

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, July 2015
Christian Frohn

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 FabLabs . 1

1.2 Motivation . 4

1.3 Concept . 5

1.4 Thesis Overview 8

2 Related Work 9

2.1 Anonymous File Sharing 10

2.1.1 Dead Drops 10

2.2 QR Codes . 11

vi Contents

2.2.1 Structure of QR Codes 11

2.2.2 Practical Use 12

2.3 Combination of QR Codes and File Sharing . 13

2.4 Interactive Fabrication 14

2.5 Related Hardware and Software 15

2.5.1 Raspberry Pi 15

2.5.2 openFrameworks 15

2.5.3 OpenMAX 16

2.5.4 PHP QR Code 16

2.5.5 ZXing 16

2.5.6 PNG libraries 16

2.5.7 PHPMailer 16

2.5.8 VisiCut and VisiCam 17

2.6 Sharing of Project Documentations and
Knowledge . 19

2.6.1 FabML 20

2.6.2 Comparison of Platforms 20

3 Own Work 23

3.1 Requirements 24

3.2 System Overview 25

3.3 visicamRPiGPU 28

3.3.1 OpenGL Perspective Correction . . . 29

Contents vii

3.3.2 OpenMAX Modules 31

3.3.3 visicamRPiGPU Arguments 35

3.3.4 GPU Memory Split 36

3.3.5 File Locking 36

3.3.6 Signal Handler 37

3.3.7 Settings Header File 37

3.4 VisiCam Modifications 38

3.4.1 visicamRPiGPU Integration 39

3.4.2 Other VisiCam Improvements 40

3.5 VisiCut Modifications 41

3.5.1 Automatic VisiCam Images 42

3.5.2 Webcam Support 42

3.5.3 QR Code Detection 43

3.5.4 File Management 50

3.5.5 Projector Support 50

3.5.6 FabQR Upload 52

3.5.7 GUI Changes 54

3.5.8 Concurrent List Access 54

3.6 QR Code Readability 55

3.6.1 Test Arrangement 57

3.6.2 Measurement Results 58

3.7 FabQR Web Service 61

viii Contents

3.7.1 Installation Scripts 63

3.7.2 APIs 64

3.7.3 Project IDs 67

3.7.4 Data Representation 67

3.7.5 URL Structure 68

3.7.6 Security 69

3.7.7 Projector Support 70

4 Evaluation 73

4.1 System Usability Scale 73

4.2 Results . 74

4.2.1 User Study 74

4.2.2 Requirements 78

5 Summary and Future Work 81

5.1 Summary and Contributions 81

5.2 Future Work 82

5.2.1 Performance Improvements 82

5.2.2 Projector Setup 82

5.2.3 Stand-alone FabQR Client 83

5.2.4 FabQR Network 83

5.2.5 Website Features 83

5.2.6 Long-term Evaluation 84

Contents ix

A First System Draft and Concept 85

B QR Code Measurements 87

C User Study 91

Bibliography 95

Index 99

xi

List of Figures

1.1 FabLab workflows 7

1.2 Interactive fabrication with QR codes 7

2.1 Dead drop inside a wall 10

2.2 Examples of QR codes and QR code structure 11

2.3 Approaches for the fabrication of an object . 14

2.4 Preview window in VisiCut 17

2.5 Material choice and positioning in VisiCut . . 18

3.1 Original system overview 26

3.2 FabQR system overview 27

3.3 Perspective correction 30

3.4 Data processing in visicamRPiGPU 33

3.5 Detection for multiple QR codes 44

3.6 Detection for rotated QR codes 45

3.7 Preview for QR code imported objects 49

3.8 Preview image export in VisiCut 51

xii List of Figures

3.9 FabQR upload confirmation dialog 52

3.10 FabQR upload dialog 53

3.11 FabQR configuration dialog 54

3.12 QR code on a smartphone display 55

3.13 Loss of QR code quality in camera images . . 56

3.14 Scheme of the test arrangement 58

3.15 Webcam image of the test arrangement . . . 58

3.16 QR code readability: Brightness 59

3.17 QR code readability: Side length 60

3.18 Project documentation on the FabQR website 63

4.1 User study page 1 with data 75

4.2 User study page 2 with data 76

A.1 First system draft and concept 85

C.1 User study page 1 without data 93

C.2 User study page 2 without data 94

xiii

List of Tables

1.1 Countries and registered FabLabs 3

2.1 Comparison of different platforms 22

4.1 System Usability Scale results 74

B.1 QR code measurements: Printed 88

B.2 QR code measurements: Smartphone min.
brightness . 89

B.3 QR code measurements: Smartphone max.
brightness . 90

B.4 QR code measurements: Side length 90

C.1 User study data 92

C.2 User study personal data 92

xv

Abstract

In the FabLab community the sharing of knowledge and documentation of projects
play an important role for the development of new ideas and solutions. Although
there are already several platforms for these purposes, many people still refuse to
use them regularly. The FabLab community loses a lot of its potential because of
this unpleasant circumstance.

This bachelor thesis is aimed at finding a solution for this problem by devel-
oping a new software system, which is based on the integration of QR codes in the
FabLab workflow. In a first step the requirements for such a system are analyzed
and defined.

The implementation of the software system considers these requirements in
many different ways and it tries to fulfill the requirements as good as possible
while paying attention to software and hardware constraints at the same time.
A description of the implementation and its most important components and
features is created as well.

In the evaluation of the software system a user study is conducted in order
to examine whether the requirements were successfully met and to measure the
usability of the system.

Finally a summary of all results and possible improvements for future devel-
opments are presented.

xvi Abstract

xvii

Überblick

In der FabLab Community spielen das Teilen von Wissen und die Dokumentation
von Projekten eine wichtige Rolle für die Entwicklung von neuen Ideen und
Lösungen. Obwohl es bereits einige Plattformen für diese Zwecke gibt, weigern
sich viele Benutzer immer noch, diese regelmäßig zu verwenden. Die FabLab Com-
munity verliert durch diesen unangenehmen Umstand große Teile ihres Potenzials.

Ziel dieser Bachelor-Arbeit ist es, eine Lösung für dieses Problem durch die
Entwicklung eines neuen Software-Systems zu finden, welches auf der Integra-
tion von QR-Codes in die Arbeitsabläufe in FabLabs basiert. In einem ersten
Schritt werden zunächst die Anforderungen an ein solches System analysiert und
definiert.

Die Implementierung des Software-Systems beachtet diese Anforderungen
auf viele verschiedene Arten und Weisen und es versucht, die Anforderungen so
gut wie möglich zu erfüllen und gleichzeitig dabei Beschränkungen durch Soft-
ware und Hardware zu berücksichtigen. Eine Beschreibung der Implementierung
und ihrer wichtigsten Komponenten und Funktionalitäten wird ebenfalls erstellt.

In der Evaluation des Software-Systems wird eine Nutzerstudie durchgeführt,
um zu ermitteln, ob die Anforderungen erfolgreich erfüllt wurden, und die
Benutzerfreundlichkeit des Systems zu messen.

Abschließend werden eine Zusammenfassung der Resultate und mögliche
Verbesserungen für zukünftige Entwicklungen präsentiert.

xix

Acknowledgements

Firstly I would like to thank my supervisor Dipl.-Inform. René Bohne for his ideas
and valuable guidance. Of course I also want to thank Prof. Dr. Jan Borchers and
Univ.-Prof. Dipl.-Ing. M.Arch Peter Russell for examining this bachelor thesis and
giving me the possibility to write it at all.

Thanks to the whole chair for supporting me in writing this bachelor thesis
in many different ways. Especially I am grateful for the help of the FabLab staff
and the secretary staff. Thanks to Christoph Emonds for providing the web hosting
for this bachelor thesis.

I want to thank my family and friends for their support as well.

Last but not least, I would also like to thank everyone, who participated in
the user study for this bachelor thesis.

xxi

Conventions

Throughout this thesis the following conventions are used.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in colored boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

Since this whole bachelor thesis deals with FabLabs, a gen-
eral introduction to FabLabs is presented in the first part of
this chapter. Afterwards the motivation for the FabQR sys-
tem is given and the ideas and concepts behind the FabQR
system are explained. This introductory chapter ends with
a more detailed overview of the thesis.

1.1 FabLabs

As an important document the Fab Charter describes the
different properties and characteristics of FabLabs. Most
FabLabs see this document as a guideline, which mentions
how a FabLab should be structured and what it should
provide [The Fab Charter, 2012].

The Fab Charter also includes a definition for the term
FabLab, which says:

FABLAB:
“Fab labs are a global network of local labs, enabling invention
by providing access to tools for digital fabrication.” [The Fab
Charter, 2012]

Definition:
FabLab

2 1 Introduction

FabLabs provide open access for everyone to tools, ma-
chines and knowledge for the digital fabrication of objects.
In this context the digital fabrication describes that process
in which digital schemes for a physical object are prepared
with the help of computers and appropriate software.
In a next step these schemes can be used to create the
physical object by sending these schemes as input data to
specialized machines and tools.

Usually these specialized machines are very expensive,
which is the reason why sharing these machines and pro-
viding open access to them is in general beneficial for the
users of FabLabs. Common examples for such machines
are laser cutters, 3D printers and milling machines for
PCBs (Printed Circuit Boards).

Similar to the idea and movement of open source software,Sharing knowledge is
important for the

FabLab community.
the users of FabLabs are encouraged to share their designs
and schemes for physical objects freely with other users
as open source hardware. Sharing knowledge and project
documentations with other users in the FabLab community
is that important that it is even mentioned as educational
aspect in the Fab Charter [The Fab Charter, 2012]. Every
user of a FabLab is supposed to share his knowledge and
project documentations with other users of the FabLab
community.

Mikhak et al. [2002] even describe the FabLab move-
ment as a part of the digital revolution. After the phase of
personal computation the FabLabs lead to the new phase
of personal fabrication. This trend is compared with the
historic development of computers and photography. In
the beginning of photography only professional photogra-
phers had the possibility to take pictures. Similar to that,
only very few people and organizations had access to large
and expensive computers in the early stages of computers.
In contrast to that, it is nowadays common for everyone
to have access to photography and personal computers.
The authors expect that FabLabs will promote a similar
development for the field of personal fabrication.

1.1 FabLabs 3

The website fablabs.io [Fab Foundation, 2014] offers the
service of a central register to FabLabs. FabLab managers
can register their FabLab there and add some information
such as available machines, contact information and pub-
lic opening hours. For each FabLab the location is listed
as well. Worldwide 547 FabLabs are currently registered
in total. In table 1.1 some of the countries with the most
registered FabLabs are shown.

Country Registered FabLabs
United States of America 93

France 57
Italy 57

Germany 29
Netherlands 28

United Kingdom 23
Spain 20

Table 1.1: Countries and registered FabLabs
Source: fablabs.io [Fab Foundation, 2014]

It is noticeable that most of the registered FabLabs are
located in the United States of America. There are two
possible explanations for this. Firstly, the whole FabLab
movement started in the United States of America and
because of this it was likely to happen that many other
FabLabs started there. Secondly, the territorial size of
the countries plays a role in this context as well. Larger
countries are likely to have more FabLabs in total.

Considering the fact that the FabLab movement started in The amount of
FabLabs grows
remarkably for a
relatively short
period of time.

2001 [Mikhak et al., 2002] these numbers look very promis-
ing for the future of FabLabs and the concept of open
access for everybody to tools, machines and knowledge for
the digital fabrication of physical objects.

4 1 Introduction

1.2 Motivation

Although there are a lot of FabLabs now, it is still notice-Most FabLab users
do not share

knowledge and
documentations of

their projects.

able that many FabLabs do not really actively participate
in sharing their knowledge and project documentations
with other FabLabs. Regarding this point, the network of
FabLabs is currently in an unsatisfying situation.

Because of this unpleasant circumstance the network
of FabLabs loses a lot of its potential. In many cases
one FabLab can not find out, which new objects have
been created at another FabLab and especially it is often
unknown how they have been created. At the different
FabLabs there is a lot of expertise, but this knowledge is
almost never shared with other FabLab users.

There are many situations, in which the knowledge
and expertise of other FabLab users is very helpful. For
example, it is a common advice to merge identical or
overlapping vectors of cutting schemes for the laser cutter.
Often such graphic programs do not automatically merge
these vectors, which means that the laser cutter tries to cut
the same places multiple times. This does not only waste
time, but it can also damage and break the final laser cut
object.

Similar to that, there are some other special tips and
tricks for other common machines in FabLabs as well.
For the PCB milling machine it is usually useful to leave
some small breakout tabs while milling the PCB because
otherwise the PCB or even the milling machine might be
damaged.

Not only the knowledge is unlikely to be shared, but
also the documentation of projects is often not shared at
all. This is the reason for the issue that many schemes for
physical objects are created multiple times, although there
might already exist another very similar scheme at another
FabLab. Of course this leads to unnecessary inefficiency.

The aim of this bachelor thesis is to find a solution
for these problems.

1.3 Concept 5

1.3 Concept

The key elements in the concept of the FabQR system are
QR codes. Basically the idea is to use QR codes for the
identification of projects and created physical objects in
FabLabs.

With the help of QR codes the project data can easily
be exchanged and there is the possibility to create and
share a short documentation for each new project and
physical object. In FabQR this concept is implemented for
the use case of the laser cutter.

Unfortunately, sharing of knowledge and project doc-
umentations is currently not an essential part of the FabLab
workflow. Most people just visit the FabLab, bring their
prepared project data on a USB flash drive, create their
project and leave the FabLab again. This workflow is com-
pletely contradictory to the guideline, which expects every
user of a FabLab to actively share project documentations
and knowledge.

It is a common misconception that shared knowledge
and project documentations must not mention any diffi-
culties of the creation process of a FabLab project. But in
fact it is actually the other way around. Particularly such
difficulties should be mentioned because other users in the
FabLab community can learn a lot from the difficulties and
especially the solutions for the difficulties of other FabLab
users. In the context of FabLabs people are often able to
learn from their own mistakes as well as the mistakes of
other FabLab users.

With the FabQR system this workflow is supposed to FabQR changes the
workflow in FabLabs
and includes sharing
of knowledge and
documentations of
projects.

be changed completely. Users of the FabLab upload their
project data to a server of the FabLab over the Internet. As
a response the users receive a QR code, which identifies the
uploaded project data and is valid for a limited amount of
time. The upload has the advantages that the users need to
prepare their project data more carefully before visiting the
FabLab and users can not forget their project data because
it is already stored on the server of the FabLab.

6 1 Introduction

The users can print that QR code directly or they can re-
ceive it as an email attachment. With the QR code the users
visit the FabLab and show their QR code to a computer
with a camera, which then loads the identified project data
directly into the program.

After building the project, users are actively asked by
the software to create a project documentation and share
it together with the related knowledge on the websites of
the FabLab. On the website the entered information of
the users is shown and a new QR code is generated for
permanent identification of this shared project.

Although the implementation of FabQR mainly dealsThe basic concept of
FabQR can be

applied to other
machines in the

FabLabs as well.

with the laser cutter as use case, the basic concept of
identifying project data with QR codes to incorporate the
sharing of knowledge and FabLab project documentations
into the FabLab workflow can be applied to other tools and
machines in FabLabs as well.

For the laser cutter the QR codes can additionally be
used to create an interactive fabrication process as well.
Users can place and rotate their QR codes right on top of
the material, which they want to cut. With a camera the
position and the rotation of the QR code are detected. The
associated scheme for laser cutting is directly loaded at
that position with the correct rotation in the laser cutter
software. By physically manipulating the QR code in
reality the users have the possibility to place and rotate
their laser cutting schemes interactively in the virtual
preview of the laser cutter program.

In the figure 1.1 the unmodified workflow is compared
with the modified workflow of the FabQR concept.

Figure 1.2 shows the concept how QR codes can be
used for an interactive fabrication process with the laser
cutter.

1.3 Concept 7

Figure 1.1: FabLab workflows
Includes icons from Font Awesome [Gandy, 2012]

Figure 1.2: Interactive fabrication with QR codes
Includes icons from Font Awesome [Gandy, 2012], VisiCut [Oster, 2011]

8 1 Introduction

1.4 Thesis Overview

A more detailed overview of the following remaining chap-
ters of the bachelor thesis is given here.

• In chapter 2 ”Related Work” different types of related
work for this bachelor thesis are presented. Interest-
ing characteristics of other systems, which are useful
for the development of the FabQR system, are men-
tioned in this chapter. Important literature for the ba-
sic elements of the FabQR system is examined in this
chapter as well. Many different libraries and software
projects in different programming languages are used
to create the FabQR system. The software projects,
which are used for the FabQR system, are also listed
in this chapter of the bachelor thesis.

• Chapter 3 ”Own Work” begins with the requirements
for the software system FabQR. Based on the differ-
ent types of related work a combination of different
characteristics and properties of other systems is cho-
sen for the FabQR system. After the requirements the
details of the implementation of the FabQR system
are described and a documentation of the different
changes and new software parts is created.

• In chapter 4 ”Evaluation” the user study for the
FabQR system is presented. The results of the ques-
tionnaire are analyzed and the answers of the partici-
pants are presented. After that it is checked, whether
the requirements of the FabQR system are fulfilled by
the implementation.

• Chapter 5 ”Summary and Future Work” summarizes
the results of the bachelor thesis. Additionally, it
gives an outlook on possible future developments.

9

Chapter 2

Related Work

In this chapter the different types of related work for FabQR
are presented. There are several topics, which are interest-
ing in the context of FabQR. The first part of this chapter
deals with anonymous file sharing. The theoretical back-
grounds and the practical use of QR codes are explained as
well. Since a combination of these aspects is used in FabQR,
similar projects and concepts, which also use this combina-
tion, are mentioned. In FabQR the QR codes can be used to
create an interactive fabrication process and therefore other
methods for interactive fabrication are presented as well.
For this FabQR system several hardware and software as-
pects are relevant. A FabQR integration for the laser cut-
ter software projects VisiCut and VisiCam is developed in
the context of this thesis. At the end of this chapter the
sharing of project documentations and related knowledge
in the FabLab community are addressed and several plat-
forms for this purpose are compared with each other.

10 2 Related Work

2.1 Anonymous File Sharing

This chapter deals with the project Dead Drops and ex-
plains anonymous file sharing.

2.1.1 Dead Drops

The basic idea of Dead Drops [Bartholl, 2010] is to createDead Drops are USB
flash drives in public

spaces, which create
an anonymous offline

file sharing network.

a public accessible and offline file sharing network, which
can be used anonymously by everybody. The network has
these properties because it is established by incorporating
USB flash drives permanently into walls and buildings in
public spaces. Everyone is allowed to use these drives
without any authentication. Users can copy and store files
by connecting their own devices and they interact physi-
cally with the USB flash drives.

Figure 2.1: Dead drop inside a wall
Source: Dead Drops [Bartholl, 2010]

This project shows that file sharing is nowadays common in
everyday life. The concept of using a service anonymously
has the advantage that people can use the service quickly
and easily. FabQR also considers the concept of physical
interaction for a better user experience.

2.2 QR Codes 11

2.2 QR Codes

QR codes are an essential part of FabQR. The theoretical
backgrounds of QR codes and the practical use of QR codes
are explained in this chapter.

2.2.1 Structure of QR Codes

QR (Quick Response) codes were established by DENSO The special structure
of QR codes
combines several
beneficial properties
of matrix codes.

Wave Incorporated in 1994. In contrast to one-dimensional
barcodes, QR codes use two dimensions for data represen-
tation. There are several other types of two-dimensional
matrix codes, but only QR codes are able to combine all
positive properties such as high machine readability, small
physical size and the capability of storing large amounts of
data [DENSO ADC, 2011].

Figure 2.2: Examples of QR codes and QR code structure
Source: Based on [Kieseberg et al., 2010]

12 2 Related Work

Two examples of QR codes are depicted in figure 2.2. Al-
though there is a lot of distortion in the right QR code due
to the structural information, it is still readable, which is
a big advantage of QR codes. As explained by Kieseberg
et al. [2010], most structural elements of QR codes are sup-
posed to ensure high readability and resistance against dis-
tortions. QR codes use error correction techniques in such
a way that even very distorted QR codes can be readable.
There are four levels of error correction: L (7%), M (15%),
Q (25%) and H (30%). The percentage values indicate how
much error correction information is added to the QR code
and with a higher error correction level less original data
can be stored in a QR code of the same size.

Because of all these positive aspects QR codes are useful in
the context of FabQR and are better suited than other ma-
trix codes.

2.2.2 Practical Use

Today QR codes are common in many different areas.Nowadays QR codes
are commonly used

for various purposes.
Often there are industrial applications, which track a
product or an item with QR codes. Therefore, QR codes are
frequently used in logistics, transportation and fabrication
processes. With increasing numbers of smartphone users,
QR codes have recently become popular in the branches of
advertising and marketing as well [DENSO ADC, 2011].

QR codes identify FabLab users and FabLab project
files in FabQR.

2.3 Combination of QR Codes and File Sharing 13

2.3 Combination of QR Codes and File
Sharing

There are several services, which already use QR codes for
file sharing and synchronization purposes. For instance,
the programs Sync [BitTorrent, Inc., 2015] and SuperBeam
[LiveQoS, 2014] use QR codes for an easy way of personal
device synchronization. Instead of entering a relatively
long file sharing key into a smartphone, a user can simply
scan a QR code to establish the device synchronization
with the smartphone. In that scenario QR codes are able to
simplify the interaction with these software systems and to
create a better experience for the user.

In contrast to that, Kangee [Nobach, 2010] as well as There are several
services, which
combine QR codes
with file sharing.

TagMyDoc [Knova, 2015] are not focused on device
synchronization, but they deal with the modification
and exchange of files in the context of multiple users.
TagMyDoc offers a version control system for documents,
which can be edited by a specified group of people, and
QR codes can be printed on a document to identify the
latest version of a document. With Kangee a user can easily
create a personal file exchange server and QR codes are
generated for simple access to the files with a smartphone.

A similar idea is used in FabQR. QR codes refer to
project files, which were uploaded to the FabQR server.
As for the above mentioned software projects, the QR
codes are supposed to create a better user experience by
simplifying the process and by adding interactivity to it.

14 2 Related Work

2.4 Interactive Fabrication

Willis et al. [2011] explain that there are different ap-Different types of
fabrication methods
can be used for the

creation of an object.

proaches for the fabrication of a physical object. Originally
the creator of an object had to work on it physically with
different tools. Nowadays the digital fabrication is widely
spread and it changes the workflow of such an object cre-
ation process completely. The schemes for such objects are
designed with a graphical user interface and the files are
sent to a machine, which creates the physical object. The
concept of interactive fabrication suggests to combine some
aspects of these two different methods to enhance the over-
all user experience. These different approaches are shown
in figure 2.3.

Figure 2.3: Approaches for the fabrication of an object
Source: Based on [Willis et al., 2011]

Constructable is a system for interactive fabrication with
laser cutters, which is presented by Mueller et al. [2012].
With a laser pointer users can sketch the paths for the laser
cutter directly on the material. A camera observes this
procedure and optimized paths for the actual laser cutting
are computed.

Since the QR codes in FabQR identify project files, the
QR codes can be used together with a laser cutter software
and a camera to create an interactive fabrication process.

2.5 Related Hardware and Software 15

2.5 Related Hardware and Software

There are different types of related hardware and software,
which are presented here.

2.5.1 Raspberry Pi

The Raspberry Pi [Raspberry Pi Foundation, 2008] is a The Raspberry Pi is
very flexible and
suitable for many
different projects.

small computer in the size of a credit-card, which features
a low price, high portability and a large variety regard-
ing connectivity and programmability. It is comparable to
embedded systems and the different versions of the Rasp-
berry Pi define the hardware specifications clearly. The
Raspberry Pi was designed in such a way that it can be
used in many different situations and projects. The oper-
ating system Raspbian [Raspberry Pi Foundation, 2012] is
an operating system, which is specifically developed for the
Raspberry Pi platform. Raspbian is based on the operating
system Debian [Software in the Public Interest, Inc., 1993].
These operating systems use software packages to install
new services and programs easily on the computer.

Because of these reasons a Raspberry Pi 2 with the Raspbian
operating system is used for the development of the FabQR
system. In the context of FabQR the well-known software
packages Apache HTTP Server [Apache Software Founda-
tion, 1995] and PHP [PHP Group, 1995] are used to create
the web service of the FabQR system.

2.5.2 openFrameworks

openFrameworks [openFrameworks Community, 2004] is a
software project, which combines several software projects
to create a powerful toolkit for the development of new ap-
plications. It allows to use OpenGL on the graphics pro-
cessing unit. It is written in C++ and supports a variety
of computations in subject areas such as graphics and com-
puter vision. openFrameworks is well-suited for FabQR be-
cause some graphics operations need to be performed.

16 2 Related Work

2.5.3 OpenMAX

OpenMAX [Khronos Group, 2004] is a specification for ac-
celerated multimedia processing. The Raspberry Pi 2 sup-
ports this specification and in FabQR hardware accelerated
processing is useful because it helps to create a better user
experience with a high software performance.

2.5.4 PHP QR Code

The software project PHP QR Code [Dzienia, 2010] is able
to generate QR codes for arbitrary input texts. This project
is a part of the implementation of FabQR.

2.5.5 ZXing

ZXing [ZXing authors, 2007] is a library for barcode andZXing is a library,
which is often used
to read QR codes.

matrix code detection and decoding in images. It supports
several programming languages and can read rotated and
distorted QR codes. In the context of FabQR the process-
ing of multiple QR codes in a single image is an important
feature. ZXing 3.2.1 is used in FabQR.

2.5.6 PNG libraries

PNG (Portable Network Graphics) images are used in
FabQR. LodePNG [Lode Vandevenne, 2005] and PngEn-
coder [ObjectPlanet, Inc., 1998] are used to encode and de-
code images in the PNG file format quickly.

2.5.7 PHPMailer

In FabQR the software project PHPMailer [Matzelle et al.,
2001] is used to send emails.

2.5 Related Hardware and Software 17

2.5.8 VisiCut and VisiCam

The laser cutter software project VisiCut [Oster, 2011] VisiCut is a
user-friendly program
for laser cutting.

simplifies the task of laser cutting a lot. This project is
developed in the programming language Java, which is
the reason why it is mostly platform independent. One of
the design goals of VisiCut is a very high usability. Users
interact with a graphical user interface to load files for laser
cutting and to specify positions, sizes and rotations for the
different shapes. A variety of file formats such as SVG,
EPS and DXF can be imported in VisiCut and it defines
a customized file format, which is called VisiCut PLF
(Portable Laser Format). Furthermore, VisiCut provides a
selection of materials with thickness values and users can
cut as well as engrave materials with VisiCut. Different
types of laser cutters are supported by VisiCut because it
includes a library, which is able to transform general and
abstract laser cutting commands into specific instructions
for several laser cutters.

In the figures 2.4 and 2.5 screenshots of VisiCut are
shown. A user can simply modify the position of an object
by moving the object in the preview window with the
mouse or precise values for the position of an object can be
entered.

Figure 2.4: Preview window in VisiCut
Source: VisiCut [Oster, 2011]

18 2 Related Work

Figure 2.5: Material choice and positioning in VisiCut
Source: VisiCut [Oster, 2011]

VisiCam [Oster, 2013] is a software project, which extendsA camera image for
VisiCut can be

provided by VisiCam.
and interacts with VisiCut. VisiCam basically adds the pos-
sibility to see a camera image of the laser cutter in VisiCut.
A camera is mounted right above the laser cutter and pro-
vides an image of the cutting area inside the laser cutter.
The camera can be accessed over the local area network. A
perspective correction, which is based on the detection of
specific markers, ensures that the camera image depicts the
cutting area of the laser cutter without any camera perspec-
tive related distortions.

Since VisiCut and VisiCam are user-friendly and already
include a camera, a FabQR integration for VisiCut is de-
veloped. Users can work with the laser cutter software by
physically interacting with the QR codes of FabQR.

2.6 Sharing of Project Documentations and Knowledge 19

2.6 Sharing of Project Documentations
and Knowledge

As described by Määttä and Troxler [2011], the interna- Sharing project
documentations and
knowledge in the
FabLab community is
still a problem.

tional network of FabLabs is also supposed to serve as
learning environment for all participants of the network.
FabLabs are based upon the concept of open source. This
includes free and open access for everyone to specialized
machines for the digital fabrication. Another part of this
concept is that knowledge regarding the areas of design
and fabrication should be exchanged between all users of
FabLabs. According to the authors, it is comparatively
simple to share such knowledge locally regarding time and
space. But there are still a lot of difficulties in the sharing
of knowledge for longer periods of time or across larger
distances between the participants. Current systems or
platforms for sharing such knowledge do not fit well to the
demands of FabLabs. Especially with a growing number
of FabLabs this issue becomes more important.

Wolf et al. [2014] mostly agree with the statements of
Määttä and Troxler [2011] and in order to support this
they conducted a study, in which 16 active participants of
the FabLab network were interviewed. In this study the
participants had to answer several questions regarding
their behavior in the context of digital fabrication and shar-
ing of knowledge and project documentations. Different
types of FabLab users were included in this study such
as FabLab managers, PhD students or designers. Most
interviewees perceive FabLabs as locations of creativity
and learning and see beneficial aspects of open access to
tools, machines and knowledge. The study shows that
there is a positive opinion about the sharing of knowledge
and project documentations because it helps to prevent
mistakes and it can improve own projects of the users.
Some participants of the study also mentioned that it is a
hard task to create a documentation of a project in such a
way that other users are able to understand the project in
all its details. The creation of a documentation is seen as
an additional step after the fabrication of a project and not
as a part of the fabrication process itself. Documenting a
project is described as boring and time-consuming work.

20 2 Related Work

The idea of FabQR was created to deal with these is-
sues, which is the reason why these aspects are considered
in the development of FabQR.

2.6.1 FabML

Troxler and Zijp [2013] mention the technical details of dataFabLab project data
can be versatile and
a flexible scheme for
the exchange of data

should be used.

exchange between several participants of the FabLab net-
work. Each FabLab is organized and structured differently,
which is the reason why the exchange of data between a
large variety of FabLabs is difficult. In order to deal with
this issue, the concept of FabML recommends to define a
meta language for a more detailed description of FabLab
projects. There are several examples for metadata in this
context such as the name of the author of a FabLab project,
needed machines for the project and the materials, that are
used in the fabrication of the project. As a common meta
language the concept of FabML helps to simplify the ex-
change of data between different participating FabLabs.

In FabQR such metadata is collected and provided for data
exchange as well. In order to be very flexible for various
systems and FabLabs, the data is stored in a format, which
is compatible to the well-known and standardized XML
(Extensible Markup Language). There are a lot of systems,
which are able to deal with input data in that format.

2.6.2 Comparison of Platforms

Several online platforms, which are currently used for shar-
ing knowledge and project documentations in the FabLab
community, are compared with each other in table 2.1. The
most notable disadvantages of these systems are explained
in the next paragraphs. As a contrast to these systems
FabQR is included in the table as well.

2.6 Sharing of Project Documentations and Knowledge 21

Often such platforms are administered and operated by There are several
problems with big
platforms for sharing
FabLab project data.

commercial companies. As soon as FabLabs start to use
such platforms regularly for the sharing of knowledge
and project documentations those FabLabs are in fact
dependent on the platform and the company. Especially
for commercial companies such dependencies are risky
because the companies might suddenly shut down the
platform, stop the development or change their platform
to a commercial product because of economical reasons.
There are platforms, which enable some additional features
of their system for paid pro accounts. The companies have
full control of the project data and knowledge and all these
points do not fit well to the concept of open source in the
FabLab community [Määttä and Troxler, 2011][Hemig,
2013][Troxler and Zijp, 2013]. The first column of table 2.1
indicates whether the platform has any kind of commercial
background.

Many times the software of such platforms is not dis-
tributed as open source. Therefore, there are no opportu-
nities to customize such platforms in any way, which is
the reason why the platforms usually do not match to the
requirements of the FabLabs [Määttä and Troxler, 2011].
A user study showed that FabLab users would prefer to
share their projects and knowledge on a platform, which is
provided by the FabLab itself [Hemig, 2013]. This aspect is
shown in the second column of table 2.1.

An API (Application Programming Interface) adds flex-
ibility to the platforms because a variety of systems can
interact with the platforms by using such a provided
API. This is the reason why a powerful API is a quality
characteristic of these platforms and in table 2.1 this is
indicated by the last column.

22 2 Related Work

Platform
Non-

commercial
Open

Source
Official

API

Thingiverse1

Instructables2

YouMagine3

FabQR

Table 2.1: Comparison of different platforms

The first three platforms have a commercial background.All big platforms for
sharing FabLab

project data have a
commercial

background.

Thingiverse is operated by the company MakerBot R©
Industries, LLC4, which creates and sells 3D printers.
Instructables offers paid pro accounts, which enable addi-
tional features in the platform. YouMagine is connected to
the company Ultimaker B.V.5, which sells 3D printers as
well. Currently these platforms provide basic features for
the sharing of knowledge and project documentations for
free, but this might change quickly in the future because of
the commercial interests. FabQR does not have any kind of
commercial background at all.

None of the currently used platforms for the sharing
of knowledge and projects publishes the software for the
platform as open source. FabQR is distributed as open
source and the software system can be customized.

Thingiverse and YouMagine provide an official API.
In FabQR an API is used for flexibility as well.

Based on these different types of related work there are
already some requirements for FabQR, which are explained
in more detail in chapter 3 ”Own Work”.

1http://www.thingiverse.com/
2http://www.instructables.com/
3https://www.youmagine.com/
4http://www.makerbot.com/
5https://ultimaker.com/

http://www.thingiverse.com/
http://www.instructables.com/
https://www.youmagine.com/
http://www.makerbot.com/
http://www.makerbot.com/
https://ultimaker.com/

23

Chapter 3

Own Work

In this chapter the own work for the FabQR software sys-
tem is described. The implementation is supposed to ful-
fill some requirements, which are defined in the first part
of this chapter. Afterwards a technical system overview is
given, that shows how the different software projects in-
teract with each other and how data is exchanged. The
new program visicamRPiGPU is explained as an extension
to VisiCam [Oster, 2013]. Of course some modifications to
VisiCam [Oster, 2013] and VisiCut [Oster, 2011] need to be
implemented to support the concept of the FabQR software
system. As a preparation for the FabQR software system,
several QR code measurements are taken to find appro-
priate parameters for the generation of well readable QR
codes. Finally, the details of the implementation of the new
FabQR system are described. All in all these explanations
and descriptions are the documentation of the FabQR soft-
ware system as well.

24 3 Own Work

3.1 Requirements

The implementation of the FabQR software system is sup-The FabQR system
is supposed to fulfill
some requirements.

posed to fulfill the following requirements. Some of these
characteristics and properties are already described in the
different types of related work for the FabQR system. In
the evaluation of the system it is checked, whether these
requirements are actually met.

• Requirement R1: Usability
A high usability is an essential requirement for each
software system. Since the FabQR software system
is integrated into an already existing software system
and environment, it needs to be easy to use and learn
for those users, who are already used to the current
existing software system.

• Requirement R2: High performance
The FabQR system needs to have a high performance
in all parts of the system. Users usually do not want
to use a software system, which needs a very long
time to process user inputs. Especially for the interac-
tive parts of the system, users expect to receive feed-
back of the program immediately.

• Requirement R3: Incorporation of QR codes
QR codes are incorporated in the workflow of the
software system of FabQR to simplify the identifica-
tion and exchange of project data.

• Requirement R4: Anonymous service usage
Users do not want to register with another website.
The system must be usable without any manual au-
thentication or registration of users.

• Requirement R5: Flexibility: Data representation
All the data of the FabQR software system is stored in
a data format, which is compatible to XML for flexi-
bility purposes. XML data can be easily read by many
different types of software implementations and pro-
grams.

3.2 System Overview 25

• Requirement R6: Flexibility: API
In order to provide flexibility for the client systems
of a FabQR software system, an official API is imple-
mented to provide access to the FabQR software sys-
tem for a variety of client systems.

• Requirement R7: System customization
Every part of the system needs to be customizable.
This does not only include the possibility to setup and
configure the system easily, but also involves the op-
portunity to change nearly every part of the software
system.

• Requirement R8: Raspberry Pi 2
The FabQR software system is supposed to run on
a Raspberry Pi 2 to make use of those advantages,
which were already mentioned earlier for the Rasp-
berry Pi 2 platform.

3.2 System Overview

The FabQR software system consists of multiple separate Multiple programs
need to work
together for FabQR.

software projects, which need to work together to accom-
plish all tasks and data needs to be exchanged between the
different programs for this purpose. For all parts of the
implementation further details are explained in the rest of
this chapter.

Here a rough overview of the implementation of the
FabQR software system is presented. There are different
tasks, which need to be fulfilled because the whole system
would not work correctly otherwise.

First of all, the system needs to get an image of the
camera, which is connected to the Raspberry Pi 2. A
marker detection and perspective correction are applied to
the image to provide a perfectly aligned image.

26 3 Own Work

Other computers in the local network need to be able toThe image must be
accessible in the

local area network.
access this image. The Raspberry Pi 2 provides this image
on a web service, which can be accessed from the local
network.

The image is scanned for QR codes and it is checked,
whether any QR code contains a valid URL (Uniform
Resource Locator) to a laser cutter scheme. All valid laser
cutter schemes are downloaded and shown in a preview.

After the object has been laser cut a project documen-
tation can be created and uploaded to the web service,
which stores and displays it on a website. The website
generates QR codes for these new uploaded and published
projects as well.

In figure 3.1 an overview of the current original sys-
tem is provided. In contrast to that, the modified overview
of the system with the FabQR software system is shown in
figure 3.2.

Figure 3.1: Original system overview
Includes icons from Font Awesome [Gandy, 2012],

VisiCut [Oster, 2011]

3.2 System Overview 27

Figure 3.2: FabQR system overview
Includes icons from Font Awesome [Gandy, 2012],

VisiCut [Oster, 2011]

28 3 Own Work

3.3 visicamRPiGPU

The main task of the new program visicamRPiGPU is
to provide hardware accelerated graphics operations
for VisiCam [Oster, 2013] by using the GPU (Graphics
Processing Unit) of the Raspberry Pi 2. Since the FabQR
system is supposed to process the user input with the QR
codes immediately, a very high performance is needed for
this purpose.

Currently these graphics operations are performed byCPUs are more
versatile than GPUs,
but they are usually

slower. GPUs are
specialized for fast

graphics operations.

VisiCam on the CPU (Central Processing Unit) of the
Raspberry Pi 2. Although the CPU of the Raspberry Pi
2 provides some computational power, it is still way too
slow to process such graphics operations immediately. For
a single image with a resolution of 1920 x 1080 pixels this
solution needs about 8 seconds of processing time, which
is completely useless in the context of the FabQR software
system. This is the reason why visicamRPiGPU is needed
for the concept of FabQR.

In this chapter it is explained how the graphics operations
work and why they are needed at all. The perspective
correction is provided by OpenGL computations on the
GPU of the Raspberry Pi 2 and the software project
openFrameworks [openFrameworks Community, 2004] is
used to get the possibility to perform computations on the
GPU.

The Raspberry Pi 2 has support for the hardware ac-
celeration specification OpenMAX [Khronos Group, 2004].
With OpenMAX the camera, which is connected to the
Raspberry Pi 2, is controlled and the images are processed.

A documentation of the different parameters and con-
figuration options for visicamRPiGPU is given as well.

visicamRPiGPUa

ahttps://github.com/FroChr123/visicamRPiGPU

https://github.com/FroChr123/visicamRPiGPU

3.3 visicamRPiGPU 29

3.3.1 OpenGL Perspective Correction

In VisiCam the perspective correction feature is imple-
mented because it is very difficult to position the camera
above the laser cutter perfectly. There are always rotations
and slightly incorrect positions for the camera. This causes
unpleasant distortions in the images, which are captured
by the camera. Of course such distortions are unwanted
because the camera is supposed to capture images, which
are perfectly aligned to the edges of the laser cutter and
show the flat surface of the laser cutting area.

In order to solve this issue a marker detection and a
perspective correction are used. For the marker detection
four markers are placed perfectly in the corners of the laser
cutting area. Based on the positions of these four markers
in the original and unmodified camera image a so-called
homography matrix is computed in VisiCam.

The homography matrix describes mathematically how
the pixels of the original image need to be modified to
move the four markers into the corners of the image. In
the processing of the image the homography matrix is
applied to the original image to get rid of all rotations and
distortions in the original image.

For visicamRPiGPU the homography matrix values VisiCam and
visicamRPiGPU
need to provide data
for each other.

are provided by VisiCam. The Raspberry Pi 2 supports the
specification of OpenGL ES 2.0 (Open Graphics Library
for Embedded Systems), which is used to apply a high-
performance matrix multiplication of the homography
matrix with the original image data on the GPU.

The procedure for the marker detection in VisiCam
provides a 3 x 3 homography matrix as result. In OpenGL
all computations are based on 4 x 4 matrices with a
different order of the values. This is the reason why the
input homography matrix needs to be transposed and
a new empty row and a new empty column need to be
inserted before the homography matrix multiplication can
be processed in OpenGL.

30 3 Own Work

The following scheme shows how the input matrix needs
to be modified to get the correct resulting matrix for the
OpenGL computations:

Input =

 a b c
d e f
g h i

 ⇒ Result =

a d 0 g
b e 0 h
0 0 0 0
c f 0 i

In figure 3.3 a visual example for the marker detection and
the perspective correction is given.

Figure 3.3: Perspective correction

3.3 visicamRPiGPU 31

3.3.2 OpenMAX Modules

In visicamRPiGPU OpenMAX [Khronos Group, 2004] is
used to handle the camera controls and it provides hard-
ware accelerated image processing. In the implementation
and source code OpenMAX is often abbreviated as OMX.
Although the OpenMAX specification is very detailed
and consists of multiple documents with several hundred
pages each, it is difficult to actually use the OpenMAX
hardware acceleration in a new program on the Raspberry
Pi 2.

The main reason for this circumstance is the fact that The implementation
of OpenMAX on the
Raspberry Pi 2 does
not correspond well
with the OpenMAX
specification.

the actual implementation of the OpenMAX specification
on the Raspberry Pi 2 is incomplete, inconsistent and it
does not follow all specifications of OpenMAX. Addi-
tionally, there are vendor specific modifications in the
implementation, which are not specified at all. Especially
for these vendor specific modifications it needs to be
guessed how the implementation actually works because
there are no descriptive documents at all.

This issue is noticeable for the different image color
formats, which can be used in OpenMAX. In the speci-
fication of OpenMAX a lot of different color formats are
listed, but in the implementation of OpenMAX on the
Raspberry Pi 2 only some of them are actually supported
and correctly implemented.

The best color format for visicamRPiGPU would
be RGB (Red, Green, Blue) with 8 bits for each
color. This color format is specified in OpenMAX as
OMX COLOR Format24bitRGB888, but as soon as this
color format is used, the OpenMAX implementation
returns an error because the implementation of OpenMAX
on the Raspberry Pi 2 does not support that color format.

32 3 Own Work

Instead, the vendor specific and unspecified color format
OMX COLOR Format32bitABGR8888 has to be used to
support 8 bits for each color. Although the name of this
color format mentions the order ABGR (Alpha, Blue,
Green, Red), it actually behaves like RGBA (Red, Green,
Blue, Alpha), which is a completely inconsistent behavior
of this OpenMAX implementation. Therefore the image
data is copied from the GPU in the RGBA color format
with 8 bits for each color and it is directly passed on to
OpenMAX. In this color format the alpha channel, which
is basically used to describe the opacity, is not useful for
visicamRPiGPU at all and it wastes resources of the system
because there is no opacity in these images.

OpenMAX uses so-called components to process data.Different components
are used to process

data in OpenMAX.
Each component can have multiple input and output ports
for data and every component has a state such as loaded,
paused or executing.

Basically, there are two methods of moving data between
components in OpenMAX. With tunneling a connection
between an output port of one component and an input
port of another component is created. As soon as there
is new processed data available at the output port of the
component it is immediately passed on to the input port of
the next component.

In contrast to that, the data must be manually moved
between OpenMAX components for non-tunneled compo-
nent communication. In this case OpenMAX uses callback
functions to provide information about the components
for the other parts of the program. For example, a callback
function is called as soon as a component has finished
processing its input data.

All components of OpenMAX are identified by imple-
mentation specific component names. In order to utilize a
component it has to be initialized by using the correspond-
ing component name. After the initialization all ports
of the component need to be disabled. Now component
specific commands can be used to set parameters for the
component. In the last step the tunnels, ports and states
are configured correctly.

3.3 visicamRPiGPU 33

In the implementation of visicamRPiGPU all these abstract visicamRPiGPU
uses many
OpenMAX features.

concepts of OpenMAX are needed. An overview of the
OpenMAX components and the component communica-
tion in visicamRPiGPU is presented in figure 3.4.

Figure 3.4: Data processing in visicamRPiGPU

This diagram for the data processing in visicamRPiGPU
shows some additional aspects of visicamRPiGPU.

It is important to notice that the preview port of the
camera component is enabled. The camera itself needs the
data of the preview port for automatic image capturing
adjustments such as brightness and color corrections.
Since the actual data of the preview port is not needed
at all, a tunneled communication is used to send it to
the component OMX.broadcom.null sink, which just
ignores all incoming input data.

34 3 Own Work

The component OMX.broadcom.egl render renders the
input image data directly on the GPU of the Raspberry
Pi 2. Because of this circumstance the image is directly
available for further processing in OpenGL.

Although visicamRPiGPU uses GPU computations and theIn visicamRPiGPU
the CPU is still the

performance
bottleneck.

hardware acceleration implementation of the OpenMAX
specification on the Raspberry Pi 2 for huge performance
improvements, there is still a performance bottleneck in
the program. After the image was processed on the GPU it
needs to be passed on to the input port of the component
OMX.broadcom.image encode. Unfortunately the CPU
of the Raspberry Pi 2 is involved in this procedure be-
cause the data basically needs to be copied from the GPU
memory to the input memory buffer of the OpenMAX
component.

Since the CPU of the Raspberry Pi 2 is not very fast,
this procedure is comparatively slow. In time mea-
surements this step needs roughly 50 ms for an image
resolution of 1280 x 720 pixels and 100 ms are required for
a resolution of 1920 x 1072 pixels. In comparison to the
original timings of roughly 8 seconds and performance of
VisiCam [Oster, 2013] these timings of visicamRPiGPU are
still a huge improvement and these values are useful for
the FabQR software system.

The component OMX.broadcom.image encode is
finally used to convert the raw image data into a com-
pressed JPEG image file. This compression is needed
because the raw image data could not be transferred
quickly over the network otherwise. The Raspberry Pi 2
only supports a maximum data rate of 100 Mbit/s for the
network connection.

3.3 visicamRPiGPU 35

3.3.3 visicamRPiGPU Arguments

visicamRPiGPU needs seven input arguments to start cor-
rectly. These arguments are explained in the following list.

• Argument 1: Width in pixel
The width argument must be in the range of 640
to 1920 because of camera limitations. For the
OpenMAX implementation this value must be a mul-
tiple of 32. For the resolution an aspect ratio of 16:9
and a width of 1280 pixels are recommended.

• Argument 2: Height in pixel
The height argument must be in the range of 480
to 1080 because of camera limitations. For the
OpenMAX implementation this value must be a mul-
tiple of 16. For the resolution an aspect ratio of 16:9
and a height of 720 pixels are recommended.

• Argument 3: Refresh time in seconds
This argument must be a value greater than zero. It
defines the refresh time interval. On each refresh an
original image is saved instead of a processed image
and the values of the input homography matrix are
updated. The validity of the process ID of the starting
process is checked as well.

• Argument 4: Process ID of starting process
If this argument is not equal to zero and there is no
process running with this process ID on the system,
visicamRPiGPU will terminate itself. This is used
to stop visicamRPiGPU correctly as soon as VisiCam
[Oster, 2013] is stopped.

• Argument 5: File path to homography matrix input
This argument specifies the file path to the homogra-
phy matrix input. It is recommended to use an abso-
lute file path.

36 3 Own Work

• Argument 6: File path to processed image output
This argument specifies the file path to the processed
image output. It is recommended to use an absolute
file path. Since this file is written very frequently,
this file path should refer to a file, which is stored
in the memory of the Raspberry Pi 2. Usually this
shared memory is already configured for the path
/run/shm/ on the Raspberry Pi 2.

• Argument 7: File path to original image output
This argument specifies the file path to the original
image output. It is recommended to use an absolute
file path.

3.3.4 GPU Memory Split

For visicamRPiGPU some memory of the GPU is required.The GPU memory
needs to be

configured for
visicamRPiGPU.

The highest possible resolution of 1920 x 1072 pixels re-
quires approximately 140 MB of GPU memory. For the
recommended setting of 1280 x 720 pixels a GPU mem-
ory value of 128 MB is sufficient. To set this value on
a Raspberry Pi 2 architecture with the Raspbian [Rasp-
berry Pi Foundation, 2012] operating system the command
raspi-config can be utilized as root user.

3.3.5 File Locking

All files, which are read and written by visicamRPiGPU,
are used by other processes as well. To avoid the situation
that any file is read and written at the same time by mul-
tiple processes, file locking mechanisms are applied. With-
out file locking such situations are likely to lead to critical
and hidden errors in the different programs. The programs
always use blocking wait to access the files correctly.

3.3 visicamRPiGPU 37

The most important thing about file locking in
visicamRPiGPU and VisiCam [Oster, 2013] is the cir-
cumstance that the file locks need to be recognized
correctly by C++ and Java. The function flock is not able
to fulfill this requirement. Therefore, the function lockf
needs to be used because it is correctly recognized by the
default Java file locking mechanisms.

3.3.6 Signal Handler

In Unix operating systems signals are used to estab-
lish a very simple type of inter-process communication.
For example, there are signals to pause, continue or
stop the execution of a program. In openFrameworks
[openFrameworks Community, 2004] a default signal han-
dler is used, which tries to cleanup everything correctly be-
fore the execution of the application is actually stopped.

For visicamRPiGPU this cleanup routine does not always The default signal
handler of
openFrameworks
does not work
correctly for
visicamRPiGPU.

work correctly and the program freezes. In this case
it can only be terminated with the signal SIGKILL. To
solve this issue the default signal handler is overwritten in
visicamRPiGPU and all signals, which ask the program to
stop, are simply replaced by a SIGKILL signal. With the
SIGKILL signal the correct termination of visicamRPiGPU
is ensured in this context.

3.3.7 Settings Header File

There is a special settings header file in visicamRPiGPU,
which is called visicamRPiGPU-settings.h. In this
file several settings for visicamRPiGPU can be configured.
These settings are basically the parameters, which are sent
to the OpenMAX components OMX.broadcom.camera
and OMX.broadcom.image encode. For the camera
component there are settings such as brightness, contrast
and exposure compensation. For bright environments a
negative value for the exposure compensation setting is
usually useful. For the created JPEG files the quality can
be configured in this file as well.

38 3 Own Work

3.4 VisiCam Modifications

The main task of VisiCam [Oster, 2013] is to provide
perspective corrected images of the laser cutter area for
other computers in the local area network. As already
explained earlier, the original and unmodified version of
VisiCam performs the marker detection and the perspec-
tive correction on the CPU of the Raspberry Pi 2, which is
the reason why the whole procedure takes a lot of time.

VisiCam runs as a service on the Raspberry Pi 2 andVisiCam provides a
web service for the

processed image
and configuration of

the system.

it provides a web service on a configurable port. A log
file for VisiCam is created as well. With the web service
not only the processed image can be accessed from the
local area network, but it also provides a website for
the configuration of VisiCam. With this website several
options for VisiCam such as the resolution, file paths and
marker detection settings can be configured.

For each marker an area in the original image needs
to be specified, in which the marker detection procedure
tries to find the corresponding markers. With these areas it
is also defined, which marker belongs to which corner of
the image.

Since the native perspective correction of VisiCam is
way too slow for the FabQR software system, the perspec-
tive correction needs to be outsourced from VisiCam. For
this purpose visicamRPiGPU needs to be integrated into
VisiCam and both programs need to work together to solve
this task.

The modifications of VisiCam are not only limited to
the integration of visicamRPiGPU, but there are also other
improvements for VisiCam, which are introduced with the
modifications of VisiCam.

VisiCam forka

ahttps://github.com/FroChr123/VisiCam

https://github.com/FroChr123/VisiCam

3.4 VisiCam Modifications 39

3.4.1 visicamRPiGPU Integration

VisiCam is modified in such a way that is has support for
visicamRPiGPU. In the combination of these two software
projects VisiCam has control over the visicamRPiGPU
application. This means that VisiCam starts and stops
visicamRPiGPU as it is needed. In VisiCam all command
line arguments for visicamRPiGPU are known.

VisiCam uses Unix specific commands to start and
stop visicamRPiGPU. In general this circumstance is no
problem for the platform independence of VisiCam at
all because visicamRPiGPU is anyway developed for the
Raspberry Pi 2 with the Raspbian [Raspberry Pi Founda-
tion, 2012] operating system.

As soon as the configuration of VisiCam is changed it VisiCam has control
over the
visicamRPiGPU
process.

starts, stops or restarts visicamRPiGPU if needed. In the
context of the new inactivity timer feature for the camera
visicamRPiGPU needs to be stopped and started as well.
If no images are requested for a configurable period of
time, visicamRPiGPU will be stopped and this will turn off
the camera as well. It is started again as soon as images
are requested again. VisiCam needs to ensure that only
one instance of visicamRPiGPU is active because only one
process of the system is allowed to access the camera at the
same time.

This inactivity timer is probably a better setting for
the hardware than the other settings, which are currently
in use for that purpose. In the first setting the camera is
permanently turned on. The other setting turns the camera
on and off for each single image.

VisiCam and visicamRPiGPU need to exchange data to
work correctly. Again, file locking mechanisms are used
to ensure correct file accesses because otherwise both
processes might try to access a file at the same time, which
would cause arbitrary errors in the programs.

40 3 Own Work

Basically, visicamRPiGPU provides the original and un-
modified camera image for the marker detection in
VisiCam. VisiCam computes the homography matrix for
the perspective correction and stores this data in a file for
visicamRPiGPU. With this data visicamRPiGPU can com-
pute the processed image, which is provided to other com-
puters in the local area network by VisiCam.

3.4.2 Other VisiCam Improvements

Similar to visicamRPiGPU, a configurable refresh timer is
implemented in VisiCam. Each refresh causes VisiCam to
run the marker detection and to store the new homography
matrix into a configurable file. In the original and un-
modified version of VisiCam the marker detection and the
matrix computation are performed for each single image.
This is not needed at all and wastes system resources be-
cause the position of the markers is unlikely to change a lot.

Additionally, a so-called memory leak is solved in theMemory leaks cause
the system to

continuously lose
available memory

space and this leads
to system failures.

new modifications of VisiCam. Each process on a system
can reserve memory space for computations. A memory
leak means that a process reserves memory space but this
memory space is never released for other processes of
the system again, although the reserved memory space
is no longer needed by that process at all. Because of
this circumstance critical system processes can run into
trouble and this causes system failures. Each run of the
marker detection algorithm caused such a memory leak in
VisiCam, which is now solved in the new modifications.

It might happen that several computers access the pro-
cessed image of the VisiCam web service at the same time.
For this case some parts of the implementation of VisiCam
are now assigned with the Java keyword synchronized,
which means that these parts of the implementation are
not allowed to be executed in parallel.

New bash scripts are introduced for an easier mainte-
nance of VisiCam. The setup documentation is modified to
speed up the compiling of VisiCam dependencies.

3.5 VisiCut Modifications 41

3.5 VisiCut Modifications

VisiCut [Oster, 2011] is used to simplify the laser cutting.
The laser cutters and materials are defined in VisiCut and
it provides a GUI (Graphical User Interface) for the users,
who are able to prepare their laser cutting jobs easily with
VisiCut.

With the new modifications of VisiCut it is supposed
to support the FabQR software system. Several new files
and Java classes need to be integrated into VisiCut for this
purpose. New dialogs and GUIs need to be implemented
for the FabQR integration into VisiCut as well. The differ-
ent parts of the integration of the FabQR software system
into VisiCut are explained on the next few pages.

The modifications also introduce the support for a
projector setup. For this setup a special hardware configu-
ration is needed.

Since VisiCut is a huge software project, which con-
sists of many different source files and Java classes, there
are many possibilities for other miscellaneous improve-
ments of the software project. Such improvements are also
included in these new modifications for VisiCut.

For some of the new modifications Java version 7 is VisiCut requires Java
version 7 with the
modifications.

needed because some of the new external libraries have
this as a requirement. This is not a big issue at all, since
Java version 7 is already comparatively old and Java
version 6, which is required by VisiCut itself, is already
quite outdated. In addition to that, using newer Java ver-
sions can be beneficial because of noticeable performance
improvements as well.

VisiCut forka

ahttps://github.com/FroChr123/VisiCut

https://github.com/FroChr123/VisiCut

42 3 Own Work

3.5.1 Automatic VisiCam Images

Currently users need to click a button in the GUI of VisiCut
in order to manually fetch a new processed camera image
from VisiCam. For the integration of the FabQR software
system into VisiCut it is important that VisiCut fetches
these images automatically from the modified VisiCam
version.

This feature is provided by the new Java class
RefreshCameraThread. There is a new configura-
tion option, which determines how often this class tries to
fetch a new camera image. With this option the refresh rate
of the camera can be adjusted. Low values for this setting
such as 50 milliseconds lead to a video-like preview, which
is needed by the FabQR software system.

3.5.2 Webcam Support

A webcam can be used as an alternative to the VisiCam
setup to provide camera images for the detection of QR
codes. For this purpose new GUI elements are intro-
duced, which open a dialog with the current webcam
image. This image is continuously updated by the class
TakePhotoThread, which already exists in VisiCut.

Unfortunately, the unmodified version of this class is
relatively inflexible. It defaults to a resolution of 176 x 144
pixels and it uses a fixed refresh rate of 100 ms. With these
settings there is a notable delay for the camera images and
the images have a very low quality.

Because of these reasons this class is modified. TheThe FabQR
integration needs
high refresh rates

and images with a
good quality.

refresh rate is now configurable and it defaults to the
value of 20 ms. With this setting the delay of the camera
image is of course reduced. Additionally, the camera can
now be configured to use one of the resolutions, which
are always available in Java: 176 x 144 pixels, 320 x 240
pixels or 640 x 480 pixels. For the FabQR integration the
highest resolution of 640 x 480 pixels is used to provide
high quality images for the detection of QR codes.

3.5 VisiCut Modifications 43

3.5.3 QR Code Detection

With the modifications the library ZXing [ZXing authors,
2007] is included in VisiCut for the detection of QR codes in
VisiCam images or webcam pictures. The new Java classes
RefreshQRCodesTask and QRWebcamScanDialog
initiate the detection and processing of QR codes in the
images of VisiCam or the webcam. If the QR code detection
is enabled in the preferences, it will be handled by the new
Java class QRCodeScanner.

Internally the QRCodeScanner class controls a thread
for the detection of QR codes with the ZXing library.
This class extends the default Java Observable class,
which is well-known in the Observer pattern in software
engineering. This pattern is used to report the resulting QR
code data to other classes, which implement the Observer
interface.

ZXing offers basic support for the detection of dis- The class for reading
multiple QR codes
with ZXing is in
practice unable to
detect multiple QR
codes in an image
reliably.

torted and rotated QR codes. Although it claims to be able
to detect multiple QR codes at once in an image with the
QRCodeMultiReader class, this class is not used for this
purpose in the integration of the FabQR software system
into VisiCut. The main reason for this is the circumstance
that the results for the detection of multiple QR codes in a
single image with this class are relatively bad and it is very
unlikely to detect only two QR codes in a single image
with it correctly.

Additionally, the ZXing library is primarily developed
for the use case of scanning only a single QR code once.
Therefore, ZXing is optimized for performance and not for
quality of the QR code detection.

In contrast to that, the detection of the QR codes for
FabQR is supposed to have a high quality and perfor-
mance at the same time. The QR codes need to be detected
correctly in each run of the QR code detection algorithm.
Therefore, a custom and advanced algorithm for the
detection of multiple QR codes in an image is developed,
which works as depicted in figures 3.5 and 3.6.

44 3 Own Work

Figure 3.5: Detection for multiple QR codes

3.5 VisiCut Modifications 45

Figure 3.6: Detection for rotated QR codes

46 3 Own Work

The advanced algorithm for the detection of multiple QRThe detection of
single QR codes is
used multiple times

to imitate the
detection of multiple

QR codes.

codes in a single image is based on the fact that the QR
code detection for a single QR code in an image works well
with the ZXing [ZXing authors, 2007] library. The idea is to
split the complete input image into multiple image parts
and each part is checked separately for a single QR code.
The results of all single QR code detection runs for the
different image parts are combined, which finally leads to
a detection of multiple QR codes in a single image.

It is important to mention that the splitting schemes
of the input image need to be chosen carefully. In the
implementation the section mode and the slice mode are
used for this purpose. Examples for these modes are
depicted in figure 3.5. In the section mode the image is
split evenly into rectangles in the horizontal and vertical
dimension. In contrast to that, the slice mode creates
rectangles, which have the same length as the input image
for one dimension and the image is only split in the other
dimension. Therefore, the slice mode can be applied
horizontally and vertically.

In figure 3.5 some highlighted darker areas are included in
the examples. These areas show overlapping areas for the
detection of the QR codes. Overlaps need to be included
to minimize the probability that a QR code at an arbitrary
position is always split into multiple parts by the used
splitting schemes. For the first example this means that a
QR code, which is placed exactly in the center of the image,
could not be recognized by only analyzing the quadrants
of the image. Since the overlapping rectangle in the center
of the image is analyzed as well, a QR code in the center of
the image could be detected by analyzing this rectangle.

The ZXing library is only able to detect QR codes with
rotation values around multiples of 90 degree well. This
implies that it has issues with the detection of rotated QR
codes, which have rotations near to 45, 135, 225 or 315
degree. The advanced and custom algorithm for the QR
code detection includes a solution for this problem as well.
The basic idea of this solution is shown in figure 3.6.

3.5 VisiCut Modifications 47

For the solution of this issue with these specific rotated Graphics operations
in Java do not have a
high performance.

QR codes three vertical slices of the full image are created.
These slices are rotated by 45 degree in counter-clockwise
direction. In figure 3.6 it is depicted that this step causes
these rotated QR codes to have a new rotation value near
to a multiple of 90 degree. Because of this step the ZXing
library is able to detect such QR codes in the rotated image
part. After that the coordinates of the rotated QR codes
are mapped back to the full image. Only three parts are
used in this part of the algorithm because the rotation of
the image parts takes much time in Java. There is also an
option, which enables and disables this feature.

In order to implement the interactive placing of laser
cutter schemes with QR codes the coordinates and the ro-
tations of the QR codes in the image need to be computed.
The ZXing library returns the coordinates of the finder
patterns in the corners of each detected QR code. The
coordinates are relative to the top left corner of the image
part, which is analyzed by the ZXing library. The center
coordinate and the rotation of the QR code are computed
from these three values.

Of course the coordinates need to relate to the dimen-
sions of the full input image for the QR code detection
algorithm. Multiple coordinate systems are involved in
these computations. The global coordinate system has
its origin in the top left corner of the full image and the
vertical axis is inverted. Each image part has a normalized
local coordinate system, which has the same properties as
the global coordinate system with a changed origin of the
coordinate system. For the rotated image parts there is an
additional rotated local coordinate system.

It is complicated to map the coordinates of the de-
tected QR codes from the rotated local coordinate systems
back to the normalized local coordinate system because
the coordinates need to be correctly rotated by 45 degree in
clockwise direction. The mapping of the coordinates from
the normalized local coordinate systems back to the global
coordinate system is simple because the global coordinates
of the top left corner of each image part are known. This
mapping just requires two simple additions.

48 3 Own Work

Additionally, it needs to be ensured that the same physicalDetecting the same
QR code multiple
times needs to be

avoided.

QR code is not detected multiple times in the different
image parts. Before a new QR code is added to the result
set of all detected QR codes it is checked, whether a QR
code with roughly the same global center coordinates is
already stored in the result set. This is the reason why the
final result set of all detected QR codes does never contain
the same physical QR code multiple times.

The laser cutter files of the URLs, which are saved in
the QR codes, are downloaded and imported in VisiCut.
For the webcam image all laser cutter schemes are im-
ported with the default settings and they appear in the
top left corner of the preview in VisiCut. The positions
and rotations of the detected QR codes are mainly used
for the VisiCam camera image. The center coordinates
and rotations of these schemes automatically correspond
to the center coordinates and rotations of the associated
QR codes. It is ensured that the laser cutter schemes fit
into the preview correctly. Additionally, the modifications
implement the correct rotation around a common center
position for multiple objects in PLF files.

As soon as new QR codes are detected in the VisiCam
images, the editing mode is changed to QR code editing.
This means that some other parts of the GUI are disabled
for this period of time because this would cause some
issues with the internal data structures of VisiCut other-
wise. The outlines of these new objects, which are loaded
because of QR codes, are highlighted with thick green
lines in the preview. In each iteration of the responsible
implementation the temporary new objects are removed
and the VisiCam image is analyzed for QR codes again and
this might lead to the insertion of new objects again. This
approach guarantees that the objects are always loaded
correctly. The rotation angles of new loaded objects always
snap to the nearest multiple of 15 degree for an easier
rotation of the objects with the QR codes.

3.5 VisiCut Modifications 49

Once the QR code editing mode is enabled a new button is There are special
data structures to
store additional data
for an object, which
is imported with a
QR code.

shown, which stores the current positions of the new ob-
jects and loads the correct laser cutting mappings. Again,
it needs to be ensured that the same QR codes are not
imported multiple times here. For this purpose a similar
concept as before is used, which involves the checking of
already existing data and stored coordinates. The new
objects, which have been imported with QR codes, can
now be used as any other regular object in VisiCut. The QR
code editing mode is disabled and it will be enabled again,
if QR codes are detected at other positions.

This user interaction with the FabQR integration in
VisiCut is presented in figure 3.7. In this example the laser
cutting schemes of two QR codes are imported in VisiCut
with the corresponding center positions and rotations.

Figure 3.7: Preview for QR code imported objects

50 3 Own Work

3.5.4 File Management

With the modifications the management of files in VisiCut
is changed as well. Temporary files are needed by VisiCut
for various purposes. For some operating systems the
deletion of these temporary files does not always work
correctly. Therefore, the handling of temporary files is
changed. With the modifications the names of all tempo-
rary files start with the prefix ”VisiCutTmp ”, which is the
reason why these files can be identified easily. VisiCut tries
to delete these files now on every start.

The new Java class CachedFileDownloader is re-HTTP redirects are
supported by the

downloader, which is
needed for the

FabQR web service.

sponsible for downloading the files, which are associated
with the QR codes. The CachedFileDownloader is able
to deal with HTTP (Hypertext Transfer Protocol) redirects
correctly and it can check for valid maximum file sizes
and correct file extensions. The maximum file size is set
to 10 MB and the file types PLF and SVG are currently
allowed. As the name already suggests, the class uses
a cache for the URLs and the downloaded files. This
avoids unnecessary downloads of the same file. Currently
25 URLs and related files are stored in the cache. If the
CachedFileDownloader detects that it is supposed to
download a file from the private area of the configured
FabQR web service, it will also add authentication details
to the HTTP request for the download.

3.5.5 Projector Support

In early stages of the FabQR concept it was planned to cre-
ate a setup with a projector, which is mounted right above
the laser cutter. With the projector a preview of the laser
cutter schemes can be projected right onto the material in-
side the laser cutter. Unfortunately, the hardware setup for
this is relatively complicated because the projector needs to
deal with the ambient light and it needs to be positioned
precisely. Because of these reasons such a real projector
setup is currently untested.

3.5 VisiCut Modifications 51

Nevertheless, the software component for the projector
support is theoretically functional. The URL of the web
service, the resolution of the preview image and the refresh
rate are configurable. The web service needs to process the
PNG data, which is sent within this upload. Authentication
details are supported for this file upload as well.

The new Java class PreviewImageExport is used to The PngEncoder
library can create
PNG files quicker
than the native Java
functions.

create the PNG image of the current preview in VisiCut.
A black background is used and the outlines of the laser
cutting schemes are highlighted with thick red lines. The
PngEncoder [ObjectPlanet, Inc., 1998] library is used to
create the corresponding PNG image quickly. This export
of the VisiCut preview is needed for the upload of the
project documentation as well.

Since the aspect ratios of the configured projector res-
olution and the laser cutter dimensions do not necessarily
need to match, the preview of VisiCut is aligned at the top
left corner of the exported image and it is evenly scaled up
as much as possible within the configured projector resolu-
tions. This means that there might be an intentional blank
space in the exported preview image at either the right
edge of the image or at the bottom of it. An example for
this is provided in figure 3.8. For reasons of presentation,
the intentional blank space at the bottom of the image is
highlighted with a green line and some text. Everything
above the green line represents the preview in VisiCut.

Figure 3.8: Preview image export in VisiCut

52 3 Own Work

3.5.6 FabQR Upload

If the FabQR options are configured correctly in VisiCut
and the user starts a laser cutting job by pressing the ”Exe-
cute” button, there will be a dialog, which asks the user to
publish this project on the websites of the FabLab. The laser
cutting job is actually sent as soon as the user has answered
the dialog. This dialog is depicted in figure 3.9.

Figure 3.9: FabQR upload confirmation dialog

If the user chooses ”No” in this dialog, the laser cutter jobUsers are asked to
publish FabLab

projects.
is just sent as usual and nothing else happens. But if the
user chooses ”Yes”, the laser cutting job is sent to the laser
cutter and a new dialog for the upload to the configured
FabQR web service appears.

In the FabQR upload dialog the user can insert infor-
mation about the project. At the top of the dialog there
is a status message, which shows the current status of
the upload. Depending on the chosen license for the
publication of the project it is optional to enter the name
and the email address. In the bottom left corner of the
dialog the user has the possibility to select VisiCam or the
webcam to take a photo of the finished laser cut object. Of
course a name for the project needs to be specified, which
needs to have at least three characters. A license needs to
be chosen as well and there are short descriptions for the
different licenses. Currently a set of Creative Commons
[2001] licenses is available for this selection. Other tools
and machines, which are involved in the creation of the
project can be specified as well. A short description of the
project is required for the project documentation. At the
bottom of the dialog the user can close the dialog or start
the upload of the project documentation.

3.5 VisiCut Modifications 53

Additionally, some other data is automatically collected Some data is
automatically
included in the
created project
documentations.

and sent to the FabQR web service by VisiCut. The con-
figured name of the FabLab, the name of the laser cutter
model and the material settings are included as well. The
public accessible URLs of laser cutter schemes, which
have been imported with QR codes, are inserted into the
project documentations as references as well. An exported
preview image is also created. Of course this FabQR web
service client needs to correspond to the definitions of the
APIs of the FabQR web service.

The upload dialog in VisiCut for the FabQR software
system is presented in figure 3.10. An exemplary project
documentation is created with this dialog.

Figure 3.10: FabQR upload dialog

54 3 Own Work

3.5.7 GUI Changes

With the modifications for the integration of the FabQRSeveral new
configuration options

are added with the
FabQR integration.

software system into VisiCut several changes in the GUI
need to be introduced. Mainly these changes include new
options in the different configuration dialogs. Since there
are also some passwords for the FabQR software system,
a warning is shown as soon as passwords are exported
within the settings of VisiCut. Figure 3.11 shows the con-
figuration dialog for the FabQR web service.

Figure 3.11: FabQR configuration dialog

Just before FabQR was integrated into VisiCut, other con-
tributors of VisiCut changed the behavior of the GUI in
the main view of VisiCut for smaller resolutions and dis-
plays. This feature is optimized with the modifications for
the FabQR integration. Furthermore, the new Java class
IconLoader is introduced to handle the access to icons,
which are related to additional extensions of VisiCut.

3.5.8 Concurrent List Access

The class PlfFile is one of the main data structures in
VisiCut. Basically it is a wrapper for a simple LinkedList
in Java. This is a huge problem for concurrent accesses by
different threads of VisiCut. Therefore, most accesses to this
list use the keyword synchronized now and a copy of the
list is provided for most read-only accesses.

3.6 QR Code Readability 55

3.6 QR Code Readability

For the FabQR software system it is important that the QR
codes have a high readability in the camera images. The
use cases for the QR codes in FabQR are not only limited to
printed QR codes, but users can also use their smartphones
to show the QR codes to the cameras. In this context there
are severe issues with the detection of QR codes from
smartphone displays.

Figure 3.12 shows that the main problem for the de-
tection of QR codes from smartphone displays is related
to the brightness of the displays and the intensity of the
emitted light. Usual cameras with default settings are not
able to handle the emitted light of the smartphone displays
well, which is even intensified by dark backgrounds as
shown in the picture.

In this image the camera reacts that sensitively to the QR codes on
smartphone displays
are more difficult to
detect.

emitted light of the smartphone display that it displays the
light as a bright white cloudy spot around the light source.
This effect is clearly visible in that figure and it causes a
lot of issues in the detection of QR codes from smartphone
displays because the quality of the QR codes is in general
reduced and some distortions are added to it.

Figure 3.12: QR code on a smartphone display

56 3 Own Work

In figure 3.13 the quality loss of QR codes in camera images
and the related distortions are shown.

There are noticeable differences between the originalBright smartphone
displays are likely to

add distortions to
displayed QR codes.

QR code and the QR code in the camera image. Because of
the oversensitivity to the emitted light of the smartphone
display all black areas in the QR code are modified and
wiped out from the QR code in the camera image. The
black areas are in general smaller than they are supposed
to be and the edges are less clear. Additionally, all corners
are rounded off.

The readability of QR codes does not only depend on
the quality of the QR codes, but it is also dependent on
the physical size of the QR codes and the distance to the
cameras as well.

Because of these effects several measurements of QR
codes are taken. The results of these measurements are
evaluated to find acceptable settings for the generation of
QR codes in the web service of the FabQR software system.
These settings are related to the physical size of the QR
codes and the brightness of the background of the QR
codes.

Figure 3.13: Loss of QR code quality in camera images

3.6 QR Code Readability 57

3.6.1 Test Arrangement

For the measurements of the QR codes a specific test
arrangement is used. To some extent the measurement
results are influenced by these settings, but since common
hardware with default configurations is used for these
measurements, it is expectable that these results are similar
to the results of most other settings.

The QR codes for the measurements always contain All QR codes for the
measurements have
the same content.

33 alphanumeric characters and they are created with the
highest error correction level. In the brightness measure-
ments the QR codes always have a physical size of 5.5 cm
side length. The side length measurements always use
printed QR codes with a brightness value of 100%.

For the software the ZXing [ZXing authors, 2007] li-
brary in version 3.2.1 is used. The webcam is used
with default settings and a resolution of 640 x 480 pixels.
All measurements are taken in front of a white background.

In the measurements the maximum readable distance
is measured. This value represents how likely it is that the
measured QR code is detected correctly and because of
that it is related to the readability of the QR code.

In order to measure this maximum readable distance
value the QR code is roughly placed in the center of the
camera image at a large distance and it is slowly moved
towards the webcam. As soon as the software detects
the QR code in the camera image the current distance of
the QR code to the webcam is measured. Each setting is
measured twice to compute average values.

In figure 3.14 a scheme of the test arrangement is pre-
sented. Figure 3.15 shows the image of the webcam in this
test arrangement.

58 3 Own Work

Figure 3.14: Scheme of the test arrangement
Includes icons from Font Awesome [Gandy, 2012]

Figure 3.15: Webcam image of the test arrangement

3.6.2 Measurement Results

The measurement results are shown in figures 3.16 and
3.17. A value of 0.0 cm for the maximum readable distance
indicates that this QR code is not readable at all. Based on
these results a brightness of 90% and a side length of 7.0 cm
are chosen for the generated QR codes of the FabQR web
service. With the blank space of the frame around the gen-
erated QR codes they have a total side length of 8.3 cm.

3.6 QR Code Readability 59

Figure 3.16: QR code readability: Brightness

60 3 Own Work

Figure 3.17: QR code readability: Side length

3.7 FabQR Web Service 61

3.7 FabQR Web Service

The FabQR web service is a very important piece in the
FabQR software system. It includes several functions
and features to handle the sharing of knowledge, project
documentations and project files on the website of the
FabQR system.

Basically, the web service is consists of two parts. The
first part is public accessible over the Internet. In contrast
to that, the private part can only be accessed with the
correct combination of a username and a password. This
combination is known to the FabQR integration in VisiCut.

The web service offers possibilities for anonymous
uploads of project files to the FabQR system in the public
accessible part of the implementation. These files are
only stored temporarily and they will be deleted after a
configurable period of time. The files are stored in the
private section of the web service and can only be accessed
from VisiCut in the FabLab. For each uploaded file the
users receive a QR code from the website, which is used
for the identification of the file. This procedure ensures
that the anonymous file upload of the web service is not
abused and the whole process is validated by the physical
presence of the users in the FabLab.

In the private part of the FabQR web service FabLab
projects can be published by the FabQR integration in
VisiCut by using the API. For each of these documenta-
tions a new QR code is created as well and all related data
for this project is published and it is public accessible over
the Internet after this step.

All published FabLab projects are displayed on the The structure of the
FabQR website is
similar to a blog.

website of the FabQR system. There are multiple pages,
which show all published projects, and the newest projects
are always shown at the top of the first page.

FabQRa

ahttps://github.com/FroChr123/FabQR

https://github.com/FroChr123/FabQR

62 3 Own Work

All QR codes of the FabQR web service are generated withThe QR code
settings are chosen

according to the
results of the QR

code measurements.

the same settings by PHP QR Code [Dzienia, 2010]. It
needs to be mentioned that the caching option of this
software project must not be disabled because it might
generate wrong QR codes otherwise. The second lowest
error correction level M (15%) is used for all QR codes
because it has an acceptable balance between data capacity
and redundancy. The QR code measurements show that it
is beneficial to use a brightness of 90% and a side length
of 7.0 cm for the QR code settings. Additionally, there is a
frame around the generated QR codes, which is useful to
avoid difficulties in the detection of QR codes as well. With
this frame the QR codes have a side length of 8.3 cm.

With the software project PHPMailer [Matzelle et al.,
2001] the QR codes of the website can be sent as email
attachments. The users can enter their email address and
the website sends the QR code to that email address.
Additionally, there is an option to simply print a QR code
directly in the web browser.

In addition to that, the administrator of the FabQR
software system has access to a website, which can remove
temporary file uploads or already published project doc-
umentations completely. This website is accessible in the
private area of the FabQR web service and an additional
password is needed for the identification of the adminis-
trator of the system.

These are all the different use cases for the users, which are
currently supported by the implementation of the FabQR
web service. Additional details of this implementation
are documented and explained on the next few pages.
Especially the API for publishing projects with the private
section of the FabQR web service is described.

3.7 FabQR Web Service 63

In figure 3.18 an example for the displayed project docu-
mentations on the website of the FabQR implementation is
given.

Figure 3.18: Project documentation on the FabQR website

3.7.1 Installation Scripts

For a simple installation of the FabQR web service a large
bash installation script is used. This bash script is mainly
designed for the Raspberry Pi 2 with the Raspbian [Rasp-
berry Pi Foundation, 2012] operating system, but it can also
work for other operating systems such as Debian [Software
in the Public Interest, Inc., 1993]. The installation script
works interactively and asks the user for several configu-
ration values. It can be used multiple times to reconfigure
the FabQR web service.

64 3 Own Work

The installation script needs to be executed as root user be-
cause it applies severe changes to the system. For example,
all required software packages are installed. A new system
user with the name ”fabqr” is created as well and the home
directory of this user contains most files of the FabQR web
service. The symbolic link fabqr data in this directory
should reference a location in the system, which has a lot
of available storage. The project documentations and the
uploaded files are saved at this location. For the Raspberry
Pi 2 it is recommended to use a USB storage device for this
purpose.

All the required files for the FabQR web service areThe FabQR web
service is installed as

a service in the
system and it starts

automatically with
each system boot.

downloaded and copied to the correct directories in the
system. The required software packages are configured
correctly as well. The installation script sets up a service
script for the FabQR web service and there are bash scripts
to start and stop the FabQR system easily. All these bash
scripts are supposed to simplify the initial setup and the
maintenance of the system.

3.7.2 APIs

Here the APIs of the FabQR web service are explained.
There are two API files, which are supposed to be used by
other programs. In general the PHP [PHP Group, 1995]
API scripts of the FabQR web service use the $ POST and
$ FILES variables to receive data. In the two API files
different requirements for the received data are defined.

The API file api upload file.php in the public ac-
cessible directory of the FabQR web service can be used to
perform temporary file uploads to the system. This API
will process the uploaded file $ FILES["inputFile"].
Currently the allowed file extensions are configured as
SVG and PLF. This API returns the URL to the QR code for
this uploaded file.

3.7 FabQR Web Service 65

In contrast to this API file, the file with the name
api uploadproject.php in the private section of
the FabQR web service has to deal with uploaded project
documentations and because of this the API definition is
comparatively complicated. The list below explains all
possible values for this API.

• Mandatory: $ FILES["inputFile"]
This is the project file. Currently the allowed file ex-
tensions are configured as SVG and PLF. The inte-
grated FabQR client in VisiCut always creates and up-
loads PLF files.

• Mandatory: $ FILES["imageScheme"]
An image in the PNG file format is required here. This
shows the abstract scheme of the project. VisiCut uses
the exported preview image for this purpose.

• Optional: $ FILES["imageReal"]
An optional image in the JPEG file format. JPEG is
used instead of PNG because it usually has a smaller
file size than PNG images for real photos. This is op-
tional because some clients might not have the possi-
bility to create camera images.

• Mandatory: $ POST["name"]
This is the name of the author of the project. If the
chosen license requires to include an attribution of the
author, this information must not be an empty char-
acter string.

• Mandatory: $ POST["email"]
This is the email of the author of the project. If the
chosen license requires to include an attribution of the
author, this information must not be an empty char-
acter string.

• Mandatory: $ POST["licenseIndex"]
The license index acts as an identifier for the chosen
license. It needs to correspond to one of the available
licenses in the configuration file of the FabQR web
service.

66 3 Own Work

• Mandatory: $ POST["projectName"]
The project name must be at least three characters
long. This value is configurable.

• Mandatory: $ POST["tools"]
This is a comma-seperated list of tools, which are in-
volved in the creation of the project. The separator
value for the list can be changed in the configuration.
New or unknown tools are supported for this infor-
mation as well. In VisiCut the laser cutter is always
selected for this information.

• Mandatory: $ POST["description"]
The description of the project must never be an empty
character string.

• Mandatory: $ POST["location"]
The location for the project always needs to be pro-
vided and an empty character string is not allowed.

• Optional: $ POST["lasercutterName"]
The name of the laser cutter model can be used op-
tionally. The FabQR integration in VisiCut deter-
mines and sends this information automatically.

• Optional: $ POST["lasercutterMaterial"]
This is a character string, which describes the used
material for the laser cutter. The name and the thick-
ness of the material should be mentioned. The FabQR
integration in VisiCut determines and sends this in-
formation automatically.

• Optional: $ POST["references"]
The referenced URLs of the project are sent as comma-
separated list. The separator value for the list can be
changed in the configuration. The integrated FabQR
client in VisiCut mentions other already published
project files in this information, which are imported
with QR codes into VisiCut and are used for the cre-
ation of the new uploaded project.

3.7 FabQR Web Service 67

3.7.3 Project IDs

In the FabQR web service public and private project IDs Each temporary file
upload and published
project is identified
by a project ID.

are used. The public project IDs are used for the identifi-
cation of published projects. Private project IDs are used
for temporary file uploads. Exactly seven alphanumeric
characters are used in a project ID.

In total there are 36 possibilities for each position be-
cause a number (0 to 9) or an alphabetical character (a
to z) can be chosen. This solution uses the available
alphanumeric character set of the QR codes efficiently and
it does not require case sensitive file paths in the operating
system. This is useful because it allows the FabQR web
service to run on other machines with other operating
systems as well. Each project ID is generated randomly
and in total 367 = 78,364,164,096 project IDs are available.

3.7.4 Data Representation

The received and processed data needs to be stored and
represented in the FabQR web service. For this purpose
basically two similar types of data representations are
used: XML and XHTML (Extensible Hypertext Markup
Language).

XML is often used for the representation of data and
many different software projects support the processing of
XML files. Because of these reasons XML is used for the
index files of the public and private section of the FabQR
web service. Both projects.xml files use the same
structure and they store the most important data of all
available projects in the respective area of the FabQR web
service. In this structure the main node contains the URL
and it describes its own area in the FabQR web service with
the words ”public” or ”private”. For each project node the
id, name, location and creation timestamp are stored.

68 3 Own Work

XHTML is a combination of XML and HTML (HypertextXHTML combines
the advantages of

XML and HTML.
Markup Language). HTML is the default markup language
for the creation of websites. XHTML is very useful because
it combines the advantages of XML with the features of
HTML. This means that XHTML is able to define a web-
site and it can be processed by common software for the
processing of XML files. Because of these reasons XHTML
is used to store and represent the data of the project docu-
mentations in the FabQR web service.

3.7.5 URL Structure

In the FabQR web service a special structure for the URLs is
used and HTTP redirects are involved in this. This special
structure of the URLs reduces the amount of characters,
which need to be stored in the QR codes of the web service.

There are two types of markers in the URLs. These markers
are currently defined in such a way that the marker /d/ in
the URL indicates a download of a published project file
and the marker /t/ refers to the download of a temporary
file.

The first set of redirection rules is defined in the con-
figuration files of the Apache HTTP Server [Apache
Software Foundation, 1995]. For example, these redirection
rules change the suffix of the requested URL /d/1234567
for the exemplary project ID 1234567 to the new suffix
/redirect.php?marker=d&projectId=1234567.

Such a redirect.php file exists for the public and
the private part of the FabQR web service implementation.
In these files the second stage of redirects is performed.
Basically, the redirect implementation in these files is able
to find the uploaded project file and the final redirect leads
directly to this requested file.

3.7 FabQR Web Service 69

3.7.6 Security

Since the FabQR web service is reachable over the Internet,
several security issues and the abuse of the system need
to be considered in the security of the system. The system
must be able to detect unusual behavior of users or very
large amounts of requests and it must react appropriately
to it.

In the FabQR installation script the software package
fail2ban [Jaquier, 2004] is installed. In general fail2ban is
able to analyze different log files and as soon as threshold
values are passed new rules for the software firewall of
the system are created. Usually the thresholds are defined
by a maximum limit for requests per time for a specific
IP (Internet Protocol) address and with these thresholds
unusual or abusive behavior is detected. If such behavior
is detected, the corresponding IP address of that computer
will be blocked in the software firewall for a specific
amount of time to protect the FabQR web service.

For the FabQR web service five log files are protected SSH is often used to
access the command
line of other systems
remotely.

with fail2ban rules: SSH (Secure Shell) logs, Apache access
logs, Apache error logs, FabQR temporary file upload logs
and FabQR email logs. The latter two log files are created
by FabQR itself to avoid abusive behavior in the context of
these features of the system. The fail2ban rules for these
log files provide a basic security for the system.

In addition to that the other software packages, which are
required for the FabQR software system, are configured
for an increased security as well. Since the project files in
the context of FabQR are usually smaller than 1 MB, the
configured maximum upload size of 10 MB does not in-
terfere with the proper functioning of the FabQR software
system and it provides additional security. Furthermore,
the software packages are configured in such a way that
no version numbers of the installed software packages are
sent over the Internet. This makes it more difficult to attack
the system by using version specific security issues of the
installed software packages and the security of the system
is increased.

70 3 Own Work

As already mentioned earlier, the private part of the FabQR
web service is protected with a HTTP authentication. Since
the authentication details need to be known for VisiCut in
the FabLab, the username and the password need to be
stored on this public accessible computer. This circum-
stance is not a big issue for the security at all because this
protection is mainly supposed to protect against malicious
requests from all over the Internet.

Although all these measures provide a basic securityAdditional security
measures can be

applied to increase
the security of the

system.

for the FabQR software system, it is of course not able to
replace a full-fledged security concept. Several advanced
security measures can be applied as well. For example,
the configuration of SSH keys for remote command line
logins and a decent network configuration can additionally
improve the security of the system a lot.

3.7.7 Projector Support

In the FabQR web service the support for the pro-
jector images is included as well. The API file
api pngdisplay.php in the private section of the
FabQR web service receives and processes the relevant
input data for this purpose.

In this script the uploaded file $ FILES["data"] is
checked for data and an image in the PNG file format is
expected here. This file needs to be copied to a configurable
file path, which is frequently accessed by a process to dis-
play the PNG image. Therefore, file locking mechanisms
are used again to avoid read and write conflicts. For the
file locking the function flock is sufficient in this context.

The program, which displays the PNG image, is im-
plemented in the file fabqr framebuffer png.cpp.
This program expects two arguments, of which the first
one is a file path to the framebuffer and the second one
describes the file path to the input PNG image. The library
LodePNG [Lode Vandevenne, 2005] is used for the fast
decoding of the PNG image. The PNG image is decoded in
the RGBA color format with 8 bits for each channel.

3.7 FabQR Web Service 71

For the Raspberry Pi 2 with the Raspbian operating sys- The PNG data is
directly written into
the framebuffer of the
system.

tem the pixel data is directly written into the specified
framebuffer of the system. With the default settings
the framebuffer /dev/fb0 refers to the HDMI (High-
Definition Multimedia Interface) output of the Raspberry
Pi 2. A projector can be connected to this output.

There are three main issues, which need to be solved
to write raw image data correctly into the framebuffer of
the system.

First of all, the framebuffer has a specific color for-
mat. For the Raspberry Pi 2 the framebuffer has a RGB565
color format, which means that 5 bits are spent for the
red and blue channels and 6 bits are used for the green
channel. The program needs to convert the pixel data
from the decoding color format of the PNG image into this
different color format of the framebuffer.

Other system processes modify the framebuffer as well. In
order to display the PNG image correctly the automatic
display standby feature and the blinking of the cursor in
the command line are disabled by the installation script of
the FabQR software system.

The raw pixel data is written into the framebuffer line
by line. The width and the height of the framebuffer need
to be known to display the image correctly. Although the
width of the framebuffer is configured, the framebuffer
might have some additional virtual space at the end of
each line for different resolutions. This is the reason why a
virtual and a real width value are used in this context. The
virtual width value is always greater than or equal to the
real width value. For each right end of a line the difference
between these two values is filled up with empty black
pixels to display the PNG image correctly.

73

Chapter 4

Evaluation

In the first part of this chapter the System Usability Scale
is explained. Afterwards the results of the evaluation are
presented.

4.1 System Usability Scale

For the evaluation of the FabQR software system the The System Usability
Scale quantifies the
usability of a system.

System Usability Scale [Brooke, 1996] is used. The System
Usability Scale is a quick, simple, efficient and robust
method for the measurement of the usability of a system.

Brooke [1996] mentions that the usability of a system
is always strongly connected to the context, in which the
system is actually used. Additionally, complex and full-
fledged questionnaires with many items quickly lead to
frustration for the participants, which is the reason why the
System Usability Scale only consists of ten items. By using
a high-contrast order of questionnaire items the System
Usability Scale tries to prevent that the participants do not
really think about their answers. Different aspects of the
usability of a system are covered by the System Usability
Scale. The final score is calculated from the answers of the
participants and can range from 0 to 100 and a score of 100
denotes the best possible result.

74 4 Evaluation

4.2 Results

Here the results of the user study are presented and it is
checked, whether the requirements of the software system
are fulfilled.

4.2.1 User Study

Since the FabLab is used by a variety of people with
different backgrounds and abilities, the final question-
naire includes some questions regarding the personal
background and experience of each participant. This infor-
mation can be used to find possible relations between the
calculated System Usability Scale value and the personal
information of each participant. The raw data of the user
study and the unmodified questionnaire are shown in
appendix C.

In table 4.1 the final results for the participants P1 toIn total twelve people
participated in the

user study.
P12 of the user study are presented. The figures 4.1 and 4.2
show the questionnaire with the corresponding collected
data.

Participant System Usability Scale
P1 87.5
P2 62.5
P3 80.0
P4 27.5
P5 75.0
P6 72.5
P7 80.0
P8 82.5
P9 80.0
P10 72.5
P11 75.0
P12 55.0

Table 4.1: System Usability Scale results

4.2 Results 75

Figure 4.1: User study page 1 with data

76 4 Evaluation

Figure 4.2: User study page 2 with data

4.2 Results 77

With these values an average System Usability Scale of
70.83 is calculated. According to Bangor et al. [2009] the
interpretation of this value is located a little below the
adjective good and it is in the range of acceptable System
Usability Scale results.

It is noticeable that the System Usability Scale rating Participant P4 is an
outlier in the
datasets.

of participant P4 is much lower than the ratings of all
other participants of the user study. Without this result the
average System Usability Scale would be 74.77, which is of
course a better value in comparison to the original average
value.

A possible explanation of this result can be found in
the personal background of participant P4 in table C.1. In
contrast to all other participants, participant P4 strongly
disagrees with QR codes in general. Since the FabQR
system is based on the usage of QR codes, this result might
indicate that people without any prior experience with QR
codes can have some trouble with the FabQR system.

Additionally, some of the FabLab visitors and user
study participants were recognizably in a hurry and of
course this circumstance can have some influences on the
quality of the answers of the participants in general.

Participant P4 also mentioned that the user study should
have some outliers in the datasets because people might
think that the user study would have been faked otherwise.
This statement was probably caused by a combination of
the previously mentioned aspects. Because of the result of
participant P4 and this statement the validity of the System
Usability Scale answers of this participant is in general
questionable.

In figure 4.1 the average values and the median val-
ues for the collected datasets of the first page of the
questionnaire are shown. It is noticeable that most of the
answers are located in the agree section for all question-
naire items on this page. Nearly all participants strongly
agreed on the importance of sharing FabLab projects with
other users of the FabLab community.

78 4 Evaluation

The average values and the median values for the gath-Visualizations of
System Usability

Scale datasets are
often similar to

zigzag patterns.

ered datasets of the second page of the questionnaire are
depicted in figure 4.2. The visualization of these values
looks like a zigzag pattern. This is caused by the structure
and the order of the System Usability Scale questionnaire
items and for a positive final score the zigzag pattern is
supposed to look exactly like this. In the System Usability
Scale each questionnaire item is followed by an opposing
questionnaire item, which leads to such a zigzag scheme.
The order of the spikes in that zigzag pattern determines if
the result is negative or positive.

There is a huge difference between the average and
the median value for the first questionnaire item of the
System Usability Scale. This means that there are many
different answers of the participants for this questionnaire
item, which asks the participants, if they would like to use
the FabQR system frequently.

4.2.2 Requirements

This is the part of the evaluation, which deals with the re-
quirements of the FabQR software system. It needs to be
verified that all mentioned requirements are fulfilled.

• Requirement R1: Usability
The System Usability Scale can be used to quantify
the usability of a system. With a final result of 70.83
in the user study it is shown that the system has an
acceptable usability. Previously it was already men-
tioned that it might make sense to ignore the outlier
in the collected datasets. Without the outlier the final
System Usability Scale shows a final result of 74.77,
which is even better.

4.2 Results 79

• Requirement R2: High performance
Since the Raspberry Pi 2 always has the same hard-
ware specifications for the performance of the system,
it can be expected that the results for the performance
do not vary a lot for all software parts, which run on
the Raspberry Pi 2. As already explained earlier, the
response time for the processed camera images can
range from several milliseconds to roughly 100 mil-
liseconds, which mainly depends on the configured
resolution. For the whole system this processing time
is fast enough to feel interactive. In contrast to that,
the performance of the QR code processing time in
VisiCut [Oster, 2011] highly depends on the system
specifications. The performance on the slowest sys-
tem, which was used in the development of FabQR,
was still acceptable.

• Requirement R3: Incorporation of QR codes
The implementation of FabQR successfully intro-
duces QR codes into the FabLab workflow. This re-
quirement is fulfilled by the software system.

• Requirement R4: Anonymous service usage
No login is required for the FabQR system. The users
and the projects are authorized by physical presence
in the FabLab.

• Requirement R5: Flexibility: Data representation
In the FabQR system the project data is stored as
XHTML data and the index files are saved as XML
data. Since XHTML is fully compatible with the XML
standard, the flexibility in the representation of data
is given and this requirement is met by the FabQR
software system.

• Requirement R6: Flexibility: API
The FabQR system itself uses its API to deal with the
different tasks. The system does not require a specific
client and other software applications can easily inter-
act with the provided API as well, which adds a lot of
flexibility to the whole system.

80 4 Evaluation

• Requirement R7: System customization
Since FabQR is distributed as open source software,
nearly all parts of the software can be modified and
customized. Additionally, installation scripts and
configuration files are provided for a simple installa-
tion and reconfiguration of the system.

• Requirement R8: Raspberry Pi 2
The FabQR implementation is able to run on a Rasp-
berry Pi 2. The software project visicamRPiGPU even
needs to run on a Raspberry Pi 2 to provide hardware
accelerated computations for huge performance im-
provements.

81

Chapter 5

Summary and Future
Work

In this chapter the results of the bachelor thesis are summa-
rized. Additionally, an outlook for possible developments
in the future is given.

5.1 Summary and Contributions

First of all, the problematic situation of FabLabs regarding
the lack of sharing knowledge and project documentations
is explained. This unpleasant circumstance is the reason
why the concept of the FabQR software system is devel-
oped. With the properties and characteristics of the differ-
ent types of related work the requirements for the FabQR
implementation are defined and it is explained why the
currently available platforms for sharing knowledge and
project documentations in the FabLab community are often
not very well suited and it is outlined why these systems
have some disadvantages. A documentation for the imple-
mentation of the FabQR system is created as well. The pos-
itive results of the evaluation show that the FabQR system
has the potential to solve these issues in the FabLab com-
munity by incorporating QR codes for the identification of
project data into the workflow of FabLabs.

82 5 Summary and Future Work

5.2 Future Work

There are several additional ideas and features, which
could be implemented in the FabQR software system in the
future.

5.2.1 Performance Improvements

In VisiCut [Oster, 2011] several graphics operations need to
be performed for the FabQR system. Especially the detec-
tion of QR codes, which have a rotation of roughly 45, 135,
225 or 315 degree is currently comparatively inaccurate and
has a low performance because the required graphics oper-
ations for the detection of these QR codes are implemented
with native Java operations at the moment. These graphics
operations could be performed with the graphics process-
ing unit of the system for huge performance improvements.

In this context the patterns for the detection of multi-
ple QR codes in an image could be optimized as well.
The current solution for this just chooses different areas
of the image with some overlap and it scans these areas
for a single QR code. For this algorithm there are many
possibilities to tune the quality of the detection and the
performance.

5.2.2 Projector Setup

The FabQR system includes software support for a pro-
jector setup as well. In this setup a projector is mounted
right above the laser cutter and the current preview of the
laser cutter schemes can be projected right onto the mate-
rial, which is supposed to be cut with the laser cutter. This
setup has special requirements for the hardware and par-
ticularly the ambient light. In future developments such a
projector setup could be created and evaluated.

5.2 Future Work 83

5.2.3 Stand-alone FabQR Client

Currently the only client for FabQR is integrated in VisiCut
[Oster, 2011]. A stand-alone FabQR client could be de-
veloped because the FabQR system supports a variety of
clients due to its APIs, which can be easily used by other
software systems. Currently the FabQR system is mainly
developed for the use case of the laser cutter, but such a
stand-alone client could support other machines and tools
as well.

5.2.4 FabQR Network

FabQR could be extended in such a way that multiple in-
stances of the FabQR system can exchange data with each
other. A network of multiple FabLabs could be established
with that feature. Additionally, it adds redundancy to the
system because the data of a project could be stored multi-
ple times in the network. This feature can work similarly to
peer-to-peer file sharing networks.

5.2.5 Website Features

Currently the website of the FabQR system provides a ba-
sic support for displaying, uploading and downloading
project data. Additionally, QR codes can be sent as email
attachments and they can be printed directly. This basic set
of features can be extended by new features such as an im-
proved style of the website or a search functionality for the
projects.

84 5 Summary and Future Work

5.2.6 Long-term Evaluation

Introducing a new system into already existing workflows
and habits of users is always difficult because of various
reasons. In the evaluation, which was presented previously,
it was only checked, whether the system has an acceptable
usability. Although the results look promising, this does
not automatically imply that the FabQR software system
will be used frequently by several FabLabs. Because of
these reasons a long-term evaluation could be created to
examine, if the system is actually used.

85

Appendix A

First System Draft and
Concept

The final idea and concept of the FabQR software-
system evolved in many discussions and conversations and
changed a lot since the first system draft and concept,
which is depicted in figure A.1.

Figure A.1: First system draft and concept

87

Appendix B

QR Code Measurements

Several measurements of QR codes are taken to adjust
the parameters of the generated QR codes correctly. The
tables contain the raw measurement data. Each setting is
measured twice and the distances refer to the maximum
readable distance.

These datasets are measured with ZXing [ZXing au-
thors, 2007] in version 3.2.1, 33 alphanumeric characters
and the highest error correction level. A webcam with a
resolution of 640 x 480 pixels is used and the QR codes are
captured in front of a white background.

For the brightness measurements the QR codes al-
ways have a side length of 5.5 cm. For the side length
measurements printed QR codes with a brightness of 100%
are always used. A maximum readable distance value of
0.0 cm denotes that this QR code is not readable at all.

88 B QR Code Measurements

Brightness (%) Distance 1 (cm) Distance 2 (cm)
0 0.0 0.0
5 0.0 0.0
10 0.0 0.0
15 0.0 0.0
20 0.0 0.0
25 33.9 39.9
30 41.8 46.5
35 46.9 48.9
40 56.4 57.8
45 61.6 61.5
50 66.7 66.9
55 66.9 66.6
60 68.6 70.6
65 69.5 69.2
70 72.1 71.8
75 72.2 71.6
80 72.7 73.0
85 72.7 73.5
90 73.1 76.6
95 73.5 74.9
100 77.5 79.9

Table B.1: QR code measurements: Printed

89

Brightness (%) Distance 1 (cm) Distance 2 (cm)
0 0.0 0.0
5 0.0 0.0
10 0.0 0.0
15 0.0 0.0
20 0.0 0.0
25 0.0 0.0
30 9.2 8.9
35 11.8 11.7
40 11.9 11.8
45 14.8 14.6
50 19.1 20.0
55 24.8 23.9
60 26.2 25.9
65 29.1 28.2
70 29.0 30.9
75 37.6 34.1
80 44.4 41.1
85 52.9 52.2
90 53.7 56.2
95 56.4 54.1
100 61.1 59.4

Table B.2: QR code measurements: Smartphone min. brightness

90 B QR Code Measurements

Brightness (%) Distance 1 (cm) Distance 2 (cm)
0 0.0 0.0
5 0.0 0.0
10 15.8 18.7
15 23.7 29.6
20 51.0 51.3
25 58.8 58.0
30 58.4 58.9
35 60.9 61.7
40 61.5 60.2
45 58.4 59.0
50 52.0 54.9
55 51.2 47.4
60 43.6 44.7
65 43.1 42.3
70 28.1 29.1
75 27.2 26.0
80 23.2 24.4
85 21.7 20.3
90 19.1 18.2
95 16.1 17.2
100 15.6 16.1

Table B.3: QR code measurements: Smartphone max. brightness

Side length (cm) Distance 1 (cm) Distance 2 (cm)
2.0 17.6 17.8
4.0 49.5 51.8
6.0 78.8 82.4
8.0 97.0 101.4
10.0 120.4 121.2
12.0 142.8 136.8
14.0 166.2 166.6
16.0 189.6 191.2

Table B.4: QR code measurements: Side length

91

Appendix C

User Study

In the user study the participants were asked to fill out two
pages with questions. The raw collected datasets and the
corresponding questionnaire are shown on the next few
pages.

In table C.1 the participants of the user study and their
answers are depicted. The questionnaire items are num-
bered according to their order in the questionnaire, which
means that Q1 refers to the first item whereas Q18 relates
to the last item. The participants are identified by P1 to P12.

Table C.2 contains additional personal information of
the participants.

The images C.1 and C.2 show the two pages of the
questionnaire.

92 C User Study

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Q1 ++ + ++ + + ++ - ++ + ◦ ◦ ++
Q2 - ◦ ++ + ++ + -- ++ + ◦ ◦ ++
Q3 ++ - + ◦ ++ + ◦ ◦ ◦ - + ++
Q4 ++ + + ◦ ++ + + ◦ ++ - + ++
Q5 + ++ ◦ + ++ ++ ++ - ++ - - +
Q6 ◦ ++ + ◦ ◦ + ++ ++ + - + ++
Q7 ++ ++ ++ + ++ ++ ++ ++ ++ + + ++
Q8 ++ + + -- ++ ++ ++ ◦ ++ + ++ +
Q9 + -- + -- + + - ++ ++ ◦ + +
Q10 - ◦ - ++ - -- - - - - -- ◦
Q11 ++ ◦ + ◦ + -- + ++ ++ + + ◦
Q12 -- - -- ++ - - -- -- - - - -
Q13 + + + - + ++ + + ◦ + + ◦
Q14 - - ◦ + -- ++ -- -- - - - ◦
Q15 ++ + + ◦ + + + + ++ + + -
Q16 -- - -- - - -- -- - - - ◦ ◦
Q17 + + + - + ++ ++ ++ ++ + + +
Q18 -- - -- + ◦ -- - + ◦ - - ◦

Table C.1: User study data

Participant Gender Occupation
P1 Male Student, Other
P2 Male Student
P3 Male FabLab staff
P4 Male Other
P5 Male Other
P6 Male FabLab staff
P7 Female Student
P8 Male Student assistant
P9 Female Student
P10 Male Student
P11 Male Other
P12 Male Student

Table C.2: User study personal data

93

Figure C.1: User study page 1 without data

94 C User Study

Figure C.2: User study page 2 without data

95

Bibliography

Apache Software Foundation. Apache HTTP Server,
1995. Online, accessed: June 3rd, 2015. URL http:
//apache.org/.

Aaron Bangor, Philipp Kortum, and James Miller. Deter-
mining What Individual SUS Scores Mean: Adding an
Adjective Rating Scale. Journal of Usability Studies, 4(3):
114–123, 2009.

Aram Bartholl. Dead Drops, 2010. Online, accessed: April
28th, 2015. URL https://deaddrops.com/.

BitTorrent, Inc. Sync, 2015. Online, accessed: May 1st, 2015.
URL https://www.getsync.com/.

John Brooke. SUS - A quick and dirty usability scale. In
P. W. Jordan, B. Weerdmeester, A. Thomas, and I. L.
Mclelland, editors, Usability Evaluation in Industry, pages
189–194, London, United Kingdom, 1996. Taylor & Fran-
cis.

Center for Bits and Atoms, Massachusetts Institute of Tech-
nology. The Fab Charter, 2012. Online, accessed: July
3rd, 2015. URL http://fab.cba.mit.edu/about/
charter/.

Creative Commons. Creative Commons, 2001.
Online, accessed: July 9th, 2015. URL https:
//creativecommons.org/.

DENSO ADC. QR Code R© Essentials, 2011.

Dominik Dzienia. PHP QR Code, 2010. Online, ac-
cessed: May 1st, 2015. URL http://phpqrcode.
sourceforge.net/.

http://apache.org/
http://apache.org/
https://deaddrops.com/
https://www.getsync.com/
http://fab.cba.mit.edu/about/charter/
http://fab.cba.mit.edu/about/charter/
https://creativecommons.org/
https://creativecommons.org/
http://phpqrcode.sourceforge.net/
http://phpqrcode.sourceforge.net/

96 Bibliography

Fab Foundation. fablabs.io, 2014. Online, accessed: July
4th, 2015. URL https://www.fablabs.io/.

Dave Gandy. Font Awesome, 2012. Online, accessed: July
4th, 2015. URL http://www.fontawesome.io/.

Tim Hemig. FabCenter - Webapplication to support users
and administrators of FabLabs with creating and sharing
documentation, 2013. Diploma thesis, RWTH Aachen
University, Aachen. Online, accessed: May 5th, 2015.
URL https://hci.rwth-aachen.de/materials/
publications/hemig2013a.pdf.

Jaquier, Cyril. fail2ban, 2004. Online, accessed: July 10th,
2015. URL http://www.fail2ban.org/.

Khronos Group. OpenMAX, 2004. Online, accessed:
June 3rd, 2015. URL https://www.khronos.org/
openmax/.

Peter Kieseberg, Manuel Leithner, Martin Mulazzani, Lind-
say Munroe, Sebastian Schrittwieser, Mayank Sinha, and
Edgar R. Weippl. QR Code Security. In Fourth Inter-
national Workshop on Trustworthy Ubiquitous Computing
(TwUC 2010), 2010.

Knova. TagMyDoc, 2015. Online, accessed: May 2nd, 2015.
URL http://www.tagmydoc.com/.

LiveQoS. SuperBeam, 2014. Online, accessed: May 1st,
2015. URL http://superbe.am/.

Brent R. Matzelle, Andy Prevost, Jim Jagielski, and Mar-
cus Bointon. PHPMailer, 2001. Online, accessed: June
28th, 2015. URL https://github.com/PHPMailer/
PHPMailer.

Bakhtiar Mikhak, Christopher Lyon, Tim Gorton, Neil Ger-
shenfeld, Caroline McEnnis, and Jason Taylor. Fab lab:
An alternate model of ict for development. In 2nd In-
ternational Conference on Open Collaborative Design for Sus-
tainable Innovation, 2002.

Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. In-
teractive Construction: Interactive Fabrication of Func-
tional Mechanical Devices. In Proceedings of the 25th An-
nual ACM Symposium on User Interface Software and Tech-

https://www.fablabs.io/
http://www.fontawesome.io/
https://hci.rwth-aachen.de/materials/publications/hemig2013a.pdf
https://hci.rwth-aachen.de/materials/publications/hemig2013a.pdf
http://www.fail2ban.org/
https://www.khronos.org/openmax/
https://www.khronos.org/openmax/
http://www.tagmydoc.com/
http://superbe.am/
https://github.com/PHPMailer/PHPMailer
https://github.com/PHPMailer/PHPMailer

Bibliography 97

nology, UIST ’12, pages 599–606, New York, NY, USA,
2012. ACM.

Anu Määttä and Peter Troxler. Developing open & dis-
tributed tools for Fablab project documentation. In Se-
bastian Hellmann, Philipp Frischmuth, Sören Auer, and
Daniel Dietrich, editors, Proceedings of the 6th Open Knowl-
edge Conference, OKCon 2011, Berlin, Germany, June 30 &
July 1, 2011., volume 739 of CEUR Workshop Proceedings.
CEUR-WS.org, 2011.

Leonhard Nobach. Kangee, 2010. Online, accessed: May
2nd, 2015. URL http://getkangee.com/.

ObjectPlanet, Inc. PngEncoder, 1998. Online, accessed:
June 3rd, 2015. URL http://objectplanet.com/
pngencoder/.

openFrameworks Community. openFrameworks, 2004.
Online, accessed: June 3rd, 2015. URL http://
openframeworks.cc/.

Thomas Oster. VisiCut, 2011. Bachelor thesis, RWTH
Aachen University, Aachen. Online, accessed: May 3rd,
2015. URL http://hci.rwth-aachen.de/visicut.

Thomas Oster. VisiCam, 2013. Online, accessed: May
3rd, 2015. URL https://github.com/t-oster/
VisiCam.

PHP Group. PHP, 1995. Online, accessed: June 3rd, 2015.
URL http://php.net/.

Raspberry Pi Foundation. Raspberry Pi, 2008. On-
line, accessed: June 3rd, 2015. URL https://www.
raspberrypi.org/.

Raspberry Pi Foundation. Raspbian, 2012. Online, ac-
cessed: June 3rd, 2015. URL https://www.raspbian.
org/.

Software in the Public Interest, Inc. Debian, 1993. Online,
accessed: June 3rd, 2015. URL https://www.debian.
org/.

Peter Troxler and Harmen Zijp. A Next Step Towards
FabML: A narrative for knowledge sharing use cases in

http://getkangee.com/
http://objectplanet.com/pngencoder/
http://objectplanet.com/pngencoder/
http://openframeworks.cc/
http://openframeworks.cc/
http://hci.rwth-aachen.de/visicut
https://github.com/t-oster/VisiCam
https://github.com/t-oster/VisiCam
http://php.net/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspbian.org/
https://www.raspbian.org/
https://www.debian.org/
https://www.debian.org/

98 Bibliography

Fab Labs. International Fab Lab Association, the 9th Interna-
tional Fab Lab Conference, Fab 9, Research Stream, 2013.

Lode Vandevenne. LodePNG, 2005. Online, accessed: June
3rd, 2015. URL http://lodev.org/lodepng/.

Karl D.D. Willis, Cheng Xu, Kuan-Ju Wu, Golan Levin, and
Mark D. Gross. Interactive Fabrication: New Interfaces
for Digital Fabrication. In Proceedings of the Fifth Interna-
tional Conference on Tangible, Embedded, and Embodied In-
teraction, TEI ’11, pages 69–72, New York, NY, USA, 2011.
ACM.

Patricia Wolf, Peter Troxler, Pierre-Yves Kocher, Julie Har-
boe, and Urs Gaudenz. Sharing is Sparing: Open Knowl-
edge Sharing in Fab Labs. Journal of Peer Production, 5,
2014.

ZXing authors. ZXing, 2007. Online, accessed: May 1st,
2015. URL https://github.com/zxing/.

http://lodev.org/lodepng/
https://github.com/zxing/

99

Index

ABGR . 31
Apache HTTP Server . 15, 68–69
API . 21, 25, 64, 79

Color Format . 31, 71
Concept . 5–7
CPU . 28
Creative Commons . 52

Dead Drops . 10
Debian . 15, 63
Digital Fabrication . 14

Evaluation. .73–80

FabLab . 1–3
fablabs.io . 3
FabML . 20
FabQR Web Service . 26–28, 61–71
fail2ban . 69
File Locking . 36, 39, 70
Future Work . 82–84

GPU . 28
GPU Memory Split . 36
GUI . 41, 54

HDMI . 71
HTML . 68
HTTP . 50, 70

Installation Scripts . 63–64, 80
Instructables . 22
Interactive Fabrication . 14

LodePNG . 16, 70

Marker Detection . 26–29, 31, 38
Memory Leak . 40

100 Index

OMX . see OpenMAX
openFrameworks . 15, 28, 37
OpenGL . 29–31
OpenMAX . 16, 31–34

PCB . 2
Perspective Correction . 26–31, 33
PHP . 15, 61–71
PHP QR Code . 16, 62
PHPMailer . 16, 62
PLF . 17
PNG . 16, 70
PngEncoder . 16, 51
Projector Support .50–51, 70–71, 82

QR Code . 11–14, 24, 43–49, 79
QR Code: Error Correction Level . 12, 62
QR Code: Measurements . 57–60, 87–90
QR Code: Readability . 55–60

Raspberry Pi . 15, 25, 80
Raspbian . 15, 63
Requirements . 24–25, 78–80
RGB . 31, 71
RGBA . 31

Security . 69–70
Signal Handler . 37
SSH. 69
Summary . 81
synchronized Java Keyword . 40, 54
System Usability Scale . 73–78

Thingiverse . 22

URL . 26, 68
User Study . 74–78, 91–95

VisiCam . 18, 26–28, 38–40
visicamRPiGPU . 26–37
VisiCut . 17, 26–28, 41–54

XHTML . 67, 79
XML. 20, 24, 67, 79

YouMagine . 22

ZXing . 16, 43–47

Typeset July 12, 2015

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	FabLabs
	Motivation
	Concept
	Thesis Overview

	Related Work
	Anonymous File Sharing
	Dead Drops

	QR Codes
	Structure of QR Codes
	Practical Use

	Combination of QR Codes and File Sharing
	Interactive Fabrication
	Related Hardware and Software
	Raspberry Pi
	openFrameworks
	OpenMAX
	PHP QR Code
	ZXing
	PNG libraries
	PHPMailer
	VisiCut and VisiCam

	Sharing of Project Documentations and Knowledge
	FabML
	Comparison of Platforms

	Own Work
	Requirements
	System Overview
	visicamRPiGPU
	OpenGL Perspective Correction
	OpenMAX Modules
	visicamRPiGPU Arguments
	GPU Memory Split
	File Locking
	Signal Handler
	Settings Header File

	VisiCam Modifications
	visicamRPiGPU Integration
	Other VisiCam Improvements

	VisiCut Modifications
	Automatic VisiCam Images
	Webcam Support
	QR Code Detection
	File Management
	Projector Support
	FabQR Upload
	GUI Changes
	Concurrent List Access

	QR Code Readability
	Test Arrangement
	Measurement Results

	FabQR Web Service
	Installation Scripts
	APIs
	Project IDs
	Data Representation
	URL Structure
	Security
	Projector Support

	Evaluation
	System Usability Scale
	Results
	User Study
	Requirements

	Summary and Future Work
	Summary and Contributions
	Future Work
	Performance Improvements
	Projector Setup
	Stand-alone FabQR Client
	FabQR Network
	Website Features
	Long-term Evaluation

	First System Draft and Concept
	QR Code Measurements
	User Study
	Bibliography
	Index

