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ABSTRACT

Designing a conducting gesture analysis system for pupfices
poses unique challenges. We presemiga a software frame-
work that enables automatic recognition and interpretatid
conducting gesturesongais able to recognize multiple types of
gestures with varying levels of difficulty for the user to foem,
from a standard four-beat pattern, to simplified up-dowrdeoit-

ing movements, to no pattern at albbngaprovides an extendable
library of feature detectorfinked together into a directed acyclic
graph; these graphs represent the various conductingmate
gestureprofiles At run-time,congasearches for the best profile
to match a user’s gestures in real-time, and uses a beatpredi
tion algorithm to provide results at the sub-beat level ddition

to output values such as tempo, gesture size, and the gssture
geometric center. Unlike some previous approacbesgadoes

not need to be trained with sample data before use. Our prelim
inary user tests show thabngahas a beat recognition rate of  Figure 1: Maestro!, an interactive conducting exhibit for
over 90%. congais deployed as the gesture recognition system children that we developed, at the Betty Brinn Children’s
for Maestro! an interactive conducting exhibit that opened inthe Museum in Milwaukee, USA. Photo appears courtesy of the
Betty Brinn Children’s Museum in Milwaukee, USA in March  Betty Brinn Children’s Museum in Milwaukee, WI, USA.
2006.

Keywords Our work is motivated by research on novel computer music
gesture recognition, conducting, software gesture fraoniesv and multimedia interfaces for public spaces such as museums
(see Figur&ll), andongabuilds on our prior experience with de-
signing interactive orchestral conducting exhibits, irithg Per-
1. INTRODUCTION sonal Orchestraan exhibit for theHousE oF Musicin Vienna
Orchestral conducting has a long history in music, with his- (coordinated by Max Muhlhauser, now at Darmstadt Unitgys
torical sources going back as far as the middle ages; it Isas al [[] and a collaboration with Teresa Marrin Nakra ¥ou're the
become an oft-explored area of computer music research: Con Conductor a children’s exhibit for the Boston Children’s Mu-
ducting is fascinating as an interaction metaphor, becafigee seum [9]. Our systems allow the user control over tempo, by
high “bandwidth” of information that flows between the condu ~ making faster or slower gestures; volume, by making larger o
tor and the orchestra. A conductor’s gestures communicaig b~ smaller gestures; and instrument emphasis, by directingéis-
tempo, dynamics, expression, and even entries/exits aifgpe tures towards specific areas of a video of the orchestra aiga la
instrument sections. Numerous researchers have exanmoned ¢ display (instrument emphasis is not supportetén’re the Con-

puter interpretation of conducting gestures, and appesacng- ductor). Designing a gesture recognition system for a museum-
ing from basic threshold monitoring of a digital baton's tver ~ type environment poses unique and interesting challenges,
cal position, to more sophisticated approaches involviti§jcal marily because museum visitors have a wide range of experien

neural networks and Hidden Markov Models, and even analyz- with conducting. Moreover, there is little to no opportynio
ing data from multiple sensors placed on the torso, have beeneither train a user to use the system, or to train the system to

proposed. specific user; a museum on a busy day may see over 1000 visi-

tors, and so a visitor will spend, on average, less than onatmi

at an exhibit.

In this paper, we presertonga a system forconducting

Permission to make digital or hard copies of all or part o thirk for gestureanalysis. Unlike current systemsongadoes not restrict
personal or classroom use is granted without fee providaidcthpies are the user to conduct in a specific way, nor does the systent itsel
not made or distributed for profit or commercial advantagkthat copies require training to tune itself to a user’s specific moveragim-
bear this notice and the full citation on the first page. Toyooiherwise, stead, it continuously evaluates user gestures againsbhges-

or republish, to post on servers or to redistribute to listsires prior ture profiles which are encoded with the characteristic features
specific permission and/or a fee.

NIME 06. June 4-8. 2006. Paris. France of particular types of gestures, and uses the best-matpaiie
Copyright remains with the author(s). to extract information such as beat, tempo, size, and céoter



the user’s gestures.

We begin with a more detailed description of the scope and
requirements foconga followed by a quick survey of existing
work in the area of conducting gesture recognition. Then, we
describe our design abnga and provide some implementation-
specific details and challenges. We conclude with a disonssi
some preliminary results obtained by testawngawith users.

2. REQUIREMENTS AND SCOPE

Our target user group for this work is museum visitors, and
thus, one of our primary goals was to build a gesture recogni-
tion system that works for a wide spectrum of users. We also
wanted to accommodate people with a wide variety of musi-
cal/conducting knowledge. This led to requirements timatga
be able to:

e recognize gestures from a user without any prior training
(either for the user or for the system).

e recognize a variety of gestures to accommodate different
types of conducting styles.

One of our goals was also to desigongaas a reusable com-
ponent of a larger system that requires gesture recognttios,
we also required¢ongato:

e integrate well with a computationally-expensive rendgrin
engine for digital audio and video.

e not depend on the specific characteristics of any particular
input device.

While conducting is an activity that typically involves tke-
tire body [11], it is generally agreed that the most imparian
formation is communicated through the harid< €, 17]. Sinee w
also intendedtongafor use in a public exhibit, we have thus far
limited our gesture analysis wittongato input from the user’s
dominant hand. The output of the gesture analysis consists o
four parameters: rate (tempo), position (beat), size (welu and
center (instrument emphasis). It is important to note, hawne
that the design ofongaitself does not place any restrictions on
the types of inputs or outputs, although we leave the impteme
tation of such extensions for future work.

3. RELATED WORK

Gesture-controlled conducting systems have a long hisitory
computer music research. Mathews’ early work on Realio
Baton[2], which triggers a beat when the baton goes below a
certain vertical position, has inspired a number of redeascto
study conducting as an interface to computer music systems.

llimonen and Takala'®IVA system [[5] features a conductor
follower that is capable of classifying and predicting Iseand
even sub-beats, to control tempo and dynamics. The systesn us
artificial neural networks, and needs to be trained with dséa
prior to use.

Usa and Mochida'svulti-modal Conducting Simulatof18]

Figure 2: Beat patterns for the four-beat neutral-legato (kft)
and expressive-legato (right), as described by Rudolf. The
numbers indicate where beats are marked in the gestures.

Marrin’s Conductor's Jackefll]] collects data from sensors
along the arms and upper torso, measuring parameters such as
muscle tension and respiration. She was primarily intetest
in mapping expressive features to sections in the musicescor
rather than obtaining measurements on how movements map to
rhythm and beats. In her later collaboration with usvon’re the
Conductor[9], she developed a gesture recognition system that
mapped gesture velocity and size to music tempo and dynamics
Her systems were built using LabVIEW]15], a graphical devel
opment software for measurement and control systems.

Kolesnik's work also uses Hidden Markov Models for recog-
nizing conducting gestures![6], although the focus of thiskwv
was on expressive gestures with the off-hand rather thah bea
recognition with the dominant hand. His conducting systeas w
built using a combination of EyesWeb and Max/M&PI [16].

Our system is thus unique in the following ways:

e the system does not need to be trained prior to use, un-
like those that use artificial neural networks and Hidden
Markov Models.

users are not required to learn or be proficient with specific
gestures before using the system.

e the system interprets multiple types of gestures, allowing
it to respond to the precise gestures of a conductor’s four-
beat conducting pattern as well as the potentially erratic
movements of a child.

DESIGN

The design ofongais inspired by Max Rudolf's work on the
grammar of conductind T17]. In his book, he models condugtin
gestures as two-dimensional beat patterns traced by thuf &p
baton held by the conductor’s right hand (see Fididre 2). Con-
ducting, then, is composed of repeating cycles of thesenpatt
(assuming the user keeps to the same beat pattern), with beat
corresponding to specific points in a cycle. By analyzing cer
tain features of the baton’s trajectory over time, such agdtr
tory shape or baton movement direction, we can identify Buth
specific pattern, and the position inside the pattern, astiaced
by the user.

Unlike Murphy’s work on interpreting conductors’ beat pat-
terns [13], we do not try to fit the user’s baton trajectorydaled
and translated versions of the patterns shown in Flgurenzs

4.

analyzes two-dimensional accelerometer data using Hidden jority of our target user base are not proficient conductsush

Markov Models and fuzzy logic to detect beats in gesturee Th
system features beat recognition rates of 98.95-99.74k6uah
it also needs to be trained with sample data sets prior to use.
Murphy et al’s work on conducting audio files uses computer
vision techniques to track tempo and volume of conductirg ge
tures [14]. Users’ movements are fitted to one of severalipless
conductingtemplatesdescribed in[[I3]. While the system does
not require any training, the user must be familiar with testgre

a scheme would most probably not work very well for them; in
fact, we have found in previous work that even ageplicitly
instructing users to conduct in an up-down fashion, theltiegu
gestures are still surprisingly diverde10]. Murphy alsakes

use of the dynamics encoded in the music that the user is con-
ducting to differentiate between unintentional deviafimm the
pattern and intentional deviation to change dynamics; Hiléya

to make this distinction requires one to assume that theisser

templates. Murphy used a combination of C code and EyesWeb already familiar with the music (an assumption we are untble

[3], a library for gesture processing.

make).



inputs

Figure 3: A basic conga graph to compute 5 + #. The ad-
dition triggers a division, which then in turn pulls data from
the inputs a and b.

Our general approach is to instead identify specific charisst
tics (feature3 in various types of gestures, such as turning points
in the baton position with a certain direction or speed. €hes
features are encoded into gestymefiles and the features are

Q beat

Figure 4: The conga graph for the Wiggle gesture profile.
The gesture speed determines tempo, gesture size deternsne

triggered in sequence as the user moves the baton in a specificvolume, and the gesture’s geometric center determines in-

pattern. The advantage of this approach is that the system do
not require the user to perform the gesture too exactly; a3 &s
the specific features of the gesture can be identified in thdtre
ing movements, the overall shape of the gesture is unimpiorta
conga as a software framework, allows a developer to work at
several layers of abstraction; at the most basic levelatiges
a library of feature detectors. These feature detectorstuam
be linked together into a more complex graph to identify spe-
cific gesture profiles, and to date, we have encoded thres tfpe
gesture profiles intoonga with increasing levels of complexity:
wiggle (for erratic movements), up-down (for an inexpecieh
conductor, but one who moves predictably), and the fout-bea
neutral-legato (for the more experienced conductor). Iinae
have developed a profile selector that evaluates which akthe

strument emphasis.
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Figure 5: The conga graph for the Up-Down gesture profile.
The downwards turning points of the gestures correspond to
beats; a beat predictor beat values in between these values.
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search community is not just the feature detector framewmrk

profiles best matches the user's baton movements at any givenour design of a system for conducting gesture analysis based

time, and returns the results from that profile.

4.1 Feature Detectors

congas library of feature detectors offers basic building bleck
that provide a specific function; for example a bounce detect
may detect a change in the baton’s direction. Each feature de
tectornodehas one or more input ports and at least one output
port. It takes, as input, a continuous stream of data (ex®; t
dimensional position of a baton). The output is a “triggea”,
Boolean value that is true when the feature is detected, alséd f
otherwise. There may be other outputs from the feature tetec
so that any nodes that use the output from the feature detsto
obtain more information regarding what caused the featetreod
tor to trigger. Other types of nodes also exist to manipulata,
such as rotating the data about an axis, applying variowestgp
filters, etc.

These nodes are connected into directed, acyclic graphs. Th
graph is evaluated using a pull model, where the output ggue
data which then pulls on its input nodes to perform the nexgss
computation (see Figuké 3).

such a framework.

Further details of the feature detector framework and tyfes
nodes it provides are given inl[4]; we will discuss only thattee
detectors of relevant interest to our discussion here.

The next three subsections describe the three profiles that w
have built forcongausing our feature detector library.

4.2 Wiggle Profile

Figure[d shows theongagraph for the Wiggle profile, which
is the most fundamental of the three gesture profilesdbaga
recognizes. Inspired by Teresa Marrin Nakra’s workYau're
the Conductor[9], gesture speed is mapped to tempo, gesture
size is mapped to volume, and the geometric center of thergest
determines instrument emphasis (see Fifliredigafalls back
to this profile when it cannot use any other means to intetpeet
user’s gestures.

The “x” and “y” nodes hold time-stamped positional data from
the baton that has been preprocessed to remove raaiagaas-
sumes the origin is at the lower left of the coordinate system
From there, “min” and “max” nodes store the most recent mini-

This graph-based approach has been used successfully in anum and maximum values of the baton position; these are then

number of existing frameworks, including LabVIEW, Eyes\WWeb
and Max/MSP. While it would have been possible to baitdiga

as a layer on top of one of these systems, we decided agaafist su
a solution after evaluating each of these three systerosga

used to determine the gesture size and center.

The gesture speed is computed by taking a numerical time
derivative of the baton position, followed by a moving aggra
of this derivative. Since the gestures themselves are mohsg-

was envisioned from the beginning as a component of a larger nized to the music beat, a numeric integral of the speed htase

system for conducting digital audio and video streams mopni
on Mac OS X|[F]; of the three aforementioned frameworks, only
Max/MSP runs on the Mac, but, unfortunately, Max/MSP does
not provide all of the basic building blocks that we needeitto
plementconga An alternative would be to use a two-machine
solution, such as il [6] L] 9], although we have learned frdor p
experience that such setups are awkward to maintain in aummuse
setting. Nevertheless, we feel these are implementapenisc
details, and we emphasize thaingas contribution to the re-

arbitrarily derive beat information from the gesture speed

4.3 Up-Down Profile

The Up-Down profile tracks the vertical movement of the user
to determine beat and tempo (the method for deriving gestmee
and geometric center remain the same as Wiggle, and willeot b
repeated here). Figui® 5 shows tomgagraph for the Up-Down
profile.

The primary feature that is detected is the downwards tgrnin



point, using the “bounce detector” node. The bounce datecto
node takes, as input, the current velocity of the baton, aokisl

for a positive to negative zero crossing in theomponent of the
velocity (i.e., an upside-down “U” shape). Since such aaiete
would normally track thaupwardsturning point, the data from
the baton must first be rotated by 180 degrees. To prevemt fals
triggers, the bounce detector imposes a criterion that tgnim
tude of the vertical movement over the last few samples beesom
multiple of the magnitude of the horizontal movement (seifas
tional parameters in the bounce detector node).

The triggers sent by the bounce detector mark whole beats, an
so the tempo can be derived by taking the numerical time aeriv
tive of these beat positions over time. This tempo is them use
to predict the current fractional beat value until the neigger
occurs. Ifr is the current tempo in beats per minute, ands
the time of beab, in seconds, then our predicted fractional beat
valueb for time ¢ is computed using = bo + &5 (t — to). We
also impose the additional constraint that bo+1 until the next
trigger occurs, to ensure that beats are always monotbniocal
creasing.

We found this simple beat prediction algorithm to work well
for estimating the fractional beat values between beatsily e
prototypes ofconga While the beat prediction could be im-
proved if we detected more features in the gesture (e.@gctiet
the upper turning point to mark the halfway point into thetbea
in addition to the lower turning point), doing so would aldage
more constraints on the types of movements that would fit the
profile. For example, we found that many users naturally tend
to conduct “pendulum-style”, rather than in strictly vesti up-
down movements.

4.4 Four-Beat Neutral-Legato Profile

The Four-Beat Neutral-Legato profile is the most comples, an
unsurprisingly, the most challenging beat pattern to detdal-
tiple features are detected in parallel, which then drivechba-
bilistic state machine to track where in the four-beat patthe
user currently is at (see FigUtk 6).

The features that are detected are: the downwards turning po
at beat 1; the upper turning point just after beat 1; the chamg
horizontal direction just after beat 2; the change in hariab
direction just after beat 3; and the upper turning pointraftsat
4. Note that the features detected do not necessarily pomes
to the beats themselves (see Fidlre 6).

The first and third features are very distinct sharp turng, an
so the bounce detector is again used to track these feafthies.
second feature tends to be more subtle, and thus we lookanly f
a zero crossing in the baton’s vertical velocity at that poiith-
out the additional constraint that the bounce detector sappas
described earlier. Finally, the fourth and fifth featuresodiave a
softer curvature, and are also tracked with a zero crossidg.n
Since zero crossing nodes trigger on both positive to negjati
and negative to positive transitions, the undesired triggdil-
tered out before sending it to the state node. The state mechi
node tracks the progress through the beat cycle; it alsaidete
and compensates for missed or false beats using a propasilit

CONGANode *a, *b, *div, *five, *plus;

// Inputs nodes. Their values will be set externally.
a [[CONGAPassiveValueNode alloc] initWithTime:0.0f];
b [[CONGAPassiveValueNode alloc] initWithTime:0.0f];

// Division node.
div = [[CONGADivisionNode alloc] initWithTime:0.0f];
[div setInputPorts:[NSArray arrayWithObjects:a, b]];

// A node with a constant value.
five = [[CONGAPassiveValueNode alloc] initWithTime:0.0f];
[five setValue:5.0f];

// Addition node.
plus = [[CONGAAdditionNode alloc] initWithTime:0.0f];
[plus setInptPorts[NSArray arrayWithObjects:five, div]];

Figure 7: The source code corresponding to the basimonga
graph shown in Figure[3, which computess + £.

whole beat information and predicts beat values in betwhen t
whole beats, the state machine receifrastional beat informa-
tion — this is to compensate for the phase shift between thesbe
and features in the gesture cycle. For the four-beat patheats
1to4areat0, 0.25, 0.5 and 0.75 (percentage of one whole)gycl
respectively, while the features occur at values of 0, 00121,
and 0.63 (see Figufé 6).

4.5 Profile Selection

The three gesture profiles described above run concurriently
conga and the final step in interpreting the user's gestures is a
profile selection scheme that decides which of the profiles-is
turning the most reasonable data. Our algorithm for periiogm
this selection is based on the assumption that the user ades n
make erratic changes to the tempo; our informal obseratidn
users using our prior systems have confirmed that users movin
in an up-down gesture, or a four-beat neutral-legato patterst
exert considerable effort to make relatively sudden changthe
conducting pattern, and thus, the conducting pattern iallysu
quite regular.

At each regular update cycle, each of the profile graphs is eva
uated to determine the current beat. A threshold value is com
puted based on the standard deviation of the last four ekl
beat values, and a confidence value returned by the beatfmedi
for each of the profile graphs. If this value falls below a airt
threshold, we conclude that the profile is returning a sémsé
sult. Profiles are also given a precedence order, so thatrié mo
than one profile falls below the given threshold, the one tith
highest precedence wins. Our order of precedence from $tighe
to lowest is: four-beat neutral-legato, up-down, and weggl

5. IMPLEMENTATION

congawas implemented using the Objective-C programming
language under Mac OS 10.4 with the support of Apple’s AppKit
libraries. Nodes and graphs are created programmaticiher
than graphically, a departure from systems such as LabVIEW,
EyesWeb, and Max/MSP (see Figlile 7). While it is possible to

timation based on the current tempo and time in which the last build a graphical editor to creamngagraphs, such an editor

trigger was received. For example, if we are currently ifesta
4, and the state machine receives a trigger for state 1, dkshe

was beyond the scope of this wordongabuilds into a standard
Mac OS X framework, making it easy to include it as part of a

to see how much time has elapsed, and together with the turren larger system, as we have done witlaestro! our latest interac-

tempo, guesses what the correct state should be. If it apfiesr
the feature for state 5 was just simply not detected, the stat

chine will jump directly to state 1. Otherwise, it will assarthe

trigger for state 1 was simply a falsely detected triggerigndre

it.

tive conducting systeni|[8].

congagraphs are evaluated at 9 millisecond intervals; compu-
tation occurs on a separate, fixed-priority thread of exeout

We tested early prototypes obngawith a Wacom tablet. Our
current implementation uses a Buchla Lightning Il infrabedon

The state machine node also acts as a beat predictor; howeversystem|[[2] as the input device. While the desigrcohgaitself

unlike the beat predictor in the Up-Down profile, which reesi

is device agnostic, the specific characteristics of the Budh
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Figure 6: The left figure shows theconga graph for the Four-Beat Neutral-Legato gesture profile. Fiwe features are detected,
which are used to trigger the progress of a state machine thatlso acts as a beat predictor. The input to the state machinaithe
current progress (0 to 1) of the baton as it moves through oneamnplete cycle of the gesture, starting at the first beat. Theight
figure shows the corresponding beat pattern that is trackednumbered circles indicate beats, squared labels indicatde features

that are tracked and the state that they correspond to.

Table 1: Summary of latency results for the Up-Down profile.

User | Avg Tempo [bpm] Latency [ms]
Min | Max | Avg
1 54 36 | 117 | 96
2 58 63 | 117 | 86
3 96 81 | 144 | 113
4 114 81 | 144 | 118
5 130 108 | 135 | 122

present some challenges during implementation. For exampl
data from a Wacom tablet is relatively high resolution anid&o
free, compared to the Buchla Lightning I, which has a retsotu

of only 128 in both width and height. Data from the Buchla can
also be quite noisy, and we experimented with different syqie
filtering to compensate. Based on these experiments, welfoun
a combination of hysteresis filtering and a 32 point Hannihg fi
ter to denoise the data gives the best results. Unfortunates

Table 2: Summary of latency results for the Four-Beat
Neutral-Legato profile.

User | Avg Tempo [bpm] Latency [ms]
Min | Max | Avg
1 104 27 | 675 | 175
2 96 72 | 666 | 203
3 98 18 | 225 | 107

between tempo and latency, although more data points wauld b
required to make a conclusive statement.

For the Four-Beat Neutral-Legato pattern, we found that for
one usercongafell back to the Up-Down profile 8% of the time,
and failed to detect his beats 6% of the time. For the other two
users,congastayed in the Four-Beat profile 100% of the time,
and did not fail to detect any of their beats. The latencyltesu
are summarized in Tabl@ 2.

The maximum latencies for users 1 and 2 were particularly

Hanning filter also adds between 4 to 10 samples of latency to high; a closer analysis of the data showed that these high-lat

the overall system (36 to 90 ms), and we are looking into radter
tive methods to reduce this latency without compromisingralf
accuracy.

6. EVALUATION

We conducted some preliminary testing with users to evaluat

cies occurred consistently on beat 3, and sometimes fordeat
One possible explanation is that the users’ unfamiliaritythe
four-beat gesture confused the beat predictor, resultimgmnga
behaving unpredictably. For user 3, who is the most famaign
the gesturegcongafared significantly better. Again, we believe
that more data points and detailed analysis would be redjtire
make a conclusive statement.

congds accuracy and response. We asked five users (four male,

one female) to conduct using up-down movements, and three

users (all male) to conduct using the four-beat neutradttegat- 7. FUTURE WORK

tern. The users conducted for approximately 30 seconds each We have identified a number of areas that we are actively pur-

The three users conducting the four-beat pattern weredylrea suing to further the development obnga

somewhat proficient with the gesture prior to the experiment More gesture profiles: We have currently implemented three
The system starts by default using the Wiggle gesture profile gesture profiles ikonga which already illustrate the capabilities

for all five users, the system switched to the Up-Down profile and potential for the framework. However, only one of these i

within the first two beats. After thatongadid not falsely detect actually a real conducting gesture, and thus we would like-to

any beats, nor miss any beats, in the user’s gestures (1@@-re  corporate more professional conducting styles, such afothe

nition rate). We also measuretngds overall latency by mea- beat expressive-legato pattern shown in Fiflire 2.

suring the time difference between when the user marks a beat Improved profile selector: As we incorporate more gesture

and when it is detected byonga the results are summarized in
Tablel.

Since the smoothing that we apply to the Buchla baton data in-

troduces an average 63 ms delay, we estiroatgas latency to

profiles, we will naturally have to improve the profile setacis
well. For example, the four-beat neutral-legato and the-bmat
full-staccato have very similar shapes, but their placearoéthe
beat is different, as is the way in which they are executed.

be between 23 and 59 ms. There also appears to be a correlation Lower latency: While the current latency introduced bgnga



is acceptable for non-professionals, professionals will fihe

latency much more disturbing. One way to reduce the latesicy i

to implement a better beat predictor, especially for the-fieat
profile. Another method to reduce latency is to realize tioaiga

can only detect a featumter it has occurred; thus, by the time
the trigger is sent, we are already at some future point ie.tim
conganonetheless reports the feature as having triggered “now”,
and by compensating for this time delay from when the feature
actually happened to when it is detected in the beat pradicto
we can reduce the perceived latency further. Again, thisldvou

require a more sophisticated beat predictor.
Graphical conga editor:
ated programmatically rather than graphically, like in NMSP.

A graphical editor for creatingongagraphs would make our
framework more approachable to a wider range of potential de

velopers.

8. CONCLUSIONS

We presentedtonga an analysis framework for conducting
gestures.congadistinguishes itself from current approaches to

conducting gesture recognition in that it uses a featureotet

approach, which allows the user’s data to be fitted to maltipl
gesture profiles. These gesture profiles represent the kay ch

acteristics of a particular beating pattern. The advantdghis

approach is thatongadoes not need to be trained with sample

data sets, nor does it require users to conduct in specitierpat

As long as their movements trigger the features of a pasticul
profile, the precision by which they are executed is unimpor-

conga graphs are currently cre-

(3]

[4]
(5]

(6]

[7]

(8]

9]

tant. A profile selector decides which profile best matches th [10]

user's movements, in order to maximize the user’'s commenica
tion bandwidth with the virtual orchestra. We showed our de-
sign for three gesture profiles of varying quality and diffigu

for the user: four-beat neutral-legato, up-down, and veg@ur

preliminary evaluation ofongashowed that it has a remarkably

high beat recognition rate, although the latency can be dpiggh,
making our current implementation a little premature fafps-
sional use.

Nonetheless;ongais both a significant improvement over our
previous work, and a novel approach to a well-studied proble
and we hope to continue its development to further advanee co

ducting as an interface to computer music.
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