
A Semantic Time Framework for Interactive Media Systems
Eric Lee
Media Computing Group, RWTH Aachen University, Germany

Copyright © 2007 Eric Lee. All rights reserved. http://media.informatik.rwth-aachen.de

The Semantic Time Framework (STF) is a software library for Mac OS X for de-
signing and constructing interactive systems that modify the timebase of multi-
media. STF is unique in that it supports a more general timing model tied to the
semantics of the media data (“beats of music”), rather than engineering con-
structs (“samples of audio”). The software architecture is based on a system of
nodes assembled into pipelines, with additional constructs for supporting time
and synchronization. Media flows through the pipelines like fluid flows through
a pipe; playback rate can be interactively adjusted using rate-changer nodes,
much like a valve controls the rate of fluid flowing through a pipe. STF builds
on a number of Mac OS X technologies, including QuickTime, Core Audio, and
Core Image/Video. The library is written in Objective-C, which makes it simple
to include in Cocoa-based applications. STF has been successfully deployed
in a number of audio editing and interactive orchestral conducting applications.
It is an open source project (http://styme.org).

Design Implementation

Introduction

Abstract

In everyday life, we often refer to distance in “semantic” units. When giving di-
rections, for example, most people would say, “take a right at the next traffic
light,” rather than, “walk 356 metres straight, then turn right.” Similarly, when
talking about time, it makes sense to refer to semantically meaningful units,
such as beats in music or words in speech.

Unfortunately, the time model exposed by current multimedia frameworks is
very much like giving directions using distances measured in inches and
metres. Digital video is typically referenced using “frames”, and digital audio
using “samples”. The mapping between these artificial definitions of time and
more semantic units of time can be non-trivial, especially when manipulation of
the media timeline is involved.

Malleability of Time
The temporal nature of audio and video also makes control over the time axis
much more essential than for traditional “spatial” media such as text. Explicit
control over time is often taken for granted when interacting with many non-
computer-based media, and the limited control over time in digital audio and
video directly contradicts this assumption.

Previous work supports the importance of temporal interaction. One example
is our previous work in interactive conducting systems [5], which allow users to
control the speed, volume, and instrument emphasis of a digital audio and video
recording. We found that users most easily identified the interaction with music
tempo.

Objectives
The aim of our Semantic Time Framework (STF) is to provide designers with a
high-level interface for multimedia processing, and, more importantly, with a
high-level interface for referring to time. Current multimedia processing frame-
works usually support one media type (e.g., Core Audio for audio or Core Video
for video), but not both. Multimedia frameworks that support multiple media
types, such as QuickTime, focus on media presentation, and it is difficult to add
custom processing or otherwise manipulate the media data itself.

However, the temporal constructs in STF are what make it unique – STF pro-
vides a set of data structures for representing time, and services to perform
temporal operations such as synchronization.

Semantic Time
We use a polymorphic semantic time interval, or styme, as the basic unit of time,
organized into hierarchies. In music, for example, the temporal structure could be
in the form of beats, pulses and measures. Styme definitions are not limited to
music, and speech exhibits a similar structure: syllables combine to form words,
which in turn form sentences.

The mapping between these interval sequences and presentation time (the abso-
lute real time in which they occur) are continuous functions, or time maps. For
example, each beat of music performed at 120 beats per minute maps to half a
second of presentation time. If, later in the performance, the music slows to 60
beats per minute, each beat interval now maps to one second of presentation
time. The swing rhythm of jazz can also be represented and visualized using this
scheme. Our time maps are similar to the time maps described by [4], although
our goal is to more easily build systems, rather than analyze expressive timing in
music. Specific applications will be interested in the relationships between
these time functions; one such example is expressing synchronization using con-
straints.

Synchronization as Constraints
Synchronization is typically a task that is taken for granted [3]. Modern VCRs and
other media devices typically handle synchronization without requiring any user
intervention; even as system designers, we are more interested in the result (”the
audio and video is in sync”), rather than how it is achieved. Thus, it would seem
that synchronization is best described declaratively, where the desired result to
be computed is specified.

Existing approaches to describe synchronization usually involve describing the al-
gorithm or some other means to achieve synchronization – an imperative ap-
proach. Nsync [2] and RuleSync [1] are examples that use rules to specify how
to achieve synchronization.

We use constraints on time maps to specify synchronization. This representation
not only separates the “how” from the “what” – it also allows us to flexibly repre-

Conclusions

References

We presented the Semantic Time Framework, a high-level “meta-framework”
for interactive media systems. STF uses a data flow model for media process-
ing, with declarative constructs for representing time. These constructs are
based on our concept of semantic time, where time is represented as a hierar-
chy of intervals (stymes) that are tied to the semantics of the medium, and are
thus defined according to the application. The progression of stymes along real
time form time maps. These time maps can be used to elegantly represent, for
example, synchronization as constraints. As an Objective-C library built on ex-
isting Mac OS X technologies such as QuickTime, Core Audio, and Core
Image/Video, STF can be used to quickly develop interactive media systems for
Mac OS X.

The Semantic Time Framework is an Objective-C library that integrates with
Cocoa-based applications. It is a fully multi-threaded architecture – audio and
video is rendered on high priority I/O threads. Care was taken to make the
system robust to stalls in the audio rendering thread (which can occur if, for ex-
ample, while waiting on a mutex or allocating memory) – in STF, all audio pro-
cessing is performed on a secondary fixed priority thread, and then sent to the
high priority audio thread through a shared buffer.

In addition, STF builds on the following Mac OS X technologies:
• Core Audio provides much of the the audio processing capability
• Core Video provides the basic video presentation functionality
• Core Image filters are used to perform the actual processing
• QuickTime for importing audio and video data
• Accelerate for implementing some of our high-performance custom pro-

cessing units

[1] R. S. Aygün. Spatio-Temporal Browsing of Multimedia Presentations. PhD
thesis, University of Buffalo, 2003.

[2] B. Bailey, J. A. Konstan, R. Cooley, and M. Dejong. Nsync - A Toolkit for
Building Interactive Multimedia Presentations. In Proceedings of the MM 1998
Conference on Multimedia, pp. 257–266, Bristol, UK, 1998.

[3] K. Greenebaum. Synchronization Demystified: An Introduction to
Synchronization Terms and Concepts. In Audio Anecdotes III: Tools, Tips, and
Techniques for Digital Audio (K. Greenebaum and R. Barzel, eds.). A K Peters,
2007. In Print.

[4] H. Honing. From Time to Time: The Representation of Timing and Tempo.
Computer Music Journal, 25(3):50–61, 2001.

[5] E. Lee, T. Karrer, and J. Borchers. Toward a Framework for Interactive
Systems to Conduct Digital Audio and Video Streams. Computer Music
Journal, 30(1):21–36, 2006.

[6] E. Lee, T. Karrer, and J. Borchers. Improving Orchestral Conducting Systems
in Public Spaces: Examining the Temporal Characteristics and Conceptual
Models of Conducting Gestures. In Proceedings of the CHI 2005 Conference
on Human Factors in Computing Systems, pp. 731–740, Portland, USA, 2005.

sent multiple types of synchronization. For example, let the time maps for audio,
video, and user input be represented by a(t), v(t), and u(t), respectively. Then, the
drift between two timebases is the mathematical difference between the two
maps (e.g., a(t) - v(t)). To preserve lip sync, for example, video should be syn-
chronized precisely to the audio – i.e., a(t) - v(t) = 0.

We may wish to relax the constraint or modify it slightly in certain situations. In
previous work [6], for example, we found that professional conductors expect the
orchestra to consistently follow their beat by approximately 150 ms (u(t) - a(t) =
150 ms), while non-conductors hover around the beat (| u(t) - a(t) | < 75 ms).

A Hybrid Framework Architecture
STF uses a hybrid data flow model for media processing with declarative con-
structs for representing time. An application is organized into multiple pipelines,
one for each media type. Continuous streams of media data flow through the
pipelines, and pass through nodes which process the data. Time-stretching is
analogous to placing a valve in the pipeline to control the stream flow rate. If
buoys were placed along these streams, then synchronization can be described
as a mechanism that monitors these buoys as they flow through the pipelines,
and adjusts the valves periodically to ensure that the corresponding buoys exit
the pipeline at the same time.

The STF software library consists of the following components:
• time maps convert between semantic time and media samples
• nodes perform some type of processing on the media (e.g., reverb, colour bal-

ance); rate-changer nodes alter the play rate of the media
• pipelines are formed by connecting nodes of the same media type
• synchronizers adjust the rate of a dependent pipeline to ensure synchronicity

with a reference.

Applications
STF allows developers on Mac OS X to easily design and construct interactive
media systems on Mac OS X. Two examples include POlite, an interactive con-
ducting system, and Beat Tapper, an audio navigation and tagging tool.

8
6

beats
pulses

measures

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

audio time

Synchronizer

video time

reference

dependent

rate

m
ed

ia
 ti

m
e

[b
ea

ts
]

presentation time [s]

a(t) - v(t) = 0 u(t) - a(t) = 150 ms | u(t) - a(t) | < 75 ms

0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

0 1 2 3

0

0.5

1

1.5

2

2.5

0 1 2 3

m
ed

ia
 ti

m
e

[b
ea

ts
]

0

0.5

1

1.5

2

0 0.6 1.2
presentation time [s]

forwards and backwards
playback jazz “swing” rhythm

