
Stacksplorer:
Understanding Dynamic Program Behavior

Jan-Peter Krämer, Thorsten Karrer, Jonathan Diehl, Jan Borchers
RWTH Aachen University
52056 Aachen, Germany

{kraemer, karrer, diehl, borchers}@cs.rwth-aachen.de

ABSTRACT
To thoroughly comprehend application behavior, program-
mers need to understand the interactions of objects at run-
time. Today, these interactions are often poorly visualized in
common IDEs except during debugging. Stacksplorer allows
visualizing and traversing potential call stacks in an applica-
tion even when it is not running by showing callers and called
methods in two columns next to the code editor. The relevant
information is gathered from the source code automatically.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors, Languages

Keywords: Programming, navigation, IDE.

INTRODUCTION
In object-oriented programming languages, source code is
typically distributed across multiple files each containing a
number of classes and their methods. Interactions of meth-
ods at runtime such as the call stack, however, are equally
important to help the developer understand how an applica-
tion works [4]. The file-based structure of source code does,
in most cases, not reflect these interactions between methods
appropriately.

Current IDEs primarily rely on support for navigation be-
tween different source code files. Information about possi-
ble call stacks can often be revealed even without a debug-
ger when the application is not running, but visualizations
for this information are far from perfect. Exploring how a
method is used in the context of a call stack still needs lots of
time [3]. In a preliminary study, that we conducted ourselves,
we additionally found that many programmers subjectively
consider existing tools offered in Xcode1, Apple’s standard
IDE, unsatisfying for their tasks.

Stacksplorer helps programmers to see and navigate through
an application’s method calls that are automatically extracted
from the code. After determining which kinds of interactions
between objects at runtime, apart from the call stack, are im-
portant for programmers, we designed an appropriate visual-
ization and interaction for this information and for navigating
through it. By implementing these within an IDE, we want
1http://developer.apple.com/technologies/tools/xcode.html

Copyright is held by the owner/author(s).
UIST’10, October 3-6, 2010, New York, NY, USA.
ACM 978-1-4503-0271-5/10/10.

Figure 1: Stacksplorer utilizes horizontal navigation to
explore potential call stacks of an application.

to prevent programmers from getting lost in their code, help
them find relevant information more easily, and increase their
awareness of potential side effects of changes.

RELATED WORK
By observing programmers working on software maintenance
tasks, Robillard [4] identified two basic strategies to explore
the runtime behavior of source code: Structured traversal of
the call stack, and skimming through the source code in an
opportunistic way. Task success was higher for users apply-
ing the first strategy.

In a similar study, Ko [3] found that programmers mostly tra-
verse the call stack by searching for a method name globally
in all source code files of their project. However, the results
then have to be inspected manually, because method names
can be ambiguous. Alternatively, developers use a tool that
allows navigating to the implementation of a method. Such a
tool is included in most common IDEs. Navigation from the
occurrence of a method name to its implementation, how-
ever, represents only one direction of a potential call stack.
Navigation in the other direction, i.e., to methods calling a
particular method, is not widely supported. Both approaches
do not visually support understanding how methods interact
at runtime. Ko also frequently observed navigation back and
forth multiple times between two files, because the previ-
ously visible code disappears when navigating.

Numerous systems to improve this understanding have been



proposed: Singer and Kersten [5, 2] propose filtering the
files shown during navigation by a degree of interest deter-
mined by the developer’s previous activities. Code Bubbles
[1] presents a user-selected set of related source code infor-
mation. However, to add new methods to this set of relevant
information, techniques similar to those required in regular
IDEs have to be applied.

DESIGN
We designed our prototype as a plugin for Xcode. Therefore,
we ran a short preliminary study confirming that developers
using Xcode and Objective-C exhibit the same navigation be-
havior and tool usage as found in previous studies.

From previous work and our own study, we can conclude sev-
eral implications for our design. Firstly, we have to support
two different kinds of source code browsing strategies. For
users with structured browsing behavior, our system should
make the call stack accessible more easily and the navigation
through the call stack faster. If opportunistic strategies are
applied, our system provides less targeted support. However,
the displayed information will still be relevant.

Secondly, we can conclude from user preferences that sup-
porting visualization of and navigation along the call stack is
crucial in order to make the system beneficial to developers.
The call stack also includes information about access to in-
stance variables, which usually takes place through accessor
methods.

A paper prototype of our tool is shown in Fig. 1. The central
editor (1) is equivalent to Xcode’s standard editor, retaining
all its features and functionality. The cursor in this window
marks our focus method. The side columns (2,3) show other
methods with which our focus method interacts at runtime.
The left hand column (2) shows methods calling the focus
method, the right column (3) shows methods that are called
by it. The information in both side columns is gathered and
updated automatically with no user interaction required at
any point.

In addition to navigating through a class by scrolling verti-
cally in the editor, our design allows navigating horizontally
through the call stack, by clicking a method in one of the side
columns. For example, navigating to a method that calls the
focus method, will cause all 3 columns to shift to the right.
The method that was selected moves to the center and opens
in the central editor (1), the previous focus method appears
in the list of called methods to the right (3), and the left col-
umn is updated with new information (2). Important paths
through the code may also be stored for later reference.

Because our design occupies additional screen space hori-
zontally, it works best on high-resolution, wide-screen dis-
plays. We allow collapsing the side columns in case they are
not needed, to accomodate for smaller screens.

IMPLEMENTATION
Implementing the prototype as a plug-in for Xcode is pos-
sible through a private plugin API. To replace the standard
editor in Xcode with our interface, we use Objective-C’s re-
flection capabilities to change Xcode’s view classes accord-
ingly. Additionally, we can reuse existing parsing engines in

Xcode to extract possible call stacks from the source code.
Xcode contains a lexicographic source code scanner (lexer)
that operates on a single file. A project indexer is also in-
cluded that extracts the static object hierarchy, including in-
formation about all methods and instance variables, from all
source code files in a project.

These parsing engines allowed us to quickly build a first pro-
totype, without having to use a static code analyzer. To deter-
mine the methods called from the focus method, we use the
source lexer to find all method calls in the implementation of
the focus method, and search the appropriate methods in the
project index. To find the methods calling the focus method,
we run a project-wide search for the focus method’s name in
the background. Because method names can be ambiguous,
we then filter out all method calls that are performed on an
object having a different type than the class containing the
focus method. In our first prototype, these naı̈ve algorithms
work reasonably fast and produce very reliable results. How-
ever, we are not able to determine if a method call we found is
unreachable due to preconditions that can never be met dur-
ing real program executions. This would be possible using a
static code analyzer.

SUMMARY AND FUTURE WORK
Stacksplorer provides programmers with a convenient way to
view and traverse potential call stacks in their source code.
This can make developers more effective when implement-
ing changes and may help them to gain code comprehension
more quickly. Because the prototype is implemented as an
Xcode plugin, developers can still use all existing features of
that IDE.

Our prototype is currently in a beta status, but already fully
functional for Objective-C source code. We intend to test
this software prototype with developers to evaluate its effec-
tiveness. We will also investigate how other interactions of
objects at runtime, for example through an instance variable,
can be appropriately visualized and explored.

REFERENCES
1. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,

W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and J. J.
LaViola. Code bubbles: a working set-based interface
for code understanding and maintenance. In Proc. CHI,
New York, USA, 2010. ACM.

2. M. Kersten and G. C. Murphy. Mylar: a degree-of-
interest model for IDEs. In Proc. AOSD, volume 05,
pages 159–168, Chicago, Illinois, 2005. ACM.

3. A. Ko, B. Myers, M. Coblenz, and H. Aung. An Ex-
ploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Mainte-
nance Tasks. IEEE TSE, 32(12):971–987, Dec. 2006.

4. M. P. Robillard, W. Coelho, and G. C. Murphy. How
Effective Developers Investigate Source Code:An Ex-
ploratory Study. IEEE TSE, 30(12), 2004.

5. J. Singer, R. Elves, and M.-A. Storey. NavTracks: Sup-
porting Navigation in Software Maintenance. In Proc.
ICSM, pages 325–334. IEEE, 2005.


