pass data between different nodes. Additionally, there ex-
ist data viewers to display graphics or complex objects from
the output of a node. We will also explain how to execute
nodes.

Nodes Each step of the analysis is represented by a node,
showcased in figure 4.2. By clicking on a node on the can-
vas, its code is displayed in the editor below. The param-
eters and return values of the underlying function are dis-
played as inputs and outputs, respectively.

The node is color-coded with respect to its category in the
node pool. This provides a clue as to what general part
of the analysis the node pertains to. Such organization is
somewhat important as nodes can be arranged freely on
the canvas, though they tend to follow a flow from left to
right because of the layout of the parameters.



4.2 Components

21

> 4 o
boxplot 05.

Figure 4.3: A data viewer displaying the graphic from the
output of a node.

Parameters The parameters form the interface to the
node’s function. The inputs’ values on the canvas get
passed to the function’s parameters during execution and
its return values are provided as the output parameters of
the node.

There are two methods to specify the value of an input. It
can be linked to the outputs of another node or specified
manually. By linking two parameters together, the value
of the output gets fed to connected input. Whenever the
linked output changes, the input updates to that new value.

The alternative method of specifying an input is available
when the node is not connected. In that case a text input is
displayed for entering expressions such as numbers, strings
or even more complex statements able to generate entire
objects. Those expressions will be evaluated in the textual
programming language used by the node and passed into
the node’s function as input parameters. It is also possible
to upload files to a node by switching the input type from
a text field to a file browser.

Data Viewer To allow the user to see the current value
of a parameter, primitive data can be displayed besides the
name of the parameter. To examine more complex types

Parameters are the
interface to a node’s
function.

Parameters of
different nodes can
be connected.

Parameters’ values
can be specified
manually.

Data viewers display
complex data.



22

4 Concept

Execution can be
manual or automatic.

The node pool
contains pre-made
and custom user
nodes.

Nodes are grouped
into categories.

such as entire tables of data or graphics, a popup viewer is
used as shown in figure 4.3.

A data viewer can be resized and placed freely on the can-
vas. It can be connected to any output, adapting to display
graphical, tabular, or console representations of the data as
appropriate.

Execution StatWire provides two modes to drive the ex-
ecution of the nodes. In manual mode the user controls
exactly when a node is executed by clicking a dedicated
button. This is suitable for analyses in which resource in-
tensive calculations are employed.

For most cases, automatic execution speeds up the analy-
sis: Whenever an update to any input of a node occurs,
that node will execute again. If its outputs change, this will
cause its dependent nodes to be executed, with minimal de-
lay between each other.

4.2.3 Node Pool

StatWire organizes its nodes in the node pool. This pro-
vides a central resource where all available functionality
can be found. To organize the different nodes, categoriza-
tion is used.

Node Collection StatWire provides a set of pre-defined
nodes that are available in the pool. Instead of adding a
blank node, the user can choose from this set which covers
commonly needed functions.

Any custom node the user created can be added to this
pool. This makes it easy to reuse nodes in a later analy-
sis and helps the user build a tool set that is personalized to
her needs, while still easily extensible.

Categories The default categories for the node are those



4.2 Components

23

Ve

ID Site Points

1 A 4D
2 B 10D
3 A 4D
4 B 2D
—9 5 A el
6 B 79
7 A 4D
8 B 1D
9 A 9P
10 B 2P

Figure 4.4: Selection of the columns Site and Point from a
data viewer displaying tabular data.

presented in section 3.1.3: data loading, data processing, vi-
sualization and tests. The user can rename, add and delete
categories in order to establish a personalized structure.
Such adaptability allows StatWire to comply to the user and
her workflow.

Categorizing the nodes by what part of the analysis they
address allows the user to choose from a range of relevant
functions, she is not distracted by functionality which is
only needed later. This allows users to explore the differ-
ent tools available for accomplishing the next step.

4,24 Additional Features

There are some additional features that are not strictly nec-
essary for StatWire to function, but that are useful in com-
mon situations. We will motivate their relevance by pro-
viding a use case for each.



24

4 Concept

Data viewers can
allow for selecting
subsets of tabular

data.

Saving the execution
history allows for
exploration.

For comparing
versions of complex
data, viewers can be
locked and placed
besides each other.

Subset Selection Not always does an entire data set need
to be passed. Often, a function expects only a specific sub-
set of a table, as can be seen in the sample analysis in fig-
ure 4.1: The t-test expects two columns of the data not the
entire table. While a node can be used as shown to split the
data, the exact selection is somewhat hidden in the code
and the node’s parameters. Providing a mechanism for
such selections on the canvas, as displayed in figure 4.4,
would show more clearly how the data flows.

For data in tabular form, the viewer allows for selection
of subsets such as rows and columns. By putting the
same endpoints that parameters use for connections on the
header cells of the rows and the columns, the user is signi-
tied about the ability to link rows and columns to inputs,
just as with regular outputs.

Execution History Because tweaking parameters and ex-
ploration is important in statistical analysis, the user has to
be confident that he can go back to a previous state and will
not lose his work. Freeing him from being careful about
changing parts of the analysis provides the confidence nec-
essary for truly free exploration.

StatWire can allow the user to browse through the history
of a node. It could store all input configurations used and
provide buttons to step back and forth through them. This
would retain all the inputs the user tried previously and
encourage him to teak them.

In order to compare different versions of graphics or other
complex data, the user should be able to duplicate and lock
image viewers. Whenever he wants to compare different
versions, he creates a copy of a viewer, locks one of them
and selects a previous input configuration on the source
node. Because the locked viewer retains its data, but the
other one updates, the user can compare the different ver-
sions.



4.3 Usage Scenarios

25

4.3 Usage Scenarios

Beyond those core features, StatWire can be used in a di-
verse set of scenarios. The most important of these are pre-
sented in this section.

4.3.1 Placeholders

The ability to visualize the data flow of the analysis and
still modify each part of the code makes it very natural to
reuse analyses in StatWire. This makes StatWire suitable for
constructing skeletons for planning or complete templates
that can streamline the implementation of analyses.

Planning A user can plan ahead by wiring together nodes
representing different steps of the analysis without imple-
menting them immediately. Laying out the dataflow visu-
ally provides a high-level overview of the potential analysis
and can then guide the implementation.

Such a visual representation is much more suited than the
traditional use of comments, because the canvas can nat-
urally represent the dataflow. This is especially important
because the desire to plan ahead an analysis suggests that
it will be complicated. Representing this complex data flow
visually is much more helpful than embedding it in a linear
textual program.

Templating Especially when a project requires multiple
experiments, the analyses of their results is often similarly
structured. Moreover, a researcher might develop a work-
flow that serves as a framework for future analyses. In
those cases, having a template that exploits those similar-
ities while being adaptable speeds up and eases the work.

Any analysis laid out in StatWire’s canvas can be used as
a template. The visual representation serves as an outline
and makes identifying the parts that need change easy. The

Users can plan
ahead in the canvas.

StatWire allows to
create templates that
can be easily
adapted.



26

4 Concept

StatWire can be
used to teach
statistical analysis
and statistical
programming.

Smart hints can
support novices.

template can be adapted both by adding and modifying
nodes on the canvas or by changing their code.

4.3.2 Education

Because StatWire exploits visual programming to make sta-
tistical programming more accessible, it is suited for edu-
cational use. The canvas’s representation of the steps in the
analysis shows the general flow of the analysis while all the
details can be accessed in the code that is readily available.

Tutorials In order to teach students statistical analysis
and its application, an expert might put together a sample
analysis that he provides his students with. When using
plain statistical programming, the students might be over-
whelmed by the amount of code and will have difficulties
acquiring even a basic overview of the different steps in-
volved.

By providing a sample analysis in StatWire, the students
can get a first overview through the canvas and then tackle
each of the nodes individually. This minimizes the risk that
she is overwhelmed by too much information at once. The
canvas allows for teaching general statistical analysis while
the direct access to the code exposes examples of imple-
mentation.

This use case is inspired by ViSta’s guidemaps, presented
in Young and Lubinsky (1995). An notable difference is
that ViSta treats the guidemaps, interactive walk-throughs,
separately from the workmaps, where the analysis is imple-
mented. In StatWire, the tutorial is a regular analysis that
can be freely manipulated.

Smart Hints Each node can provide hints and explana-
tions of its usage based on how it is configured. When for
example a node for a t-test detects that its input violates
the assumption of normality, it can warn the user about this



4.3 Usage Scenarios

27

and provide further instructions on how to resolve the is-
sue.

This is especially helpful for novices learning statistical
analysis, but can also serve as a reminder and safety net
for experts.

4.3.3 Collaboration

StatWire has many characteristics that facilitate collabora-
tion with other analysts. As well as supporting multiple
users working on the same analysis it also can be used in
organizations to streamline and unify workflows.

Language-Agnosticism Different researchers might pre-
fer different programming languages for coding their anal-
ysis. There exist libraries that enable the communication
between languages?. Having two analysts with different
preferences work together, though, requires them to keep
that interface in mind.

StatWire’s nodes are generally agnostic to the language
they are programmed in.> Writing any two steps in differ-
ent languages only makes a difference when accessing their
code.

Repository The Node Pool does not have to be local to
each user, it can be shared from a central repository. In
an institution this allows coworkers to share their custom
nodes with each other.

Additionally, the nodes can be versioned to allow for their
controlled development and deployment.

?Examples are RPy (R in Python) and RSPython (Python in R).

*Special types that are specific to a programming language might re-
quire conversion to and from JSON. This can be done transparently by
StatWire.

Different
programming
languages can be
mixed.

Custom nodes can
be shared.



28

4 Concept

Organizations can
streamline their
workflow.

Standardization Inside an organization, different people
might use different variants of a function or package. This
burdens the exchange between coworkers since they have
to learn each other’s variants. In extreme cases, individuals
might use deprecated, obsolete or malfunctioning versions
that are inconsistent with the organization’s standards of
quality.

By regulating the pool of nodes provided to its members, an
organization can achieve standardization and make their
staff’s code more consistent. When a member knows a
function exists, she will probably just use it instead of reim-
plementing it. Because StatWire provides a pool of com-
monly used and also self-implemented StatWire, a user
is encouraged to browse functions from a defined source,
where they can be controlled and curated by the organiza-
tion.

4.3.4 Advanced Visual Programming

StatWire is mainly targeted at analysts who are used to
the control and flexibility statistical programming entails.
There is a potential, though, to expand the capabilities of
the canvas in order to exploit more of the benefits of visual
programming.

Comments Text can be placed on the Canvas to serve as
comment. Such an integrated way of explaining intention
and choices that are not apparent from the data flow itself
can drastically improve the understanding of the analysis
by serving as documentation.

Grouping As explained in section 2.2, Meerbaum-Salant,
Armoni, and Ben-Ari (2011) call attention to the tendency
of students using visual programming to break down their
programs into extremely small components. By cluttering
the canvas with too many low-level nodes, the user has to
parse details that are not relevant for understanding the



4.3 Usage Scenarios

29

general steps of the analysis, negating the overview ben-
efit. Additionally, the nodes are probably very specific to
one narrowly defined task that is unlikely to be used else-
where unchanged, hindering reusability.

To regain the benefits and counteract such clutter, a hierar-
chisation using groups is beneficial. A group unites mul-
tiple low-level nodes as a single step of the analysis. The
user can then choose to hide the internal nodes and use the
group just as a regular node. Whenever he wants to change
one of the internal low-level nodes, he can reopen the group
and access them.

In some sense, the difference between a node and a group
is that the node is programmed in a textual language while
the group is programmed visually.

Control Flow Especially for educational tutorials in
StatWire, control flow elements such as an if-construct can
augment the expressiveness of the canvas and thus the tu-
torial. Consider the case in which a teacher wants to show
that the choice of test depends on the normality of the data.
Using an if-construct that visually indicates such a decision
helps to convey this choice directly on the canvas without
further need of explanation.

By visually distinguishing an if-construct from regular
nodes, its use as a control element becomes apparent, con-
trasting it to the data flow. In its most basic form, the if acts
as a switch to reroute data. Which of the outputs the data
passes through is visually indicated by fading the inactive
paths, where no data is sent to by the if. This clearly shows
which paths the data is taking.

While the if-construct is natural in a dataflow model, con-
structs such as loops are not as trivial. In statistical anal-
ysis, the user often goes back to tweak parameters and re-
evaluate the data. But the dataflow itself does not normally
loop, removing the immediate need for advanced control
flow elements such as loops in StatWire.

Grouping combats
bad habits in visual
programming.

If-constructs can
improves templates
and tutorials.

Loops are not
needed.



30

4 Concept

StatWire is based on
StatLets.

We fixed issues with
StatLets identified in
previous work.

4.4 Design Process

Our work is based directly on the artifact developed by
Ellers (2017) called StatLets. In addition to the issues that
he identified during his evaluation, we gathered new ideas
by presenting the prototype to expert users of R. The re-
sulting list of features and potential issues was prioritized
by subjective importance and guided the development of
StatWire.

This section will explain the differences to StatLets and our
insights from applying our concept to the sample of exist-
ing analyses.

4.4.1 StatLets

Our concept is directly based on the artifact developed by
Ellers (2017) which was called StatLets. It was developed
using iterative design and explored the feasibility of the
concept. Because the name StatLets was already taken by
another project, we renamed the project to StatWire.

The work on the prototype started with a rewrite of the
original program. We took this decision because it allowed
us to update the underlying framework to the improved
Angular 4 and revise the code. During our work on this
thesis we implemented the majority of features from our
list and identified several additions that future work can
explore and implement.

Ellers conducted user studies and identified some issues to
fix. One of the improvements we made was the way nodes
display their parameters. Previously, each node had one in-
put and one output. After connecting two nodes, the user
could specify the mapping of output parameters to input
parameters using a menu. Because Ellers identified that
some users had difficulties with this model, we changed the
design. We exposed each parameter directly on the node,
similar to Antimony*, a node-based generator for 3D ge-

*http:/ /www.mattkeeter.com /projects/antimony /3/


http://www.mattkeeter.com/projects/antimony/3/

4.4 Design Process

31

ometry.

We removed StatLets division of the canvas into four fixed
areas for data loading, preprocessing, visualizations and
tests. These sections previously served to guide the user
through the analysis by keeping nodes that belong to these
categories close together. Because we considered this di-
vision too restrictive as it forces a certain layout onto the
user’s workflow, we decided to remove these areas in
StatWire. Instead we introduced color-coding as a supple-
ment, such that the user could quickly identify the cate-
gories but was free to arrange them as she pleased.

We also removed the interface located around the code ed-
itor that allowed the addition and modification of the se-
lected node’s parameters, because we wanted to focus the
user’s attention on the code. All parameters are fully ed-
itable in the code and an analyst experienced in statistical
programming is used to this function-based interface. Be-
cause of these reasons, we left out this additional compo-
nent.

For brevity, we omit the description of some additional, less
important differences between StatLets and StatWire.

4.4.2 Application to Real-Life Analyses

In order to understand how StatWire would be applied in
real life, we asked students, research assistants and profes-
sors to provide us with some of their code. We addition-
ally utilized code from the learning materials of the online
course Designing, Running, and Analyzing Experiments® on
Coursera.

Early on, we tried to represent those analyses in a flow
graph on paper. We noticed that it is problematic to accu-
rately depict the data flow of the code literally. For example
we encountered a statement that corrected the treatment of
numeric columns as numbers that actually represented IDs.
Before, R would try to calculate e. g. averages of these IDs

*https:/ /www.coursera.org/learn/designexperiments

We gathered a
sample of actual
analyses’ code.

Literal representation
of code is too
complicated.


https://www.coursera.org/learn/designexperiments

32

4 Concept

In practice, code
structure is an
afterthought.

and had to be told to treat them as factors. The statement
simply factorized this column.

A visual representation would be either a loop or a generic
transformation. It can be represented as a loop, since the
statement literally reads the original column from the data
frame, transforms it and stores it back into the same data
frame. It can alternatively be understood as a transforma-
tion of the entire data frame, because the statement trans-
forms it from one with a numeric column to a data frame
with a factorized column. The problem with the loop rep-
resentation is that it is complex and difficult to even draw.
Then again, seeing it as a transformation of the data frame
is an abstraction from the actual statement. These problems
stem from our initial attempt to visualize the code. As My-
ers and Baniassad (2009) state, this is different from program
visualization where the intention and process is visualized
instead of the specific implementation. This insight lead us
to focus more on program visualization.

Thanks to this sample we also discovered the issue of
dumping, discussed in section 3.2.2. The sample is not large
enough to be truly representative, indeed, but every single
piece of code in our sample had this issue. This intrigued us
and led to the realization that statistical programming lan-
guages do not have mechanisms that encourage attention
to structure, one of the key benefits that StatWire provides.

This early experimentation with authentic code therefore
not only helped us choose a more appropriate visual rep-
resentation, but also helped us to discover and formulate
some key improvements StatWire brings to statistical pro-
gramming.



33

Chapter 5

Evaluation

There is a key benefit that StatWire provides over tradi-
tional statistical programming: Encouragement to modu-
larize the code and the analysis.

This chapter will present the aspects that make up this key
benefit and also explain the advantages that follow from
it. We will give suggestions on research questions that fur-
ther illustrate the benefits of StatWire and serve as a basis to
evaluate the concept. We conclude by discussing some ob-
stacles we encountered when recreating real-life analyses
in StatWire.

5.1 Benefits

What separates StatWire from other software that combines
textual and visual programming is that traditionally the
user can only stay in one of these modes at a time. Our
concept exposes both textual and visual programming si-
multaneously in order to create a true symbiosis between
them.

This allows StatWire to keep the power of statistical pro-
gramming while complementing it with the ease of use of
visual programming.

The key innovation of
StatWire is
simultaneity of
textual and visual
programming.



34

5 Evaluation

StatWire keeps the
power of textual
programming.

Visual programming
has great usability.

5.1.1 Power

The most important aspects of textual programming that
we want to keep are control and adaptability. We will call
those capabilities its power for brevity. StatWire does not
limit what the user can do when compared to traditional
programming, because the user actually has access to the
entire language.

It is true that other software, such as SPSS or Orange, al-
lows to extend its functionality by using e. g. textual script-
ing languages. But the significant difference is that they
treat the execution of an analysis differently than imple-
menting a needed function. This is were StatWire inno-
vates by keeping the approach of statistical programming
languages, where code specifies the actual analysis.

Because it bases everything on the code, StatWire can retain
all the power that comes along with textual programming,
while improving on some of its disadvantages using visual
programming.

5.1.2 Ease of use

Visual programming is very intuitive and suits the charac-
teristics of statistical analysis perfectly, thus easing the ana-
lyst’s work.

The visual representation gives a very convenient
overview, allowing users new to the analysis, or re-
turn to it, to quickly understand what is happening. It
accurately represents the core of an analysis: The flow and
transformation of data.

Another great advantage is the very tangible structure vi-
sual programming brings to the analysis. Because it is as-
sembled using modules, the user can easily change and
reuse parts of the analysis. In statistics the analyst often
has to do some amount of exploration and frequently needs
to tweak parameters. Making the analysis easy to assem-



5.2 Suggestions for Research Questions

35

ble and change is therefore particularly valuable in this do-
main.

These two advantages of visual programming mitigate the
inconveniences of textual languages. The result is code that
enjoys the benefit of better modularization by exploiting
the benefits of a visual representation.

5.1.3 Modularization

The key benefit of StatWire is that it encourages the user
to moduralize the code. While the code is worked on, the
canvas is still displayed. The layout of the analysis is rep-
resented there and we hypothesize that this influences the
user when he programs.

Because the canvas is so convenient for structuring an anal-
ysis into its steps, the user will have an encouragement to
think about the components and their links. These con-
siderations are practically absent in traditional textual pro-
gramming, where the user just writes the program line by
line without having encouragement to reflect on the struc-
ture.

The simultaneity of textual and visual programming in
StatWire brings out these complementary benefits and al-
lows the analyst to write precise code that has an intuitive,
visual structure.

5.2 Suggestions for Research Questions

To further illustrate what the benefits of StatWire are and to
create a basis for future evaluation, we will present formu-
lations of research questions and suggestions on how they
can be tested. These questions correspond to the benefits
just described.

Visual programming
solves issues of
textual programming.

Bringing both
programming modes
together encourages
modularization.



36

5 Evaluation

Expert evaluation
can validate the
power of StatWire.

There is little existing
research.

5.2.1 Power

Does StatWire actually retain the capabilities of statistical
programming?

While it seems obvious that StatWire should provide the
same power, because it fundamentally uses statistical pro-
gramming, this benefit is so essential that it is worth testing
for even minor deviations. It could be that splitting up code
into nodes has unforeseen side effects or that programmers
simply feel hindered by the tight integration of the canvas
into the workflow.

Because assessment of this issue requires deep understand-
ing of the possibilities of statistical programming and bene-
fits greatly from rich experience, evaluation of this research
question by experts is appropriate. An expert could get to
know and try out the tool by redoing an analysis that re-
quired full use of a programming language in StatWire. In
an interview, the expert can then explain what he perceives
as the differences in power between traditional textual pro-
gramming and StatWire.

As laid out by Greenberg and Buxton (2008), there is a risk
that the interface can get in the way of the evaluation. Us-
ability issues of the prototype could negatively influence
the results that actually try to judge the usefulness of the
concept. Additionally, the expert might need to get used to
StatWire’s way of structuring the code, since it offers such a
strong encouragement for modularization which he might
not be used to. Because these issues can have a significant
influence on the data collected, a careful evaluation that fol-
lows the advice of Greenberg and Buxton is recommended.

5.2.2 Ease of use

Does StatWire help the user understand the analysis? Does
it improve the modularity?

The advantages of visual programming seem clear, but
there is very little research to validate these effects. Neither



5.2 Suggestions for Research Questions

37

Orange (Demsar et al., 2004) nor ViSta (Young and Bann,
1997) were evaluated in this regard, although Young and
Bann suggest similar advantages to visual programming
than we do.

There are two different dimensions and four environments
to test. The two dimensions are the understandability and
the modularity of the analysis. The four environments
are textual programming, visual programming, hybrid tex-
tual/visual and simultaneous textual /visual.

A reasonable measure of both understandability and mod-
ularity is the time it takes to fix a bug in the code, as sug-
gested and employed by Bragdon et al. (2010). This re-
quires the subject to understand what is going on in the
analysis to identify potential sources for the bug and it ben-
efits from good modularity to be easily modifiable without
introducing new bugs.

Alternatively, the understandability can be tested with a
questionnaire asking questions about details of the analy-
sis, and the modularity can be evaluated by asking subjects
to adapt an existing analysis to another one that is different
in only some key steps.

The different environments are difficult to compare since
especially pure textual and pure visual programming have
different power. The comparison of those requires tasks
that are reasonable in visual programming, ignoring the
power advantage of textual programming. The comparison
to hybrid and simultaneous approaches is easier since they
share the same power as textual programming and tasks
applicable to textual programming can also be applied to
them.

Our suggestion would be to ask subjects to fix a bug in an
analysis using textual, visual, hybrid and simultaneous en-
vironments. A between-subject design helps combat diffi-
cult to control for differences in the complexity of the bug.

The time to fix a bug
is an appropriate
measure of
understanding and
modularity.

The differences in
power hinder the
comparison of textual
and visual
programming.

User studies can
validate StatWire’s
ease of use.



38

5 Evaluation

Modularization is a
key benefit, but hard
to validate.

An analysis from
StatWire can be
converted to pure
code.

Ethnography can
validate whether
StatWire is practical.

5.2.3 Modularization

Does StatWire help programmers structure their code?

As it pertains to the key benefit of StatWire, this question
deserves special attention. The code that is generated us-
ing StatWire is anticipated to be modular, whereas with
traditional programming there is a tendency for dumping.
Proper modularization is the cause for the many benefits
discussed in section 5.1.3, and is therefore an interesting
subject for measurement.

Measuring modularity of code is not trivial and a part of
code quality research. Offutt, Harrold, and Kolte (1993)
provide a very detailed measure of coupling between mod-
ules. While such a precise analysis is interesting, a more
naive assessment of modularity would suffice for a first
evaluation.

An experiment testing this research question will compare
an analysis programmed traditionally with one done in
StatWire. The analysis in StatWire can be represented as
code by translating the links on the canvas to equivalent
function calls. This resulting code can then be compared to
the traditionally written program.

5.2.4 Acceptance

Do analysts who already use statistical programming ac-
cept and integrate StatWire into their workflow?

Even if our concept provides every single benefit we claim,
the target users might still reject it. If it forces a workflow
that they do not like, is too hard to learn or simply does
not appear to them as beneficial, it will not be accepted as a
tool.

Testing this is best suited by ethnographic case studies that
explore the real-life use of the tool. Investigating sub-
jects with varying degree of experience with statistical pro-
gramming should provide insights into whether StatWire



5.3 Issues

39

is opinionated. If experts with an established workflow
have trouble utilizing StatWire, but people just getting into
statistical programming adopt it quickly, this suggests that
StatWire’s concept breaks with the status quo but might be
a viable alternative.

The goal of such a case study should be to understand the
long term integration of StatWire into the workflow of ana-
lysts.

5.3 Issues

There are a few problems we came across while reimple-
menting analyses from the code samples we gathered in
StatWire.

One issue is that we had a tendency to create nodes con-
taining only few lines. This reminds of extremely fine-
grained programming, discussed by Meerbaum-Salant, Ar-
moni, and Ben-Ari (2011). Two symptoms of this problem
that we identified are that often nodes only contain a single
line, and that too many low-level nodes clutter the canvas.

Many nodes contained only a single call to a function.
The problem of manually wrapping a single function in
StatWire could be mitigated by automating the task. If the
user wants to add a function as a node, StatWire could de-
tect the input parameters and return values of that function
automatically. It could then additionally fetch the source
code for that function and allow the user to modify it, just
as if he had written the node himself. This would inciden-
tally also encourage users to utilize all the functions and
libraries available for statistical programming languages.

The phenomenon of clutter might only occur when port-
ing code to StatWire and might disappear when creating
a new analysis entirely in StatWire. It could be due to the
source code’s lack of modularity and focus on low-level de-
tails which might make it hard to step back and identify the
more general intention behind blocks of code. If this prob-
lem persists in the regular use of StatWire, however, there

Often a node only
contains a single

function.
Automation alleviates

this issue.

Too many nodes can
negate the overview
benefit.



40

5 Evaluation

Groups mitigate such
clutter.

is a mechanism to combat it: Groups, introduced in sec-
tion 4.3.4, mitigate this issue. Whenever such clutter ap-
pears, the proper level of abstraction can be re-established
by hiding the low-level nodes away inside of a higher-level
node group.



41

Chapter 6

Summary and Future
Work

This concluding chapter reflects on the benefits of StatWire
and the contributions of this thesis. We point at different
areas of future work that we hope will evolve and improve
our concept.

6.1 Summary

StatWire allows a symbiotic interplay between visual and
textual programming. It manages to keep the best of those
worlds by utilizing them simultaneously and not as alter-
natives to each other like existing hybrid approaches have.

This thesis contributes the artifact design of StatWire. It
builds upon the work of Ellers (2017) and develops the con-
cept further. We also present what we see as the key bene-
fits of StatWire. Additionally, we suggested research ques-
tions to validate and ways to go about testing them.

The key benefit is the improved modularization of the code.
While the user gets the full advantage of a statistical pro-
gramming language, he will be encouraged to structure the
analysis into its key steps through visual programming. As



42

6 Summary and Future Work

a result of this modularization, the analysis will be easier to
understand and modify.

6.2 Future Work

A rigorous user study was postponed, in order to focus on
the development and definition of the concept. It is, how-
ever, highly encouraged that the concept be evaluated and
validated. The implementation we provide can serve as a
base and the research questions we suggested can guide the
evaluation.

Another direction worth taking is to develop the artifact
further and adapt it to other domains. While statistical
analysis is a perfect fit for the characteristics of StatWire,
other fields might benefit from a similar approach.

We hope to have conveyed why StatWire has potential to
facilitate programming for statistical analysis. With some
additional work, this concept can be turned into a fully-
fledged system that actually helps analysts to work effec-
tively and yet conveniently.



43

Appendix A

Differences between
Prototype and Concept

The most important features of StatWire are listed in ta-
ble A.1 along with an indication of whether the prototype
implemented them at the time of this writing.

The prototype does not currently include the additional
features from section 4.2.4 nor those presented in the usage
scenarios in section 4.3.



A Ditferences between Prototype and Concept

Table A.1: Differences between the prototype and the con-
cept concerning the core features.

Concept Prototype

Code Syntax highlighting
Multiple return values
Console

Parameters Connections
Expression input
File input
Short representation of value
Data viewer

Execution = Manual
Automatic

Node Pool = Node collection
Categories

N N NN RN

AN




45

Bibliography

Bragdon, Andrew et al. (2010). “Code Bubbles: A Working
Set-based Interface for Code Understanding and Mainte-
nance”. In: Proceedings of the 28th international conference
on Human factors in computing systems - CHI "10. Ed. by
Elizabeth Mynatt et al. New York, New York, USA: ACM
Press, p. 2503. 1SBN: 9781605589299. DOI: 10 . 1145 /
1753326.1753706.

Demsar, Janez et al. (2004). “Orange: From Experimen-
tal Machine Learning to Interactive Data Mining”. In:
Knowledge Discovery in Databases: PKDD 2004: 8th Euro-
pean Conference on Principles and Practice of Knowledge Dis-
covery in Databases, Pisa, Italy, September 20-24, 2004. Pro-
ceedings. Ed. by Jean-Frangois Boulicaut et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 537-539. ISBN:
978-3-540-30116-5. DO1: 10.1007/978-3-540-30116~
5_58.

Ellers, Michael Richard (2017). “Statlets: Improving Sta-
tistical Analysis with R”. Bachelor’s Thesis. Germany:
RWTH Aachen University. URL: http : / / hci .
rwth — aachen . de / materials / publications /
ellers2017a.pdf (visited on 08/13/2017).

Greenberg, Saul and Bill Buxton (2008). “Usability Evalu-
ation Considered Harmful (Some of the Time)”. In: Pro-
ceeding of the twenty-sixth annual CHI conference on Human
factors in computing systems - CHI '08. Ed. by Mary Cz-
erwinski, Arnie Lund, and Desney Tan. New York, New
York, USA: ACM Press, p. 111. 1SBN: 9781605580111. DOI:
10.1145/1357054.1357074.

Hils, Daniel D. (1992). “Visual Languages and Computing
Survey: Data Flow Visual Programming Languages”. In:


https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1007/978-3-540-30116-5_58
https://doi.org/10.1007/978-3-540-30116-5_58
http://hci.rwth-aachen.de/materials/publications/ellers2017a.pdf
http://hci.rwth-aachen.de/materials/publications/ellers2017a.pdf
http://hci.rwth-aachen.de/materials/publications/ellers2017a.pdf
https://doi.org/10.1145/1357054.1357074

46

Bibliography

Journal of Visual Languages & Computing 3.1, pp. 69-101.
DOI: 10.1016/1045-926X(92) 90034-J.

Meerbaum-Salant, Orni, Michal Armoni, and Mordechai
Ben-Ari (2011). “Habits of Programming in Scratch”. In:
Proceedings of the 16th annual joint conference on Innova-
tion and technology in computer science education - ITiCSE
‘11. Ed. by Guido Roflling, Tom Naps, and Christian
Spannagel. New York, New York, USA: ACM Press,
p- 168. 1SBN: 9781450306973. DOI: 10.1145/1999747 .
1999796.

Muenchen, Robert A. (2017). The Popularity of Data Science
Software. URL: http://rdstats.com/articles/
popularity/ (visited on 08/06/2017).

Myers, Brad A. (1990). “Taxonomies of Visual Program-
ming and Program Visualization”. In: Journal of Visual
Languages & Computing 1.1, pp. 97-123. DOL: 10.1016/
S1045-926X(05)80036-09.

Myers, Clayton and Elisa Baniassad (2009). “Silhouette:
Visual Language for Meaningful Shape”. In: Proceed-
ing of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and appli-
cations - OOPSLA '09. Ed. by Shail Arora et al. New
York, New York, USA: ACM Press, pp. 917-924. ISBN:
9781605587684. DO1: 10.1145/1639950.1640057.

Offutt, A.Jefferson, Mary Jean Harrold, and Priyadar-
shan Kolte (1993). “A Software Metric System for Mod-
ule Coupling”. In: Journal of Systems and Software 20.3,
pp. 295-308. 1SSN: 01641212. DOI: 10 . 1016 / 0164 —
1212 (93)90072-6.

Turkle, Sherry and Seymour Papert (1992). “Epistemolog-
ical Pluralism and the Revaluation of the Concrete”. In:
Journal of Mathematical Behavior 11.1, pp. 3-33.

Young, Forrest W. and Carla M. Bann (1997). “ViSta: A Vi-
sual Statistics System”. In: Statistical computing environ-
ments for social research. Ed. by Robert A. Stine and John
Fox. Thousand Oaks, Calif: Sage Publications, pp. 207-
235. 1SBN: 0761902694

Young, Forrest W. and David J. Lubinsky (1995). “Guid-
ing Data Analysts with Visual Statistical Strategies”. In:
Journal of Computational and Graphical Statistics 4.4, p. 229.
ISSN: 10618600. DOI: 10.2307/1390852.


https://doi.org/10.1016/1045-926X(92)90034-J
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/1999747.1999796
http://r4stats.com/articles/popularity/
http://r4stats.com/articles/popularity/
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/1639950.1640057
https://doi.org/10.1016/0164-1212(93)90072-6
https://doi.org/10.1016/0164-1212(93)90072-6
https://doi.org/10.2307/1390852

47

Index

Categories, 12
Components

- Canvas, 22

- Code, 21

- Node Pool, 24

Ease of use, 36, 38

Hybrids
- Orange, 16
- ViSta, 17

Modularization, 37, 40
Power, 36, 38

Statistical Programming, 13
StatLets, 32

Textual Languages
- Python, 13
-R, 13
-SAS, 13
-SQL, 13
Textual Programming, 13

Visual Languages
- IBM SPSS Modeler, 15
- KNIME, 3, 15
- RapidMiner, 3, 15



Typeset August 17, 2017



	Abstract
	Acknowledgements
	Conventions
	Introduction
	Tools for Statistical Analysis
	Trends
	StatWire
	Overview

	Related Work
	Statistical Programming
	Visual Programming

	Tools
	Statistical Analysis
	Data-Centered
	Non-Linear
	Structured

	Textual Programming
	Control Flow
	Dumping

	Visual Programming
	Hybrids

	Concept
	Key Idea
	Components
	Code
	Canvas
	Node Pool
	Additional Features

	Usage Scenarios
	Placeholders
	Education
	Collaboration
	Advanced Visual Programming

	Design Process
	StatLets
	Application to Real-Life Analyses


	Evaluation
	Benefits
	Power
	Ease of use
	Modularization

	Suggestions for Research Questions
	Power
	Ease of use
	Modularization
	Acceptance

	Issues

	Summary and Future Work
	Summary
	Future Work

	Differences between Prototype and Concept
	Bibliography
	Index

