
DiMaß: A Technique for Audio Scrubbing and Skimming
using Direct Manipulation

Eric Lee and Jan Borchers
Media Computing Group
RWTH Aachen University
52056 Aachen, Germany

{eric, borchers}@cs.rwth-aachen.de

ABSTRACT
Scrubbing or skimming through an audio-only recording re-
mains a challenge with today’s audio interfaces. We present
DiMaß, a technique for direct manipulation of an audio time-
line with continuous, high-fidelity audio feedback. Building
upon prior work in interactive conducting systems, DiMaß
uses improved algorithms to (1) estimate the input posi-
tion and velocity of low sampling rate, relative input de-
vices such as a mouse or iPod scroll wheel; (2) adjust audio
play rate to precisely track user input; and (3) interactively
time-stretch the audio without changing the pitch at arbi-
trary forwards and backwards play rates. Early feedback
showed that users are willing to tolerate slightly reduced re-
sponsiveness in exchange for smoother sounding audio. We
are currently exploring how DiMaß enables users to more
quickly and efficiently scrub and skim through audio.

Categories and Subject Descriptors
H.5.1 [Information interfaces and presentation
(e.g., HCI)]: Multimedia Information Systems—Audio in-
put/output ; H.5.2 [Information interfaces and presen-
tation (e.g., HCI)]: User Interfaces—Interaction styles;
H.5.5 [Information interfaces and presentation (e.g.,
HCI)]: Sound and Music Computing—Systems

General Terms
Algorithms, Human Factors

Keywords
audio scrubbing, audio skimming, direct manipulation, au-
dio interfaces, synchronization, time-stretching

1. INTRODUCTION
While interfaces for skimming and searching through text,

still images, and, to a certain extent, video exist today, the
same is not true for audio. Even when searching through a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AMCMM’06, October 27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-501-0/06/0010 ...$5.00.

movie, one must rely solely on visual feedback to accurately
pinpoint a desired location in the movie timeline. Part of the
challenge is that audio is an inherently time-based medium;
unlike video, where a single time-instant can be interpreted
as an image, no such equivalent exists for audio. To inter-
pret audio, then, it must be perceived over time; however,
arbitrary play rate adjustment of audio to support scrub-
bing and skimming is also challenging – the näıve method
of time-stretching audio using resampling creates disturbing
pitch-shifting artifacts.

Constant pitch time-stretching algorithms, where the orig-
inal pitch of the audio is preserved, have been studied exten-
sively in recent years [6, 16, 18, 24]; while these algorithms
have traditionally been very computationally expensive, the
processing capabilities of modern hardware continue to in-
crease exponentially. In the near future, even small, portable
electronic devices such as Apple’s iPod1 portable digital me-
dia player will be capable of time-stretching audio in real
time.

It remains difficult, however, with today’s software frame-
works to design and implement time-based interactions with
multimedia. We began to address this problem in previous
work on interactive orchestral conducting systems [20]; Di-
Maß2continues this work, providing a technique for Direct
Manipulation Audio Scrubbing and Skimming.

Shneiderman defines a direct manipulation interface as
one with “visible objects and actions of interest, with rapid,
reversible, incremental actions and feedback” [25]. DiMaß
allows users to interact with an audio timeline by “grabbing”
on to it and sliding it around (see Figure 1); continuous au-
dio feedback is provided using a high-fidelity, constant pitch
time-stretching algorithm, so that users are always aware of
where they are in the audio.

There exists an abundance of previous research demon-
strating how directly manipulating position is superior to
rate-based control for navigation tasks (e.g., manipulating a
cursor on a screen) [7, 14]. However, there does not appear
to be any existing systems that allow the user to directly
manipulate the position of an audio timeline whilst receiv-
ing continuous, high-fidelity audio feedback.

1http://www.apple.com/ipod/
2DiMaß is pronounced dee-MAHS ; the “ß” is the German
sharp S, an abbreviation for two S’s, not the Greek letter
beta. The word “DiMaß” is a pun on the German word das
Maß, which means “quantity of measure”. die Maß, which
is pronounced the same way as DiMaß, is a colloquial term
used in southern Germany for “a liter (34 ounces) of beer”
(think Oktoberfest).

Figure 1: DiMaß interaction: the user “grabs”
onto the waveform and slides it to the left or right.
The audio waveform follows the cursor, and time-
stretched audio is played synchronously with the
movements.

Figure 2: Navigating an audio timeline using the
iPod scroll wheel. Clockwise gestures advance the
audio position forwards, and counter-clockwise ges-
tures backwards. No audio feedback is given whilst
scrolling on a standard iPod.

Consider the following two usage scenarios:

• Yvonne is listening to a podcast of a lecture while
studying for an examination. She wants to navigate
to a particular part of the 90-minute lecture. Even
though an iPod offers position-based control of the
audio timeline via its scroll wheel, there is no audio
feedback whilst scrolling (see Figure 2).

• Marius has recorded a 30-minute interview with the
mayor, and wants to extract excerpts to include with
his weekly five-minute podcast. This task requires
navigating to specific points in the audio and plac-
ing trim markers. Many current audio editing appli-
cations, such as Adobe’s Audition3 do not offer audio
feedback whilst trimming audio sequences, and thus
the editor must resort to a tedious, iterative trial-and-
error process whereby a marker is placed on the au-
dio timeline, the audio is played back starting at the
marked point at normal speed, the marker is adjusted,
and so forth.

In this paper, we discuss the algorithms used in DiMaß,
and one implementation of these algorithms in a tool for

3http://www.adobe.com/products/audition/

tagging music recordings with beat metadata. We also de-
scribe the results of informally testing DiMaß with users,
using this tool.

2. RELATED WORK
The use of a constant pitch time-stretching algorithm such

as the phase vocoder to support audio scrubbing has been
proposed previously [26]. To date, however, there appears
to be no concrete implementation demonstrating this inter-
action.

Certain audio editing applications offer audio scrubbing,
where audio feedback is provided in response to cursor move-
ment on the audio timeline. These applications either track
user input precisely, but render the audio with low-fidelity,
or vice-versa. The waveform editor included in Apple’s Final
Cut Pro4, for example, simply skips to the desired audio po-
sition and plays a short snippet at that position while scrub-
bing. Sagan Technology’s Metro5, an audio/video/MIDI se-
quencing software, provides variable pitch audio feedback
during scrubbing, but the audio cannot be scrubbed above
or below a certain rate. DiMaß offers an improved inter-
action where the audio precisely tracks user input, and the
time-stretched audio is both high-fidelity and constant pitch.

Hürst et al.’s elastic audio slider [13] and Arons’ Speech-
Skimmer [4] support constant pitch audio skimming for
speech. In addition, Arons’ SpeechSkimmer offers multi-
ple semantic levels of speech skimming by, for example, au-
tomatically detecting and eliminating pauses in the speech.
These systems, however, offer rate-based control rather than
position-based control of the audio timeline. DiMaß, in con-
trast, allows the user to directly manipulate the timeline
of audio, and can time-stretch complex, polyphonic audio,
such as music, at high quality, in addition to monophonic
audio signals such as speech.

Direct manipulation of an audio timeline has also been
explored in disc jockey (DJ) systems [5] and interactive or-
chestral conducting systems [20, 23]. However, these ap-
plications use specialized and expensive input devices that
accurately report both position and velocity at frequent and
regular intervals. Moreover, the range of play rate changes in
response to user input is limited: in conducting, for example,
the tempo seldom falls below 20 bpm (beats per minute), or
rises above 240 bpm (0.25 and 3 times normal speed for an
80 bpm piece, respectively). In contrast, audio skimming
can easily reach speeds close to zero and above 20 times
normal speed. DiMaß supports both arbitrary scrub rates,
and input from low-cost, low-power devices such as a mouse
or iPod scroll wheel.

3. DIRECT MANIPULATION OF AN AU-
DIO TIMELINE

DiMaß can be described as users imposing their own sense
of time, “user time”, onto the audio. We further distinguish
between “audio time”, the timeline that is embedded in the
original audio file, from “real time”, as obtained, for exam-
ple, from a clock. The relationship between audio time and
real time dictates how fast the audio is playing at a given
moment, for example, and this relationship is often used to
study and analyze timing patterns in music [11, 15].

4http://www.apple.com/finalcutpro/
5http://www.sagantech.biz

16

17

18

19

20

21

22

0 1 2 3 4 5 6 7

time [s]

in
p

u
t

p
o

s
it

io
n

 x
(
t)

 [
s
]

mouse down
mouse up

mouse drag

Figure 4: Example plot of mouse input position
events. Only changes to mouse position are re-
ported, resulting in irregularly spaced events. In
this example, no new events are received after t =
4 sec because the mouse has not been moved, until
the mouse button is released at t = 7 sec.

We divide DiMaß into three parts: motion estimation,
input tracking, and audio time-stretching (see Figure 3).
The motion estimator receives position events, p(t), and es-
timates the user’s instantaneous position, x(t), and velocity,
v(t). Note that since x(t) has units of “audio seconds”, v(t)
is measuring “audio seconds” per (real time) “second”. The
input tracker synchronizes the audio play rate, r(t), to x(t)
and v(t). Finally, the audio is time-stretched at this ad-
justed rate, and updates the input tracker with the current
position in the unstretched audio, a(t). a′(t) is the timeline
of the time-stretched audio.

3.1 Motion Estimation
Many devices, such as a mouse, report only changes to

position [8]; the windowing system may also choose to dis-
card input events under high system load. Thus, while the
device itself may have a temporal resolution above 100 Hz,
the actual time interval between input events will vary (e.g.,
if the mouse is not moved, no events will be received, see
Figure 4). However, the input tracker requires instanta-
neous position and velocity, which we must calculate based
on this irregular, and relatively infrequent, position infor-
mation. For example, the user in Figure 4 has dragged the
mouse pointer to audio time 18 sec at t = 4 sec. Until the
mouse button is released at t = 7 sec, we are not aware that
the user has not moved the mouse, and we can only estimate
the instantaneous position and velocity.

When an input position event is received at time tj , it
is mapped to an absolute position in the audio waveform,
x(tj). To achieve low-latency position tracking, x(t) is not
filtered before it is passed to the input tracker. The mouse
velocity at time tj can be estimated using:

vtj
=

x(tj) − x(tj−1)

tj − tj−1
. (1)

To minimize discontinuities in v(t), we let it rise expo-

0

5

10

15

20

25

0 0.25 0.5 0.75 1

in
p

u
t

v
e
lo

c
it

y
 v

(
t)

 [
s
/

s
]

mouse down

mouse up

mouse drag

t
1

t
3

t
2

t
0

time [s]

Figure 5: Estimated mouse velocity. Units are “au-
dio seconds” per “real time second”. There are two
drag events, at t1 and t2. Note that since t2 − t1 is
only 0.1 s, v(t) has not had a chance to reach vt1 .

nentially from its current value over the next 250 ms until it
reaches vtj

, and then fall exponentially over the next 250 ms
to zero – unless another input event is received in the mean-
time (see Figure 5). While it may appear that this scheme
introduces a minimum input-to-response latency of 250-500
ms, we will show in the next section how the input tracker
is able to combine this velocity estimate with the position
information to achieve almost zero latency.

3.2 Input Tracking
The input tracker computes an adjusted audio play rate

such that the audio position a(t) tracks the input position
x(t) and velocity v(t); that is, the “audio time” is synchro-
nized to the “user time”. Existing work examines ways to
synchronize audio to video (or vice versa) [3, 17, 19, 21],
or audio and video to conducting gestures [20]. These algo-
rithms, however, assume the following:

• the drift between the independent (user) timebase and
the dependent (audio) timebase is small

• there are no sudden changes to the speed and/or po-
sition of the user input

• the speed and position of the user input is accurate

• time is always moving forwards

For DiMaß, we addressed these limitations. Figure 6a
illustrates the synchronization algorithm presented in [19].
The adjusted play rate, rg(t), is calculated using:

rg(ti) = rg(ti−1)
x(ti) + v(ti)∆t − a(ti)

rg(ti−1)∆t
(2)

where ti is the current time, ti−1 is the time of the last
correction, and ∆t is the “catch-up interval”. Intuitively,
this formula scales the audio play rate by the ratio of how

MOTION

ESTIMATION

INPUT

TRACKING

AUDIO TIME-

STRETCHING

x(t)

v(t) r(t)

a(t)

a′(t)
p(t)

Figure 3: DiMaß block diagram. The motion estimator takes the input device position, p(t), and calculates
the desired audio position and velocity (x(t) and v(t), respectively). These are in turn used by the input
tracker to compute an adjusted audio play rate, r(t). After the audio is time-stretched (a′(t)), the current
position in the unstretched audio, a(t), is fed back to the input tracker to ensure that the audio remains
synchronous to the user input.

time [s]
(a) (b)

t
0

t
1

x(t
1
)

a(t
1
)

t
1
+∆t

∆t

x(t
1
+∆t)

a(t
1
+∆t)

x(t
1
+∆t)-a(t

1
)

a(t
1
+∆t)-a(t

1
)

x(t
0
),a(t

0
)

a
u

d
io

 p
la

y
 r

a
te

-13

-8

-3

2

7

0 1 2 3 4 5 6 7

Figure 6: (a) Synchronization algorithm from [19]. (b) Effect of applying this algorithm on the input data
shown in Figure 4. The thick blue line is the input velocity v(t), and the thin red line is the adjusted play
rate r(t). The synchronized play rate overshoots the desired target at t = 4.75 sec, resulting in undesirable
oscillations.

much we want the audio to advance and how much we expect
it to advance over the interval ∆t. Figure 6b shows the
result of applying this algorithm to the user input shown in
Figure 4, and we observe that:

• At t = 4 sec, the input device has stopped moving,
but the latency in the velocity estimation results in
the audio over-shooting the target position. Such an
effect is disconcerting for the user, who expects the
audio to stop at precisely the position specified, and
not oscillate back and forth.

• The adjusted play rate r(t) contains many spikes, due
to the sudden changes in the input position and veloc-
ity.

To address the first problem, we first impose a condition
that if the adjusted play rate does not occur in the direction
of movement, then the adjusted play rate is set to zero.
However, this condition does not guarantee synchronization.
We observe that an instantaneous rate adjustment is given

by rn(ti) = x(ti)−a(ti)
ǫ

, and is not affected by inaccuracies
in v(t); however, it is only valid for small values of ǫ, which
usually results in even larger jumps to the play rate when
the input position changes. Thus, we use this instantaneous
rate adjustment only when its magnitude is smaller than
rg(t).

To remove the spikes in the play rate, we introduce a
“viscosity” parameter µ, which is used to adjust the catch-
up interval ∆t, and to smoothen the play rate adjustment.
(2) becomes:

rg(ti) = µrg(ti−1)+(1−µ)rg(ti−1)
x(ti) + v(ti)µ∆t − a(ti)

rg(ti−1)µ∆t
(3)

Figure 7 shows the effect of two different values of µ on
r(t). Note that a higher viscosity setting increases the in-
terval from when the user stops moving, to when the audio
catches up; we use this interval as a measure of response
time, and Figure 8 shows the effect of increasing µ on the
response time. Early user feedback suggests that an ap-
propriate value for µ depends on the precision of the input
device (e.g., mouse vs. DJ turntable), the audio type (music
vs. speech), and the application (editing vs. searching).

3.3 Audio Time-Stretching
The last step is to time-stretch the audio using the ad-

justed play rate, r(t), and determine the current position in
the audio timeline, a(t), to feed back to the input tracker;
this feedback is necessary for the tracker to function cor-
rectly [19, 20].

Constant pitch time-stretching algorithms can be roughly
classified in two categories: time domain and frequency do-

time [s]

µ = 0 µ = 0.99

p
la

y
 r

a
te

-110

-80

-50

-20

10

40

70

100

130

0 1 2 3 4 5 6 7

-9

-6

-3

0

3

6

9

0 1 2 3 4 5 6 7

Figure 7: Effect of viscosity µ on the adjusted play rate r(t) (thin red line): the play rate is smoother as µ

increases. The thick blue line is the input velocity v(t).

viscosity, exponential scale (e
µ
)

r
e
s
p

o
n

s
e
 t

im
e
 [

s
]

0

0.75

1.5

2.25

0 0.2 0.4 0.6 0.8 1

Figure 8: Effect of µ on response time.

main. Time domain techniques such as time domain har-
monic scaling (TDHS) [22] and waveform similarly overlap-
add (WSOLA) [27] are relatively computationally inexpen-
sive (certain models of digital answering machines use a vari-
ant of these algorithms to support time-stretched playback
of recorded messages), and adequate for structurally simple,
monophonic audio signals such as speech. However, such
algorithms are inadequate for polyphonic audio signals such
as music. Moreover, time domain algorithms are generally
limited to stretch factors of ±20% before the resulting audio
artifacts become audibly disturbing.

Frequency domain algorithms, usually based on the phase
vocoder [9], on the other hand, are capable of time-
stretching at a wider range of stretch factors. Recent re-
search in this area has also addressed many of the rever-
beration and transient-smearing artifacts typical of phase
vocoder algorithms [6, 16, 18, 24], making it an attractive
choice for arbitrary audio signals, despite the increased com-
putational cost (usually a factor of ten or more, compared
to time domain algorithms).

An increasing number of multimedia software frameworks
support these frequency domain constant pitch audio time-
stretching in real time: Apple’s TimePitch (part of the Core

Audio6 framework), and zplane.development’s élastique7 (a
stand-alone time-stretching library) are two such exam-
ples. Unfortunately, neither of these time-stretchers pre-
serve the mapping between the input and time-stretched
audio; that is, it is not possible to determine a(t) from the
time-stretched audio timeline, a′(t), information which is
required to synchronize the audio to the user input. More-
over, this information cannot be retroactively determined by
observing the input/output behavior of the time-stretching
“black boxes” for two reasons:

1. The algorithms used for constant pitch time-stretching
quantize the input play rate; while small (usually less
than 0.1%), these errors will accumulate, resulting in
as much as 60 ms of error per minute of audio.

2. The algorithms require a certain amount of buffering of
input samples to perform processing. Unfortunately,
this buffer creates a bounded but indeterministic delay
from input to output that depends on, amongst other
parameters, the current play rate. Thus, the input
audio samples that were requested when rendering the
time-stretched audio samples may not actually be used
to render audio until some time later in the future.

TimePitch and élastique are, furthermore, limited in their
play rates: TimePitch supports play rates between 0.25 and
8 times normal speed, and élastique rates between 0.1 and 10
times normal speed. In DiMaß, however, the audio play rate
frequently drops below 0.1 and rises above 20 times normal
speed, or more. Existing studies have shown that audio such
as speech time-stretched beyond two or three times normal
speed is beyond intelligibility [2], and so the need to sup-
port such extreme play rates may be questioned. However,
a text document zoomed out beyond legibility still provides
strong visual cues, such as paragraph length or color. Sim-
ilarly, audio time-compressed beyond intelligibility can still
provide identifiable speaker and tone changes for speech, or
genre cues for music. For searching tasks where the loca-
tion of the desired target is approximately known (e.g., the

6http://developer.apple.com/audio/
7http://www.zplane.de

latter half of a lecture), supporting such extreme play rates
allows the user to quickly skim past the unneeded sections,
but still have the audio feedback to maintain context.

The Semantic Time Framework (STF) is a software li-
brary we created for developing multimedia applications
with time-based interaction. It preserves the input to out-
put audio time mapping using semantic time; semantic time
defines time in more meaningful units such as music beats,
as opposed to audio samples and video frames (analogous
to using “blocks” to refer to distance in North American
cities, instead of meters). Our first implementation of STF
was used to simplify the design of interactive orchestral con-
ducting systems [20]. For DiMaß, we enhanced STF to
support arbitrary forwards and backwards stretch factors.
Backwards time-stretching is achieved by simply reversing
the order of the audio samples. While more sophisticated
backwards time-stretching approaches have been proposed
for speech [4, 12], it is unclear how such schemes would ap-
ply to other types of audio, such as music, and a further
analysis of backwards time-stretching of audio would have
been beyond the scope of this work. Constant pitch time-
stretching is performed using PhaVoRIT, our Phase Vocoder
for Real-Time Interactive Time-Stretching [16].

4. IMPLEMENTATION
We incorporated DiMaß into Beat Tapper, a tool we de-

veloped for tagging musical recordings with beat metadata8.
Using Beat Tapper, users mark beats in an audio file by “tap-
ping along” while the audio is playing, and manually fine-
aligning them afterward using a visual representation of the
audio waveform (see Figure 1). Beat Tapper can also play
these beats back synchronously with the music as audible
“taps”. The audio play rate can be adjusted dynamically,
and using DiMaß, users can quickly skim through the au-
dio, or scrub around a specific area of the waveform to help
them fine-align a beat. We also included variable pitch time-
stretching using resampling, as an alternative to PhaVoRIT.

It is important to note that Beat Tapper is just one pos-
sible implementation of the DiMaß technique. Beat Tapper
demonstrates how DiMaß simplifies a fine-grained searching
task (looking for beats). We are currently examining other
applications that would benefit from an implementation of
the DiMaß algorithms presented in this paper. For example,
imagine an “enhanced iPod” where the scroll wheel can be
used for audio skimming (see Figure 2), but with the addi-
tion of time-stretched audio feedback. Such an implemen-
tation would assist with searching and skimming through
podcasts, or finding songs in certain concert music record-
ings that, unlike traditional CDs, have not been split into
tracks by song.

5. EARLY USER FEEDBACK
We tested DiMaß with seven users (six students and one

professional) using Beat Tapper, with the aim of obtaining
qualitative feedback on DiMaß. Users used either a mouse
or a SMART Actalyst9 touch screen to interact with Beat
Tapper. We tested DiMaß with both music, using a Vienna
Philharmonic recording of Blue Danube Waltz by Johann
Strauss, and speech, using an excerpt from an audio book

8Beat Tapper is available for download at:
http://media.informatik.rwth-aachen.de/dimass.html
9http://www.smarttech.com/actalyst/

of Ein Wintermärchen by Heinrich Heine. Users were en-
couraged to experiment with the viscosity setting, and with
constant and variable pitch time-stretching.

Users readily grasped the directness of grabbing on to
the waveform and shuffling it around – two users even at-
tempted to manipulate the waveform with two hands on
the touch screen (but failed due to sensor limitations of the
Actalyst device, which does not support two-handed inter-
action). One user commented on how he expected the wave-
form to move with some “inertia”, and thus continue to move
even after he released the waveform. As expected, all users
vastly preferred constant pitch time-stretching to variable
pitch, where the audio resembles “a broken record”; such
audio also becomes disturbing with rapid movements due to
the increased pitch. Most users preferred a higher viscosity
setting, between 0.5 and 0.9, as it produced smoother and
more pleasant-sounding audio.

Two of the users thought the technique would be useful
when going through audio podcasts of lectures, for example,
when studying for an exam. One of the users, who works
for the local student radio station, observed how a similar
tool would help simplify his task of cutting audio recordings
for radio shows.

We are currently preparing for a more formal user study
aimed at obtaining quantitative results comparing DiMaß to
existing audio scrubbing and skimming techniques for the
tasks outlined above, and in the introduction of this paper.

6. FUTURE WORK
We are currently pursuing the following directions in our

work for DiMaß:
DiMaß implementations: We have, thus far, imple-

mented DiMaß as part of the Beat Tapper application, which
uses the mouse for audio scrubbing. We are examining how
DiMaß can be used in other applications and input devices,
such as the scroll wheel in the iPod portable digital media
player for searching through podcasts.

Enhanced interaction techniques: We are currently
examining how DiMaß can be improved by, for example,
combining it with existing speech skimming techniques pro-
posed by Arons [4]. There is also an emerging trend in recent
human-computer interaction research of building “organic”
user interfaces, where the system behavior is inspired by the
natural laws of physics, biology, and human cognition [1, 10].
One could imagine, for example, applying physical kinetics
to DiMaß and allow users to “toss” the audio waveform in
Beat Tapper in either direction with some inertia. Similarly,
we could model the relationship between the cursor position
and waveform position as a mass and spring system, re-
placing the current “viscosity” setting with an “elasticity”
setting.

Formal user evaluation: While preliminary user feed-
back on DiMaß has been positive, we intend to conduct more
formal user studies to obtain quantitative results comparing
DiMaß to existing techniques for audio scrubbing and skim-
ming.

7. CONCLUSIONS
We presented DiMaß, a direct manipulation technique for

interacting with the timeline of digital audio. DiMaß con-
sists of (1) motion estimation to compute an instantaneous
input position and velocity for relative input at irregular

http://media.informatik.rwth-aachen.de/dimass.html

and infrequent intervals; (2) input tracking to adjust audio
play rate based on the estimated input position and veloc-
ity; and (3) audio time-stretching to arbitrarily adjust the
play rate of digital audio, both forwards and backwards.
We introduced an improved algorithm to synchronize audio
to user input; this algorithm includes a “viscosity” setting
that smoothens the adjusted play rate, but with a small
impact on responsiveness. Informal user tests showed that
even though our algorithm is capable of almost zero-latency
synchronization at a low viscosity setting, users preferred
a higher setting as it produced more pleasant-sounding au-
dio. We hope our work on DiMaß will make scrubbing and
searching through audio for both content producers and con-
sumers a more efficient and pleasant experience.

8. ACKNOWLEDGEMENTS
The authors would like to thank Ken Greenebaum, David

Holman and Rafael Ballagas for their feedback on an early
paper draft, and the users who participated in the user tests.

9. REFERENCES
[1] A. Agarawala and R. Balakrishnan. Keepin’ it real:

Pushing the desktop metaphor with physics, piles and
the pen. In Proceedings of the CHI 2006 Conference
on Human Factors in Computing Systems, pages
1283–1292, Montréal, Canada, April 2006. ACM Press.

[2] A. Amir, D. Ponceleon, B. Blanchard, D. Petkovic,
S. Srinivasan, and G. Cohen. Using audio time scale
modification for video browsing. In Proceedings of the
33rd Annual Hawaii International Conference on
System Sciences. IEEE, 2000.

[3] D. P. Anderson and G. Homsy. A continuous media
I/O server and its synchronization mechanism. IEEE
Computer, 24(10):51–57, 1991.

[4] B. Arons. SpeechSkimmer: a system for interactively
skimming recorded speech. ACM Transactions on
Computer-Human Interaction (TOCHI), 4(1):3–38,
1997.

[5] T. Beamish, K. Maclean, and S. Fels. Manipulating
music: multimodal interaction for DJs. In Proceedings
of the CHI 2004 Conference on Human Factors in
Computing Systems, pages 327–334, Vienna, Austria,
April 2004.

[6] J. Bonada. Automatic technique in frequency domain
for near-lossless time-scale modification of audio. In
Proceedings of the ICMC 2000 International Computer
Music Conference, Berlin, 2000. ICMA.

[7] S. K. Card, W. K. English, and B. J. Burr. Evaluation
of mouse, rate-controlled isometric joystick, step keys,
and text keys for text on a CRT. Ergonomics,
21:601–613, 1978.

[8] S. K. Card, J. D. Mackinlay, and G. G. Robertson. A
morphological analysis of the design space of input
devices. ACM Transactions on Information Systems,
9(2):99–122, 1991.

[9] J. L. Flanagan and R. M. Golden. Phase vocoder. In
Bell Systems Technical Journal, volume 45, pages
1493–1509, November 1966.

[10] D. Holman, P. Stojadinović, T. Karrer, and
J. Borchers. Fly: an organic presentation tool. In
Extended Abstracts of the CHI 2006 Conference on
Human Factors in Computing Systems, pages
863–868, Montréal, Canada, April 2006. ACM Press.

[11] H. Honing. From time to time: The representation of
timing and tempo. Computer Music Journal,
25(3):50–61, 2001.

[12] W. Hürst, T. Lauer, and C. Bürfent. Playing speech
backwards for classification tasks. In Proceedings of
the ICME 2005 International Conference on
Multimedia and Expo. IEEE, July 2005.

[13] W. Hürst, T. Lauer, C. Bürfent, and G. Götz. Forward
and backward speech skimming with the elastic audio
slider. In Proceedings of the 19th British HCI Group
Annual Conference, Edinburgh, Scotland, 2005.

[14] E. L. Hutchins, J. D. Hollan, and D. A. Norman.
Direct manipulation interfaces. Human-Computer
Interaction, 1:311–338, 1985.

[15] D. Jaffe. Ensemble timing in computer music.
Computer Music Journal, 9(4):38–48, 1985.

[16] T. Karrer, E. Lee, and J. Borchers. PhaVoRIT: A
phase vocoder for real-time interactive
time-stretching. In Proceedings of the ICMC 2006
International Computer Music Conference, New
Orleans, USA, November 2006. ICMA, In Print.

[17] H. Kitamura. New algorithms and techniques for
well-synchronized audio and video streams
communications. In Proceedings of the 6th
International Conference on Computer
Communications and Networks, pages 214–219. IEEE,
1997.

[18] J. Laroche and M. Dolson. Improved phase vocoder
time-scale modification of audio. IEEE Transactions
on Speech and Audio Processing, 7(3):323–332, 1999.

[19] E. Lee. Audio Anecdotes III: Tools, Tips, and
Techniques for Digital Audio (Ken Greenebaum and
Ronen Barzel, Eds.), chapter Dynamic
Synchronization: Drifting Into Sync. AK Peters, 2006.
In Print.

[20] E. Lee, T. Karrer, and J. Borchers. Toward a
framework for interactive systems to conduct digital
audio and video streams. Computer Music Journal,
30(1):21–36, 2006.

[21] T. D. C. Little and F. Kao. An intermedia skew
control system for multimedia data presentation. In
Proceedings of the 3rd International Workshop on
Network and Operating System Support for Digital
Audio and Video, 1993.

[22] D. Malah. Time-domain algorithms for harmonic
bandwidth reduction and time scaling of speech
signals. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 27(2):121–133, 1979.

[23] D. Murphy, T. H. Andersen, and K. Jensen.
Conducting audio files via computer vision. In Gesture
Workshop 2003, volume 2915 of Lecture Notes in
Computer Science, pages 529–540, Genova, 2003.
Springer.

[24] A. Röbel. Transient detection and preservation in the
phase vocoder. In Proceedings of the ICMC 2003
International Computer Music Conference, pages
247–250, Singapore, 2003. ICMA.

[25] B. Shneiderman. Designing the User Interface.
Addison Wesley, 3rd edition, 1997.

[26] R. Sussman and J. Laroche. Application of the phase
vocoder to pitch-preserving synchronization of an

audio stream to an external clock. In Proceedings of
the 1999 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pages 75–78, New
York, October 1999. IEEE.

[27] W. Verhelst and M. Roelands. An overlap-add

technique based on waveform similarity (WSOLA) for
high quality time-scale modification of speech. In
Proceedings of the ICASSP 1993 International
Conference on Acoustics, Speech, and Signal
Processing, volume II, pages 554–557. IEEE, 1993.

	Introduction
	Related Work
	Direct Manipulation of an Audio Timeline
	Motion Estimation
	Input Tracking
	Audio Time-Stretching

	Implementation
	Early User Feedback
	Future Work
	Conclusions
	Acknowledgements
	References

