
Submission for Ubicomp 2002 Workshop W8: Concepts and Models for Ubiquitous Computing 1

iStuff: Searching For The Great Unified Input Theory

Jan Borchers, Rafael Ballagas
Stanford University

E-mail: {borchers, ballagas}@cs.stanford.edu

Maureen Stone
StoneSoup Consulting

E-mail: stone@stonesc.com

ABSTRACT
What will be the equivalent of mouse and keyboard, win-
dows and icons--the ubiquitous components of the GUI in
the post-desktop era? To explore this question, we have
developed a toolkit and framework called iStuff that facili-
tates experimentation with multiple technologies, modali-
ties, and metaphors for user interfaces in a ubicomp envi-
ronment. Our domain is explicit interaction with a room
sized environment consisting of displays of many sizes,
plus support for wireless technology of various types, inte-
grated using a common middleware. Our goal is to allow
multiple, co-located users to fluidly interact with any of the
displays and applications in the room, using for input any
devices conveniently at hand.

INTRODUCTION
Today's desktop applications have essentially settled on
simple variations of the WIMP interface, sometimes aug-
mented with speech and audio. Projecting such desktop
systems onto walls or hand-held devices quickly exposes
some fundamental assumptions about display size and reso-
lution that break down when the display is either too large
or too small. It also exposes an even more fundamental
assumption--that each display comes with its own pointing
device and keyboard conveniently at hand.

The Stanford iRoom (Figure 1) combines wall-sized dis-
plays with portable devices of many types to create a
shared, interactive workspace. For this class of environ-
ments, the software infrastructure group at Stanford has
developed the iRoom Operating System, the iROS, a TCP-
based middleware that allows multiple machines and appli-
cations to exchange information [iROS02]. The iROS sup-
ports communication through the Event Heap, a central
server process that receives events from client applications
in the room and redistributes them to the appropriate recipi-
ents. This creates a communications mechanism that ex-
tends the notion of an event queue to an entire interactive
room, with multiple machines and users. It is designed spe-
cifically to be robust against failure, and to support easy
restarting of arbitrary parts of the system (including the
central Event Heap itself). The iROS is available in Open
Source distribution from iwork.stanford.edu.

The machines in the iRoom run standard operating systems
and applications, rather than primarily systems designed

exclusively for the environment [Streitz99, Tandler01, Re-
kim99, Meyers98] Applications developed for the iRoom
typically consist of suites of programs that combine their
own UI’s with linked interaction via the iROS. This ap-
proach allows for incremental deployment of complex sys-
tems, such as those developed for construction management
[CIFE02].

From the first implementation of the iRoom, we have found
it important to break the traditional tight binding between
displays, machines and input devices. Users want to display
information anywhere they can conveniently see it, using
input devices that are conveniently at hand.

Ubiquitous Interaction in the iRoom
The first iRoom projects to address the problem of
smoothly retargeting input and interfaces were PointRight
and iCrafter. PointRight is a general pointer redirection
system initially designed to allow a single mouse and key-
board to control all the displays and machines in an iRoom.
It has been expanded into a general architecture that allows
many different configurations and modes of use. For exam-
ple, users running PointRight can use the pointer and key-
board from their laptops to point and type on the big dis-
plays in the iRoom [PR02]. ICrafter is a programmable UI
builder that automatically formats controls for services in

Figure 1. The interactive room (iRoom), showing its three
SMART boards, interactive table, wireless keyboard and
mouse, an other wireless input. The unlit screen on the left
is part of the high-resolution, interactive “mural” [Mural01]

Submission for Ubicomp 2002 Workshop W8: Concepts and Models for Ubiquitous Computing 2

the iRoom into buttons and boxes UI’s, tailored to the size
and capabilities of particular displays[iCrafter01]. Both
PointRight and iCrafter help expand the desktop metaphor
to a heterogeneous collection of linked machines.

iStuff is a project to explore experimental user interfaces
beyond the desktop metaphor. We started by designing a
variety of wireless buttons and sliders that were linked to
the iRoom through the iROS infrastructure. Events from
these devices could serve directly as input to applications,
or as triggers for other events. For example, we can create a
wireless “start the room” button whose event triggers a se-
quence of events to turn on the lights and start up the pro-
jectors in the iRoom.

The iStuff framework was designed to minimize the hard-
ware design, construction and low-level programming that
were not core parts of the research we wanted to conduct.
This framework allows us to quickly prototype a non-
standard physical user interface and run experiments with
it, without running wires, soldering up components, and
writing yet another serial device driver. In this way, iStuff
is like Phidgets[Phidgets01], another toolkit for prototyping
physical input and output devices.

IStuff differs from Phidgets in that we focus on the domain
of interactive rooms, and assume the event-based
infrastructure of the iROS to support the iStuff
infrastructure. This allows iStuff to more easily be wireless
and lightweight. All iRoom aware applications already
include code to interface to the Event Heap, so it is trivial
to link them to iStuff. The Event Heap and iStuff use a pure
Java API, and are therefore available to Windows, Mac OS
X, and Unix applications.

Because iStuff belongs to the iRoom, not to a particular
machine or application, it forces us to address the issue of
input that is not tied to a specific machine or display. Both
the ability to quickly prototype physical devices, plus the
flexible infrastructure that supports using them in explora-
tory applications, is helping us to investigate some funda-
mental questions about user interface software architectures
in environments beyond the traditional desktop

Basic iStuff Architecture
We split the actual iStuff devices into two parts: one is the
actual physical wireless device, and the other is a receiver
and related software running on some PC that serves as a
proxy in the room. Conceptually, both together make the
iStuff “device,” but this design makes the actual wireless
end device lightweight, simple, and cheap to reproduce,
since much of its “intelligence” is actually contained in the
proxy (see Figure 2).

iStuff devices use a variety of technologies to do the actual
wireless transmission, depending on what is most conven-
ient. We have implemented garage-door-opener style Radio
Frequency (RF) transmitters, the X-10 house automation

protocol, infrared, analog radio, Bluetooth, and others. The
point is that the technology does not matter to those who
access the device in their software applications; it is hidden
by the proxy. Using this simple architecture, we have im-
plemented a variety of iStuff devices, as shown in figure 3.

We have also explored voice commands and audio feed-
back using iStuff. Voice is interpreted and translated to
iStuff events, events containing text (to be translated to
speech) or audio files are sent to speakers or a wireless ra-
dio in the iRoom.

Our device designs are freely available for reproduction at
www.stanford.edu/~borchers/istuff/. Others can choose to
use our hardware and software designs, create their own
device designs, or purchase compatible commercial de-

Figure 2. Basic iStuff architecture: Applications send and
receive events through the Event Heap. An iSlider device is
wirelessly connected to its proxy that converts its input into
Event Heap events indicating steps along the slider. In the
example for the output direction, the PC daemon receives
Event Heap events for sound files to play, then plays them
through its sound output where they are transmitted as ana-
log radio frequency waves. The wireless iSpeaker is simply
a portable radio.

Figure 3.Various iStuff. The iDog sends a button press
event when turned over. The iPen is an augmented SMART
board pen, where the embedded button operates as a “right
click” to the Windows OS. The X10 buttons are standard
X10 hardware. All other devices work through a simple RF
receiver that plugs into the USB port of the Proxy PC.

Submission for Ubicomp 2002 Workshop W8: Concepts and Models for Ubiquitous Computing 3

vices, depending on their sense of adventure when it comes
to electronics. The only thing required for new designs is
the software for the proxy interfacing to the Event Heap.

IStuff with Intermediation
Sending and receiving events is only the tip of the iceberg
when it comes to flexible interfaces for interactive rooms.
How do we design the input architecture so that specific
hardware is flexibly targeted to specific displays and appli-
cations? We certainly don’t want to hardwire specific iStuff
event types into the applications, as this would make them
dependent on specific input devices. Our goal is to easily
retarget input as needed.

One solution is to design one or more levels of intermedia-
tion that translate from one event type to another, and to
provide simple tools for configuring this intermediation.
Applications specify their input in their own terms (i.e. an-
notation event), input devices are built to produce generic,
low-level events (i.e. iStuff #7 button press), and the inter-
mediation system maps one to the other.

We are currently developing the Patch Panel as a general
mechanism for this kind of mapping. The Patch Panel con-
sists of a backend application that is responsible for map-
ping events of one type to another. The actual configuration
of the Patch Panel backend is done using its graphical front
end. It is designed to be accessible using a web browser, so
any display in the iRoom can be turned into a controller to
configure this mapping. In fact, the front end talks to the
back end using the Event Heap, sending events of type
Patch Panel Configuration.

For example, we have an application used for meeting cap-
ture that logs a variety of image and file data in the iRoom.
Users can insert named annotations into the log by pressing
iButtons. To do this, each person selects a button, then goes
to a web page to configure it. The web page asks for the
person’s annotation (typically, the user’s name), and asks
them to press their iButton. It then captures the next iButton
pressed event, and uses that information to create a configu-
ration that maps that iStuff event to the annotation event for
the meeting capture application. From then on, pressing the
iButton enters the user’s annotation into the log, which can
then be used as a search string when the log is explored.

Towards the Great Unified Input Theory
The following questions are issues that our work on iStuff
have highlighted. We do not have answers ready for them,
but we think iStuff helps us to discover and think about
these problems much better:

Input focus in the room: In a single-display, single-user
desktop environment, it is obvious where the focus of the
system is at any time (the active front-most window, typi-
cally selected via the window manager by click-to-type at
the current mouse pointer position). It is unclear, however,
what focus means in an interactive room: There are several

screens, potentially being used in parallel, and multiple
users, as well as multiple input devices. The same is true
for the concept of selection. Focus and selection can be
established by gaze, gesture, touch, voice, and other mo-
dalities; which modalities work best is one of the questions
we are currently exploring, using iStuff for experimenta-
tion.

Multi-user, multi-devices: The ideal iRoom application
can be controlled completely using iStuff -- it does not re-
quire a local input device, but simply can be configured
using the Patch Panel to listen to any number of semanti-
cally compatible input devices. This requires rethinking of
how operating systems and applications deal with events: In
a room, an application has to be able to process input from
multiple users using multiple devices in parallel on a single
screen. Typically, this is impossible for three reasons: The
hardware cannot distinguish, say, two mice (try plugging
two USB mice into a computer); the operating system can-
not deal with multiple cursors; and even if it could, applica-
tions are typically only written to deal with a single cursor
and focus. We have begun to write applications such as a
multi-screen, multi-machine whiteboard called the iWall
that lets multiple users control objects on the same or dif-
ferent screens in parallel, using a variety of iStuff devices.
It is interesting to see how natural this seems to users, and
yet how far it is away from today's mainstream interactive
software architectures, even though this domain has been
the topic of HCI research since the early 90’s [MMM92]

Feedback and latency: Our architecture ultimately sug-
gests that all input and output events are passed over the
local network. This creates problems with providing imme-
diate feedback that local operating systems do not have, or
are optimized to avoid: If the larger part of a second goes
by between a user pressing an iButton and, say, the room
turning on the lights in response, then users do not feel at
ease and in control of the environment. Local feedback
inside the wireless device is just part of the answer since it
is not guaranteed that the wireless signal will actually get
through to have the desired effect. Clearly, the robustness
and failure tolerance of the iROS software infrastructure
(and networks in general) is not designed for reliable im-
mediate responses as needed in user interface development.
Yet, ubicomp environments inherently depend on net-
worked communication for by their distributed nature.

Multi-pointer input: The PointRight wireless mouse is
logically iStuff, as it is a wireless device that supplies input
to the iRoom. The original PointRight uses custom-built,
direct socket connections to minimize latency for commu-
nicating pointer data. More recent implementations have
demonstrated that pointer data can route through the Event
Heap with adequate performance for 6-8 simultaneous us-
ers. This allows us to explore multi-pointer input via the
iStuff architecture, such as multiple users using multiple
pointing devices to move objects on the iWall. Besides
stressing performance, pointer input requires efficient con-

Submission for Ubicomp 2002 Workshop W8: Concepts and Models for Ubiquitous Computing 4

trol of coordinate systems and unambiguous sequencing.
Experiments with the iWall suggest our architecture will
support this, but this has yet to be fully demonstrated.

Layered architecture: Our architecture is currently being
generalized to implement a simple two-layer model of gen-
eralizing events. On the first layer, device-specific events
(such as a certain interval of values a wireless slider can
send) is generalized into a generic, normalized device value
space (such as [0..1]). On the second layer, this normalized
device value is being mapped to the application-specific
data type and range (such as “March 2001” to “June 2002”
for a time slider in a project scheduling application).
Should there be more layers? Can one generically map
many input devices to an application, or must they be
mapped one-by-one? What about rich modalities like
voice? It is easy to create an iStuff voice command that
mimics a simple button press (and we have done it), less
clear how to incorporate a more complex dialog.

Summary and Future Work
The iStuff framework provides a toolkit of lightweight,
wireless, generic user interface components that can be
easily reproduced, and controlled by simple software across
multiple platforms. Its design has helped us explore basic
questions about user interfaces in the post-desktop era of
ubiquitous computing: Will there be universally adopted
input modalities as in today's desktop world? How will us-
ers specify focus and select object in an augmented reality
such as an interactive workspace? And how do software
architectures need to change to deal with ubicomp scenarios
and event flows? In the workshop, we hope to be able to
share our experience with the iRoom, our enthusiasm about
this new world of post-desktop user interfaces, and to learn
about hypotheses and potential answers to these questions.
We are well aware there is a wealth of related work, only
some of which we have cited directly in this paper. Clearly
“Searching For The Great Unified Input Theory,” must
build on the community’s experience, and this workshop
seems a great way to start building a common foundation
on which to base this goal.

ACKNOWLEDGMENTS
Many students have worked on iStuff and the iRoom, espe-
cially: Josh Tyler, Merrie Ringel, Tico Ballagas, Michael
Champlin, Robert Brydon, Jeff Raymakers, Joyce Ho and
Ya’ir Aizenman. Terry Winograd is one of the original de-
signer’s of the iRoom, and has been a general source of
wisdom for this work. This work was supported by DoE
grant B504665, The Wallenberg Global Learning Network,
and by donations of equipment and software from Intel
Corp., InFocus, IBM Corp. and Microsoft Corp.

REFERENCES
[MMM] Bier, Eric A., Steve Freeman, Ken Pier, MMM:

The multi-device multi-user multi-editor, CHI92

[iROS02] Johanson, Brad, Armando Fox, and Terry Wino-
grad, The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms, IEEE Pervasive Computing
Magazine 1(2), April-June 2002.

[CIFE02] Fischer, Martin; Stone Maureen; Liston, Kath-
leen; Kunz, John; Singhal, Vibha (2002). "Multi-
stakeholder collaboration: The CIFE iRoom." Proceedings
CIB W78 Conference 2002: Distributing Knowledge in
Building, Aarhus School of Architecture and Centre for
Integrated Design, Aahus, Denmark, pp. 6-13.

[Mural01] Guimbretière, François, Maureen Stone, Terry
Winograd, Fluid Interaction with High-resolution Wall-size
Displays, UIST 2001.

[eHeap02] Johanson, B. and Fox, A., "The Event Heap: A
Coordination Infrastructure for Interactive Workspaces,"
To appear in Proc. of the 4th IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA-2002), Calli-
coon, New York, USA, June, 2002.

[PR02] Johanson, B., Hutchins, G., Winograd, T., Stone,
M. PointRight: Experience with Flexible Input Redirection
in Interactive Workspaces, to be published at UIST 2002.

[Myers98] Myers, Brad A., Herb Stiel, and Robert Gar-
giulo. "Collaboration Using Multiple PDAs Connected to a
PC." Proceedings CSCW'98: CSCW 1998, pp. 285-294.

[Phidgets01] Saul Greenberg and Chester Fitchett. “Phidg-
ets: Easy development of physical interfaces through physi-
cal widgets.” In Proceedings of the UIST 2001 pp 209–218

[Rekim99] Rekimoto, J. "Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing Environ-
ments." CHI'99, pp. 378-385.

[iCrafter01] Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P.
and Winograd, T. “ICrafter: A Service Framework for
Ubiquitous Computing Environments Proc. Ubiquitous
Computing Conference (UBICOMP), 2001.

[Streitz99] Streitz, Norbert A., Jörg Geißler, Torsten Hol-
mer, Shin'ichi Konomi, Christian Müller-Tomfelde, Wolf-
gang Reischl, Petra Rexroth, Peter Seitz, Ralf Steinmetz, i-
LAND: An interactive Landscape for Creativity and Inno-
vation, CHI99

[Tandler01] Tandler, Peter: Software Infrastructure for
Ubiquitous Computing Environments: Supporting Syn-
chronous Collaboration with Heterogeneous Devices. In:
Proceedings of UbiComp2001: Ubiquitous Computing.
Heidelberg: Springer LNCS 2201, 2001, pp. 96-115.

