DiMafB3: Audio Scrubbing and Skimming with Continuous, High-Fidelity Feedback

Eric Lee and Jan Borchers

Media Computing Group, RWTH Aachen University, Germany

Abstract

RWIH

RHEINISCH-WESTFALISCHE
TECHNISCHE HOCHSCHULE AACHEN

Evaluation

DiMaB is a technique for audio scrubbing and skimming using direct manipula-
tion. Unlike existing technigues, DiMaB is able to render audio with high fidelity
and maintain the original audio pitch, but still precisely and smoothly track the
user input. DiMaB consists of three parts: motion estimation takes position
events from an input device such as a mouse and calculates the desired audio
position and velocity; input tracking uses this information to compute an
adjusted audio play rate; and time-stretching alters the audio play rate at
arbitrary speeds while preserving the original audio pitch with high fidelity.
DiMaB is implemented as part of a Cocoa-based audio navigation tool using the
following Mac OS X technologies: Quartz 2D for the waveform drawing, the
Accelerate framework for high-performance digital signal processing, and Core
Audio for audio output. DiMaB enables both content creators and consumers to
more easily navigate digital media content.

Introduction

Despite the increasing popularity of digital media content such as downloadable
music and podcasts, interfaces for scrubbing and skimming through this
content remain quite primitive. When browsing through text, and even movies,
one relies on visual “snapshots” of the material to accurately pinpoint the search
target. Audio, however, must be interpreted over time to be meaningful, making
such snapshots impossible.

DiMaB (Direct Manipulation Audio Scrubbing and Skimming) is a novel solution
for audio scrubbing based on our previous work on a flexible-time media
framework for interactive conducting systems [7] and a high-fidelity, pitch-
preserving, time-stretching algorithm [4]. Many current audio editing tools, such
as Adobe Audition or Apple Logic, already support audio scrubbing;
unfortunately, they offer either no audio feedback, low-quality audio feedback,
or audio feedback with undesirable pitch-shifting artifacts. DiMaB is the first
audio scrubbing technique that renders audio with high fidelity, and maintains
the original audio pitch, but still precisely and smoothly tracks the user input.

Objectives
We aim to support audio scrubbing and skimming for the following types of
tasks:

* locating a specific point in a music recording or podcast (“what was the
model number of that camera reviewed in yesterday's Macworld
podcast...?”).

+ cutting and splicing audio segments to create, for example, a two-minute
summary of a thirty-minute interview.

In the design of DiMaB3, we adopted the principle of direct manipulation, a term
used in human-computer interaction to describe the class of interfaces with
“visible objects and actions of interest, with rapid, reversible, incremental
actions and feedback” [8]. In particular, DiMaB:

» allows users to directly interact with the audio timeline (position); many
existing systems for speech skimming, in contrast, utilize rate-based control
[1,3].

« responds to user input with low latency, even with low-cost, low-fidelity,
positioning devices such as a mouse; while certain devices such as disc
jockey (DJ) turntables already provide immediate response, they are also
extremely expensive.

+ provides continuous audio feedback using a high-fidelity time-stretching
algorithm.

Copyright @ 2006 Eric Lee. All nghts reserved

DiMaB can be described as users imposing their own sense of time, “user time”,
onto the audio. We further distinguish between “audio time”, the timeline that is
embedded in the original audio file, from “real time”, as obtained, for example,
from a clock. The relationship between audio time and real time dictates how
fast the audio is playing at a given moment, for example, and this relationship is
often used to study and analyze timing patterns in music [2].

We divide DiMaB into three parts: motion estimation, input tracking, and audio
time-stretching.

Motion Estimation
The motion estimator receives position events, p(t), and estimates the user's
instantaneous position, x(t), and velocity, v(t).

To compensate for the fact that relative positioning devices such as a mouse
only report changes to position, we use an exponential rise and decay function
to estimate the velocity.

Input Tracking
The input tracker synchronizes the audio play rate, r(t), to x(t) and v(t).

Existing synchronization algorithms [5,6,7] are unsuitable for DiMaB, because
they assume, for example, that:

« the drift between the independent and the dependent timebases is small.
» there are no sudden changes to the speed and/or position of the user input.

+ time is always moving forwards.

Our improved synchronization algorithm combines results from an instanta-
neous rate adjustment together with a gradual rate adjustment. We also
introduce a “viscosity” parameter p to smoothen the play rate at the expense of
a little responsiveness.

play rate
s &
b

.50 4
.6 .
.m R
110 -9
time [s]

Audio Time-Stretching

The last step is to time-stretch the audio using the adjusted play rate to produce
a’(t), and return an updated position in the original audio timeline, a(t), back to
the input tracker; this feedback is necessary to ensure precise synchronization
with the user input [6,7].

We use a frequency domain algorithm based on the phase vocoder [4] that
produces results comparable to the TimePitch audio unit in Core Audio. The
algorithm is implemented as part of the Semantic Time Framework, a software
library we created for developing multimedia applications with time-based
interaction [7]. The time-stretching feature in the Semantic Time Framework is
unique in that it supports arbitrary, including backwards, play rates, and it also
preserves the original (unstretched) to time-stretched audio time mapping
(required by the input tracker for precise synchronization).

o o

DiMaB block diagram.

Implementation

Beat Tapper

We incorporated DiMaB into Beat Tapper, a tool we developed for tagging
musical recordings with beat metadata. Using Beat Tapper, users mark beats
in an audio file by “tapping along” while the audio is playing, and manually fine-
aligning them afterwards using a visual representation of the audio waveform.
Beat Tapper can also play these beats back synchronously with the music as
audible “taps”.

The audio play rate can be adjusted dynamically, and using DiMaB, users can

“grab” on to the audio waveform and shuffle it around using the mouse while
receiving continuous audio feedback.

ann M Muw Danube Waltz beatx

We recruited seven users (six students and one professional) to try out Beat
Tapper and obtain qualitative feedback on DiMaB. We tested with both music,
using a Vienna Philharmonic recording of Blue Danube Waltz by Johann
Strauss, and speech, using an excerpt from an audio book of Ein
Wintermarchen by Heinrich Heine. Users were encouraged to experiment with
the viscosity setting, and with constant and variable pitch time-stretching.

Users readily grasped the directness of grabbing on to the waveform and
shuffling it around. One user commented on how he expected the waveform to
move with some “inertia”, and thus continue to move even after he released the
waveform. As expected, all users vastly preferred constant pitch time-
stretching to variable pitch, where the audio resembles “a broken record”; such
audio also becomes disturbing with rapid movements due to the increased
pitch. Most users preferred a higher viscosity setting, between 0.5 and 0.9, as
it produced smoother and more pleasant-sounding audio.

Conclusions

We presented DiMaB, a direct manipulation technique for interacting with the
timeline of digital audio. DiMaB consists of a motion estimator, input tracker,
and audio time-stretcher. We introduced an improved algorithm to synchronize
audio to user input; this algorithm includes a “viscosity” setting that smoothens
the adjusted play rate, but with a small impact on responsiveness. Informal
user tests showed that even though our algorithm is capable of almost zero-
latency synchronization at a low viscosity setting, users preferred a higher
setting as it produced more pleasant-sounding audio. We hope our work on
DiMaB will make scrubbing and searching through audio for both content
producers and consumers a more efficient and pleasant experience.

The authors thank Thorsten Karrer for his work on the time-stretching algorithm
and Henning Kiel his code contributions to Beat Tapper.

References

% — v - - 02a3%

Mac OS X Technologies
We used the following Mac OS X technologies to realize DiMaB/Beat Tapper:

* QuickTime: Beat Tapper can import audio from any QuickTime-playable
movie using the audio extraction capabilities of QuickTime 7.

« Accelerate: The Semantic Time Framework makes extensive use of the
Accelerate framework to process audio; the Accelerate framework is also
used to pre-compute scaled versions of the audio waveform for display.

* Quartz 2D: The waveform is drawn using Quartz 2D to maximize
performance.

« Core Audio: The output audio streams are played through Core Audio.

Beat Tapper is a document-based Cocoa application that runs natively on both
Intel and PowerPC architectures. It is also a fully multi-threaded application:
audio import and waveform caching are performed on separate background
threads so that users can begin working immediately after selecting a file.

[1] B. Arons. SpeechSkimmer: A System for Interactively Skimming Recorded
Speech. ACM Transactions on Computer-Human Interaction (TOCHI),
4(1):3-38, 1997.

[2] H. Honing. From Time to Time: The Representation of Timing and Tempo.
Computer Music Journal, 25(3):50-61, 2001.

[3] W. Hirst, T. Lauer, C. Birfent, and Goétz. Forward and Backward Speech
Skimming with the Elastic Audio Slider. Proceedings of the 19th British HCI
Group Annual Conference, Edinburgh, Scotland, 2005.

[4] T. Karrer, E. Lee, and J. Borchers. PhaVoRIT: A Phase Vocoder for Real-Time
Interactive Time-Stretching. Proceedings of the ICMC 2006 International
Computer Music Conference, New Orleans, USA, 2006. In Print.

[5] H. Kitamura. New Algorithms and Techniques for Well-Synchronized Audio
and Video Streams Communcations. Proceedings of the 6th International
Conference on Computer Communications & Networks, pp. 214-219, 1997.

[6] E.Lee. Drifting Into Sync. Audio Anecdotes lli: Tools, Tips and Techniques for
Digital Audio. Ed. K. Greenebaum and R. Barzel. AK Peters, 2006. In Print.

[7]1 E. Lee, T. Karrer, and J. Borchers. Toward a Framework for Interactive
Systems to Conduct Digital Audio and Video Streams. Computer Music
Journal, 30(1):21-36, 2006.

[8] B. Shneiderman. Designing the User Interface. Addision Wesley, 3rd edition,
1997.

http://media.informatik.rwth-aachen.de



