
by

	 Francis Engelmann

 FabScan
 Affordable

 3D Laser Scanning of
 Physical Objects 	

 Bachelor’s	 Thesis	 at	 the
 Media	 Computing	 Group

 Prof.	 Dr.	 Jan	 Borchers
 Computer	 Science	 Department
 RWTH	 Aachen	 University

Thesis	 advisor:

Prof.	 Dr.	 Jan	 Borchers

 Second examiner:
 Prof. Dr.-Ing. Kowalewski

 Registration date: Sept 02th, 2011
 Submission date: Sept 30th, 2011

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, July2011
Francis Engelmann

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 Thesis Overview 2

2 Related work 5

2.1 3D Scanning Approaches 5

2.1.1 Contact Based 5

2.1.2 Non-contact Based 6

Passive scanning 6

Active Scanning 7

2.2 Comparing Available 3D Scanners 8

2.2.1 David Scanner 8

vi Contents

2.2.2 MakerBot 3D Scanner 9

2.2.3 3D Photography on your Desk 9

2.2.4 Maker Scanner 10

2.2.5 Microsoft Kinect 11

2.3 Camera Calibration and Triangulation 11

2.3.1 The pinhole camera model and cam-
era calibration using OpenCV 11

Intrinsic properties 12

Lens distortions 12

Extrinsic properties 13

2.3.2 Basics of Triangulation 13

2.4 Surfaces from Point-Clouds 14

3 Own work 17

3.1 Design and Requirements 17

3.1.1 Comparing Scanners 18

3.2 Hardware Prototypes 19

3.2.1 First Hardware Prototype 19

Discussion 20

3.2.2 Second Hardware Prototype 21

Discussion 22

3.2.3 Third Hardware Prototype 24

Discussion 25

Contents vii

3.2.4 PCB - Arduino Shield 27

3.3 Software . 28

3.3.1 Communication Protocol 28

3.3.2 Implementing Triangulation 29

3.3.3 From Point-Clouds to Printable Files . 31

3.3.4 Point-Cloud File Formats 33

PTS . 33

PLY . 33

PCD 34

3.4 GUI and Functionality 34

3.4.1 User Interface Prototypes 34

3.4.2 Basic Functionality and Advanced
Settings 36

Performing a scan 36

Selecting view mode 36

Selecting the scanning resolution . . . 36

3.5 Better Scanning Results 37

Setting the stepper motors resolution 38

3.5.1 Laser Threshold 38

3.5.2 Lower Limit 39

4 Evaluation 41

4.1 Affordability 41

viii Contents

4.2 Ready-To-Print 42

4.3 360� Scan . 42

4.4 Portability . 42

4.5 User Studies 43

4.5.1 Suggestions And Feedback From The
Users 44

4.6 Scanner Specifications 45

4.6.1 Accuracy 45

4.6.2 Resolution 46

5 Summary and future work 49

5.1 Summary and Contributions 49

5.2 Future Work 50

5.2.1 Scheimpflug principle 50

5.2.2 3D Replicator 50

5.2.3 MeshLab Plugin 50

5.2.4 Improve Hardware 50

5.2.5 Intelligent Scanning 51

5.2.6 Support for more Open Standards . . 51

A SUS - A quick and dirty usability scale 53

B Schematics for the Laser Cutter Parts 55

C Arduino FabScan Shield Schematic and Board

Contents ix

Layout 57

D Schematics for the 3D Printer Parts 59

E Digital Content 61

Bibliography 63

Index 67

xi

List of Figures

2.1 David Scanner 8

2.2 Maker Bot 3D Scanner 9

2.3 3D Photography on your desk 10

2.4 Maker Scanner 10

2.5 The pinhole camera model 12

2.6 Triangulation model 14

2.7 Powercrust illustrated 15

3.1 Physical objects to test prototypes. 19

3.2 Setup of the first prototype 20

3.3 Scanning results from first prototype 21

3.4 Setup of the second prototype 22

3.5 Scanning results of second prototype 23

3.6 Setup of the third prototype 24

3.7 Minimizing the obscured areas 26

3.8 Arduino and the shield 27

xii List of Figures

3.9 FabScan Communication Protocol 29

3.10 2D line-line intersection 30

3.11 First paper prototype 35

3.12 FabScan compared to Photo Booth 35

4.1 From original to Replica 42

4.2 Real object compared to replica. 46

A.1 SUS questionnaire 54

C.1 PCB board . 58

C.2 PCB schematics 58

xiii

List of Tables

3.1 Summary of the compared scanners 18

3.2 The different available scanner resolutions . 37

4.1 Summary of the compared scanners 41

4.2 Results of the SUS user questionnaire 44

xv

Abstract

This thesis presents a hardware and software system for digitalizing the shape and
color of physical objects under known environmental conditions.

The proposed system is conceived as a ”Do-It-Yourself 3D Laser Scanner”.
Anyone with enough interest, can built his own FabScan 3D-Scanner. As such, the
project tries to support Gershenfeld’s vision of Personal Fabrication [Ger05].

The setup employs an ordinary webcam, an affordable line laser, two step-
per motors and an Arduino Uno [Uno11]. The FabScan software is implemented
using OpenCV [BK08], the Powercrust algorithm [AC01], C++ and Objective-C.

The software is capable of mapping a colored point-cloud from the object,
transforming the point-cloud into a surface-mesh and converting the surface-mesh
into STL, which is a stereolithography file format used among others for 3D
printing [FF11]. Post processing with additional software, such as MeshLab
[CR08], is no longer needed.

I have discussed the challenges faced during the construction of the different
prototypes, the employed solutions and I am giving an evaluation of the final
prototype.

Finally, the reader is provided with detailed blueprints allowing the replica-
tion of the complete system for less than 130e.

xvi Abstract

xvii

Überblick

In dieser Arbeit beschreibe ich die Hard- und Software eines Systems das der
Digitalisierung von Form und Farbe physikalischer Objekten unter bekannter
Umgebung dient.

Das vorgestellte System ist als ”Do-It-Youself” Projekt gedacht. Jeder mit
genug Interesse, kann seine eigenen FabScan 3D-Scanner nachbauen. Somit
unterstützt das Projekt auch Gershenfelds Vision des Personal Fabrication [Ger05].

Der Aufbau basiert auf einer gewöhnlichen Webcam, einem erschwinglichen
Laser, zwei Schrittmotoren und einem Arduino Uno. Die FabScan Software ist
geschrieben unter Benutzung von OpenCV[BK08], dem Powercrust Algorithmus
[AC01], C++ und Objective-C.

Die Software kann farbige Punktwolken von Objekten erzeugen. Diese Punkt-
wolken können in ein Oberflächen-Mesh umgewandelt werden und schliesslich
als STL exportiert werden. STL ist ein stereolithisches Datei Format welches unter
anderem beim 3D Drucken Anwendung findet. Dies macht die Weiterverarbeitung
mit zusätzlicher Software, wie MeshLab, überflüssig.

Ich diskutiere die Herausforderungen mit denen ich während der Konstruk-
tion der verschiedenen Prototypen konfrontiert war, welche Lösungen ich ge-
funden habe und am Ende wird die Evaluierung des finalen Prototypen vorgestellt.

Schlussendlich werdem dem Leser eine ausführliche Baupläne zum Nachbau
des kompletten Systems für unter 130e bereit gestellt.

xix

Acknowledgements

At this place, I would like to thank Prof. Dr. Jan Borchers and Prof. Dr.-Ing.
Kowalewski for giving me the possibility to do this work. Special thanks go to my
supervisor René Bohne and to Andre Stollenwerk for their constant support and
useful input. I also would like to thank all the people from the FabLab Aachen
for their constructive critique and all the people that took part in the user studies.
Special thanks also to Mihir Joshi for checking the language and spelling of this
thesis.

Thank you!

xxi

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Indian English.

Download links are set off in colored boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/tiki-download wiki attachment.php?file number.file

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?file_number.file

1

Chapter 1

Introduction

“The next phase of the digital revolution will go
beyond personal computation to personal

fabrication.”

—Neil Gershenfeld

The digital revolution will be most successful when
people start organizing themselves into working groups
[MLGG02]. This idea is realized by FabLabs all around
the world: Each FabLab consists of a collection of work-
ing tools like laser-cutters, 3d-printers, milling machines
etc. which allow to design and prototype tools for a wide
range of application fields. A FabLab is an open laboratory,
which means it is not exclusively used by academics. Ev-
ery amateur can use the equipment. Hence the aspect of
usability is of great importance.

The community can us these FabLabs to start ”creating
their own technological tools for finding solutions to their
own problems.”[MLGG02] Right now, the problem is the
following: people have to use highly professional model-
ing software to create a digital representation of their ob-
ject. Whereas sometimes it is way easier to use simple and
known tools (plaster for instance) to model an object. How-
ever, this model needs to be digitalized so it can be further
processed on the computer or even be shared among the
community.

2 1 Introduction

One solution to this problem are 3D scanners. A 3D scan-
ner is a device that creates a digital model of a real world
object by analyzing its shape and color. The field of ap-
plication comprises computer graphics, robotics, industrial
design, medical diagnosis, cultural heritage, multimedia,
entertainment, as well as rapid prototyping and computer-
aided quality control. [WMMW06] [LT09]

There is a variety of approaches to perform 3D scanning,
including structured light, coded light, time of flight etc.
[Bla04] The approach of choice for simple and precise 3D
scanning is triangulation-based laser range scanning which
consists of calculating the intersection of the illuminat-
ing laser beam and the rays projected back to the cam-
era. [WMMW06] This technology is well-known for more
than twenty years [HMK82] [PM83]. In the last couple of
decades, lasers and cameras have become inexpensive. 3D
scanners can now be built with off-the-shelf parts. [LT09]

Although a few non-professional 3D laser scanners al-
ready exist, I will show in section 3.1—“Design and Re-
quirements” that there is much room for improvement,
especially on the software and usability side. I propose
such a low-cost system for 3D data acquisition with in-
tegrated surface-mesh generation and support for ready-
to-print models. The provided software minimizes the
post-processing task which is cumbersome for most novice
users. I will show that it is possible for untrained users to
produce a replica of an object with only a few clicks.

1.1 Thesis Overview

The thesis is organized as follows. In Chapter 2, I provide
an overview off different 3D scanning approaches. A set of
3D scanners is presented and the math behind laser range
scanners is briefly explained. I give a few words on cam-
era calibration and point-cloud to surface-mesh transfor-
mations.
Chapter 3 starts by listing the requirements for the project.
Then I present my soft- and hardware prototypes. Each
prototype is accompanied by a short discussion.

1.1 Thesis Overview 3

In Chapter 4, the final prototype is evaluated. I show that
all the specified requirements were met. Both the usability
of the complete setup and the precision of the scanner are
analyzed.
The thesis concludes with a summary in chapter 5, fol-
lowed by a quick look onto future work.

5

Chapter 2

Related work

This chapter starts by giving an overview of different 3D
scanning approaches, then I throw some light on a number
of available scanners. Later, the focus is put on camera cal-
ibration and depth reconstruction from triangulation. Fi-
nally, the generation of surface-meshes from point-clouds
is discussed.

2.1 3D Scanning Approaches

In this section, I will present a set of different 3D scanning
approaches. 3D scanning can be sub-divided into two main
categories: contact based and non-contact based.

2.1.1 Contact Based
Contact based
scanners are slow
and may harm the
object.

Contact based scanners are in direct contact with the sur-
face of the object to be scanned. A probe is used to esti-
mate the shape by recording the displacement of the probe
as it slides across the solid surface. While effective, such
contact-based methods can alter or even harm fragile ob-
jects. Besides, they require long periods of time to build an
accurate 3D model. [LT09]

6 2 Related work

2.1.2 Non-contact Based
Non-contact based
scanners are fast
and avoid damaging
the object.

Non-contact based scanners can further be sub-divided into
passive and active scanners. While both scanners rely on
one or multiple light sources to reconstruct the shape of
the object, passive scanners do not need to actively con-
trol the illumination source, instead they rely entirely on
ambient light. Scanning without contact allows high speed
scanning while avoiding physically damaging the object,
which is important for instance while replicating antiques.
[GSGC08]

Passive scanning
Stereoscopic
imaging and the
correspondence
problem

The most famous representative of this technique is proba-
bly stereoscopic imaging. In this approach, two cameras are
used to mimic the human visual eye system. Knowing the
position of the cameras it is possible for each camera system
to independently establish an equation of a camera-ray (see
section 2.3.2—“Basics of Triangulation”) corresponding to a
point in space. By calculating the intersection of those re-
sulting two camera-rays, the position of the specified point
can be extracted. This concept can even be extended by
adding more cameras. However, all such passive triangu-
lation methods require correspondences to be found among
the various camera views, which remains an open and chal-
lenging problem [SRDD06], especially when scanning flat
or periodic textures. This problematic is known as the cor-
respondence problem .Shape-from-

silhouette and
shape-from-focus Many alternative passive methods emerged, avoiding the

correspondence problem. [A94] proposes a shape-from-
silhouette algorithm. Another technique, shape-from-focus,
uses the focus of the camera to recover depth. Only objects
close to the plane of focus will appear in sharp contrast,
whereas distant objects are blurred. [NN94] [WN98]

2.1 3D Scanning Approaches 7

Active Scanning
Sensitive to surface
material properties

Active optical scanners avoid the correspondence prob-
lem by replacing one of the two cameras from stereoscopic
imaging with a controlled illumination source, such as a
laser or a projector. In comparison to non-contact and pas-
sive methods, active illumination is often more sensitive to
surface material properties like reflection and absorption.
[LT09] Laser range

scanners and
structured lightUsing a line laser, laser range scanners create a planar sheet

of light, which defines a plane in space. This plane of light
is then mechanically swept across the surface of the object
to be scanned. The depth is perceived by calculating the in-
tersection of this plane with the set of lines passing through
the laser reflection on the surface and the camera’s center
of projection. See section 2.3.2—“Basics of Triangulation”
for further explanations and illustrations. A digital struc-
tured light projector can be used to eliminate the mechani-
cal motion required to translate the laser stripe across the
surface. The projector can display different patterns like
multiple lines at one time, which diminishes the scanning
time [SPSB04]. Problems: occluded

regions and dynamic
scenesWhile effective, laser range scanners and structured light

scanner remain difficult to use if moving objects are present
in the scene. Due to the separation of the light source and
the camera, certain occluded regions cannot be recovered.
This limitation require multiple scans to be merged, further
increasing the data acquisition time. Both laser range scan-
ners and structured lighting are ill-suited for scanning dy-
namic scenes. Time-of-flight

rangefinders

Another approach are time-of-flight rangefinders. They esti-
mate the distance to a surface from a single center of projec-
tion, so occluded regions do not appear. Since the speed of
light is known, it is possible to estimate the depth by mea-
suring the elapsed time between emitting and receiving a
pulse of light. However, the depth resolution and accuracy
of such systems remain below that of laser range scanners
and structured lighting. [LT09]

8 2 Related work

2.2 Comparing Available 3D Scanners

Among all the presented scanning technologies, line-laser
range scanning offers the best combination of accuracy, af-
fordability, scanning speed, and simplicity. This technol-
ogy is also used by professional scanners such as the Artec
3D Scanners1 and the NextEngine2 , whose prices start at
10.900 e and 2.995 $ respectively. In this section I present a
list of more affordable 3D scanners.

2.2.1 David Scanner

Figure 2.1: David Scanner

A starter kit of the David Scanner3 is available for 399 e.
360� scans are possible, although the user needs to turn the
object manually between multiple scans. The software is
proprietary and runs only on Windows. Minimal equip-
ment is needed, such as a line laser, a camera and a calibra-
tion pattern which can be printed out. Using the DAVID-
Shapefusion software the user can manually merge multi-
ple point-clouds from different scans and convert them to a
surface mesh by-hand.

1http://www.artec3D.com/
2http://www.nextengine.com/
3http://www.david-laserscanner.com/

http://www.artec3D.com/
http://www.artec3D.com/
http://www.nextengine.com/
http://www.david-laserscanner.com/

2.2 Comparing Available 3D Scanners 9

2.2.2 MakerBot 3D Scanner

Figure 2.2: Maker Bot 3D Scanner

The MakerBot 3D Scanner4 (formerly know as Cyclops) is
a 3D scanning mounting kit for a pico projector, a webcam
and an iPhone or iPod. The mounting kit is available for
50$. A set of additional open-source software is required
(ThreePhase, PeasyCam, ControlP5, Processing). Extensive
instructions are provided on the website to perform a single
face scan. Using Blender and MeshLab the point-clouds are
transformed into surface meshes which can then be printed
on the MakerBot.

2.2.3 3D Photography on your Desk

This project requires very little hardware: a camera, a desk-
lamp, a pencil and a checkerboard.[BP98] The checker-
board is used for calibration. The pencil is waved between
the lamp and the object to be scanned, casting a shadow on
the object. The 3D shape of the object is extracted from the
spatial and temporal location of the observed shadow. Sev-
eral implementations of this technique are available on the
project’s website5 .

4http://wiki.makerbot.com/3D-scanner
5http://www.vision.caltech.edu/bouguetj/ICCV98/

http://wiki.makerbot.com/3D-scanner
http://www.vision.caltech.edu/bouguetj/ICCV98/

10 2 Related work

Figure 2.3: 3D Photography on your desk

2.2.4 Maker Scanner

Figure 2.4: Maker Scanner

The MakerScanner6 software is open-source. Only single
face scans are possible. The scanner setup can hold a we-
bcam and a laser. The laser needs to be rotated manually.
The parts for the scanning setup can be 3D-printed and are
available on thingiverse7 .

http://wiki.makerbot.com/makerscanner
file:www.thingiverse.com

2.3 Camera Calibration and Triangulation 11

2.2.5 Microsoft Kinect
The Kinect is not
suited for 3D
scanningIn 2011, Microsoft released the Kinect, a device for recog-

nizing and tracking player identity[LMW+11]. Besides a
set of other sensors, the Kinect also includes infrared pro-
jectors and cameras which are used for depth detection,
hence it could also be used to build a 3D scanner. How-
ever, according to [Rog11], the depth perception technol-
ogy in the Kinect works best at distances of 6-8 feet (⇡ 2m).
Thus, the Kinect is better suited for identifying ”likely hu-
mans in the scene and the likely positions of their arms and
legs.”[Rog11] than for precise short-range 3D scanning.

2.3 Camera Calibration and Triangulation

In the previous section, a set of 3D scanners was intro-
duced. In the next section, the thesis focuses on the theory
behind 3D laser range scanning. First, the pinhole camera
model is introduced along with explanation about camera
calibration using functions provided by the Open Computer
Vision Library (OpenCV) [BK08], then the basics of triangu-
lation (used to recover the depth) are explained.

2.3.1 The pinhole camera model and camera cali-
bration using OpenCV

In this model, exactly one light ray enters the camera
through a pinhole from every point in the scene. The light
is ”projected” onto an image plane, behind the pinhole. To
simplify the calculations, the pinhole camera is now rear-
ranged: the image plane is put in front of the pinhole which
is now reinterpreted as the center of projection. The dis-
tance between the center of projection and the image plane
is known as the focal length f. Figure 2.5 shows the rear-
ranged pinhole camera model setup.

6http://wiki.makerbot.com/makerscanner
7www.thingiverse.com

12 2 Related work

Center of
projection

Image plane

f

Figure 2.5: The pinhole camera model

Intrinsic properties

Notice that there are actually two focal length parameters
f

x

and f

y

. The reason for this is that the individual pix-
els on a typical low-cost camera are rectangular rather than
square. Furthermore, the center of the chip is usually not
aligned with the optical axis. Thus, two new parameters,
c

x

and c

y

, are introduced to model a possible displacement
(away from the optic axis) of the projection screen.

These parameters f

x

, f
y

, c
x

and c

y

are known as the intrinsic
properties.

Lens distortions

In theory, a lens can be defined without distortions. In
practice, however, no lens is perfect. There are two non-
negligible types of distortion: Radial distortions (”fish-eye”
effect) arise as a result of the shape of lens, whereas tangen-
tial distortions arise from the lens not being exactly parallel
to the image plane. (Compare chapter 3 of [LT09]). Radial
distortions are represented by at least three parameters k1,
k2 and k3. Even more parameters can be introduced for
cameras with higher radial distortion. Tangential distor-
tion is characterized by two additional parameters, p1 and
p2. All these parameters are explained in detail in chapter
11 of the OpenCV book [BK08].

2.3 Camera Calibration and Triangulation 13

Extrinsic properties

The parameters R and T , which are referred to as the ex-
trinsic parameters of the camera, describe the location and
orientation of the camera in world coordinates. In three-
dimensional space each of them can be represented as a
three-dimensional vector, which gives us a total of 6 extrin-
sic parameters.

The OpenCV method cvCalibrateCamera2(), explained on
page 398 of the OpenCV book, can be used to calculate the
intrinsics, the distortion and the extrinsic parameters. As
input, the function uses pictures of several chessboard pat-
terns as explained in [Zha00]. OpenCV’s approach to calcu-
late the intrinsics is derived from [HS97]. Both [XRL11] and
[WLZ10] deal with camera calibration techniques based on
OpenCV.

2.3.2 Basics of Triangulation

In this section, the concept of triangulation is explained.
Giving a complete and detailed insight into this topic
would go beyond the scope of this thesis. Therefore, I only
introduce the basic concepts of triangulation. For the inter-
ested reader, I suggest reading chapter 2 The Mathematics of
Triangulation of [LT09].

Every piece of hardware used in the scanner is represented
by a model in the software. For the camera, the Camera Pin-
hole model is used as explained in section 2.3.1—“The pin-
hole camera model and camera calibration using OpenCV”.
Figure 2.6 shows the basic model used for triangulation.

The line laser can be modeled as a simple plane in space, as-
suming the opening angle of the laser lens is large enough
and the laser is placed sufficiently far away from the object.

The intersection of the laser light plane with the object be-
ing scanned generally contains many illuminated curved
segments (see Figure 2.6 red curved line). These segments
are composed of many illuminated points. A single illu-

14 2 Related work

Center of
Projection

Laser Light Plane
Object being

scanned

Intersection the of
Laser Light Plane
with the ObjectCamera Ray

Line Laser
Image Plane

Figure 2.6: Model of 3D surface recovery using ray-plane-intersection triangula-
tion.

minated point, visible to the camera, defines a camera ray.
Here, it is assumed that the positions and rotations of the
laser and the camera are known with respect to the global
coordinate system. In the previous section it is explained
how to estimate these values for the camera. Under this
assumption, the equations of the laser light plane, as well
as the equations of camera rays corresponding to illumi-
nated points, can be calculated. The location of the illu-
minated points can be recovered by intersecting the laser
light plane with the camera rays corresponding to the illu-
minated points. By rotating the object (and the laser) dur-
ing the scan, all sides of the object are illuminated, allowing
recovery of a 360� surface model. [LT09]

2.4 Surfaces from Point-Clouds

As soon as a point-cloud is acquired, it enters the post-
processing pipeline whose eventual goal is to produce a
polygon surface mesh, which can then be used for 3D print-
ing.Powercrust

The powercrust algorithm [AC01] can be used for this task:
”The power crust is a construction which takes a sample of
points from the surface of a three-dimensional object and
produces a surface mesh.” The algorithm delivers a wa-
tertight surface-mesh and eliminates the polygonization,
hole-filling or manifold extraction post-processing steps re-

2.4 Surfaces from Point-Clouds 15

quired in other surface reconstruction algorithms, which is
ideal for our needs. Besides providing an implementation
of the algorithm, the authors also prove ”good empirical re-
sults on inputs including models with sharp corners, sparse
and unevenly distributed point samples, holes, and noise,
both natural and synthetic”.

Figure 2.7: ”Laser range data, the reconstructed watertight
polygonal model, and its simplified medial axis.” [AC01]

Point Cloud Library
and OpenNI

Alternatively, one can refer to the Point Cloud Library (PCL)
[RC11] presented in 2011. The library contains state-of-the
art algorithms for filtering, feature estimation, surface re-
construction, registration, model fitting and segmentation.
Furthermore, it offers native support for OpenNI [Ope11]
3D interfaces, and can thus acquire and process data from
devices supporting this standard, such as the Microsoft
Kinect.

17

Chapter 3

Own work

The previous chapter introduced the concept of 3D scan-
ning. A number of DIY 3D scanners were presented. In the
following chapter I will present the design, the software as
well as the hardware prototypes of the FabScan 3D scanner.

3.1 Design and Requirements

This project rooted in the idea to supply the FabLab
Aachen1 with a low-cost 3D scanner. In an initial user
study, I surveyed people visiting the FabLab about 3D scan-
ners. The following requirements of the scanner were iden-
tified:

• Affordability The scanner should be affordable, to an
extend that amateurs with a modest budget can pur-
chase it.

• Ready-To-Print The scanning software should make
it easy for the user to produce a watertight ready-
to-print surface meshes of the scanned object. Thus,
eliminating, or at least minimizing, the cumbersome
post-processing pipeline.

1http://fablab.rwth-aachen.de

http://fablab.rwth-aachen.de
http://fablab.rwth-aachen.de

18 3 Own work

• Do-It-Yourself Anyone should be able to assemble
the scanner with access to a laser-cutter, 3D printer,
soldering iron, etc. The parts of the scanner could
even be provided as an inexpensive construction kit.

• 360�-Scan The scanner should be able to automati-
cally scan the object from all viewing angles in only
one scan, without requiring the user to manually ro-
tate the object.

• Portability The software should be portable to multi-
ple platforms or at least run on a Mac as the FabLab
Aachen is based on Macs.

• Usability Untrained users should be able to cope
with the system. Ideally, the scanning process should
be fully automatic. The user should only need to
press a button once to start a scan.

3.1.1 Comparing Scanners

The following table summaries the scanners presented in
chapter 2. They are compared to the previously established
requirements.

A
ffo

rd
ab

ili
ty

Re
ad

y-
To

-P
rin

t

D
o-

It-
Yo

ur
se

lf

36
0�

-S
ca

n

Po
rt

ab
ili

ty

U
sa

bi
lit

y

DAVID Scanner 4 4 4 4 8 4
MakerBot 3D Scanner 4 8 4 8 4 8

3D Photography on your desk 4 8 4 8 4 8
Maker Scanner 4 8 4 8 4 8

Table 3.1: Summary of the compared scanners

It should be noted that ”usability is not a quality that exists
in any real or absolute sense” [Bro11]. Here usability is sim-
ply defined wether it is possible to perform a scan using a
very reduced number of clicks or not.

3.2 Hardware Prototypes 19

Figure 3.1: Physical objects used for prototype testing. From left to right: the bear,
the skull, the duck and the cup.

3.2 Hardware Prototypes

The final hardware prototype is the result of several
DIA-cycle iterations (Design Implement Analyze) [Car92]
[Bor01]. In this section, I present all the prototype itera-
tions. I show some of the scanning results of each proto-
type and shortly discuss what I learned from the prototype
and how I used this information to improve the next proto-
type. Throughout the prototyping phase, I experimented
with several objects of different size, material, color and
shape. In the following, I will refer to those objects with
the names as presented in the caption of figure 3.1.

3.2.1 First Hardware Prototype

The first prototype is based on the Maker-Scanner, pre-
sented in section 2.2.4—“Maker Scanner”. The scanning
setup is composed of four primary items: a Logitech Quick-
cam Pro 9000 webcam, a line laser on a servo motor, an
Arduino Uno[Uno11] and two planar surfaces. Note that
the laser and webcam must be separated so that the laser
light plane and camera rays do not meet at small incidence
angles, otherwise triangulation will result in large errors.
[LT09] On the other side, the angle must not be too large
to avoid obscured areas on the surface of the object. The
two planes should form a right angle. The setup differs
in one major point form the Maker-Scanner: whereas the
laser of the Maker scanner is swept manually by the user,

20 3 Own work

this prototype incorporates a servo motor which takes over
the role of the user moving the laser. This allows a fully
automatic scan, hence the user is not involved in the ac-
tual scanning process. This point is important as the user
should not need to interact with the system during a scan.
The servo motor is controlled using an Arduino, which is
connected to the computer over a serial port. The Arduino
is also used to turn the laser on and off. This is used to
extract a hight contrast image of the laser line (compare
with section 3.5.1—“Laser Threshold”). The setup of the
first prototype is shown in figure 3.2.

Figure 3.2: Setup of the first prototype.

Discussion

The first prototype showed that the triangulation principle
gives acceptable results, even when using a rather simple
setup. The result of a scan is shown in figure 3.3. One
vertical line corresponds to one laser position. The rela-
tively large gap between the different lines is due to the
used servo: the minimal resolution of the servo is 1� per
step. Also, it is not possible to get a full 360� scan of the
object.

3.2 Hardware Prototypes 21

Figure 3.3: Scanning results from first prototype. Left: the
physical object Bear. Right: the point-cloud of the Bear

The ambient light has a great influence on the scanning
results. Ambient illumination must be reduced so that
the laser line is clearly visible to the camera. However, it
should also not be too dark to allow the camera to operate
with minimal gain. Otherwise sensor noise will corrupt the
reconstruction. The mentioned ”3D Photography on your
desk” scanner has the same problem [BP98].

3.2.2 Second Hardware Prototype

To get a full 360� scan of the object the laser is no longer
swept over the object but instead the object is placed on
a turntable. The turntable is mounted on a stepper motor
which allows it to turn. The stepper motor can make steps
as small as 0.1125� (see also 3.4.2—“Selecting the scanning
resolution”), which is largely sufficient for our purpose.
The servo is no longer used during the scanning process,
it only serves as a nice holder for the laser. Also I created
a box for the scanner. The Arduino is now mounted in-
side the box and all the cables can easily be plugged into
the front of the box. The scanner is now more portable and
less time is needed to set it up. Later, I also created a cover
which can be placed on top of the scanner to isolate it from
ambient illumination. The setup is depicted in figure 3.4.

22 3 Own work

Figure 3.4: Setup of the second prototype. Cover not
shown.

Discussion

With the second prototype much denser point clouds are
achieved. However, there are still holes in the surface.
See figure 3.5. There are multiple causes for these holes.
Since the laser is no longer swiped over the object another
problem became apparent: depending on the objects shape,
some parts of the surface (marked with ¨ in the figure) are
never illuminated by the laser. Thus, these parts will ap-
pear as holes in the point-cloud. Another notable prob-
lem is given by the color of the object. The color of the
object has an impact on the scanning results. Some col-
ors absorb the laser light, like the blue dots on the cup or
the label on the front of the duck ≠. For my objects the
holes were sufficiently small enough, so the powercrust al-
gorithm identified them as artificial holes and closed them.
Number Æ on the cup shows a small displacement. As the

3.2 Hardware Prototypes 23

1

1
12

3

3

4

2
2

1

Figure 3.5: Point clouds generated with the second prototype from various point
of views. Left: the cup. Right: the duck

material of the cup is slippery, it moved a little during the
scanning process every time the turntable advanced a step.
This can be solved by placing a round piece of black fabric
onto the turntable which augments the grip. In addition,
the black color of the fabric absorbs unwanted reflections
of the laser line on the turntable. The material of the duck
is less slippery, so it did not move during the scan. Never-
theless, one can notice slightly different colors. This is due
to a different illumination between the start and end of the
scan. This problem is eliminated by putting a cover on top
of the scanner and adding a light source under the scanner
so the illumination conditions stay the same during a scan.
One could think that the light source is unnecessary if col-
ored point clouds are not needed. Yet putting the object in
complete darkness, with the laser as the only light source,
makes it difficult for the camera’s built-in auto focus feature
to take sharp pictures. The strange displacement marked
with Ø near the top of the ducks head was due to a software
bug, which is fixed now. On a more general note, with the
current setup where the object is rotated on only one axe,
it is not possible to scan the bottom of the objects, nor the
inside of the cup or the top of the ducks head Ø.

On the hardware side, the design of the box is not ideal: The
Arduino is not easily accessible and the material of the box
wears out when opening the box to often. The connectors
are also not well placed. In most cases, the computer which
controls the scanner is placed either on the left or the right
of the scanner, so should be the connectors.

24 3 Own work

3.2.3 Third Hardware Prototype

Figure 3.6: Setup of the third prototype

From the last prototype, I learned several points: The scan-
ner should be easier to assemble and disassemble without
destroying the material. The laser needs to rotate during
a scan in order to cover more parts of the object surface.
Since the servo motor is not precise enough, it should be
replaced by a stepper motor. The construction by itself
should allow to deduce the exact position of the laser rel-
ative to the turntable. Another, more stable and enduring
material should be used.

The main idea behind the construction of this prototype is
to fix all the critical parts, like the camera, the laser and the
turntable on one single base plane. This single base plane
can then be used as a very precise reference system which
allows to deduce the exact positions of the turntable and
the laser as those are both positioned on a stepper motor,

3.2 Hardware Prototypes 25

whose dimensions are also exactly known. The round and
asymmetric shape of the Logitech camera makes it difficult
to know the exact position just by construction. To solve
this problem, software calibration can be used to determine
the extrinsic values. OpenCV provides the function cvFind-
ExtrinsicCameraParams2 for exactly this purpose.

For this prototype, 5mm MDF (Medium-density fiber-
board) is used. It is much more stable then the previously
used gray cardboard. This allows a more precise construc-
tion. The downside of a more stable material is that it is less
flexible, hence screws have to be used to make the different
parts stick together. Also the connectors of the Arduino are
now on the right side of the box. With the new construction,
it is possible to quickly remove the cover, giving immediate
access to the Arduino. The cover contains large holes which
make it easy to put the object inside the scanner. To seal the
inside of the scanner from ambient light, a black curtain is
placed over the cover.

In this prototype, the laser is mounted on a stepper motor.
The servo motor is completely removed. This allows pre-
cise movement of the laser during a scan. First, the laser
line sweeps over the object, stopping at several positions
where triangulation takes places. Then the turning table
advances one step and the laser sweeps again over the ob-
ject, this time in the opposite direction. This is repeated
until the turning table made a full rotation.

Discussion

Scanning an object with multiple different laser positions
minimizes the problem of obscured areas as explained pre-
viously with the cup and the duck. This produces denser
point-clouds and potentially better surface-meshes. This is
illustrated in figure 3.7.

Using a stepper motor instead of a servo motor also has a
downside. The servo motor was controlled by specifying
a position. The stepper motor is controlled by specifying a
number of steps it should turn. This means that the current
rotation of the laser is not immediately known. In this pro-

26 3 Own work

Figure 3.7: Surface meshes of the cup. The handle of
the cup dramatically increases in quality when using more
laser positions. Left: 1 single laser position. Middle: 3 dif-
ferent laser positions. Right: 5 different laser positions.

totype, it is assumed that the laser is pointing at a specific
position (marked on the box) before every scan. If this is
not the case, the user is required to manually turn the laser
to that position. To overcome this cumbersome situation,
one could either use additional hardware such as an end
switch or a potentiometer, alternatively the position could
be deduced using software calibration.

The idea to put to camera, the laser and the turntable on one
single reference plane worked very well. Unfortunately,
OpenCVs cvFindExtrinsicCameraParams2 did not provide
useful values for the extrinsic parameters. Using the older
OpenCV Framework 1.2 available from the RWTH IENT in-
stitute2 improved the situation a little: although the cvFind-
ExtrinsicCameraParams2 still did not work as hoped, the
function cvCalibrateCamera2 at least delivered more realis-
tic values for the extrinsics but still not precise enough. The
reason for this is most probably a bug in either my software
or the implementation of OpenCV. Since the position of the
camera is a crucial part of triangulation and time was mov-
ing on, I decided not to use OpenCV but instead measure
the extrinsic values physically. Obviously, this situation is
not ideal.

The turntable is a critical part of the scanner. Its mechanical
construction has a great influence on the scanning results.
The turning table should be perfectly horizontal and turn in
one single plane. Also the surface of the turntable should be
ragged otherwise the object might slip when turning. This
results in a distorted image as the software thinks the object
has rotated but in fact it has not or only a little.

2http://www.ient.rwth-aachen.de/cms/opencv/

http://www.ient.rwth-aachen.de/cms/opencv/
http://www.ient.rwth-aachen.de/cms/opencv/

3.2 Hardware Prototypes 27

An important aspect is the time it takes for a scan to com-
plete. As explained in the section 3.5.1—“Laser Threshold”
two pictures are taken every time the turntables moves.
The camera takes some time to focus when the image
changes, so it takes some time until the image is stable. This
time could dramatically be shortened when disabling some
features on the camera like auto-exposure-time and auto-
white-balance. Since the camera supports the UVC [For05]
standard, this features can be turned off. I already have
some working code, which does exactly this but it is not
yet implemented in the this version of the prototype.

3.2.4 PCB - Arduino Shield

To control the two stepper motors, the laser and the LEDs I
am using an Arduino with an additional self-made shield.
The Arduino and both sides of the shield are shown in fig-
ure 3.8. The shield was manufactured on a CNC milling
machine. It is simply plugged on top of the Arduino.

The maximum voltage for the laser is 4,5V. A diode is used
to go from the 5V, provided by the Arduino, down to 4,3V.
The laser is connected to ¨, as shown in figure 3.8. The
LEDs are connected to ≠. The power supply for the LEDs
is controlled with a transistor Æ. The transistor is attached
to a PWM capable pin on the Arduino so it is possible to
precisely set the brightness of the LEDs.

2

6

7

3
4

5

1

Figure 3.8: Left: Arduino Uno. Middle: Front side of shield.
Right: Back side of shield

28 3 Own work

Number Ø and ∞ show the Pololu A49833 stepper motor
drivers. The stepper motor for the turntable is connected
to ∞ while the one rotating the laser is connected to Ø.
Without further modification, the stepper motors do 200
steps per 360�. By enabling micro-stepping, it is possible
to achieve 3200 steps per 360�, which allows a precision of
0.1125�. The resistors ± and ≤ are used to enable micro-
stepping for the laser stepper motor and the turntable step-
per motor respectively.

3.3 Software

This section starts by introducing the protocol to control
the FabScan. Then the implementation of the triangulation
is explained as well as the needed transformation for the
STL file format. The different supported point-cloud file
formats are explained. Finally, we take a closer look at the
development of the GUI and its functionality.

3.3.1 Communication Protocol

The protocol used to control the FabScan is quite simple.
There are two types of frames. The first type is only one
byte long, the second contains two bytes. The one-byte
frame is used for simple control actions like turning on the
laser or disabling a stepper motor. The 2-byte field contains
an additional value byte. This value byte can be used to
set the brightness of the light or make the selected stepper
motor perform a given number of steps. All the possible
combinations are shown in figure 3.9. When sending an ac-
tion to a stepper motors, it must be made sure the correct
stepper is selected. Stepper motors can be selected with the
”Select Stepper [212]” byte followed by the stepper ID. The
ID of the turntable stepper is 0, the one of the laser is 1.

The values for the control byte start at 200 for ”historic”
reasons. In the first prototype, all the values below 200 were
used to set the angle of the stepper motor. At this point,

3http://www.pololu.com/catalog/product/1201/resources

http://www.pololu.com/catalog/product/1201/resources

3.3 Software 29

Turn Laser Off [200]

Turn Laser On [201]

Perform Step [202]Turn Stepper On [205]

Turn Stepper Off [206]

Set Direction CW [203]

Set Direction CCW [204]

Select Stepper [212]

FabScan Ping [210]

Turn Light Off [208] Turn Light On [207] Light Intensity [0..255]

Stepper ID [0..1]

Turn Table Steps [0..255]

Figure 3.9: FabScan Communication Protocol. The value or the range for each byte
is specified in brackets. Left and Middle: single byte frames. Right: dual byte
frames

since the servo motor is no longer used, they could just as
well start at 0.

To make sure that there is actually a FabScan connected to
the selected serial port, and not some other device which
happens to have a serial port running, a ”FabScan Ping
[210]” message is sent, which needs to be answered with a
”FabScan Pong [211]”. When answered correctly, it is clear
that a FabScan is connected to that serial port.

The computer talks to the FabScan over serial communi-
cation. On the Arduino side, the standard Serial Library is
used. On the Mac, the class FSSerial is responsible for se-
rial communication. It is based on Apple’s IOKit and the
example provided on the Arduino page4

3.3.2 Implementing Triangulation

For 3D depth recovery, I use line-ray triangulation as ex-
plained in section 2.3.2—“Basics of Triangulation”. Due to
the known geometry of the hardware it is possible to sim-
plify the model without losing to much precision. The fol-
lowing assumptions are made:

• The laser line is perfectly vertical.

• The camera is pointed perfectly straight and perpen-
dicular to the back of the box.

4http://www.arduino.cc/playground/Interfacing/Cocoa

http://www.arduino.cc/playground/Interfacing/Cocoa

30 3 Own work

The error introduced by these assumptions is relatively
small and it simplifies the math. The position of the laser
and the camera are known by construction. Also the posi-
tion of the laser line hitting the back of the box is known,
since the rotation and position of the laser are known. Now
the laser line is extracted from the camera picture as ex-
plained in section 3.5.1—“Laser Threshold”. The positions
of the reflected points on the surface of the object are trans-
formed from the image plane coordinate system into the
world coordinate system. By making use of the previous
assumptions, all these points can be projected onto one hor-
izontal plane, allowing us to move from 3D into 2D. This
situation is depicted in 3.10. This simplification implies the
loss of the hight information, but it can be reintroduced as
we will see later. We simplified the 3D line-plane intersec-

Image Plane

Camera Laser

Box

x

y
p1

p2 l1

l2

I

Figure 3.10: 2D line-line intersection

tion problem to the easier 2D line-line intersection problem.

Using two known points p1 and p2, we can establish the
equation of a line l1. Generally, the equation of a 2D line is
given by:

y = a · x + b (3.1)

Points are represented as a tuple p = (x
p

, y

p

). Specifically,
the equation for l1 is given by:

l1 ⌘ y = a1 · x + b1 (3.2)

where a1 can be expressed depending on p1 and p2:

a1 =
�y

�x

=
y

p2 � y

p1

x

p2 � x

p1
(3.3)

3.3 Software 31

Inserting p1 (or p2) into (3.2) and solving for b1 gives us:

b1 = y

p1 � a1 · x
p1 (3.4)

At this point we have the complete equation for l1. We use
the same procedure to calculate l2. Knowing the equations
of two lines l1 and l2 we can calculate their intersection I.

l1 = l2 (3.5)
, a1 · xI + b1 = a2 · xI + b2 (3.6)

, xI =
b2 � b1

a1 � a2
(3.7)

with a1 6= a2 (3.8)

Again, yI can be calculated inserting I into (3.2):

yI = a1 · xI + b1 (3.9)

Now the depth in real world coordinated of the scanned
point is known, hence we can simply scale the height which
is in image plane coordinates to get the world coordinates
which gives us the 3D representation of the scanned point.
These calculations are repeated for every point on the re-
flected laser line on the surface of the object. This set of
points still needs to be rotated using affine transformations
in order to take the rotation of the turntable into account.

3.3.3 From Point-Clouds to Printable Files

As soon as a point-cloud is acquired, it enters post process-
ing whose eventual goal is to produce a polygon surface-
mesh which can be used for 3D printing. Transforming
the point-cloud into a polygon surface mesh is done us-
ing the powercrust algorithm as presented in section 2.4—
“Surfaces from Point-Clouds”.

We want to export the model into STL which is a stere-
olithography file format used among others for 3D print-
ing. The format is shortly defined below:

32 3 Own work

STL FILE FORMAT:
”An STL file is a triangular representation of a 3D surface
geometry. [...] The native STL format has to fulfill the
following specifications: (i) The normal and each vertex
of every facet are specified by three coordinates each, so
there is a total of 12 numbers stored for each facet. (ii)
Each facet is part of the boundary between the interior
and the exterior of the object. The orientation of the facets
(which way is “out” and which way is “in”) is speci-
fied redundantly in two ways which must be consistent.
First, the direction of the normal is outward. Second, the
vertices are listed in counterclockwise order when look-
ing at the object from the outside (right-hand rule). (iii)
Each triangle must share two vertices with each of its ad-
jacent triangles. This is known as vertex-to-vertex rule.
(iv) The object represented must be located in the all-
positive octant (all vertex coordinates must be positive).
” [FF11]

Definition:
STL File Format

The powercrust faces are not triangles. Thus, the poly-
gons need to be transformed into triangles and the normals
need to be calculated. This is done by taking the first three
vertices of every face and combining them to a new face.
This procedure is repeated for all the remaining vertices.
However, this approach can create faces with small angles.
Small angles add errors when trigonometric functions are
applied on them.

The normal n of a flat face with the vertices v1, v2 and v3 is
defined by the cross product:

n = (v1 � v2)⇥ (v2 � v3) (3.10)

The normal n still needs to be normalized by dividing every
component of the vector with the vectors length l:

l =
p

x

2
n

+ y

2
n

+ z

2
n

(3.11)

Now all the data for the STL file is known.

A ASCII STL file starts with solid and ends with
endsolid. In between, all the faces are listed, as shown
below:

3.3 Software 33

facet normal n

x

n

y

n

z

outer loop

vertex v1x

v1y

v1z

vertex v2x

v2y

v2z

vertex v3x

v3y

v3z

endloop

endfacet

3.3.4 Point-Cloud File Formats

Besides exporting the surface-mesh of the scanned model,
it is also possible to export the point-cloud itself. The soft-
ware supports three different point-cloud file formats: PTS,
PLY and PCD.

PTS

The PTS file format is very basic. Every line corresponds to
one point in the cloud. Each line contains only the position
of the point, it has the format x y z. The file has no header
nor footer.

PLY

The PLY file format is supported so the point-clouds can be
opened in MeshLab. Although the format can be used to
store polygons, here only the point-cloud part is supported.
Similar to the PTS format, every line corresponds to a point.
In addition to the position, a line also contains the color
information. The format is x y z r g b. The type for
each field is defined in the header. A full documentation of
the file format is provided here5 .

5http://paulbourke.net/dataformats/ply/

http://paulbourke.net/dataformats/ply/

34 3 Own work

PCD

The Point Cloud Data (PCD) file format is part of PCL, see
section 2.4—“Surfaces from Point-Clouds”. PCD is also the
native file format in FabScan, which means it is the de-
fault format for saving point-clouds. PCD files can also be
opened with FabScan. A full documentation of the file for-
mat, along with an extensive motivation for yet another file
format is provided at the PCL Documentation6 .

3.4 GUI and Functionality

In this section, I shortly present the different GUI proto-
types. Then the basic as well as the advanced functions of
the software are explained.

3.4.1 User Interface Prototypes

The graphic user interface of FabScan is largely inspired by
Apple’s Photo Booth7 as the concept of taking a picture or
recording a video is somewhat similar to performing a 3D
scan. See figure 3.12 for a comparison of PhotoBooth and
the final user interface design.

The first user interface prototype was a paper prototype.
Paper prototypes are quick and cheap to develop. They are
not detailed, so the designer and the user can focus on im-
portant high-level user interface design development. Ad-
ditionally, they can quickly be changed to reflect the users
input.

The user studies with this paper prototype have shown that
the concept of making it similar to a known software (Pho-
toBooth) helped to quickly understand the GUI elements.
The idea of pressing the scan button in order to start a scan
became clear instantly. Further studies have shown that the

6http://pointclouds.org/documentation/tutorials/pcd file format.php
7http://www.apple.com/macosx/apps/#photobooth

http://pointclouds.org/documentation/tutorials/pcd_file_format.php
http://www.apple.com/macosx/apps/#photobooth

3.4 GUI and Functionality 35

- + FabScan

Scan

Figure 3.11: First paper prototype

Figure 3.12: FabScan compared to Photo Booth. Left: Photo Booth. Right: FabScan

36 3 Own work

panel on the bottom of the window showing previous scans
is not really needed. Hence, it was elided from the follow-
ing prototypes.

The final software prototype adds two interface elements:
similar to the ”Effects” button in PhotoBooth, a popup-
menu for setting the resolution is added. Changing the
resolution has shown to be used quite often, so it should
be easily accessible. Buttons for switching between differ-
ent views are added on the bottom left of the window, see
figure 3.12. This allows switching between the PointCloud
view and the SurfaceMesh view which is a major part of
the software functionality, see 3.3.2—“Implementing Trian-
gulation”.

3.4.2 Basic Functionality and Advanced Settings

Performing a scan

To start a scan, the user simply presses the button in the
middle. Then the scan automatically starts. The points are
added to the view as they are scanned. This allows the user
to immediately see when something is going wrong. Then
scan can then be interrupted. After a successful scan, the
software plays a beep sound.

Selecting view mode

The user can switch between Point Cloud view and Surface
Mesh view. This is done by selecting one of the buttons on
the lower left corner in the main window.

Selecting the scanning resolution

The user can chose between multiple scanning resolutions.
This is done by selecting one of the options in the popup
menu on the bottom left of the window. The scanning reso-
lution influences the density of the points in the generated

3.5 Better Scanning Results 37

point-cloud. A higher scanning resolution means more
points but also a longer scanning time. When scanning a
new object, it is recommended to start with a quick low res-
olution scan in order to verify if the resulting point-cloud is
acceptable. Some objects depending on there material, size,
surface and color may not be well suited for scanning. See
also section 3.5—“Better Scanning Results”.

The following table shows the meanings of the different res-
olution options.

Resolution Degrees per step microsteps
Lowest 18� 160
Low 9� 80
Normal 4,5� 40
High 2,25� 20
Higher 1,125� 10
Overkill 0,1125� 1

Table 3.2: The different available scanner resolutions

The ”Overkill” options is the highest possible resolution.
This upper limit is defined by the A49838 stepper motor
driver from Pololu. The stepper motor has 200 steps per
revolution. Using micro-stepping it is possible to rotate the
motor one sixteenth step which equals 0,1125�.

3.5 Better Scanning Results

Using the user interface as explained previously, makes it
possible to get acceptable scanning results with little more
work then pressing a button.

Sometimes better models or more dense point clouds are
needed. Getting better scanning results is possible by
tweaking a few advanced parameters. These parame-
ters can be found in the menu under ”FabScan/Control
Panel...”. The parameters can be changed in the bottom

8http://www.pololu.com/catalog/product/1201/resources

http://www.pololu.com/catalog/product/1201/resources

38 3 Own work

part of the Control Panel window. In the following these
parameters are explained.

Setting the stepper motors resolution

The first parameter defines how many micro-steps the
turntable turns in each step. By setting a lower value, the
point-cloud becomes more dense, but the scanning takes
more time. The second parameter specifies how many sam-
ples should be taken from the scanned lines. This is useful
to get nice quadratic polygons, depending on the first pa-
rameter.

The next parameters influence the laser stepper motor. The
”Laser steps” defines the number of different laser posi-
tions between each step of the turntable. The angle between
the laser steps can be adjusted with the next parameter. A
higher number of laser steps means less occluded areas on
the objects surface, which leads to less artificial holes in the
point-cloud. The scanning time is directly proportional to
the number of laser steps.

3.5.1 Laser Threshold

For each step of the scanning process we extract the laser
line. This is done by taking a picture when the laser is on
and one when it is off. These color pictures are transformed
into grayscale. Then the absolute difference between each
pixel of the two pictures is calculated. If the difference is
higher then the ”Laser Threshold” value, the pixel belongs
to the laser line. This procedure produces a very high con-
trast line line.

You should change the threshold value, if the points on the
scanned line are not aligned or when they differ too much
in the depth. The threshold value should always be as high
as possible. If it is too high, no points will appear during
the scan.

3.5 Better Scanning Results 39

Moreover, the laser line has a certain width. The right
and the left limit of the laser line can be determined in
the camera picture. The exact position of the laser line
corresponds to the average value of those two lines. These
limits are determined in pixels. When transforming them
into world coordinates and then calculating the average
value, it is possible to get sub-pixel accuracy. This is not
yet implemented in the current software prototype.

3.5.2 Lower Limit

Sometimes points from the surface of the turntable are un-
intentionally scanned or the scanned object is positioned on
a basement that should not be included in the model. Set-
ting the ”Lower Limit” allows to elide all the scanned pixels
below this value.

41

Chapter 4

Evaluation

In this section, I verify wether all the initial requirements
as described in 3.1—“Design and Requirements” are met.
Additionally the precision of the scanner is evaluated by
scanning known reference objects and comparing them to
the scanned results.

4.1 Affordability

In this paragraph we first calculate the price of the current
prototype. The user studies, presented in 4.5—“User Stud-
ies”, showed that most people think the price is appropri-
ated. The following table shows a price listing 1 :

Component Count Price Sum
Stepper motor 2 12,93 e 25,86 e

Pololu stepper motor driver 2 9,5 e 19,00 e
Arduino Uno 1 25,80 e 25,80 e

Red Line Laser 1 2,4 e 2,4 e
Logitech QuickCam Pro 9000 1 49,99 e 49,99 e

MDF + Screws + Nuts (approx.) ⇡ 5 e
Total 128,05 e

Table 4.1: Summary of the compared scanners

1all prices are from www.watterott.com if available

42 4 Evaluation

4.2 Ready-To-Print

One of the requirements was that the scanning software
should provide the user with a watertight surface mesh
of the scanned object that can be 3D printed without fur-
ther post processing. To demonstrate the fulfillment of this
requirement, the Bear was put into the scanner, he was
scanned, transformed to a surface mesh and exported it as
an STL file. All this happened in only 3 clicks. The 3D-
printed model of the Bear is shown in 4.1 along with the
original Bear. The point-cloud and the surface-mesh are
also shown.

4.3 360� Scan

The turntable and the swiping laser in the final prototype
make it possible to automatically scan the object from all
viewing directions during one scan, without requiring the
user to manually turn the object.

Figure 4.1: Replication process. From left to right: Original
Bear, Point-Cloud, Surface-Mesh, 3D-printed Replica

4.4 Portability

The software was developed and tested on the Mac Plat-
form running Snow Leopard. The FabScan software com-
piles and runs equally well on the latest Mac OS X Lion.

4.5 User Studies 43

All of the software is written in platform independent C++
using OpenCV for image processing and OpenGL for dis-
playing the point-clouds and surface-meshes, except for the
user interface and serial communication where Objective-C
is used. This allows to port the software to other platforms
requiring only little additional work.

4.5 User Studies

It is difficult to verify the remaining requirements qualita-
tively. Therefore I did a formal user study to ensure that
the system matches the users needs. I wanted to know if
the system offers the right features, if it makes 3D scanning
performable for untrained users. The tests also revealed
unexpected or confusing situations. The evaluation took
place in the FabLab which also happens to be the natural
environment of the users. This makes the study more re-
alistic although users might get easier distracted by noise
and other interruptions.

At first, it was planned to do a separate user test for evalu-
ating the user interface, but it turned out that the GUI con-
tains only three elements, thus the user interface was tested
along with the complete scanning setup.

In order to evaluate how the user reacts to the system, he
is asked to accomplish several different task which cover
the functionality of the system. These tasks are enumerated
below:

• Task 1: Connect the scanner to the computer and start
the software so we are ready to scan.

• Task 2: The user is given a object which should then
be scanned.

• Task 3: The user should export the scanned model to
an STL file.

• Task 4: Assemble the FabScan box. (Starting from the
loose parts.)

44 4 Evaluation

The goal is to verify that the system is useable for untrained
users. Hence, no usage instructions are given. If the user
cannot accomplish a task, help is provided so he can finish.

The user tests were held in the FabLab Aachen, which is a
natural environment for 3D Laser scanners. The users were
between 20 and 25 years old, mostly students at the RWTH
or visitors of DorkBot2 .

The user tests showed that the all the participants had little
to no troubles completing all of the assigned tasks. After
the user test, the participants were asked to fill out the SUS
[Bro11] questionnaire. (See A—“SUS - A quick and dirty
usability scale”). The average results for all the participants
are shown in the following table:

Question Nr. Average Result
1 3,75
2 2,75
3 5,00
4 1,50
5 3,25
6 1,50
7 5,00
8 1,00
9 5,00

10 1,50

Table 4.2: Results of the SUS user questionnaire

SUS scores have a range of 0 to 100. A higher score means
a better usability. The final SUS score is calculated as de-
scription in [Bro11]. The SUS score for this study is 84,375.
According to [BKM08], this is in the range of ”better prod-
ucts”. Hence the usability and DIY requirement is fulfilled.

4.5.1 Suggestions And Feedback From The Users

The users were not always sure what the Eye symbol on the
middle button should represent. When asked for possible
alternatives, the answers were conflicting: some users liked

2www.dorkbot.de

file:www.dorkbot.de

4.6 Scanner Specifications 45

the idea of a Play symbol as known from video players, oth-
ers did not. A label GOon the button instead of a symbol
has also been suggested. An appropriate Start Scan symbol
still needs to be found.

When pressing the Start Scan button, a dialog could display
short instructions like putting the curtain over the scanner.
One user also found it strange that the scan process started
immediately after pressing the button.

It was also suggested to create colored textures for the
surface-meshes out of the colored point-clouds. The idea
of a hardware version of the ”Start Scan” button was also
mentioned.

4.6 Scanner Specifications

In this last section, some of the scanners technical specifica-
tions are presented.

4.6.1 Accuracy

The accuracy of the scanner is determined using two well
known objects. These objects were scanned, then I com-
pared the dimensions of the physical objects with the di-
mensions of the scanned objects.

The dimensions of the physical objects were determined
with a sliding caliper. The digital models were measured
in MeshLab[CR08] using the ”Measuring Tool”. It should
be noted that it requires some practice to do precise mea-
surements with the MeshLab measure tool, hence the mea-
surements most probably contain a small error.

The first object is a truncated cone made of white
polystyrene, the second object is the bear. As we 3D-printed
the bear, we can simply use this replica and measuring it
with the caliper as well, which is more pleasant then using
MeshLab. At this point, it should be noted that the min-

46 4 Evaluation

imum resolution of the used 3D printer is 0,1778mm per
print layer, which adds a small error to the measurements.

The results of the measurements for are shown in figure 4.2.
For the bear, I also measured the distance from the nose to
the tail, which is 101,6mm for the real bear and 100,7mm
for the replica.

58,4mm 57,6mm

9
0
,3
m
m

9
0
,4
m
m

35,0mm

80,0mm

70
.0
m
m

35mm

80mm

71
m
m

Figure 4.2: Real object (left) compared to replica (right).

4.6.2 Resolution

In this section we try to estimate the maximum resolution
of the scanner. Here the resolution is defined as the mini-
mum distance between two points in the point-cloud. Ob-
viously, the resolution highly dependent on the current dis-
tance between the objects and the camera, the object and the
laser and the position of the object on the turntable, which

4.6 Scanner Specifications 47

makes it difficult to provide hard numbers. Additionally, it
must be differentiated between the horizontal and the ver-
tical resolution. The horizontal resolution is dependent on
the step size of the laser and the turntable. The vertical res-
olution is not limited by the turntable or the laser, since the
vertical laser line is continuous. Finally the camera has an
impact on both resolutions.

The minimal step size of both stepper motors (laser and
turntable) is 0.1225� (see 3.4.2—“Selecting the scanning res-
olution”). When only turning the turntable, the resolution
near the middle of the table is close to 0mm, on the border
the resolution is 0.149mm. When only turning the laser, the
resolution is different for every step. When turning both
the laser and the camera with their smallest possible step
sizes, it becomes apparent that the resolution converges to
0mm or at least to a value not measurable anymore.

Hence, the limiting factor for the resolution of the scanner
is defined by the resolution of the used camera. The cam-
era image has a resolution of 1600⇥1200 pixels. Here it
is assumed that the pixels of the camera are quadratic, so
both horizontal and vertical resolution are equal. Clearly,
the scanner resolution improves when moving the object
closer to the camera. Thus, to measure the maximum res-
olution we chose the closest point of the turntable to the
camera. At this point, 15cm correspond to 1500px. Hence
1px represents 0,1mm. However, at this distance the cam-
era has problems to focus, which means a loss of precision.
For comparison, at the opposite side of the turntable (point
most far away from the camera) the resolution is 0.2mm
and the image is very sharp.

49

Chapter 5

Summary and future
work

In the previous chapters I presented the idea and described
the development process of the FabLab 3D scanner. At last,
I will give a summary of the most important aspects and
the possible insights into the future.

5.1 Summary and Contributions

In this work, I created an 3D scanner for less then 150 e.
An overview of different 3D scanning approaches was pro-
vided. The basic math needed for 3D scanning were ex-
plained. Extensive user studies allowed to define the re-
quirements for the project which finally resulted from mul-
tiple prototypes. In the end, I gave a precise evaluation of
the complete system.

My contribution to the community is a complete open 3D
laser scanning construction kit available for download. A
comprehensive and powerful software is provided to work
along with the scanner. Since the communication proto-
col is open, the hardware scanner can serve as a base plat-
form for other 3d scanning projects, hence eliding hardware
building from scratch.

50 5 Summary and future work

5.2 Future Work

In this chapter I will present ideas and suggestions which
came up during the process of the thesis. As I concentrated
on the basics of the FabScan 3D scanner, the following states
potential further improvments.

5.2.1 Scheimpflug principle

One aspect of laser range scanners is that the sharpness of
the picture changes along the projected laser line. When ap-
plying the Scheimpflug principle [LIAI11] by tilting the cam-
era lens, it is possible to realize a constant image sharpness
along the laser line.

5.2.2 3D Replicator

During the user studies it became clear, that the scanner
is mostly used in combination with a 3d printer. Thus, it
would make sense to merge both machines into one 3D
replicator, possibly with one ”Copy” button.

5.2.3 MeshLab Plugin

MeshLab is an advanced mesh and point-cloud processing
system for automatic and user assisted editing, cleaning
etc. MeshLab’s modular architecture allows to add new
functionality by writing new plugins [CR08]. A FabScan
plugin for MeshLap would make it possible to scan imme-
diately out of MeshLab.

5.2.4 Improve Hardware

The hardware could be pushed further by implementing
more camera-laser instances which would allow to catch
more of the obscured areas, such as the inside of the cup.

5.2 Future Work 51

5.2.5 Intelligent Scanning

At this point the scanner is not aware of the objects ap-
pearance. It would be possible to built an intelligent scan-
ner, that first checks the approximate object shape (compare
shape-from-silhouette technique), then uses this informa-
tion to identify regions on the objects surface that require
more intense scanning. The scanner could automatically
adapt the scanning parameters to the objects material, color,
surface and size.

5.2.6 Support for more Open Standards

It would certainly make sense to integrate the Point Cloud
Library [RC11] into the next version. This would allows to
use different point-cloud to surface-mesh algorithms, be-
sides the powercrust algorithm. Additionally, the scanner
could be made OpenNI [Ope11] compatible.

53

Appendix A

SUS - A quick and dirty
usability scale

54 A SUS - A quick and dirty usability scale

System Usability Scale

© Digital Equipment Corporation, 1986.

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

Figure A.1: SUS questionnaire

55

Appendix B

Schematics for the Laser
Cutter Parts

The schematics files for the laser cutter parts were to nu-
merous for publishing in the appendix. The files are pro-
vided under the following download link. The files are up-
dated when there is a new version available.

FabScan Laser Cutter Parts a

ahttp://hci.rwth-aachen.de/tiki-download wiki attachment.php?attId=1388&download=y

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=1388&download=y

57

Appendix C

Arduino FabScan Shield
Schematic and Board
Layout

.

The schematics files for the PCB are provided under the fol-
lowing download link. The files are updated when there is
a new version available.

PCB Eagle Files a

ahttp://hci.rwth-aachen.de/tiki-download wiki attachment.php?attId=1390&download=y

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=1390&download=y

58 C Arduino FabScan Shield Schematic and Board Layout

Figure C.1: PCB board

Figure C.2: PCB schematics

59

Appendix D

Schematics for the 3D
Printer Parts

The files for the 3D printer parts are provided under the
following download link. The files are updated when there
is a new version available.

FabScan 3D Printer Parts a

ahttp://hci.rwth-aachen.de/tiki-download wiki attachment.php?attId=1389&download=y

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=1389&download=y

61

Appendix E

Digital Content

The attached DVD-ROM contains the source code and the
executables of ”FabScan” as well as the firmware for the Ar-
duino. In addition, the DVD contains the point-clouds and
surface-meshes shown in the figures. All the files needed
to built a hardware copy of the FabScan are also included.

63

Bibliography

[A94] LAURENTINI A. The Visual Hull Concept
for Silhouette-Based Image Understanding.
In IEEE TPAMI, pages 150–162, March 1994.

[AC01] N Amenda and S Choi. The power crust. The
proceeding of the ACM symposium on solid
. . . , 2001.

[BK08] Gary Bradski and Adrian Kaehler. Learning
OpenCV: Computer Vision with the OpenCV Li-
brary. O’Reilly Media, 1st edition, October
2008.

[BKM08] Aaron Bangor, Philip T Kortum, and James T
Miller. An Empirical Evaluation of the Sys-
tem Usability Scale. International Journal
of Human-Computer Interaction, 24(6):574–594,
July 2008.

[Bla04] F Blais. Review of 20 years range sensor
development. Journal of Electronic Imaging,
September 2004.

[Bor01] Jan Borchers. A Pattern Approach to Interaction
Design. Wiley, 1 edition, May 2001.

[BP98] J.-Y. BOUGUET and P. PERONA. 3d photog-
raphy on your desk, September 1998.

[Bro11] John Brooke. SUS - A quick and dirty usabil-
ity scale. Technical report, September 2011.

[Car92] JM Carroll. Getting around the task-artifact
cycle. ACM Transactions on Information Sys-
tems . . . , 1992.

64 Bibliography

[CR08] M Corsini and G Ranzuglia. Meshlab:
an open-source 3d mesh processing system.
ERCIM News, 2008.

[FF11] STL File Format. http://mech.fsv.cvut.cz/
dr/papers/ Lisbon04/node2.html, October
2011.

[For05] USB Implementers Forum. Universal Serial
Bus Device Class Definition for Video De-
vices, June 2005.

[Ger05] Neil Gershenfeld. FAB: The Coming Revolution
on Your Desktop–From Personal Computers to
Personal Fabrication. Basic Books, April 2005.

[GSGC08] Diego Gutierrez, Veronica Sundstedt, Fermin
Gomez, and Alan Chalmers. Modeling light
scattering for virtual heritage. Journal on Com-
puting and Cultural Heritage (JOCCH, 1(2), Oc-
tober 2008.

[HMK82] E.L. Hall, C.A. MCPherson, and Tio J B K.
Measuring curved surfaces for robot vision.
Computer, 15(12):42–54, September 1982.

[HS97] J Heikkila and O Silven. A four-step cam-
era calibration procedure with implicit image
correction. In Proceedings of the 1997 Confer-
ence on Computer Vision and Pattern Recogni-
tion, page 1106, February 1997.

[LIAI11] A Legarda, A Izaguirre, N Arana, and A Itur-
rospe. A new method for Scheimpflug cam-
era calibration. Electronics, Control, Measure-
ment and Signals (ECMS), 2011 10th Interna-
tional Workshop on, pages 1–5, 2011.

[LMW+11] T Leyvand, C Meekhof, Yi-Chen Wei, Jian
Sun, and Baining Guo. Kinect Identity: Tech-
nology and Experience. Computer, 44(4):94–
96, 2011.

[LT09] Douglas Lanman and Gabriel Taubin. Build
your own 3D scanner: 3D photography for
beginners. SIGGRAPH ’09: SIGGRAPH 2009
Courses, August 2009.

Bibliography 65

[MLGG02] B Mikhak, C Lyon, T Gorton, and N Gershen-
feld. Fab Lab: An alternate model of ICT for
development. . . . on Development by . . . , 2002.

[NN94] K. S. NAYAR and Y NAKAGAWA. Shape
from focus. In IEEE Trans. Pattern Anal. Mach.
Intell. 16, pages 824–831, April 1994.

[Ope11] NI Open. Introducing OpenNI
www.openni.org, September 2011.

[PM83] F.J. Pipitone and T.G Marshall. A wide-field
scanning triangulation rangefinder for ma-
chine vision. International Journal of Robotics
Research, 2(1):39–49, September 1983.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is
here: Point Cloud Library (PCL). In Robotics
and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 1–4, 2011.

[Rog11] Rick Rogers. Kinect with Linux. Linux Jour-
nal, 2011(207), July 2011.

[SPSB04] J. SALVI, J PAGE S, and J. BATLLE. Pattern
codification strategies in structured light sys-
tems. In Pattern Recognition, pages 827–849,
September 2004.

[SRDD06] S SEITZ, SZELISKI R, CURLESS B DIEBEL,
and J SCHARSTEIN D. A comparison and
evaluation of multi-view stereo recon- struc-
tion algorithms. In CVPR 2006, June 2006.

[Uno11] Arduino Uno. http://arduino.cc/en/, Octo-
ber 2011.

[WLZ10] Y. M Wang, Y Li, and J. B Zheng. A cam-
era calibration technique based on OpenCV.
In Information Sciences and Interaction Sciences
(ICIS), 2010 3rd International Conference on,
pages 403–406, 2010.

[WMMW06] Simon Winkelbach, Sven Molkenstruck, and
Friedrich M Wahl. Low-Cost Laser Range
Scanner and Fasst Surface Registration Ap-
proach. DAGM, pages 1–11, September 2006.

66 Bibliography

[WN98] M. WATANABE and S. K. NAYAR. Rational
filters for passive depth from defocus. In Int.
J. Comput. Vision 27, pages 203–225, Septem-
ber 1998.

[XRL11] Yuan Xin, Zhu Ruishuang, and Su Li. A Cali-
bration Method Based on OpenCV. Intelligent
Systems and Applications (ISA), 2011 3rd Inter-
national Workshop on, pages 1–4, 2011.

[Zha00] Z Zhang. A flexible new technique for cam-
era calibration. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(11):1330–
1334, 2000.

67

Index

Active Scanning . 7

Camera ray . 14
Contact based scanners .5
Correspondence problem . 6

Evaluation. .41–47
Extrinsics . 13

Future work . 49–50

Intrinsics . 12

Laser range scanners . 7

Non-contact based scanning . 6

Own work . 17–39

Passive scanning . 6
Powercrust . 14

Related work . 5–15

Shape-from-silhouette . 6
Stereoscopic imaging . 6
Structured light . 7
Summary . 49

Time-of-flight rangefinders . 7

Typeset October 5, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Thesis Overview

	Related work
	3D Scanning Approaches
	Contact Based
	Non-contact Based
	Passive scanning
	Active Scanning

	Comparing Available 3D Scanners
	David Scanner
	MakerBot 3D Scanner
	3D Photography on your Desk
	Maker Scanner
	Microsoft Kinect

	Camera Calibration and Triangulation
	The pinhole camera model and camera calibration using OpenCV
	Intrinsic properties
	Lens distortions
	Extrinsic properties

	Basics of Triangulation

	Surfaces from Point-Clouds

	Own work
	Design and Requirements
	Comparing Scanners

	Hardware Prototypes
	First Hardware Prototype
	Discussion

	Second Hardware Prototype
	Discussion

	Third Hardware Prototype
	Discussion

	PCB - Arduino Shield

	Software
	Communication Protocol
	Implementing Triangulation
	From Point-Clouds to Printable Files
	Point-Cloud File Formats
	PTS
	PLY
	PCD

	GUI and Functionality
	User Interface Prototypes
	Basic Functionality and Advanced Settings
	Performing a scan
	Selecting view mode
	Selecting the scanning resolution

	Better Scanning Results
	Setting the stepper motors resolution
	Laser Threshold
	Lower Limit

	Evaluation
	Affordability
	Ready-To-Print
	360 Scan
	Portability
	User Studies
	Suggestions And Feedback From The Users

	Scanner Specifications
	Accuracy
	Resolution

	Summary and future work
	Summary and Contributions
	Future Work
	Scheimpflug principle
	3D Replicator
	MeshLab Plugin
	Improve Hardware
	Intelligent Scanning
	Support for more Open Standards

	SUS - A quick and dirty usability scale
	Schematics for the Laser Cutter Parts
	Arduino FabScan Shield Schematic and Board Layout
	Schematics for the 3D Printer Parts
	Digital Content
	Bibliography
	Index

