
by
Ewgenij Belzmann

Utilization and
Visualization of

Program State
as Input Data

in a Live Coding
Environment

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bernhard Rumpe

Registration date: October 1st, 2012
Submission date: April 30th, 2013

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,April 2013
Ewgenij Belzmann

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Related Work 5

3 JavaScript 9

3.1 Scope . 10

3.1.1 Function Scope and Hoisting 10

3.1.2 Closure 11

3.2 For-in loops 12

3.3 Type Coercion 13

4 Implementation 15

vi Contents

4.1 Design Rationale 15

4.1.1 Server Architecture 16

4.1.2 Performance Considerations 17

4.1.3 Third-Party Modules 18

4.2 Communication 18

4.2.1 Sending Code 19

4.2.2 Controlling the Server 20

4.2.3 Grouping 20

4.2.4 Receiving Messages 22

4.2.5 Information Messages 23

4.2.6 Feedback and Error Messages 25

4.3 Instrumentation 25

4.3.1 Variable Assignments and Updates . 27

4.3.2 Variable Declarations 28

4.3.3 Functions 28

Functions Without Return Statements 29

Return Statements 29

Exceptions 31

4.3.4 If and Switch Conditionals 31

4.3.5 Loops 32

While and Do-while Loops 33

For Loops 34

Contents vii

For-in Loops 35

4.3.6 Loop Terminations and Multiple
Function Exits 36

Problem Description 36

Solution 37

5 Evaluation 41

5.1 Capabilities 41

5.2 Known Issues and Limitations 42

5.3 Performance 43

5.3.1 Instrumentation 43

5.3.2 Execution 44

6 Summary and Future Work 47

6.1 Summary and Contributions 47

6.2 Future Work 48

A Testing code 51

A.1 Babylonian method for calculating the
square root . 51

A.2 Merge sort . 52

A.3 Optimized bubble sort 53

Bibliography 55

Index 57

ix

List of Figures

2.1 A screenshot of the interactive editor in Re-
hearse . 7

4.1 Server architecture 17

5.1 Performance of instrumentation 45

xi

List of Tables

4.1 Overview of all messages generated by the
instrumented code 24

5.1 Performance of the instrumentation algo-
rithm for files of different size 44

5.2 Performance of the execution for different al-
gorithms . 45

xiii

Abstract

Live coding seeks to break the code-compile-test loop familiar to many developers by
executing code in the background and presenting the result to the developer with-
out distracting him or her from coding. Many such applications and prototypes
have been created, with different interaction and visualization solutions.

This thesis aims to provide a technical basis for a live coding environment by of-
fering means to execute code in the background while the developer is still editing
it, and to provide the changes in program state. This allows to see the flow of data
through the course of the application while writing code, and to locate possible er-
rors and bugs more easily. Our approach is not tied to any particular visualization
and allows to explore the advantages and disadvantages of different visualization
solutions in the future without being limited by technical limitations.

The program presented in this thesis is written in JavaScript as a server for the
framework Node.js. It can run Node.js programs and sends back the changing
program states to the calling application. It is primarily written to work with the
Brackets code editor, but can in principle be called from any JavaScript editor that
is capable to communicate via the WebSocket protocol.

xiv Abstract

xv

Überblick

Live coding versucht, den Kreis code-compile-execute, der vielen Entwicklern bekannt
ist, zu brechen, indem es den Code im Hintergrund ausführt und dem Entwick-
ler das Ergebnis zeigt, ohne sie oder ihn vom Programmieren abzulenken. Viele
solche Anwendungen und Prototypen wurden bereits entwickelt, mit verschiede-
nen Interaktions- und Visualisierungslösungen.

Diese Diplomarbeit strebt an, eine technische Basis für eine Live-Coding-
Umgebung bereitzustellen, indem es sie Mittel anbietet, Code im Hinter-
grund auszuführen noch während der Entwickler diesen bearbeitet, und die
Veränderungen im Programmzustand anzuzeigen. Dies erlaubt es, den Daten-
fluss in der Programmausführung während der Bearbeitung zu sehen und Fehler
und Bugs leichter zu lokalisieren. Unser Ansatz ist nicht an irgendeine bes-
timmte Visualisierung gebunden und erlaubt es in Zukunft, Vor- und Nachteile
verschiedener Visualisierungslösungen zu erforschen, ohne dabei von technischen
Beschränkungen gebunden zu sein.

Das Programm, das in dieser Arbeit vorgestellt wird, ist in JavaScript als ein Server
für das Node.js-Framework geschrieben. Es kann Node.js-Programme ausführen
und sendet die wechselnden Programmzustände zurück an die aufrufende An-
wendung. Es ist in erster Linie geschrieben, um mit dem Brackets-Code-
Editor zusammenzuarbeiten, aber im Prinzip kann es aus jedem JavaScript-Editor
aufgerufen werden, der in der Lage ist, mit Hilfe des WebSocket-Protokolls zu kom-
munizieren.

xvii

Acknowledgements

First of all, I want to thank Prof. Borchers for getting me interested in HCI in a
single lecture. I since have become increasingly aware of bad interfaces and annoy
all my friends and family with it. I also am very grateful to Jan-Peter Krämer for
taking me on as a diploma thesis student and offering me a very interesting topic
that has taught me a lot, and giving me countless advice during the my thesis. And
another thanks goes to Leonhard Lichtschlag for introducing my to Jan-Peter, by
literally dragging me into his office unannounced. And thanks to Joachim Kurz for
proving me a lot of feedback on my program and thesis.

I also want to thank my parents and grandparents for supporting and educating
my every step of my studies since the very early childhood, and my girlfriend Julia
Zaloga for being very supportive and patient for the last 6 years.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

Most traditional integrated development environments Development
happens in
edit-compile-test loop

(IDEs) presuppose a particular mode of interaction dur-
ing the development of program features or debugging.
The code is written in a text editor (maybe with assistance
of some graphic tools), then it has to be compiled (unless
the language in question is interpreted during execution or
just-in-time compiled (JIT-compilation)), and then it has to
be executed to see the changes in the program. The debug-
ging stage often comes with yet another separate interface.
This is known as the edit-compile-test loop.

The compile-stage of the loop does not constitute productive Larger ignorance
time leads to a larger
fix time

work by the developer, and the test might also contain steps
that take time away from actual development. So the de-
veloper often tries to increase the time spent on productive
work by compiling and testing less often. This, unfortu-
nately, leads to a larger gap between a possible introduc-
tion of an error into the code and its discovery by the pro-
grammer. This gap is referred to as ignorance time. Studies
by Saff and Ernst [2003, 2004] have shown that larger igno-
rance times lead to a larger fix time.

IGNORANCE TIME:
Time between the introduction of an error and the pro-
grammer becoming aware of it

Definition:
Ignorance time

2 1 Introduction

FIX TIME:
Time between the programmer becoming aware of an er-
ror and him fixing it

Definition:
Fix time

Attempts to shorten this gap by providing the developerContinuous
compilation shows
static code errors

immediate (or at least fast) feedback without disturbing his
work have been made for a long time. Schwartz et al. [1984]
have developed an IDE for Pascal that incrementally com-
piled the program in the background and showed static
code errors in the editor. The personal computers of the
time were not powerful enough to work with the IDE pro-
ductively, but similar technology has since been integrated
in many popular IDEs (Eclipse1, Visual Studio2 and others)
and is commonly known as continuous compilation.

Continuous compilation is only able to show static errors,Live coding executes
code in the

background and
shows also runtime

errors

runtime errors can only be detected by the developer actu-
ally running the program. So the next logical step is con-
tinuous execution. This means that code is executed in the
background during development, and the output from the
code is made visible to the user. This programming method
is called live coding.

Most live coding solutions presented in academic literatureBackground
execution often
tightly bound to

presentation

(often they are prototypes used for presentation or evalua-
tion) or even available for use have a fairly tight coupling
between the runtime, that is the part of the program execut-
ing or evaluating the code or parts of it, and the visualiza-
tion components. In some cases, like Rehearse by Choi et al.
[2008], Choi [2008], they even enforce a specific model of in-
teraction during coding. This unfortunately means that, to
test or evaluate a new type of visualization or interaction,
one often has to re-implement not only the frontend com-
ponents but also the backend responsible for the evaluation
of the code.

Instead, we propose a server-client architecture with theClient-server
architecture allows to

implement
visualization

separately from a
stable backend

server being responsible for executing the code and send-
ing the data to the client (or potentially several clients) and
the client doing the visualization as it sees fit. This server

1http://www.eclipse.org
2http://www.microsoft.com/visualstudio

http://www.eclipse.org
http://www.microsoft.com/visualstudio

3

can be used as a robust basis for different visualization so-
lutions without burdening the developer with the details of
the language or the execution environment.

This thesis first present the available research on the
topic (Chapter 2), gives an overview of some aspects of
JavaScript (Chapter 3), and then presents the details of our
implementation (Chapter 4). Lastly, we evaluate the pre-
sented solution (Chapter 5) and discuss possibilities for fu-
ture work in this field (Chapter 6).

5

Chapter 2

Related Work

There have been many attempts at shortening the time Magpie editor
introduced
continuous
compilation

span between the fix time by shortening the ignorance time.
Some of the earliest works in this area, e.g. the Magpie
programming environment by Schwartz et al. [1984], have
been concerned with incremental compilation of the edited
code, providing almost immediate feedback on possible
syntax and compile time errors. Since the power of even
high-end workstations of the time was fairly limited, Mag-
pie does not recompile the whole program on every change,
instead breaking it up in fragments natural to the program-
ming language in use, Pascal, and performs analysis in
those fragments separately. This method of compilation has
since been integrated in many software development tools
(e.g. Eclipse1) and is commonly known as continuous com-
pilation (as apposed to the term incremental compilation used
in [Schwartz et al., 1984]). (One must take care, though, to
specify more precisely what is meant by continuous com-
pilation, since that term has also been used with a different
meaning, for example, in [Childers et al., 2003], denoting a
way for dynamically optimizing code at runtime by recom-
piling and optimizing parts of it.

1http://www.eclipse.org

http://www.eclipse.org

6 2 Related Work

A study on the efficacy of reducing the time between theRunning unit tests in
the background

helps prevent
regression errors

introduction and the discovery of an error has been con-
ducted by Saff and Ernst [2003]. They were primarily con-
cerned with regression errors and a test-first approach to de-
velopment. The proposed solution was to continuously run
unit tests in the background and to present the results to
the developer (instead of running those tests at the devel-
opers command, as is common). A user study conducted
by Saff and Ernst [2003] has shown a correlation between
the ignorance time and the fix time, a result that has been
supported by a further study ([Saff and Ernst, 2004]). Inci-
dentally, the second study also served as an empirical proof
for the benefits of continuous compilation, by showing a
doubled likelihood for completing the given task on time
with it, with even more participants completing it with the
addition of continuous testing. Unfortunately, the tested
approach only covers cases in which there not only exists a
full specification of the desired behavior but also a test suite
to test those requirements, or at the very least a test suite
covering the past correct behavior of the program that is
to be preserved; the test subjects in both studies have been
provided with complete test suites required for testing.

REGRESSION ERROR:
An error in the behavior of the program that has not been
present in a previous version and has been accidentally
introduced into the code.

Definition:
Regression error

The Rehearse editor by Choi et al. [2008], Choi [2008] eval-Rehearse allows
interactive coding

with separate
interface

uated another form of live coding interaction. It is called
interactive development and allows to write code line by line
with the program adding the output for the last written
statement to the editor window after it has been typed (see
Figure 2.1). It also allows to undo previously executed
statements and to return to a previous program state. The
studies showed that, despite benefits from immediate feed-
back, the users were confused from separate interfaces for
classical and interactive coding. This shows that any type
of live coding application has to be integrated with the fa-
miliar programming tools as much as possible.

7

Figure 2.1: A screenshot of the interactive editor in Re-
hearse. Blue lines show the feedback of the statement above
them. Grey lines are statements that have been undone.

Another project that uses instrumentation and background Example centric
programming by
instrumenting
execution
environment

execution in a separate environment to explore program
state is an Eclipse plugin by Edwards [2004]. They primar-
ily propose the use of concrete examples of executed code
(i.e., code executed with specific parameters or example
values) to lower the level of abstraction needed during de-
velopment. The approach is called example centric program-
ming. They also explore the possibilities of this technique
for related fields: example centric teaching, debugging and
testing. The program is also used for a form of test-driven
development, by defining stubs for functions and a form
of assertions that are bound not to a point in code but to a
step in the program execution, and gradually shaping out
the code until the assertions are passed. The main technical
difference between the aforementioned software and ours
is the approach to instrumentation: here the instrumenta-
tion is applied to the execution environment itself (Bean-
Shell, a Java interpreter), while we instrument the code it-
self and execute it in a built-in virtual machine in Node.js.

9

Chapter 3

JavaScript

Since our application deals with the instrumentation and We present some
unexpected features
of JavaScript

execution of JavaScript code (while also being implemented
completely in JavaScript), we want to give a short intro-
duction into the language before going into details of our
solution. The scope of the thesis does not allow us to give a
detailed description of the whole language (for a more com-
plete depiction see, for example, [Crockford, 2008]). We in-
stead will concentrate on those parts of the language that
are important to our solution and may appear unexpected
or unusual to the reader. The chapter assumes that the
reader is familiar with C-like languages and the concepts
of object-oriented and functional programming.

JavaScript is a dynamic, weakly typed, multi-paradigm lan- JavaScript is
dynamic, weakly
typed, imperative,
functional and
object-oriented

guage. Its syntax is based on C and similar languages, and
most constructs will be familiar to anyone with experience
with any C-style language. But semantically JavaScript
is more related to functional programming languages like
Lisp and Scheme ([Crockford, 2008]). Functions are first-
class objects; they can be assigned to any variable, and
used as parameters in other functions. JavaScript is also
object-oriented, but it has no notion of classes. Instead it is
prototype-based (objects can inherit methods and properties
from other existing objects).

10 3 JavaScript

3.1 Scope

Scope refers to the context in a program in which an iden-JavaScript has
lexical scoping tifier is valid. Like many other C-like languages, JavaScript

has lexical scoping. This means that the scope of an identifier
is determined by its position in the source code, and not by
the execution context (like in dynamic scoping). Consider
the following example:

1 function a() {
2 ...
3 }
4
5 function b() {
6 var c = 5;
7
8 function d() {
9 ...

10 }
11
12 a();
13 d();
14 }

Function b declares a variable c and an inner function d.
It then calls the functions a and d. Because function a is
declared outside of b, it has no access to c. Function d on
the other hand has access to c, since it was declared in its
scope.

3.1.1 Function Scope and Hoisting

What separates JavaScript from most other languages inJavaScript has
function scope the C family is the fact that it does not have block scope. In-

stead it uses function scope. This means that an identifier
declared anywhere in a function is valid throughout the
function, irrespective of the block it was declared in. Un-
like Pascal, for example, which also has function scope, but
only allows to declare local variables and inner functions
in a function’s header, JavaScript permits declarations (al-
most) anywhere in the body of functions.

3.1 Scope 11

Most surprising with regard to function scope is that a vari- Variable and function
declaration are
moved to the top of
the context

able or function may be valid seemingly before it was actu-
ally declared. See the following example:

1 var a = 1;
2
3 function b() {
4 a = 2;
5 var a;
6 }
7
8 b();

The assignment to the variable a in line 4 affects not the
global variable declared in line 1, but the local variable
declared in line 5. Actually the variable declaration gets
“moved” up to the beginning of the function b() and is al-
ready present at the point of the assignment. This mecha-
nism is referred to as hoisting. A possible initialization of
the variable is not hoisted with the declaration. Thus the
following code

1 var a = [1, 2, 3];
2
3 function b() {
4 console.log(a[0]);
5 var a = [4, 5, 6];
6 }
7
8 b();

would print to the console neither a 0, nor a 4. The access
to variable a in line 4 refers, as explained previously, to the
local variable declared in line 5. But at this point it is not yet
initialized, and an attempt to access a non-existent property
will return the special value undefined.

3.1.2 Closure

Another aspect of JavaScript that is tied in with the issue Functions have
access to their outer
scope at all times

of scope is closure. Closure is the local scope of a function
that is available to all function declared in it (inner func-
tions), even after the outer function has returned. See the
following code for an example:

12 3 JavaScript

1 function outer(arg) {
2 function inner() {
3 console.log(arg);
4 }
5
6 return inner;
7 }
8
9 var func = outer("test");

10 func();

Here, the variable func is initialized with the return value
of the function outer with the argument "test". outer
returns the function inner that prints the value of arg to
the console. After the function outer returns, the variable
arg that was assigned the value "test" is out of scope
and thus unavailable to any code but the function inner
that is assigned to func. The call func() in line 10 will
print "test" on the console. If the outer function is called
a second time, a new inner function with a new closure is
created.

3.2 For-in loops

For-in loops (also known as for-each or foreach loops) inFor-in loops in
JavaScript iterate

over properties and
not values

most languages that have them allow to iterate over a col-
lection without an explicit counter variable. The common
usage is for (element in collection) {...}. This
is not so in JavaScript. JavaScript instead allows to iter-
ate over properties of arbitrary objects, not just arrays; the
syntax is for (property in object) { ... } with
variable getting assigned the property identifiers of the ob-
ject. This incidentally means that, when iterating over an
array, the variable does not get assigned the values con-
tained in the array (as one might expect) but instead the
keys of those elements (which for a proper array would just
be consecutive integers starting at 0); the values have to be
accessed by array[key].

Further, the properties assigned to the loop variable areFor-in loops iterate
over properties of

whole prototype
chain

not only the properties of the object, but those of all ob-
jects in its prototype chain (see Crockford [2008]), which

3.3 Type Coercion 13

can also be a source of bugs. For this reason every object
has a method hasOwnProperty that can be used to check
whether a property belongs to the object itself or to one of
its prototypes.

3.3 Type Coercion

JavaScript has two different operators for testing equality,
and another two for testing inequality. The operators ==
and != do type coercion before comparing, while the oper-
ators === and !== do not. Similarly, condition tests in if
statements and while, do-while and for loops coerce the result
of the test to a boolean value if it is not boolean already. Un-
fortunately, some of the coercions are unexpected or even
counter-intuitive. For example, the number 0, an empty
string and the null object are treated as false, while an empty
array or any other object is considered true. The special
number value NaN (not a number) behaves even stranger;
it is not equal to anything, not even to itself. (NaN == NaN
yields false.) Crockford [2008] uses for values that are co-
erced to the value true the term truthy values; those that give
false values are called falsy. The falsy values are the follow-
ing:

• boolean value false

• empty string ''

• number 0

• special number NaN

• null object

• special value undefined

15

Chapter 4

Implementation

In this chapter we present the specifics of our implementa-
tion. First, we present the rationale for some of the design
decisions of our solution. Next we explain how the commu-
nication with client applications is organized. And lastly,
we describe in more details precisely how the information
is generated that is sent to the client.

4.1 Design Rationale

One possibility for designing an application to facilitate Instrumenting
execution
environment might
lead to lock-in on a
custom version

live coding would be to instrument the execution environ-
ment in which the code is run. If properly executed, this
would likely allow the live coding editor to access much of
the internal state of the executed code. Any kind of pre-
processing of the code would also be unnecessary. Unfor-
tunately, this approach has also its drawbacks. If we had
chosen to instrument Node.js and the V8 engine used by it,
this would have required significant alterations to the core
code of those programs, alterations that might have broken
essential functionality (and would have required extensive
testing to make sure that they did not do so). It would
also mean that the program would only work with a cus-
tom version of the runtime environment, that would need
to be distributed alongside it. Any changes, bugfixes, and

16 4 Implementation

updates to it would have to be replicated in our version, or
one could not develop code for newer versions. This might
be quite enough for a prototype or for evaluation purposes,
but not for any kind of productive use.

Instead, we decided to instrument the code by inserting cus-We instrument the
code and run it in

Node.js
tom method calls (we refer to them as callbacks) into it. To be
more precise, we generate a syntax tree (AST, abstract syn-
tax tree) out of the code, add the appropriate changes to the
AST, and then generate new code out of the AST. This code
is then executed in a sandbox, and when those callbacks are
called, they send back information about the internal state
of the executed program. This allows our program to be
independent from changes in the runtime environment (as
long as those changes do not break backwards compatibil-
ity). As a runtime environment we use Node.js1, the pro-
gram is written entirely in JavaScript, which also means
that it runs on any platform for which there is a Node.js
distribution.2

4.1.1 Server Architecture

We built the application as a server to which a client canServer
communicates via
WebSockets with

clients and spawns
separate runtimes to

execute code

connect and send code to, and then receives feedback about
the runtime state of the program. The server consists of two
major components (see Figure 4.1). First there is the con-
troller component that communicates with the client on one
end and spawns child processes on the other, and relays the
messages between the both of them. Second is the runtime
that instruments the code, sets up the sandbox, and exe-
cutes the instrumented code in it. The controller communi-
cates to the client via a WebSocket connection. We chose it
so the connection from the client has to be established once
and messages can be passed between client and server in-
definitely, thus significantly reducing overhead compared
to an HTTP connection. After receiving new code from a
client, the controller creates a new runtime as a child pro-

1http://nodejs.org
2At the moment of writing, there are Node.js binary distributions for

Microsoft Windows, Mac OS X, Linux and SunOS, and a source code
distribution.

http://nodejs.org

4.1 Design Rationale 17

Client Controller Runtime

Runtime

...

Runtime

Websocket IPC

Server

Figure 4.1: Server architecture

cess. This happens through built-in Node.js functionality,
the inter-process communication (IPC) between the main pro-
cess and the child processes is provided by the runtime en-
vironment.

The separation of the actual code execution into child pro- Executing code in
separate processes
allows to stop
execution

cesses was necessary because JavaScript, and accordingly
Node.js, has no multithreading support. If the code that
is executed in our application contains an infinite loop or
hangs for any other reason, then, if it was executed directly
in the server process, there would be no way of stopping
the execution without shutting down the whole applica-
tion. The child processes, on the other hand, can be shut
down separately. For this, the server accepts messages that
allow to shut down a particular runtime, if, for example, the
client application believes that the execution will not termi-
nate, or is simply no longer interested in the messages from
that particular runtime. If a client closes the socket or shuts
down, all runtime processes associated with this client are
stopped as well.

4.1.2 Performance Considerations

There are several possible performance issues that had to Performance of
instrumentation
enhanced by using
only one pass over
syntax tree

be considered during the application design. First of all,
there is the instrumentation of the code. We tried to limit
the time spent on instrumentation by using a single pass
over the syntax tree. This necessitated the separation in the

18 4 Implementation

code of semantically related parts. Another possible issue
is the running of the instrumented code versus the normal
execution in Node.js. We evaluate both those issues in sec-
tion 5.3 “Performance”. The last question related to per-
formance is the possible communication overhead between
the client and server, and between the server controller and
the runtime processes. The possible problems and our so-
lution are presented in the following section.

4.1.3 Third-Party Modules

In our application we made use of the following Node.jsApplications and
third-party modules

we used for our
application

modules: ws (WebSocket module) for communicating with
the client(s), Contextify3 for executing the code in a sand-
boxed environment, child process (built-in) for spawning
child processes in which the instrumentation and execu-
tion is performed (see section 4.1.1 for details), cycle.js4 for
writing cyclical structures into the JSON format, Esprima5

for parsing the code into the syntax tree, and Escodegen6

for generating code out of the instrumented AST. We used
Contextify instead of the built-in Node.js module vm (which
serves the same purpose) because of its better handling of
the global object, thus ensuring that most programs will
run as if they were simply started as a Node.js program. As
a client during development we used the Brackets7 code
editor because of its easy extensibility, with a custom ex-
tension that allowed sending code, receiving messages and
viewing them in the debugging console.

4.2 Communication

As already mentioned in section 4.1.1 “Server Architec-Messages are
JavaScript objects

converted to JSON
ture” (p. 16), the server and the clients communicate via the
WebSocket protocol. It allows sending messages between a

3https://github.com/brianmcd/contextify
4https://github.com/douglascrockford/JSON-js
5http://esprima.org
6https://github.com/Constellation/escodegen
7http://brackets.io

https://github.com/brianmcd/contextify
https://github.com/douglascrockford/JSON-js
http://esprima.org
https://github.com/Constellation/escodegen
http://brackets.io

4.2 Communication 19

server and a client in full duplex mode. The messages we
send consist mostly of JavaScript objects that are converted
into a textual representation in the JSON format. All of the
objects have a property named type to easily determine
the content in the message.

4.2.1 Sending Code

The server expects the code in messages of the form

{
type: "code",
code: code,
[options: options object,]
id: id

}

The property code should be a string containing the Code and id are
mandatoryJavaScript code that is to be executed. The property id

must contain an identifier that will be used to reference all
messages associated with this particular code. This id can
be either a number or a string and will later be referenced in
all messages sent to the client. This way the client can send
new code before having received all messages for an older
version, and ignore all messages for older versions with-
out processing them. The id cannot contain the number sign Id cannot contain the

number sign #(#, also called hash or pound sign), the reason is explained
in the next subsection; in our example client we simply use
the numeric value of the timestamp when we send the code,
converted to a string.

The property options is optional and permits the client to Message can contain
options for the serverexhibit finer control over the behavior of the server. The op-

tions should be passed as another object with the different
settings as boolean properties. If the options object or any
particular option property is not present, the server will as-
sume default values. In the current version, two options
are implemented: stopOldRuntimes (default: true) and
disposeAfterExit (default: true).

20 4 Implementation

The first option, if true, tells the server to stop all previ-stopOldRuntimes

lets the server stop
old child processes

for this client

ously started child processes associated with the client (or
rather, with the current socket). If stopOldRuntimes is
false, the child processes will continue to run until the server
is stopped, the connection to the client in question is cut, or
a child process is stopped manually (how to do that will be
explained in subsection 4.2.2).

The option disposeAfterExit concerns the sandbox indisposeAfterExit

lets child process
dispose of the

context in which the
code runs

which the code is executed. If the option is set to true, the
sandbox is destroyed immediately after the program exits,
and the memory can be freed. This is a sensible option for
most simpler programs. But an exit from the program oc-
curs after the main code was executed, which does not nec-
essarily mean that the program itself is finished. If the pro-
gram has deferred some code from execution by using the
methods setTimeout and nextTick, or has some call-
backs waiting for events, those will only continue running
if the sandbox is not destroyed. In such cases the option has
to be set to false.

4.2.2 Controlling the Server

Our application accepts other types of messages besideMessage
stopRuntime can

stop a particular child
process

"code". Those can be used to send commands to the
server, even during execution of previously sent code. The
current version supports only one such message type. The
type property has to be set to "stopRuntime" and the
message has to contain a property runtimeID with the
identifier of a previously started runtime. After receiving
the message, the server will attempt to stop the child pro-
cess with this id. It is useful for stopping the execution of
code that has, for example, entered into an infinite loop.

4.2.3 Grouping

As already mentioned, JavaScript, and accordinglyBlocking vs.
non-blocking

message relaying
Node.js, has no multithreading support, thus the execu-
tion of code that potentially can contain infinite loops

4.2 Communication 21

can be challenging. The two possible solutions that
we considered were either to relay any messages from
the runtime immediately as they arrive (this is referred
to as blocking), or to defer the sending of the mes-
sages to the next run of the event loop of the execu-
tion environment using setTimeout(function, 0) or
process.nextTick(function) (the non-blocking way,
which is the preferred programming style for Node.js ap-
plications).

The first case allows the client, and consequently the user, Sending immediately
gives faster
feedback, but has
large overhead

to receive immediate feedback. But it has the unfortunate
downside that, since every seconds hundreds of messages
can be generated, the overhead for sending the messages
either over the WebSocket connection or the IPC channel
between the controller and the runtime, small as they may
be for any single message, add up to a quite significant
amount and become by far the dominating performance
limiting factor.

In the second case the actual sending of the messages gets Deferring messages
only gives feedback
after program exit

postponed until the next run of the event loop and thus
does not significantly slow down the execution of the code
(thought the overhead still appears when they are actually
being sent). Unfortunately, the next iteration of the event
loop is only processed when the execution of the instru-
mented code terminates. The code sent from the editor may
contain infinite loops or other constructs that prevent the
code from terminating, and since we cannot reliably detect
such cases (the halting problem being unsolvable), the exe-
cution has to be stopped in such cases. The only way to do
it without stopping the server itself would be to shut down
the runtime executing that particular code. If the sending of
the messages is postponed, those messages never get sent
to the client and thus the user would have absolutely no
feedback as to why his code did not execute.

So we have to send those messages during the execu- Solution: send
messages blocking,
but 100 at a time

tion, but without generating too much overhead. The so-
lution we used was to buffer the messages generated by
the runtime and send them off in packages of 100 as soon
as enough have accumulated. We chose this number as a
compromise between reduced overhead and promptness of

22 4 Implementation

feedback. Smaller packages (for example with 10-20 mes-
sages) would still lead to significant overhead, while larger
ones would slow down the perceived responsiveness of the
server and thus go against the notion of live coding. On
faster computers that are able to execute the code faster,
it might be possible to raise the size of the package even
higher without significantly sacrificing speed of feedback.
But a size of hundred has shown to be a good compromise
during our testing.

These packages are themselves styled as messages, withGrouping messages
lowers overhead,

leading id in
message allows to

recognize
“interesting”

message before
parsing

the type "message array" and the messages contained
in an array under the property "messages". The client
can send new code before having received all the messages
from a previous code version, so it has to be able to recog-
nize messages that are interesting to it (e.g., the messages
for the last sent code). For this, the message array message
contains an id field with the identifier that was attached to
the code (see subsection 4.2.1). Since JSON parsing is rel-
atively costly, it proved beneficial to be able to discard a
message before parsing it, though. To enable this, we de-
cided to prepend the id to the message array message after
converting that to JSON; it is separated from the rest of the
message by the number sign # and can be split off before
parsing. The different types of messages are presented in
subsection 4.2.5.

4.2.4 Receiving Messages

In addition to the normal messages that inform the clientError messages are
sent out of order of changes of state of the executed application and are con-

tained in the message array, there are also several types of
feedback and error messages. (By those we do not mean er-
rors generated by the executed code, but those happening
in our application itself, like problems with the instrumen-
tation or execution of the code.) They are sent separately
from the message array as soon as they happen. The differ-
ent kind of errors are described in subsection 4.2.6.

4.2 Communication 23

4.2.5 Information Messages

Writing text to the console via console.log() and Console replacement
allows text outputconsole.error() is a popular form of providing feed-

back or debugging in Node.js. Simply providing the nor-
mal console object to the code executed in the sandbox
would output those messages to the console of the server,
which would not be very useful to client applications and
consequently to the developers using them. To allow those
messages to be displayed by the client as it sees fit, we chose
to replace the console that we pass to the sandbox object.
Our console replacement supports the methods log() to
write information messages to the console and error()
to write errors to the error console (often they are iden-
tical, but web browsers, for example, tend to style error
messages differently). Other methods are currently not im-
plemented (see also section 5.2 “Known Issues and Limita-
tions” (p. 42)), e.g. console input is not possible.

After unpacking the message array the client can encounter All message types in
a message array
have type and
location information

several types of messages. All of them have a property
type (the message type) and a property loc (the location
of the part of code that caused the message in the original
code), with the exception of log and error that do not
have a location property. The location message is struc-
tured the following way:

{
start: { line, column },
end: { line, column }

}

It logs the start (line and column) and end point (line and
column) of the element in question. An overview of all
messages generated by the instrumented code is presented
in Table 4.1.

24 4 Implementation

Type property Properties Description
program finished loc Program execution was finished
variables init vars [name, value], loc Variables vars[].name initialized

with values vars[].value
assignment name, value, loc Variable name was assigned value
update name, value, loc Variable name was updated to value
function enter name, argNames [name], Function name was called with

argValues [value], loc parameters argNames, argValues
function exit loc Function exited without return value
return value, loc Function exited returning value
if-test result, value, loc Test of if-condition evaluated to

value, boolean result
switch-condition value, loc Switch condition evaluated to value
while-loop init loc While loop started
while-loop-test result, value, loc Test of while loop evaluated to

value, boolean result
while-loop enter loc While loop iteration started
while-loop exit totalLoopCount, loc While loop exited after

totalLoopCount iterations
for-loop init loc For loop started
for-loop-test result, value, loc Test of for loop evaluated to

value, boolean result
for-loop enter loc For loop iteration started
for-loop exit totalLoopCount, loc For loop exited after

totalLoopCount iterations
for-in-loop init loc For-in loop started
for-in-loop enter loopVar, value, loc For-in loop iteration started,

loop variable loopVar has value
for-in-loop exit totalLoopCount, loc For-in loop exited after

totalLoopCount iterations
log text [] Writing text to console
error text [] Writing text to error console
begin try-catch loc Begin of a try block with a catch part
begin try-finally loc Begin of a try block without a catch part
throw loc Exception was thrown
catch exception, loc Exception was caught in a catch part
end try loc Try block exited (no exception

or exception handled)
uncaught exception exception, loc Exception was not handled

Table 4.1: Overview of all messages generated by the instrumented code

4.3 Instrumentation 25

4.2.6 Feedback and Error Messages

To inform the client application(s) of the current state of Runtime informs
after start, after
successful or
unsuccessful
instrumentation and
execution

execution, the runtime sends the client the following mes-
sages. A first message is sent by the runtime process (see
also section 4.1.1 “Server Architecture” (p. 16)) immedi-
ately after it has started. After the instrumentation has
been completed successfully, a log message is sent with
the text "Code successfully instrumented in t
ms."; t is the time in milliseconds that the instrumen-
tation has taken. An error during the instrumentation
leads to the message "Error instrumenting code:
exception"; exception is the exception object that lead to
the error. Similar messages are generated for the execution
of the instrumented code. If an error happens during the
execution and some messages from subsection 4.2.5 “Infor-
mation Messages” have accumulated but not yet sent, they
are sent to the client before the error message, to allow the
client as much feedback as possible and also possibly locate
the source of the error more precisely. The messages are
styled in similar manner as the log and error messages
mentioned in subsection 4.2.5, with the addition of the id of
the code (see also subsection 4.2.1 “Sending Code”).

4.3 Instrumentation

The instrumentation is done by parsing the code, going re- We parse the code,
insert callbacks into
the AST and
generate new code
from it

cursively through the AST, inserting calls to a specific func-
tion at appropriate places in the tree, and afterward gener-
ating new code back from it. The parsing is done with the
Esprima parser, for the code generation we use Escodegen.
Additionally, after generating the instrumented code from
the AST, we wrap all the code in a try-catch block to cap-
ture any unhandled exception and inform the client about
it. After the block we insert an additional callback call to
signal that the execution of the code has finished. Esprima
is configured such that it adds location information to ev-
ery element in the tree. This information is retained dur-
ing the instrumentation and added to the messages sent to
the client. The client can then use this information to find

26 4 Implementation

the position in the original code that corresponds to the re-
ceived message.

The following elements are instrumented in the code:

• Variable value changes

• Variable declarations

• If and switch statements

• Functions

• For loops

• For-in loops

• While loops

• Do-while loops

• Try-catch blocks

In all the instrumented constructs whenever the instru-Replace single
statements with
blocks in control

structures

mentation code encounters a situation where a non-block
statement is used in the code where a block statement was
possible, such as in if (a < b) doSomething(); in-
stead of if (a < b) { doSomething(); }, we replace
the non-block statement with a block statement and insert
the original statement into the block (unless the supersed-
ing construct is a block itself). This does not change the
semantics of the code and enables us to insert instrumenta-
tion code into the block.

Following are the details of the different instrumentations.
In all examples shown in this section the location informa-
tion is omitted from all callback function calls for brevity.
Furthermore, some variable names and function calls to our
instrumentation code are shortened for better clarity.

4.3 Instrumentation 27

4.3.1 Variable Assignments and Updates

There are two kinds of simple operations that change vari- Assignments and
update operations
change variable
value

able values in JavaScript: assignments, that overwrite a vari-
able value and are denoted by an equals sign (=), and up-
dates, that change a variable’s value relative to its original
value. The latter ones are the simple increment and decre-
ment operations (++ and –), and the combination operations
+=, -=, *=, /= and %= that combine an operator with an as-
signment. They all cause a change in the value of a variable
on the left side of it, and so the instrumentations are essen-
tially equal, aside from the type of the message sent to the
client (assignment and update accordingly). Besides the type
the message contains the name of the variable and the new
value that it has after the operation.

Assignments and updates can be found as separate state- Assignment or
update can be a
separate statement
or part of a sequence

ments, mostly found in block statements, or as part of a se-
quence expression (several expressions separated by com-
mas). For statements found in blocks we simply insert a
callback immediately after the assignment/update. For se-
quences we insert a callback into the sequence after the op-
eration in question. The latter is, for example, the case in
for-loops, where an increment operation is often found in
the afterthought part (see also subsection 4.3.5).

An assignment can also occur in the condition of an if- Assignments in if
statements are
handled elsewhere

else expression. Most often this constitutes an error by the
programmer. Indeed it is a quite common and, more im-
portantly, hard to spot mistake. An assignment gets in-
serted instead of a comparison, such as writing if (a =
1) ... instead of if (a == 1) ... or if (a === 1)
..., which is still valid JavaScript code as far as the run-
time environment is concerned, but is often not what the
programmer intended. In this case we do not provide an
assignment message, but this is handled with the message
for the if statement (see subsection 4.3.4).

28 4 Implementation

4.3.2 Variable Declarations

A variable declaration in JavaScript is a statement that createsDeclarations create
variables and can

initialize them
new variables in the current scope. Every declaration state-
ment can contain more than one declaration (for example,
var a, b; declares two variables at once. Every decla-
ration can also initialize a variable, (e.g., var a = 10, b
= [];), which assigns a value to the variable. If the vari-
able is not initialized, its value after the declaration is the
special value undefined. As explained in subsection 3.1.1
“Function Scope and Hoisting” (p. 10), the hoisting mecha-
nism semantically moves the declaration to the top of the
scope (without moving the assignment).

The instrumentation of a declaration statement is very sim-We insert callback
after the declaration

with a list of all
declared variables

and their values

ilar to an assignment or update (see previous subsection).
We insert the call of the callback function after the declara-
tion; the type of the message is variables init. The main dif-
ference is that we possibly have to send more than one vari-
able and value. Thus we group the declared variables and
their initial values (if they have any) into objects of the form
{ name: name, value: value }. Those objects are
then collected in an array, which is attached to the sent mes-
sage under the property vars.

4.3.3 Functions

In case of functions we want to provide feedback as toFunctions provide
feedback on entry

and exit
when a function or method has been entered and left. Addi-
tionally, we determine which parameters have been passed
to it during the call, since in a language like JavaScript this
can be a source for errors: the parameter list is not part of
the function signature and is not checked during compile
time nor during run time. A function can even work with
more parameters than are in the parameter list. To enable
this, every function has an implicit variable named argu-
ments in its scope that contains all parameters with which
the function was called in a pseudo-array. We use this vari-
able to easily access all parameters and add them to the
message sent to the client application. In addition to that,
we gather the list of the declared parameters of the function

4.3 Instrumentation 29

(names only) and add them too. All this is sent in a function
enter message that is inserted as the first statement in the
function.

PSEUDO-ARRAY:
A pseudo-array is an object that looks like a normal array:
it has elements listed under properties with sequentially
numbered integers as names, starting at 0, and a non-
enumerable property named length. However it is not an
instance of the Array class and lacks all methods of an
array.

Definition:
Pseudo-array

As to the function exits, there are several ways to leave a
function:

Functions Without Return Statements

One way is to simply finish executing all statements in the Function without
return value exit with
function exit
message

function; this is the case for functions that do not return
any value, sometimes called procedures. We recognize func-
tions that do not have a return statement as their last state-
ment as such and add a call to our callback function as the
new last statement that sends a function exit message. Of
course it can happen that a function contains return state-
ments embedded in if-else conditional statements or other
control structures such that all possible execution paths will
inevitably call one of them. In that case the instrumentation
algorithm will still (erroneously) recognize the function as
a procedure and embed a callback at the end. But since,
as previously stated, all execution paths lead to one of the
returns, this last callback is never actually called during ex-
ecution.

Return Statements

Another way to exit a function is to execute a return state- Return values are
assigned to
temporary variable

ment. Those can, but do not need to have a return value.
Without a return value the function essentially becomes a

30 4 Implementation

procedure, thus we simply insert a function exit message be-
fore the return. If the return has a value, we send a return
message and pass this value along with it. Of course, this
value can be just a literal (like a simple number, string or an
in-place object or array) or an identifier (variable or func-
tion name), in which case embedding it into the message
becomes quite simple. But the return value in JavaScript
can also be quite complicated, with logical constructs (like
the ternary conditional operator ?:), function calls and even
function definitions. In such a case we have to be careful
to avoid any possible side-effects that can alter the behav-
ior of the instrumented program. To achieve this, we create
a temporary variable, assign to it the original return value
(thus any possible calculations and function calls get ex-
ecuted at that point in the instrumented program), add a
callback function call with the type return and the value of
the temporary variable, and replace the original value of
the return statement with the temporary variable. As an
example,

1 function func() {
2 ...
3 return func2() + 7;
4 }

becomes

1 function func() {
2 ...
3 var temp = func2() + 7;
4 callback({ type: "return", value: temp });
5 return temp;
6 }

Independently of whether the return statement has a returnReturns may lead to
exits from loops or

other control
structures

value or not, it can be nested deep in the control structures
of a function and, for example, if the return is inside a loop,
the function exit also represents an exit from the loop. How
such cases are handled is covered in subsection 4.3.6. One
has also to keep in mind that a return does not necessarily
mean that no more code in the function is executed. If the
return statement is in a try[-catch]-finally block, all the code
in the finally block is executed before exiting the function,
and the finally block itself can contain return statements and
other control structures.

4.3 Instrumentation 31

Exceptions

Another thing that can (but not necessarily must) lead to Exceptions can also
lead to leaving a
function

leaving a function is an exception. This can be an exception
in the code of the function itself (e.g., in case of an attempt
to call a non-existent method of an object), an uncaught ex-
ception in code called from the function, or an explicit throw
statement (in case of an error condition arising, for exam-
ple). For finding such cases, try-catch-finally blocks are also
instrumented. Since exceptions can also lead to the termi-
nation of loops, the precise handling of such cases is cov-
ered in subsection 4.3.6.

4.3.4 If and Switch Conditionals

If statements allow branching of program flow depending If statements
on a binary condition. In JavaScript, the condition can be
not only a boolean literal (true or false) or an operation that
yields a boolean value (e.g. a < 5), but any value that can
be coerced to a boolean value, which is essentially any value
in JavaScript. Some values are converted to the boolean
false value (so called falsy values, those are 0, NaN, empty
string, null and undefined), the rest to true (truthy values; ter-
minology by Crockford [2008]). The value of an assignment
is the new value of the left hand side variable, which can in
turn be brought to a boolean value. Thus in if (a = 5)
... the branch of the if statement will be executed, but in
if (a = 0) ... it wont. This can be used purposefully
by the programmer, for example, to test for the existence of
an object, but can as easily constitute an error.

A switch statement is used for a similar purpose, only it Switch statements
allows more than two branches at the same time and the
branching condition is not confined to a boolean value. The
condition, that in JavaScript can be more than just an iden-
tifier, is evaluated first, and then the appropriate branch is
executed. JavaScript allows to use any type of variable as
a possible case, not just ordinal types like integers or single
characters. The value of the switch condition is also valu-
able information for the developer.

32 4 Implementation

The way we instrument the test of the if statement and theInstrumentation for
ifs and switches

wraps condition in
anonymous function

condition of the switch is essentially identical, apart from
the type of the message that is sent. We send the test result
without changing the program semantic by wrapping the
condition in an anonymous function, with the condition as
a parameter, that is executed immediately. This function
calls the callback function and returns the value of the con-
dition, both the original one and the boolean value. The
following example demonstrates it:

1 if (a < 5) {
2 ...
3 }

is transformed into

1 if ((function (result) {
2 callback({ type: "if-test", result: (result ?

true : false), value: result });
3 return result; }) (a < 5)) {
4 ...
5 }

This allows the programmer to see the result of the test con-Returning original
and boolean values

might help to find
mistakes from wrong

assumptions about
true and false values

dition before it was coerced to a boolean value (if it was not
a boolean already). An assignment, for example, has as its
value the value that was assigned to the variable and will
appear as such in the message. Returning both the original
and the boolean value also allows to spot errors resulting
from misunderstanding the concept of truthy and falsy val-
ues in JavaScript. For example, the empty string and the
number 0 are falsy and thus will be converted to false, but
the empty array [] and the empty object {} are truthy. This
is part of the JavaScript standard, but might seem counter-
intuitive to some programmers, and providing those values
in live coding might help to understand why an application
for example enters a specific branch.

4.3.5 Loops

As any modern programming language, JavaScript hasJavaScript has
different types of

loops
several types of loop constructs. They are commonly re-
ferred to as while loops, do-while loops, for loops and for-in

4.3 Instrumentation 33

loops. They are often used to iterate over arrays or to exe-
cute some operation until some condition is met, and some-
times are even interchangeable, though the for-in loop has
some unusual and unexpected properties (more on it in
subsection 4.3.5) that set it apart from the other loops and
seemingly similar constructs in other languages.

While and Do-while Loops

While loops and do-while loops in JavaScript are quite sim- Instrumentation of
while and do-while
loops

ilar; they both repeatedly execute the loop body as long as
some condition is met, the only difference being the point
in execution when this condition is evaluated. While loops
check the condition at the beginning of every iteration (thus
it is possible that the loop never gets executed at all), while
do-while loops test it at the end (thus guaranteeing that the
loop gets executed at least once). The instrumentation of
the loops is mechanically identical: a callback is inserted
immediately before the loop to signal the loop start (needed
for termination handling, see subsection 4.3.6), another call-
back is inserted in the beginning of the loop for the loop
entry and a last one just after the loop for the loop exit. The
following example shows this for the while loop:

1 while (condition) {
2 ...
3 }

becomes

1 callback({ type: "while-loop init" });
2 while (instrumented condition) {
3 callback({ type: "while-loop enter" });
4 ...
5 }
6 callback({ type: "while-loop exit" });

The same considerations apply for the loop condition of Instrumentation of
the test same as for if
statements

the while and do-while loops as for the test of the if state-
ment, so the instrumentation, that is only hinted to in the
example is done by using the same method (by inserting
an anonymous function around it, see subsection 4.3.4).

34 4 Implementation

For Loops

A for-loop is a loop construct consisting of an initializa-Syntax and usage of
for loops tion statement (executed once at start, commonly for ini-

tializing a loop counter variable), a condition expression
(evaluated before every iteration and converted to boolean
value, if value is falsy, loop is exited) and an afterthought
statement (executed after every iteration, usually for in-
crementing or decrementing the loop variable). Ofter, for
loops are used like this: for (i = 0; i < max; i++)
{ ... } However, the language puts virtually no limits
as to what can be put into the respective parts. For exam-
ple, the afterthought can update more than one variable, or
the initialization can not just initialize the variable, but also
declare it. The latter is quite common for languages with
a C-style syntax but is discouraged in JavaScript. The rea-
sons for this are function scope and hoisting (see subsection
3.1.1) that might lead to hard to spot errors.

The declaration of a variable in the initialization partWe extract variable
declaration out of
loop initialization

of the for-loop gets also hoisted to the beginning of the
function. This behavior can lead to errors in the pro-
gram, so it has to preserved by our instrumentation.
We would want to insert callbacks into the initializa-
tion of the loop (in case of variable assignments or
function declarations, for example), but appending them
to a variable declaration would be syntactically invalid,
i.e. turning for (var i = 0; i< max; i++) { ...
} into for(var i = 0, callback(...); i < max;
i++) { ... } is not possible. To solve this we decided
to pull an eventual declaration statement out of the for-loop
and insert it immediately before the loop (this declaration
also gets hoisted up the function, so the semantics remain
unaltered), while turning a possible initialization into an as-
signment and keeping it in the loop initialization. Syntac-
tically the initialization statement gets turned from a dec-
laration into a sequence expression, so that we can append
additional expressions to it. Similarly, the afterthought part
is also converted into a sequence expression, if it is not one
already.

4.3 Instrumentation 35

As for the test, here the same considerations apply as for Instrumentation of
test and bodythe if statement and the while loop, thus it is instrumented

in the same manner (for details see subsection 4.3.4). We
then recursively instrument the initialization and the af-
terthought parts and the body of the loop (this is where
all callbacks for variable assignments and updates get in-
serted), insert a for-loop init callback as the first element in
the initialization sequence, a for-loop enter callback as first
element in the loop itself and a for-loop exit callback imme-
diately after the loop. Example:

1 for (var i = 0; i < max; i++) {
2 ...
3 }

becomes

1 var i;
2 for (callback({ type: "for-loop init" }), i = 0,

callback({ type: "assignment", name: "i", value:
0 }); i < max; i++, callback({ type: "update",

name: "i", value: i })) {
3 callback({ type: "for-loop enter" });
4 ...
5 }
6 callback({ type: "for-loop exit" });

For-in Loops

As we previously explained in section 3.2, for-in loops in Instrumentation of
for-in loopsJavaScript iterate not over elements of a collection or prop-

erty values of an objects, but over property identifiers. De-
spite this, the instrumentation of the for-in loops is quite
simple and very similar to the while loops (see 4.3.5. Call-
backs are inserted before the loop (initialization), as first
expression in the loop (loop entry) and immediately after
the loop (loop exit). The only difference is that, since we
know the loop variable, we can insert it into the message,
as in the following example:

1 for (key in array) {
2 ...
3 }

becomes

36 4 Implementation

1 callback({ type: "for-in-loop init" });
2 for (key in array) {
3 callback({ type: "for-in-loop enter", loopVar: "

key", value: key });
4 ...
5 }
6 callback({ type: "for-in-loop exit" });

4.3.6 Loop Terminations and Multiple Function Ex-
its

Problem Description

In JavaScript, as in many other modern programming lan-Several ways to
leave a function guages, there are several ways to exit a function, voluntar-

ily or involuntarily. In JavaScript, it is possible to terminate
a function at any time through the use of the return com-
mand, which can have an optional return value. This will
of course also exit any loops in that function that the pro-
gram is currently in.

Similarly, there exist several commands to control the exe-Loop control
commands cution of loops. Those are label, continue and break. Continue

stops the execution of the current iteration and goes im-
mediately to the next one, which of course might not hap-
pen if the loop condition is no longer met. The effects of
this command are already covered by the instrumentations
introduced previously in section 4.3.5 “Loops”. The break
command on the other hand completely stops the execu-
tion of the loop it is in. (The break command is also used in
switch statements, but that case is completely irrelevant to
our instrumentation.) The label command allows to assign
a label to a loop; this label, in conjunction with break, allows
to terminate several loops at once, up to the labeled one.

The situation gets even more complicated when one con-Exceptions can lead
to leaving loops
and/or functions

siders exceptions. Those can be explicitly triggered by the
programmer through the use of the throw command or trig-
gered by some error condition during the execution. One
way or the other, an exception stops the execution of the
current function.

4.3 Instrumentation 37

If the exception occurred in a try block, then what hap- Exception can be
handled in a try blockpens further depends on whether the try construct has a

catch part and/or a finally part. If there is a catch part,
the execution jumps to it, where the exception is handled;
if there is also a finally part, it will be executed after the
catch block, even if the exception was rethrown. (The finally
part is guaranteed to be executed under almost any circum-
stances.) If the exception was not rethrown, the exception is
considered handled and execution continues after the try-
catch block; only the loops the program was in that are in
the try block are exited. Without a catch part, the finally part
(that has to be there in this case) gets executed, and then,
since the exception is considered unhandled, the function
is terminated and the exception is rethrown.

If an exception is unhandled, be it because it was not Unhandled
exceptions terminate
all loops and
functions up to the
place where they are
caught

caught in the function where it occurred, or it was rethrown
further up the execution stack, it will lead to leaving all cur-
rently executed loops in the function, the function itself and
all the executed loops and functions up to the place where
the exception is caught and handled. If the exception is
not handled anywhere, the whole program will terminate.
Since we decided to inform the client about the exiting of
functions and loops, we have to somehow store the infor-
mation of currently executed loops and functions, and be
able to send the appropriate exit messages to the client in
case of an exception or return statement.

Solution

Since a program execution in JavaScript consists of nested Stack in closure of
callback function
tracks functions,
loops and try-catch
blocks

function calls and structural constructs (e.g. loops and try-
catch blocks), using a stack to track them is an obvious so-
lution. This stack is implemented as a JavaScript array and
kept in the closure (see subsection 3.1.2 “Closure” (p. 11))
of our callback function. It it thus not in scope and there-
fore invisible to any code that calls the callback function (so
it cannot clash with any code that we instrument and exe-
cute), but only visible to the callback function itself. We use
the stack to track all enters and exits of functions, loops and
try-catch blocks.

38 4 Implementation

We put a new item on the stack on any enter into a function,Enters push new
items on stack, exits

pop them
a try-catch block (not a try-finally, try-catch-finally is handled
as a try-catch) or a loop (on loop init message). The stack
items store the type and location information from the call-
back function, for the loops we also add a property count
to track the number of iterations. This number is increased
with every new iteration (on loop enter message) and sent to
the client with the loop exit message. (It is purely a matter
of convenience since the client can just as easily track that
information for itself.) Any regular exit from a loop will
generate a loop exit message that will take the item from the
stack and append the loop count to the message sent to the
client. It does not matter whether the loop was left by no
longer passing the test or through the break command, since
the callback call that sends the loop exit message is inserted
after the loop and thus gets executed in each case. (The dif-
ference will still be visible in the list of messages received
by the client: an exit through failing the test will have a loop
test message before the loop exit message, unless it is a for-in
loop.)

For functions it gets slightly more complicated, since aFunction exits also
exit any active loop
and try-catch block

function exit can be in form of a return statement. (And
those returns can generate a return or a function exit mes-
sage, depending on whether they return a value or not.) A
return can easily be found inside a loop or several nested
loops, and/or in try-catch blocks. So when a return/function
exit message arrives, the top stack item might not be a func-
tion. Those other items have to be all taken down from the
stack and the appropriate messages have to be generated
before sending the function exit message to the client. If the
return is in a try[-catch]-finally block, the finally part will be
executed before exiting the function, and there can be ad-
ditional returns, that, when executed, will break our stack,
since two return messages will arrive for one function. Un-
fortunately, we have not found a solution to this problem.
We have to rely on this not occurring often, since the finally
construct is meant for freeing critical resources and not for
complicated flow control structures.

Exceptions are the most complicated case for our solu-Exceptions terminate
loops and functions

until they are handled
tion. An exception, whether explicitly thrown, coming
from other executed code, or from the runtime environ-

4.3 Instrumentation 39

ment, will exit any loop and function on the stack up until
it is caught by a try-catch construct (and not rethrown). The
only code that gets executed between the generation of an
exception and the catching of it are possible finally blocks
on the way. To handle this, we put items on the stack for
every try-catch block, but not for try-finally (try-catch-finally
is handled like a try-catch). A throw message will pop all
items from the stack until it encounters a try-catch item (that
means that the exception is handled there) or empties the
stack (which means that the exception was not handled).
For every popped item an appropriate message is gener-
ated and put into the message queue. In case the exception
is handled we leave the try-catch item on the stack; it will
be removed by the catch message. The catch message does
essentially the same as throw (this is needed for exceptions
that were not generated by a throw), but does remove the
try-catch item. The last possible message is end try-catch, it
signaled by a callback inserted after a try block. After this
message, the runtime looks at the topmost stack item and
takes it down if it is a try-catch.

41

Chapter 5

Evaluation

In this chapter we want to evaluate the capabilities and per-
formance of our application with respect to its applicabil-
ity for user studies of different visualization solutions, and
for practical use. Since our was not to create and evalu-
ate a particular visualization, but to instead provide a ro-
bust technical base for such studies, we can only present a
descriptive overview of the qualitative capabilities of our
program. We can however speak of its limitations and pos-
sible solutions for them. Lastly, we consider the issue of
the performance of our solution. Since live coding places high
demands on the swiftness of feedback to the user (it is in-
deed implied in the name itself), it was important to us to
measure the speed of the different parts of our application.

5.1 Capabilities

To test the capabilities of our live coding server, we used We tested the
capabilities of the
solution with several
types of files

several types of programs. Firstly, we used synthetic ex-
amples to test particular issues or instrumentation types,
e.g., the behavior in case of exceptions that is described in
subsections 4.3.3 “Exceptions” (p. 31) and 4.3.6 “Loop Ter-
minations and Multiple Function Exits” (p. 36). Secondly,
we used smaller programs that are representative of real
life applications for live coding. One such example is the

42 5 Evaluation

merge sort algorithm that is in its completeness presented in
appendix A “Testing code” (p. 51). Even this fairly simple
algorithm, sorting an array of only 7 elements, generates
164 different messages, which goes to highlight the level
of detail that the server is capable of providing. A slightly
modified version of this code was used for the performance
tests in subsection 5.3.2 “Execution”. Thirdly, we used real
Node.js applications and modules to test the correctness
and completion of our instrumentation, and as a way to
measure the performance of the instrumentation (further
described in subsection 5.3.1).

5.2 Known Issues and Limitations

Our application has some limitations as to what types ofNo console input
code it can execute and provide feedback on. One of the
issues is interactivity: we can only output data to console,
capturing console input is not yet possible. The reason for is
the console replacement we presented in subsection 4.2.5. To
solve this issue, the console replacement would have to be
enhanced with the capability of sending data to the appli-
cation, while also provide means to send those input data
from the client application to the console replacement.

Another limiting factor is the fact that we run the codeOnly Node.js
programs in a Node.js environment, consequently we can only exe-

cute programs that are compatible with it. This issue can-
not be solved easily. To simulate a different environment,
a web-browser for instance, the sandbox that we use to ex-
ecute the code in would have to be furnished with objects
and methods that are part of such an environment. (For
a web-browser environment, this would be, among others,
the window object with all its methods.) This replacement
objects and methods should also be able to send appropri-
ate information messages to the client application (similar
to our console replacement).

The JSON format is not capable of encoding function ob-Functions cannot be
encoded in JSON jects. Since we use JSON to be able to send JavaScript ob-

jects over websockets, all functions and their associated clo-
sures are lost in the process. It might be possible to send the

5.3 Performance 43

source code of the function, but even then the closure of the
function would be lost. Unfortunately, we do not believe
that a perfect solution can be found in the context of our
application architecture.

The label command that allows the break command to break Breaks in conjunction
with labeled loops
break the message
stack

out of several loops at once, previously mentioned in sub-
section 4.3.6, is not completely supported. It will not cause
problems during the instrumentation, but, if used in the
program for breaking out of more than one loop, might
break the stack used for sending messages for terminated
loops and functions described in subsection 4.3.6. The mes-
sages generated by the stack after a labeled break statement
can no longer be relied upon, since stack items from all
loops except the innermost will remain on the stack until
the next function exit.

5.3 Performance

All performance measurements were made on a Lenovo Testing parameters
T430s laptop with an Intel i5-3320M CPU and 8GB of RAM,
running under a 64-bit Windows 7 OS. For time measure-
ments we used the built-in JavaScript timing capabilities
that provide millisecond resolutions.

5.3.1 Instrumentation

We measured the performance of the instrumentation on Instrumentation
performance
measured on large
files

5 files of different sizes. Since for smaller files the instru-
mentation time varies too much in relation to the timer
resolution, we deliberately selected larger files, with sizes
ranging from about 850 to almost 19,000 source lines of code
(SLOC, lines of code without comments and empty lines).
We timed the instrumentation for each file 10 times and cal-
culated the mean of the durations. From this, we calculated
the ratio of the mean to the number of SLOC to account for
the different file sizes.

Table 5.1 shows the data for files esprima.js (from Esprima1), Table and chart show
instrumentation
times for different
files

http://esprima.org

44 5 Evaluation

escodegen.js (from Escodegen2), underscore.js (from Under-
score.js3), jslint.js (from JSLint4) and test.js (testing file, also
from Esprima). The chart in figure 5.1 shows the ratio of
instrumentation time versus number of SLOC for those files.
From the data it is apparent that, though the times gener-
ally get larger with larger files, some other factors also play
a role. The file test.js, for example, though quite large at
almost 19,000 SLOC, has a comparatively small instrumen-
tation time of approximately 2.1 seconds. The reason for
this may the relatively simple structure of the file, since it
consists almost completely of object definitions and has not
a single function declaration. Generally we see that the in-
strumentation time is under one millisecond per source line
of code.

Since the time between the client sending the code to the
server and the server sending the first feedback messages is
largely dominated by the instrumentation, this time has to
be small. If we assume that feedback time under 1

2 second
is sufficiently fast, this means that our solution can work
with files of at least 500 lines of code, and depending on the
structure of the file, 1000 lines might also be fast enough for
liveness.

File SLOC Mean time [ms] Mean/SLOC [ms]
underscore.js 848 713 0.841
escodegen.js 1914 831 0.434

jslint.js 2958 2222 0.751
esprima.js 3096 1314 0.424

test.js 18995 2110 0.111

Table 5.1: Performance of the instrumentation algorithm
for files of different size

5.3.2 Execution

For the evaluation of the execution we decided to com-Performance of
execution was

measured on three
different algorithms

1http://esprima.org
2https://github.com/Constellation/escodegen
3http://underscorejs.org/
4http://www.jslint.com/

https://github.com/Constellation/escodegen
http://underscorejs.org/
http://underscorejs.org/
http://www.jslint.com/

5.3 Performance 45

0

0.25

0.5

0.75

1

es
prim

a.j
s

es
co

deg
en

.js

under
sc

ore.
js

jsl
in

t.js
tes

t.js

t[ms]

SLOC

Figure 5.1: Ratio of instrumentation time to SLOC for files
of different size

pare the execution time of the instrumented code with the
time for the original code under the same circumstances.
Since the sorting algorithm shown in appendix A is simply
too fast to yield significant results for the sorting of 7 ele-
ments, we increased the number of elements to 4000. We
measured the running time 10 times for each array size, for
original and instrumented code respectively. In addition to
merge sort we also used two other algorithms: bubble sort
sorting 1000 elements (the algorithm is slower and gener-
ates a lot more messages) and the babylonian method for iter-
atively calculating the square root with 100 000 iterations.
The execution times for all algorithms is shown in Table 5.2.

Algorithm Original time [ms] Time during live coding [ms]
Merge sort 25 3 552.7
Bubble sort 16 50 841
Square root 15 5 484.3

Table 5.2: Performance of the execution for different algo-
rithms

46 5 Evaluation

One can easily see that the slowdown is quite significantBig amount of
messages slows
down execution

for all algorithms. Especially bubble sort with over 50 sec-
onds versus 16 milliseconds without our application. The
reason for this is the huge amount of messages generated
by this algorithm, in contrast with actual computation be-
ing performed in the square root algorithm. All messages
are processed in the server to preserve their state at the mo-
ment of execution, and this processing adds up to quite a
big amount of time. We are convinced that through further
optimizations this slowdown can be reduced, but it will at
least be one or two degrees of magnitude over the original
code. This means that during user studies it is advisable
to use algorithms that generate less messages during exe-
cution (i.e. they perform more taxing calculations instead)
and/or use smaller sized input data. We found during de-
velopment that using 7–10 elements for a sorting algorithm
is enough to show whether it works properly, and the slow-
down at this size is imperceptible.

47

Chapter 6

Summary and Future
Work

6.1 Summary and Contributions

After studying the available research on the topic and
evaluating several possible approaches, we implemented
a server in Node.js that accepts WebSocket connections
from client applications. After establishing a connection to
a client, it accepts messages with JavaScript code, instru-
ments and executes it, and sends the changes in program
state back to the client. In addition to the server we im-
plemented a low fidelity client as a plugin for the Brackets
code editor for testing purposes; it is only capable of send-
ing JavaScript code currently visible in the editing window
and writing the received messages to the debugging con-
sole in Brackets. We then evaluated the capabilities of the
application and highlighted some limitations that need to
be addressed in the future. We also analyzed the perfor-
mance of the server, showing that there is a considerable
slowdown in execution time for programs that generate a
lot of messages, mostly those with larger amounts of in-
put data. This has to ba taken into account when designing
possible user studies with our application as a backend.

48 6 Summary and Future Work

Since the client plugin was only for testing purposes and
not applicable for a user study, we cannot provide any con-
crete data to the utility of our application. Any evidence we
have is anecdotal: the application is, at the moment of writ-
ing, used as a backend for a user study for a live coding ap-
plication. This, and possible other future studies will pro-
vide more feedback and allow to see possible weaknesses
of the current solution.

The main contributions of our work are:

• determining what feedback a user might be interested
in during live coding

• designing and implementing a server capable of exe-
cuting the provided code and returning the informa-
tion to the clients

• evaluating the technical limitations of our solution
and proposing possible solutions

6.2 Future Work

The presented solution provides a large amount of feed-Visualization
solutions back and puts fairly little limitations on the executed code.

But what possible data might also be beneficial for a de-
veloper and how it is presented can only be evaluated in
future qualitative and quantitative user studies. Our appli-
cation provides a stable basis for the evaluation of different
visualization in a largely unexplored visualization space.

There are also possible improvements to the backend it-Console input
self. Providing means for writing interactive console appli-
cations would greatly enhance possibilities for user studies
and allow the user to provide input data to an algorithm
through an interactive interface instead of writing it into
the source code directly. But, apart from the technical limi-
tations (see section 5.2), The precise interaction between the
interactive console and the live coding interface have to be
evaluated.

6.2 Future Work 49

JavaScript is a functional language, and so it puts a lot of Providing feedback
for function
declarations

emphasis on functions. Our implementation provides feed-
back when a function is called (and the parameters of the
call). It might also be beneficial to give feedback for func-
tion declarations, since the same function in the code can rep-
resent different function objects at runtime. Unfortunately, it
has proven difficult to instrument all function declarations
consistently, since JavaScript allows to declare a function at
many different positions in the code. Such attempts have
also lead to significant slowdown of the instrumentation.
Therefore we decided to not include it on our application,
though it might be beneficial to add such capabilities in the
future.

Another possible direction for future work is the in- Instrumenting
runtime environmentstrumentation of the execution environment (in our case

Node.js). Something similar was already done by Edwards
[2004], but we propose to do this while retaining our server-
client architecture, thus not limiting the editor and visual-
ization decisions. Despite its possible drawbacks (see sec-
tion 4.1 “Design Rationale” (p. 15)), a backend built on top
of an instrumented runtime environment might provide
much more detailed feedback because of the better over the
execution environment. It also might alleviate the perfor-
mance issues we highlighted in section 5.3 “Performance”
(p. 43).

Yet another possibility for future work would be the ca- Executing functions
separately with
provided input

pability to execute not the whole code, but just functions,
while providing them with input data. This input data may
be entered by the user, or even gathered from a previous
execution of the whole program. This might further accel-
erate the execution and provide the developer with feed-
back to those parts of the program he or she is interested
in. Unfortunately, the concept of closure in JavaScript (see
subsection 3.1.2 “Closure” (p. 11)) might severely limit the
practicality of such a solution, because the closure of a func-
tion would have to be treated as another set of input data.

51

Appendix A

Testing code

A.1 Babylonian method for calculating
the square root

1 /*jslint node: true */
2 "use strict";
3
4 function root(number, iterations) {
5 var i, root = 10;
6
7 for (i = 0; i < iterations; i++) {
8 root = (root + (number/root)) / 2;
9 }

10
11 return root;
12 }
13
14 var result = root(2, 100000);
15 console.log(result);

52 A Testing code

A.2 Merge sort

1 /*jslint node: true */
2 "use strict";
3
4 var testarray = [6, 3, 8, 0, 4, 7, 5],
5
6 function merge(array1, array2) {
7 var i = 0, j = 0, result = [];
8
9 while (result.length < array1.length + array2.

length) {
10 if (i <= array1.length && (j >= array2.

length || array1[i] < array2[j])) {
11 result.push(array1[i]);
12 i += 1;
13 } else {
14 result.push(array2[j]);
15 j += 1;
16 }
17 }
18 return result;
19 }
20
21 function sort(array) {
22 var halfpoint, result;
23 if (array.length === 1) { return array; }
24
25 halfpoint = array.length / 2;
26 result = merge(sort(array.slice(0, halfpoint)),

sort(array.slice(halfpoint, array.length)));
27 return result;
28 }
29
30 var result = sort(testarray);
31 console.log(result);

A.3 Optimized bubble sort 53

A.3 Optimized bubble sort

1 /*jslint node: true */
2 "use strict";
3
4 var testarray = [6, 3, 8, 0, 4, 7, 5],
5
6 function sort(array) {
7 // Add swap method to the array
8 array.swap = function (i1, i2) {
9 var tmp = this[i1];

10 this[i1] = this[i2];
11 this[i2] = tmp;
12 };
13
14 var n = array.length, newN, i;
15
16 do {
17 newN = 0;
18 for (i = 1; i < n; i++) {
19 if (array[i - 1] > array[i]) {
20 array.swap(i - 1, i);
21 newN = i;
22 }
23 }
24 n = newN;
25 } while (n !== 0);
26
27 delete array.swap;
28 return array;
29 }
30
31 for (var i = 0; i < 0; i++) {
32 testarray2 = testarray2.concat(testarray2);
33 }
34
35 var result = sort(testarray2);
36 console.log(result);

55

Bibliography

Bruce Childers, J.W. Davidson, and M.L. Soffa. Continuous
compilation: a new approach to aggressive and adaptive
code transformation. In Proceedings International Parallel
and Distributed Processing Symposium, volume 00, page 10.
IEEE Comput. Soc, 2003. ISBN 0-7695-1926-1. doi: 10.
1109/IPDPS.2003.1213375.

William Choi. Rehearse: Coding Interactively while Proto-
typing. Technical report, Stanford University, 2008.

William Choi, Joel Brandt, and Scott R. Klemmer. Rehearse:
Coding Interactively while Prototyping. UIST’08, Octo-
ber 19, 2008.

Douglas Crockford. JavaScript: The Good Parts. O’Reilly
Media, Inc., 2008. ISBN 0596517742.

Jonathan Edwards. Example centric programming. ACM
SIGPLAN Notices, 39(12):84, December 2004. ISSN
03621340. doi: 10.1145/1052883.1052894.

David Saff and Michael D. Ernst. Reducing wasted devel-
opment time via continuous testing. 14th International
Symposium on Software Reliability Engineering, 2003. IS-
SRE 2003., pages 281–292, 2003. doi: 10.1109/ISSRE.2003.
1251050.

David Saff and Michael D. Ernst. An experimental evalua-
tion of continuous testing during development. Proceed-
ings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis - ISSTA ’04, page 76, 2004. doi:
10.1145/1007512.1007523.

56 Bibliography

Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Beg-
wani. Incremental Compilation in Magpie. ACM SIG-
PLAN Notices, 19(6):122–131, 1984.

57

Index

AST, see syntax tree

child process, 16–17, 20

evaluation, 41–46

future work, 48–49

instrumentation, 15–16

JavaScript, 9–13
- for-in Loops, 12
- closure, 11–12
- hoisting, 10–11, 28, 34
- scope, 10–12

JSON, 19

performance, 17–18

syntax tree, 16–18

WebSocket, 16

Typeset September 26, 2013

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related Work
	JavaScript
	Scope
	Function Scope and Hoisting
	Closure

	For-in loops
	Type Coercion

	Implementation
	Design Rationale
	Server Architecture
	Performance Considerations
	Third-Party Modules

	Communication
	Sending Code
	Controlling the Server
	Grouping
	Receiving Messages
	Information Messages
	Feedback and Error Messages

	Instrumentation
	Variable Assignments and Updates
	Variable Declarations
	Functions
	Functions Without Return Statements
	Return Statements
	Exceptions

	If and Switch Conditionals
	Loops
	While and Do-while Loops
	For Loops
	For-in Loops

	Loop Terminations and Multiple Function Exits
	Problem Description
	Solution

	Evaluation
	Capabilities
	Known Issues and Limitations
	Performance
	Instrumentation
	Execution

	Summary and Future Work
	Summary and Contributions
	Future Work

	Testing code
	Babylonian method for calculating the square root
	Merge sort
	Optimized bubble sort

	Bibliography
	Index

