How Live Coding Affects Developers’ Coding
Behavior

Jan-Peter Kriamer, Joachim Kurz, Thorsten Karrer, Jan Borchers
RWTH Aachen University
52062 Aachen, Germany
{kraemer, kurz, karrer, borchers} @cs.rwth-aachen.de

Abstract—We report on the behavior of developers working
with a live coding environment, which provides information
about a program’s execution immediately after each change to
the source code. The live coding environment we used shows
information about each individual source code line, e.g., changed
variable values or truth values of conditions. In comparison to
developers working in a non-live environment, those working live
found and fixed bugs they introduced significantly faster. Further,
working live encouraged developers to switch between editing and
debugging phases more frequently.

I. INTRODUCTION

Tanimoto [1] coined the term liveness to classify program-
ming systems by the immediacy of the feedback they provide.
Modern IDEs, such as Eclipse or Xcode, already provide feed-
back about syntax and compilation errors immediately after a
change to the source code. This feature is called continuous
compilation. In contrast, we only call a programming envi-
ronment [ive, if it also informs the developer about program
execution and updates this information immediately after the
source code is changed. Such information includes, e.g., the
values of variables after assignments, the values of conditions,
the parameters passed to methods, or the chronological order
of methods called.

Because in a live coding environment information about
program execution is provided immediately after each change,
developers should have less need to switch to a dedicated
debugging phase to inspect the execution of a program. Instead,
they can spot bugs immediately after they are introduced. Not
only could this make developers faster, it could also help them
comprehend their or others’ source code in more depth.

In this paper, we make the following contributions: We
compare the behavior of JavaScript developers working with a
live coding environment to the behavior of developers working
without it. This comparison is evaluated quantitatively and
qualitatively to find support for the potential benefits of live
coding outlined above. In particular, we found participants in
the live coding condition to notice and fix bugs they introduced
faster. Further, in the live coding condition, source code edits
were more evenly spread over the time working on a task.

II. RELATED WORK

Tanimoto [1] differentiated four levels of liveness in pro-
gramming systems: (1) Non-executable program descriptions;
(2) executable program descriptions, e.g., most source code in
current development environments; (3) program descriptions
that run automatically whenever they are changed; and (4)

function square(a, b) {
return axa;

}

var arr = [2,6,1,3];
arr[4] = square(4);
arr.reverse().push(5);
var i,j;

[2, 6, 1, 3]
16

undefined undefined

0 truthy(true)
0 truthy(true)
truthy (true)

16

3

16

for (i = 0; i < arr.length - j-1; d++) {
if (arr[i] > arr [i+1]) {
var tmp = arr[i];
arr[i] = arr[i+1];
arr[i+1l] = tmp;

}
}

]
]
]
]
]
]
]
]
]
]
]

for (j = 0; j < arr.length; j++){ :
]
]
]
]
]
]
]
]
]
]
]

console.log(arr); [1, 2, 3, 5, 6, 16]

Fig. 1. Our experimental prototype displays information about the program
execution on the right side of a source code editor, and updates it after every
keypress. The prototype shows variable values after each assignment, truth
values of conditions, log messages and function parameters, and it supports
inspecting multiple loop iterations and function calls.

systems that keep the program running so that changes to
the source code affect its behavior in response to future
events. Recently, Tanimoto [2] added two levels: programming
systems that try to predict the developer’s intention by (5)
evaluating nearby versions, or (6) guessing higher level goals
and large chunks of source code. In this paper, when we refer
to live coding, we mean systems of at least level 3.

Live systems date back to Visicalc, the first spreadsheet
environment, which already achieved level 3 liveness. Later,
Burnett et al. [3] discussed how spreadsheet-like environments,
in particular Forms/3, can be enhanced to also achieve level 4
liveness. Smith and Ungar introduced the Self programming
language [4] that comes with a graphical user interface in
which developers can manipulate all objects directly, and that
thus achieves level 4 liveness. Edwards [5] showed that live
coding environments can also be built for Java, a traditional
object-oriented programming language.

Evaluations of how live coding changes developers’ behav-
ior are less common. Wilcox et al. [6] compared a live and a
non-live version of Forms/3 in terms of the time developers
needed to find seeded bugs in an application. They found that
the effectiveness of live coding depends on the task and the
kind of errors to fix, as some bugs were fixed significantly
faster in one condition, some in the other, and for other bugs
no difference could be found. Our evaluation complements
these results in two ways: Firstly, we analyze code creation
tasks instead of seeding bugs into existing source code, and
secondly, we analyze a textual programming language.

Saff and Ernst [7] proposed continuous testing, in which
test cases are run automatically after each change, showing the
developer immediately which tests currently fail. Continuous
testing can be considered a special case of live coding, pro-
viding one particular kind of information about the program’s
execution. They compared the performance of developers using
either an unmodified editor, only continuous compilation, or
continuous compilation and continuous testing. Compared to
the baseline, time constrained implementation tasks with a
given test suite could be solved successfully by three times as
many participants in the continuous testing condition and by
twice as many in the continuous compilation only condition.

Choi et al. [8] presented Rehearse, a tool that allows
developers to defer writing the actual body of a JavaScript
function until it is first called. A developer can then implement
it in an editor that executes every line after it was typed. This
editor implements live coding, although a source code line
can not be changed once it was executed without undoing all
changes up to the implementation of that line.

Snell [9] presented a similar tool that executed every line
immediately and showed how the variables in scope changed.
Informal testing suggested that errors propagated less often and
users felt less stressed when using the tool. We complement
these results with a more thorough, formal evaluation.

Recently Bret Victor promoted the idea of live coding in
a well-received talk'. His design has inspired several publicly
available live coding systems, such as Light Table?, or one of
the browser-based learning tools by the Kahn Academy®. We
are not aware of a scientific evaluation of any of these systems.

III. PROTOTYPE

To analyze how developers’ behavior changes when work-
ing in a live coding environment, we first implemented a live
coding environment. Because participants in our study should
have a realistic feeling of working live, the prototype had to
be capable of providing execution information for JavaScript
source code at interactive rates. To meet this requirement, a
mock-up was unfeasible and we implemented a fully working
live coding environment. We publish the prototype as an open-
source project* to facilitate reuse in other studies.

The prototype consists of a Node.js> backend server that
runs and traces the execution of JavaScript code, and a
frontend that visualizes the runtime information gathered by
the backend. The backend exposes its functionality via a
WebSocket API. The frontend sends arbitrary JavaScript code
to the backend for execution. The backend instruments this
code and then executes it in a sandbox that is a separate node
process. During instrumentation, callbacks are added to the
code that send the relevant information from the sandbox to
the backend, where they are chunked to reduce communication
overhead, and forwarded to the frontend. This way, the backend
remains responsive even if the executed JavaScript code is
erroneous, and it can already send information back to the
frontend while the process is still running. If new code arrives

Uhttp://worrydream.com/#!/InventingOnPrinciple
Zhttp://www.lighttable.com/
3https://www.khanacademy.org/cs/programming
“http://hci.rwth-aachen.de/livecoding
Shttp://nodejs.org

014

"tmp' was used before it was defined.

15 arr[i] = arr[i+1];

Fig. 2. Our implementation of continuous compilation shows error indicators
next to the line numbers and error position markers in the line. Clicking the
error indicator reveals a textual error description inline.

from the frontend while an old version of the code is still
running, sandboxing also allows the backend to terminate old
versions. Full documentation about information collected by
the backend is included in the open-source release.

Because the source code is sent from the frontend to the
backend as a string, the backend can currently not provide live
coding for JavaScript projects that are spread across multiple
files. The application is restarted after each change, so our
prototype is not useful for applications that, e.g., require user
input to reach the edited method. Also, sandboxing in our
implementation does not provide a secure execution context,
i.e., operations like file or database access will be executed in
the instrumented version and will affect the actual system the
backend is running on. The instrumentation additionally causes
some performance degradation. However, as we designed both
the tool and the study, we made sure these limitations would
have no impact on the tasks in our study. In our trials the time
between entering a character and seeing the updated execution
information on screen was well below one second.

We implemented the frontend as an extension for Brack-
ets®, an open-source JavaScript IDE. Our extension shows one
line of information obtained from the live coding backend
next to each line in Brackets’s source code editor (Fig. 1).
If lines are executed more than once because they are inside a
loop or function, the displayed execution can be selected using
an iteration selector next to the loop or function declaration.
This design is close to some of Brett Victor’s popular but so
far unevaluated ideas on how to implement live coding for
applications with no graphical output.

IV. STUDY SETUP

We compared developers’ coding behavior between two
conditions: in the experimental condition developers worked
with our live coding prototype; in the control condition devel-
opers worked with the unmodified Brackets IDE. We assumed
that developers using live coding could fix many bugs right
away without a mental context switch. From this assumption
we derived the following three hypotheses: (1) The average fo-
tal fix time, the time between a developer introducing a bug and
correcting it, is lower in the experimental condition. As a result
of (1), (2) the task completion time for a given task is reduced
in the experimental condition. Finally, we assumed that the
possibilities offered by live coding would also encourage new
coding strategies: (3) more participants in the experimental
condition will adopt a coding strategy that involves finding and
removing errors throughout the development process instead of
mainly at its end.

Each participant had to solve three tasks. In each task,
specific functionality had to be implemented in a Node.js

Shttp://brackets.io, Sprint 24

command line application. In the first task, participants had
to parse the RSS feed of a news website’ using sax-js®, an
open-source, stream-based XML parser. The difficulty in the
first task was to understand the structure of the RSS feed and
to use the parser without having experience with its APL. In
the second task, participants needed to convert between two
different object representations of a date. This task provoked
‘programming slips’, i.e., errors caused by mixing up slightly
different object representations (e.g., a property called hours
instead of hour), or missing easy conversions (e.g., from
local time to UTC). In the last task, we asked participants
to implement Dijkstra’s algorithm. This task was focused on
algorithmic correctness. A precise verbal explanation of the
algorithm was included in the task description, copied from
the corresponding Wikipedia article.

For each task, participants received both printed and PDF
descriptions containing an explanation of the task, documen-
tation about all data structures used, links to relevant API
documentation, and short pieces of sample code. We also
provided a code skeleton for each task including a test call
to the functionality that had to be implemented.

We employed a between-groups study design. Node Inspec-
tor,” a graphical debugger interface for Node.js, was available
to participants in both conditions; we provided a script to start
the debugger without having to use the command line. To study
the effects of live coding separately from those of continuous
compilation, we provided continuous compilation for both
conditions via a Brackets extension'® (Fig. 2). Because we
wanted to keep the scenario realistic, participants were allowed
to use any external resources they wished, including web
searches, code snippets from the web, or third-party JavaScript
libraries (except those replacing functionality provided in sax-
js for the first task).

V. STUDY RESULTS

We analyzed data from 10 participants (9 male). All partici-
pants studied or had studied computer science, were 28.8 years
old on average (SD = 8.95), and reported at least 4.5 years
of programming experience (M = 13.4,SD = 9.23). The two
groups were balanced in terms of programming experience (in
years) and coding done per week.

To check our first hypothesis, we measured the total fix
time for each bug. Therefore, one researcher annotated the
introduction and fixing of each bug in all video recordings
of the trials. A bug was recorded whenever newly added
code led to erroneous behavior in the context of the current
version of the source code. A problem with this method is
that during a planned modification to the source code it will
likely be in an erroneous state for a short time. In these
situations, the developer usually is aware of those errors. To
filter these planned, intermediate stages of code modifications,
we removed bugs from the analysis that were fixed within
30 seconds after their introduction. A bug was never filtered,
however, if the developer wrote unrelated code between the
introduction of a bug and its correction. Of course, this filter

http://daringfireball.net

8https://github.com/isaacs/sax-js
9https://github.com/node-inspector/node-inspector
10https://github.com/JoachimK/brackets-continuous-compilation

S T 1T T T TA
HORER A T T HmWT B

Fig. 3. The graphs show the behavior of developers A and B working on
the third task. Time is plotted on the x-axis and file length (blue line) on the
y-axis. Each individual change is indicated by a vertical gray bar. Developer
A adopted the sequential strategy, with a visually discriminable debugging
phase, developer B adopted the interleaved strategy.

is only a heuristic and will also filter out true bugs that are
fixed within 30 seconds. Removing these true bugs increases
the average total fix time of a trial. True bugs that are fixed
within 30 seconds are more likely in the experimental condi-
tion, because participants received live execution information
allowing them to react faster, so the filtering mechanism
effectively benefits the control condition. In future studies, bug
annotation accuracy could be further improved by using inter-
rater reliability. We ended up with 205 annotated bugs.

An ANOVA (modeling task as within-groups factor and
condition as between-groups factor) revealed no significant
difference between conditions in terms of the number of
bugs introduced (sum over all tasks, experimental: M =
19.1,SD = 4.8, control: M =24.2,SD = 7.8, F(1,19.2) =
1.36, p = 0.277). We analyzed total bug fix times of all
annotated bugs using a mixed-factor linear model in which
we included condition, task, and the interaction of task and
condition as fixed factors, and the participant nested within
the condition as a random factor. The analysis reveals a
significant decrease of the average total fix time in the live
coding condition (in minutes, control: M = 18.5, SD = 21.0,
experimental: M = 5.6, SD = 5.85, F'(1,9.124) = 6.94,
p = 0.027), no effect of task, and no interaction effect. This
effect confirms our first hypothesis: developers find and fix
bugs they introduced faster when using live coding.

In terms of task completion time, an ANOVA only showed
a significant effect of task, not of condition (F(1,8) =
2.794,p = 0.133), and no interaction. Hence, we cannot
confirm our second hypothesis. In contrast to the previous
analysis, where the unit of analysis were the annotated bugs,
in this analysis the unit of analysis were the participants.
Consequently, the sample size for this test was much smaller,
and an effect of condition might either be absent or too
small to be detected using a parametric test. However, another
possible explanation is that the effect of live coding on the task
completion time is overshadowed by inter-subject differences.
Our data can support this explanation: We observe that for each
task the mean task completion time is lower in the live coding
condition, but the standard deviation is the same order of
magnitude as the means (sum over all tasks, in minutes, exper-
imental: M = 135, SD = 44 control: M = 204, 5D = 92).

To analyze our third hypothesis, we used a Kolmogorov-
Smirnov test to compare the temporal distribution of edits in
both conditions. We found a significant difference between
these distributions (D = 0.05, p < 0.001). This indicates that
the strategies of participants are different between conditions.
Qualitatively, we can identify two strategies for fixing bugs:
Participants using the sequential strategy wrote down the
source code completely and then tried to fix all bugs in one
debugging session afterwards. The interleaved strategy was
to test the code after each incremental change to keep it

free of bugs throughout the process. Figure 3 visualizes both
strategies by plotting all changes of two participants in the
third task over time. The editing and the debugging phase, in
which only short bursts of edits are done to fix bugs, can
be visually discriminated for developer A. In contrast, for
developer B, who adopted the interleaved strategy, changes are
more evenly spread over time, because editing and bug fixing
phases were interleaved. We observed different use of these
strategies depending on both the task and the condition. For
the first task, all participants adopted the interleaved strategy.
For the second task, in the control condition all participants but
one used the sequential strategy; in the live coding condition,
however, all participants but one used the interleaved strategy.
The observations in the third task are equivalent to those in
the second task, except that two participants from the control
condition adopted the interleaved strategy. The K-S test and
these observations confirm our third hypothesis.

The fact that developers in the control condition also chose
to adapt the interleaved strategy for some tasks indicates that
they felt a need to check their code’s correctness regularly.
For the first task, we speculate that it was particularly easy
to split up into sub-tasks, each of which could be individ-
vally tested. Backing up this speculation with experimental
evidence is part of our future work. For the second task,
which was designed to provoke programming slips, we can
quantitatively confirm a positive effect of both live coding
and the adoption of the interleaved strategy: An ANOVA
modeling the condition and the strategy used as factors shows
a significant reduction of task completion time in the live
coding condition (F(1,6) = 13.19,p = 0.01) and for the
interleaved strategy (F'(1,6) = 7.41, p = 0.03). No significant
effects were found for the third task. This indicates that only
adopting the interleaved strategy, which live coding promotes,
can already be beneficial for certain tasks.

To confirm that no major usability flaws of the prototype
confounded our results, we asked participants in the live coding
condition to fill out a post-session questionnaire including a
System Usability Scale after the study. Our prototype achieved
an average score of 81.4 (SD = 10.7) on this scale, which can
be considered excellent according to Bangor et al. [10].

In the post-session questionnaire, all participants but one
agreed or strongly agreed that live coding has benefits for code
understanding. Also, everyone felt that using the live coding
environment had provided them with more confidence that
their source code is correct. In individual questionnaires after
each task, participants in the live coding condition agreed that
live coding helped them solve the task.

VI. PROTOTYPE LIMITATIONS

In the experimental condition all participants but one
regularly added extra statements just to show the current value
of a variable in the live coding pane. This indicates that
our live coding frontend still did not provide all necessary
information directly. The most frequent cause for these extra
statements was object manipulation using one of the object’s
methods. For such statements, the live coding view would show
no information, since multiple concatenated method calls can
appear in one line and it is unclear which object or return value
should be visualized. For example, for line 9 in Figure 1 we

could show the value of arr, the result of arr.reverse (),
or the return value of the full line. For all of the observed cases,
participants were interested in the value of the object on which
the last method was called, after the line was executed.

Problems of our current visualization were also noticeable
in the questionnaire results: One participant found the con-
tinuous update of information in the live coding environment
distracting, when the information was not currently relevant.
Two participants indicated that the visualization of complex
data, e.g., large chunks of the RSS feed in task 1, was
complicated to parse quickly.

VII. SUMMARY AND FUTURE WORK

We presented a study in which we showed that working in
a live coding environment significantly decreases the average
total fix time of bugs introduced while creating software.
Additionally, live coding promotes adopting the interleaved
coding strategy, i.e., regularly checking the code for correct-
ness, which is especially effective for tasks that are prone to
programming slips. We observed no decrease in task comple-
tion time when working live. To run this study we implemented
a working live coding prototype that allows exploration of
other visualizations for live coding systems.

We will explore new visualizations that allow incremental
exploration of a larger amount of data, since our live coding
prototype still does not present all information required. Fur-
thermore, we will explore how live coding tools can visualize
the call hierarchy to make the structure of nested method calls
or callbacks more clear. Finally, we plan to evaluate the effect
of combining live coding with continuous testing.

VIII. ACKNOWLEDGMENTS

This work was funded in part by the German B-IT Foun-
dation and by the German Government through its UMIC
Excellence Cluster for Ultra-High Speed Mobile Information
and Communication at RWTH Aachen University.

REFERENCES

[1] S. L. Tanimoto, “VIVA: A visual language for image processing,”
Journal of Visual Languages and Computing, vol. 1, no. 2, 1990.

[2] S. Tanimoto, “A perspective on the evolution of live programming,” in
Ist Int. Workshop on Live Programming (LIVE), 2013.

[3] M. M. Burnett, J. W. Atwood, Jr, and Z. T. Welch, “Implementing level
4 liveness in declarative visual programming languages,” in Proc. VL
'98. 1EEE, 1998.

[4] R. B. Smith and D. Ungar, “Programming as an Experience: The
Inspiration for Self,” in Proc. ECOOP 95, Aug. 1995.

[5] J. Edwards, “Example centric programming,” SIGPLAN Notices,
vol. 39, no. 12, 2004.

[6] E.M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook,
“Does continuous visual feedback aid debugging in direct-manipulation
programming systems?” in Proc. CHI '97. ACM, 1997.

[71 D. Saff and M. D. Ernst, “An experimental evaluation of continuous
testing during development,” in Proc. ISSTA '04. ACM, 2004.

[8] W. Choi, J. Brandt, and S. R. Klemmer, “Rehearse: Coding Interactively
while Prototyping,” in Extended Abstracts of UIST 08, 2008.

[9] J. L. Snell, “Ahead-of-time Debugging, or Programming Not in the
Dark,” in Proc. Software Technology and Engineering Practice, 1997.

[10] A. Bangor, P. T. Kortum, and J. T. Miller, “An Empirical Evaluation
of the System Usability Scale,” Int. Journal of Human-Computer
Interaction, vol. 24, no. 6, 2008.

