RWTH

Combining
Live Coding and
Continuous Testing

Bachelor’s Thesis at the

Media Computing Group
Prof.Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Tanja Ulmen

Thesis advisor:
Prof.Dr.Jan Borchers

Second examiner:
Prof.Dr.Bernhard Rumpe

Registration date: 22.05.2014
Submission date: 19.09.2014

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September 2014
Tanja Ulmen

Contents

[_Abstract xi
| Uberblick xiii
[Acknowledgements| XV
L__Conventions| xvii
1 Intr ion| 1
1.1 wvation 1
(1.2 LiveCoding| 3
(1.3 Continuous Testing| 3

(14 Combining Live Coding and Continuous |

| Testing] 4

1.5 Chapter Overview| 6
P

2 Related work 7

Desig 13

vi

Contents

B2 TestCases 17
{4 Implementation| 21
BT Clenfl 21
B2 Served. 24
5 Evaluationl 27
[6 Summary and future work| 31
6.1 Futureworkl 31
6.2 Summary|. 33
[Bibliography| 35
[Index 37

vii

List of Figures

[fineanew testcasel 5
(L2 Graph of test coverage with the combination |
| of live coding and continuous testing|. 5
.1 Hierarchy of liveness [Tanimoto, 2013] 8

3.1 Screenshot of the old and the new user inter- |

[3.2 Screenshot of the popover that gives a de-
| Ted - F the funch 5 that be-
| long to the actual function| 16

B3 S] = —d] 5Tl l

| tunction call specific context| 17

3.4 Design of a normal Jasmine test suite| 18

[3.5 Design of the test cases in the "testfile_spec”|. 19

[3.6 Terminal screenshot of the Jasmine test results| 20

4.1 Graph of the interaction between Client and |
| Serverl. 24

ix

List of Tables

[1.1 “Statistics about the Perl and Java datasets”

[Saff and Ernst;2003]

xi

Abstract

Today software can become complex and due to that it might happen that errors
remain undetected during development. To find and to avoid these errors there are
several methods. Two of them are live coding and continuous testing. Both help the
users to find errors quickly and to reduce the time they would need for debugging.
Live coding enables the users to see live what their written code is doing, because
the code is continuously executed. This reduces the time the users would need for
executing the code manually. Continuous testing is a method where test cases are
executed continuously in the background while the programmers are writing their
code. If an error occurs the programmers get a small notification and can decide to
solve this error quickly or to ignore it.

In this thesis we develop a combination of live coding and continuous testing, we
add a testing method to the already existing live coding Brackets extension that
was developed by Joachim Kurz. This combination ensures a nearly automatic test
case creation. The users have two buttons at their disposal, one to mark a current
function call as correct, and one to mark it as false. With a click on this button a
test case object is generated and sent to the server side of our program. This server
creates and executes the test cases and sends the results back to the client where the
results are displayed. Thus the users have an easy overview over their code, which
function works as expected and which function still contains an error. With this
combination of live coding and continuous testing the time that the users would
spend for writing test cases is reduced, because the program writes them on its
own.

xii

Abstract

xiii

Uberblick

Heutzutage kann Software sehr komplex werden und deswegen kommt es vor,
dass Fehler in dieser Software lange unentdeckt bleiben. Um diese Fehler zu finden
oder zu vermeiden gibt es mehrere Methoden. Zwei davon sind Live Coding und
Continuous Testing, beide helfen den Nutzern Fehler im Code schnell zu finden
und sie reduzieren die Zeit, die zum Debuggen benétigt wiirde. Da beim Live
Coding der Code fortlaufend im Hintergrund ausgefiihrt wird, konnen die Nutzer
live sehen was ihr geschriebener Code bewirkt. Das verringert die Zeit die der
Nutzer brduchte um den Code jedes Mal manuell auszufiihren. Continuous Testing
ist eine Methode bei der vorher geschriebene Testfille fortlaufend im Hintergrund
ausgefiihrt werden. So bekommt der Nutzer wahrend des Schreibens Feedback
ob die Zeilen die er geschrieben hat Fehler enthalten oder nicht. Wenn ein Fehler
auftritt, erscheint ein Hinweis dem der Nutzer nachgehen, oder ignorieren kann.

In dieser Arbeit entwickeln wir eine Kombination aus Live Coding und Contin-
uous Testing. Wir fiigen der bereits existierenden Live Coding Erweiterung fiir
Brackets, die Joachim Kurz entwickelt hat, ein Testing Tool hinzu. Diese Kombi-
nation ermdoglicht es, dass Testfélle automatisch erstellt werden. Die Nutzer haben
zwei Buttons zur Verfligung, mit dem ersten konnen sie den aktuellen Durchlauf
einer Funktion als richtig markieren, mit dem anderen als falsch. Mit einem Klick
auf einen dieser Buttons wird ein Testfall Objekt generiert, an den Server geschickt,
dort wird ein Testfall genereiert, ausgefiihrt und die Resultate werden wieder zum
Client geschickt, der diese dann visuell darstellt. So erhalten die Nutzer einen ein-
fachen Uberblick iiber ihren Code. Sie sehen schnell welche Funktion problemlos
funktioniert und wo eventuell noch Fehler auftreten. Da die Testfdlle nun automa-
tisch generiert werden reduziert diese Kombination aus Live Coding und Contin-
uous Testing die Zeit, die die Nutzer brauchten um eigene Testfélle zu schreiben.

XV

Acknowledgements

I want to thank everybody who supported me during my bachelor thesis. Espe-
cially Jan-Peter Kramer, my advisor during the first few month of my thesis and
Thorsten Karrer my advisor during the last months of my thesis. Then I want to
thank my brother Fabian Ulmen for proofreading although he was very busy with
his own studies. At least I want to thank Kirsten Kern, who is also writing her
bachelor thesis at the moment. With her I always had someone to talk when I was
ataloss:).

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in Definition-

a book, usually in an appendix, or digressions in a writ- '
Excursus

ten text.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Chapter 1

Introduction

1.1 Motivation

Software can become complex and that is why it might hap-
pen that errors remain undetected during development.
Maybe more program code is added before the developers
notice that there is an error in their code. Now it is difficult
to find the exact code part that causes this error and some-
times it needs a lot of time to find this part. One method
to find and avoid these undetected errors is a test suite. A
test suite is a collection of different test cases . A test case
checks whether a code part, or an entire program works as
desired. These test cases are for example helpful if a pro-
gram has to deal with several edge cases. For example, as-
sume that we want to test a function that is called isOdd.
This function gets an integer as parameter and it returns a
boolean. This boolean is true if the given number is odd or
false if the given number is even. Now it is possible to de-
sign a test case that tests exactly this function of correctness.
It can check, for example, if the function isOdd returns true
if we use 5 as input parameter. If we define several of this
specific test cases, they build a whole test suite for this one
function.

After - or sometimes before - a code part is written, the de-
velopers write different test cases to check the functionality
of their code. After finishing the code part, they execute

Because of the
complexity of
software, it is helpful
to work with test
cases.

1 Introduction

Developers lose a lot
of time while waiting
for test suites to
finish.

the test cases and receive the results, for example output
values or warnings. Now the developers have an overview
how their code works and if it works as expected or not.
This method of writing a test suite and executing it man-
ually is inefficient in two ways: the developers could use
the time they lose while waiting for the test suite to finish
its execution and the CPU could also do other tasks while
the developers are writing the code [Satt and Ernst, 2003].
Saff and Ernst [2003] found out that for a Java dataset with
9114 lines of code, the waiting time for one test suite was
3 seconds and a developer ran this test suite in average ev-
ery 11 minutes. So with a developing time of 22 hours the
developers waited 22 minutes for the test to finish. For a
Perl dataset, the developer ran the test suite in average ev-
ery 5 minutes, with a duration of 16 seconds per run and a
total working time of also 22 hours, the developers waited
71 minutes. This results are shown in table

Attribute Perl Java
lines of code 5714 9114
total time worked (hours) 22 22
total calendar time (weeks) 9 3
total test runs 266 116
total capture points 6101 1634
total number of errors 33 12
average time between tests (minutes) 5 11
average test run time (secs) 16 3
mean ignorance time (secs) 218 1014
min ignorance time (secs) 16 20
median ignorance time (secs) 49 157
max ignorance time (secs) 1941 5922
mean fix time (secs) 549 1552
min fix time (secs) 12 2
median fix time (secs) 198 267
max fix time (secs) 3986 7086

Table 1.1: “Statistics about the Perl and Java datasets” [Saff
and Ernst, 2003]

To avoid this waiting time, it is possible to use, for example,
live coding or continuous testing. These two methods are
explained in the next two sections.

1.2 Live Coding

1.2 Live Coding

Live coding, or Live Programming , is a technique to mini-
mize “the latency between a programming action and see-
ing its effect on program execution” [Tanimoto, 2013]. To
archive this minimization of latency, the written code is exe-
cuted continuously in the background to receive the results
of the program execution, for example output variables or
warnings, in real-time. A benefit of this method is, that it
also supports the learning process, because the developers
immediately see the effects of their written code [Tanimoto),
2013]]. Another benefit of live coding is, that the developers
are not anymore disturbed in their developing process by
debugging code lines manually. Without live coding the de-
velopers need to check their code lines frequently by hand.
They have to stop their developing process, to build the en-
tire program, to set debugging marks and to look if the pre-
vious written code lines are working as desired. This can
cost a lot of time. With live coding they are able to develop
ideas without breaks to execute the whole program. Finally
there is less wasted time that would be needed to execute
the program manually.

A negative point is that live coding needs a lot of “compu-
tational resources of a system” [Tanimoto, 2013] and it is
not useful for every work. Inlarge programs, for example,
it might happen that the developers want to change a part
of the code that was already executed, but the program will
never return to this point. One idea would be to execute the
program in a loop. Another idea is to use breakpoints that
can be set to run a special part of the code or a function in a
loop [Tanimoto| 2013]. These are two methods to avoid the
necessity to re-execute the entire program.

1.3 Continuous Testing

Continuous testing is a method to combine coding with
testing. Test cases are developed before writing the code.
While the developers are coding, this tests are running con-
tinuously in the background, “using otherwise-idle CPU

Live coding reduces
the waiting time
between writing code
and seeing the effect
of the code.

Live coding needs a
lot of computational
resources.

1 Introduction

Using the method of
continuous testing,
the predefined test

cases are
continuously running
in the background,
giving hints if errors
occur.

Definition:
Regression error

In this thesis live
coding and
continuous testing
are combined to
create test cases
almost automatically.

cycles” [Muslu et al., 2013]. With this method, the devel-
opers receive feedback for their written code in real-time.
A disadvantage of running tests continuously in the back-
ground is, that the test cases are executed independent of
what the developer does. A more efficient variant is to
execute the test automatically after finishing a code part
[Muslu et al. [2013].If an error occurs, there will be a noti-
fication and the developer can get more information about
the error. He also can decide to ignore it, for example if he
already knows that there is an error in his code. Continu-
ous testing is good to avoid for example regression errors

REGRESSION ERROR:

Regression errors are errors that occur if new function-
ality is added to an old program and due to this new
changes an error occurs in the old, former working, func-
tionality.

Another benefit is that with continuous testing the wait-
ing time of the developer to receive test results is less than
without this method. This ensures that the developers can
concentrate on the implementation of their ideas, otherwise
it could be possible that they forget their ideas during de-
bugging the previous code fragments [Satf and Ernst, 2004].

1.4 Combining Live Coding and Continu-
ous Testing

The idea of this thesis is to combine live coding and contin-
uous testing. During life coding, the developers already get
feedback about what happens with their written code, but
it would be more efficient to use also advantages of testing.
With a test case it is possible to check various aspects of the
program. The combination of the two methods makes it
possible to define test cases while writing the code and the
results of this tests are received immediately. This method
creates test cases on its own, based on the information it al-
ready has from live coding and the developers only need

1.4 Combining Live Coding and Continuous Testing

var x;

function is0dd(number){ returned:

if{number%2 == @8){
return H

H
else{
return 3

}

is0dd(5);
iz0dd{4) ;
is0dd(1@);

=
[[T]

Figure 1.1: Screenshot of the button that is needed to define a new test case.

value range

Figure 1.2: Gained test coverage with the combination of live coding
and continuous testing in a Function that works with Integers from 0
to 255.

to click one of two buttons to add a new test case to the
test suite. Figure|l.1|shows these buttons. In this example
the function has a numerical parameter of 5 and it returned
“odd”. If this result is right, it can be marked as correct and
a new test case is generated.

With this combinational method it is easy to get a high test
coverage of average requests. For example if a function
works with Integers from 0 to 255, the average requests are
the requests that are in the middle of this range around 127.
Usually developers would use this requests in their pro-
grams instead of edge cases. Due to that we get a high test
coverage for average requests and a low test coverage for
edge cases. In Figure(1.2|this distribution is visualized. The
expected maximum coverage is around 127 and the mini-
mum coverage around 0 and 255.

This combination of
the two methods
ensures a high test
coverage of average
requests.

1 Introduction

We work with the live
coding extension for
Brackets and the
Jasmine Testing
Framework.

Previous knowledge
about live coding and
continuous testing.

Details of the user
interface and the test
case design.

The important parts
of the
implementation.

Advantages and
disadvantages of the
combination of the
two methods.

A summery and
ideas for future work.

To enable the idea of combining live coding and continuous
testing, we use the live coding extension for Brackets, de-
veloped by Joachim Kurzﬂ and the]asmmeE| testing tool for
JavaScript. The developers work with the live coding ex-
tension that will be expanded by, among other things, the
possibility to mark a specific function call as correct. For
example, there is a function that decides if a given number
is even or odd. With the input 5 it returns the value “odd”,
this is correct thus, this can be marked as correct (see Figure
[1.I). At the server side of this extension this new test case
will be created and executed with Jasmine. The results of
this tests are displayed immediately and the developers get
a better overview over the correctness of their code. If there
are mistakes in their code they get enough information to
find this error quickly.

1.5 Chapter Overview

The next chapter 2| “{Related work!” contains the previous
knowledge concerning live coding and continuous testing.

The design is described in chapter 3| “Design}”. This chapter
is split into two parts: The first part contains the design
ideas for the user interface and the differentiation to other
design possibilities. The second part is about the design of
the test cases.

Implemen]

atloﬁr It defines the important parts of the 1mplementa—
tion, concerning the server and the client side.

Chapter [5| fEvaluation|” discusses the advantages and dis-
advantages of the combination of live coding and continu-
ous testing. It gives ideas how this method could be eval-
uated in a study and points out possibilities to extend the
program.

The last chapter [“Summary and future work]” gives a

'http:/ /hci.rwth-aachen.de/livecoding
*http:/ /jasmine.github.io/2.0/introduction.html

http://hci.rwth-aachen.de/livecoding
 http://jasmine.github.io/2.0/introduction.html

1.5 Chapter Overview

summery of the previous chapters and an idea of future
work concerning this topic.

Chapter 2

Related work

In the Literature are a lot of programs that support live cod-
ing or continuous testing. One of the first papers that deals
with live coding was written by Tanimoto [1990]. It deals
with visual programming languages. He was the first one
to categorize the degree of “liveness”, meaning how pro-
grams “present ‘live” feedback to the programmer” [Tani-
moto,|[1990]]. Later on Tanimoto|[2013]] added two more cat-
egories to his original hierarchy. All six levels are mapped

in Figure

The first and lowest level describes that users do not get any
semantic feedback. The second level says that users can
get semantic feedback if they want to. All programming
enviroments should be on level two of liveness, because
they should all enable the users to get semantic feedback
of their code. The third level provides automatic semantic
feedback on program edits. The fourth step is described as
“fully live” by Tanimoto| [2013]. This level provides auto-
matic, semantic feedback like in step 3, and a program on
this step is able to response to events like mouse clicks for
example [Burnett et al., 1998]. The next two steps are ideas
which are not yet implemented. A program on level 5 of
liveness will be able to make suggestions based of the be-
haviour and other programs of the developers about what
the developers may want to implement next. The last step
of liveness, level 6 provides a kind of intelligent program.
This program knows what the developers desire or what

How programs
present live feedback
can be categorized
into 6 levels.

Level 1: no semantic
feedback.

Level 2: semantic
feedback on
demand.

Level 3: automatic
feedback.

Level 4: automatic
feedback and event
listening.

Level 5: suggestions
about what to
implement next.

Level 6: knowledge
about the users
intentions.

10

2 Related work

{adds inference of gross functionality)

5.
Tactically predictive
{adds programming via selection from
running predicted behaviors)

4, \
ﬁormative, significant, responsive and live

(e.g., stream-driven updates)

4 . N

Informative, significant and responsive
{e.g., edit-triggered updates)

6.
/ Strategically predictive \

2.
Informative and significant
(e.g., executable flowchart)

1.

Informative
&{e.g., flowchart as ancillary description)%

Figure 2.1: “Extended version of the liveness hierarchy” [Tanimoto,
2013]

intentions they have. To ensure this step of liveness, a large
knowledge base is needed. The combination of live cod-
ing and continuous testing, which we implemented in this
thesis, is working on level 4. It provides a “fully live” Tani-
moto| [2013] output for the user that always shows the cur-
rent state of the program, and it is possible to interact with
this output.

Another early paper about a kind of live coding is the one
by [Snell|[1997]. He developed a combined method of edit-
ing and debugging, so that “as the programmer entered the
code for a new routine, as soon as each statement was en-
tered, the environment would execute it and display the

11

new program state” [Snell, 1997]. Based on the paper of
Tanimoto|[1990] it is possible to say that he invented a pro-
gram with a liveness on level 3. Another point is that his
program does not simply display the actual program state,
it also supports test cases. The developers need to define
several test cases before writing their code, and while en-
tering code the program updates the test cases until they
return a result. In this way the developers can easily see
which line causes an error because the update of the test
cases takes place after every single statement. Snell called
this method “Ahead-of-time Debugging” (AOT). With a
small study he found out that developers using the AOT
environment were faster in writing code and they produced
less errors during the coding process than without this en-
vironment. Thus, this paper is one of the first ones that
work with a kind of combination of coding and testing, but
the main objective is the testing tool. The test results are
“live” and not the results of the code. In our live coding
and continuous testing combination we try to provide both
methods in balance.

Muslu et al.| [2013] wrote a paper about continuous test-
ing with the goal “to shorten the time to detection [of an
error] as much as possible”. They execute predefined tests
in the background during the development of a new code
fragment. Therefore, it does not matter if the tests are hu-
man written or generated automatically. In the Brackets
extension that we developed with this thesis, we use the
method of generating test cases nearly automatically and
execute them with the method of continuous testing. Our
test case development is only “nearly” automatic, because
we still need an input from the developers to generate a
test case. [Muslu et al.| [2013] found out that it is more effi-
cient to execute the tests only if a data update occurs, than
to execute the test cases continuously ignoring the actual
program state. The continuous execution would lead to
an enormous overhead, thus, we decided to execute our
tests only after adding a new test to the test suite or after
reloading the whole program, like Muslu et al. [2013] rec-
ommended.

Another part that Muslu et al.|[2013] discussed in their pa-
per is the question, if it would be efficient to execute all ex-

Ahead-time of
Debugging provides
live feedback of test

results.

Continuous testing is
more efficient if test
cases are executed
after a data update
than to execute them
continuously ignoring
the actual program
state.

12

2 Related work

A test case
prioritization would
avoid an overhead.

A meaningful user
interface is
important.

Live coding
decreases the
average fix time of
bugs.

Rehearse highlights
responsible code
lines while the
program execution.

isting test cases. Again it would lead to an overhead, if test
cases are executed that are not needed in this state of the
program. In our Brackets extension we do not respect this
prioritization of test cases, but it would be a useful idea for
future work. Our first intention is to ensure the possibility
of generating test cases nearly automatically and to ensure
alive overview of the test results. Thus, in this implementa-
tion of the combination of live coding and continuous test-
ing all generated test cases will be executed without test
case prioritization.

The last thing Muslu et al.| [2013] mentioned is the user in-
terface of the test case results. Their “continuous data test-
ing prototype only indicates which test has failed”, like in
our program. The problem with this kind of user interface
is, that the developers only know which function causes
an error, but they do not know where the error is caused
exactly. We try to help the developers with a detailed er-
ror reporting that contains more information than only the

message of failure (see 3] “{Design!”) .

A new paper that deals with live coding is by Kramer et al.
[2014]. They worked with the Brackets extension where
ours is based on, and did a small user study to show that
live coding provides a decreased average fix time of bugs.
Together with the results of Muslu et al. [2013] we can ex-
pect that a combination of live coding and continuous test-
ing decreases again the average fix time of bugs, in contrast
to both techniques on their own.

Brandt et al. [2010] developed the program Rehearse. It is
a programming environment that highlights “each line of
code as it is executed” [Brandt et al. 2010] and if a code
line is marked by the users, the program finds other code
lines that correspond to the actual marked code line. The
tirst feature, the highlighting of code that is executed, helps
users “getting the code right” [Brandt et al., 2008] because
this combination of feedback and execution helps the users
to quickly identify lines that cause errors. Our live cod-
ing and continuous testing combination also shows where
errors are located, not in which line but in which func-
tion. The continuous testing part furthermore provides a
detailed error reporting that also supports the users while

13

“getting the code right” [Brandt et al., 2008].

Saff and Ernst [2003] also focused on continuous testing.
They were the first to introduce the technique of continu-
ous testing. They developed this technique to reduce the
wasted time that developers need for debugging (see Chap-
ter 1] “Introduction|’). Within their user study they came to
the point that “more feedback is not always better: an inter-
face that provides too much information [] might interrupt,
distract, and overload the developer, perhaps even to the
point of retarding productivity” [Saff and Ernst, 2003]]. In
our program, that works also with continuous testing, we
tried to provide a simple feedback. The results of the test
cases are shown in a terminal window that can be hidden
if the feedback is too much, and our Brackets user interface
shows only detailed information of the test results, if the
users open a popover.

Too much feedback
disturbs a developer.

15

Chapter 3

Design

“Design is concerned with how things work,

how they are controlled, and the nature of the
interaction between people and technology. When
done well, the results are brilliant, pleasurable
products. When done badly, the products are
unusable, leaning to great frustration and
irritation.”

—Norman|[2013]

3.1 User Interface

The user interface is based upon the already existing user
interface of the Brackets extension that was developed by
Joachim Kur#!] The actual user interface and the former
one are mapped in Figure

The first modification we made to the user interface, was
to change the first line of the function result that is mapped
in the second column of the view. The former version con-
tained only one block to skip between the different function
calls, and the respective input values at the right side of this
block (see Figure 3.1). Now the first line also contains the

http:/ /hci.rwth-aachen.de/livecoding

The user interface is
based upon the live
coding Brackets
extension.

The first modification
was to add the
function result to the
live coding column

http://hci.rwth-aachen.de/livecoding

16 3 Design

[|
var x; M
[|
function is0dd{number){ U
if(numbers2 == 8){ i
return H 1
1 1
elsef U
FETurn H :
L 1
1 1
[|
x = 1s0dd(5); -
x = is0dd(4); M
® = i=0dd(1@);]
[|
var x; 0
[|
function is0dd{number){ L 5 returned: - X 1/3 =
if(numbers2 == 8){ s)
return H 1
1 1
else{ U
FETurn H :
H '
1 1
[]
x = 1s0dd(5); -
x = is0dd(4); M
® = is0dd(1@);]
Figure 3.1: Screenshot of the old user interface above and the new one below.
return value that corresponds to the actually selected func-
tion call. Thus, now the developers have an overview of
the main values that correspond to the function, even if the
function body is collapsed. This return value comes with a
short description in form of “returned:”, this helps the users
to understand what is displayed.
Another modification in this line are the two buttons to
We added two mark the actual function call as correct or false. The first
buttons, to mark button with the checkmark is to mark the function call as
specific function calls correct, the second button with the “X” to mark the func-
as correct or false tion call as false. This buttons are placed close to each other

to make visible that they form a union. They do nearly the
same, with the only difference that one marks the function
call as correct, the other as false. With the use of the laws of
proximity and similarity it is visible for the user that they
build a group.

3.1 User Interface

17

LAW OF PROXIMITY:

This is the first law of the “Gestalt Principles”. Objects
that are placed close together seem to be grouped. [John-
son, |2010]

LAW OF SIMILARITY:

The law of similarity is another law of the ”"Gestalt Prin-
ciples”. It says that objects that look similar seem to be
grouped together. [Johnson, 2010]

In Figure for example, the developers can mark if it
is correct or false, that the function isOdd(number) returns
“odd” with an input of 5. How these buttons are linked
with the creation of new test cases, is explained in Chapter
M| “fmplementation]’. If the first button is clicked, the actual
function call is marked as correct and the button turns into
a green button with a checkmark. Every human will asso-
ciate the color green and a checkmark with correct. If the
second button is clicked, the actual function call is marked
as false and the button turns into a red button with an “x”,
because an x and the colour red is associated with false.
If the respectively other button was marked before, this
button turns grey again and the corresponding test case is
deleted. A second click on a button turns the button again
into the initial state and deletes all test cases that are cre-
ated for this function call. Thus, it is easy to see if an func-
tion call is correct or not. For example, if the actual function
call isOdd (5) — ”odd” is marked as correct and we change
the function code so that the function returns even for the
input 5. Then the button turns automatically red because
it was expected, due to the former marked correct function
call, that the function returns "odd”. If this result is also a
correct result, it can be marked as correct and the program
accepts both of this possibilities.

The next modification is at the right side of the two buttons.
It is a simple overview of how many function calls are al-
ready marked as correct. The number of correct function
calls appears in green (associated with correct) and the total
number of function calls in grey, the standard text colour in
this design. This listing also serves to a better overview of
the code results.

Definition:
Law of Proximity

Definition:
Law of Similarity

The first button
marks the function
call as correct, the
second button marks
it as false. A second
click deletes the test
case.

Next to the buttons
we added an
overview of how
many function calls
are correct.

18

3 Design

var x;

function is0dd({number){
if{number%2 == @8){

returmn
h
elsef
return

}

is0dd(5);
is0dd(4);
is0dd{18);

=
nwonon

5 returned: B x 1/3 -
Input Scope Output Expected

4 odd

Figure 3.2: Screenshot of popover that appears with a click on disclosure triangle on the right side.
It gives a detailed overview of all the function calls that belongs to the corresponding function. We
use a wrong function that returns odd even if the number is even. Thus, this can be marked as false.

The disclosure
triangle opens a
popover with an

overview about all
function calls and
their current states.

The column “Scope”
shows the needed
context for this
function call.

Definition:
Global Scope

If the developers want to have a more detailed overview,
they can use the disclosure triangle at the right side of
the window. This disclosure triangle opens the popover
shown in Figure This popover contains an overview
of all function calls that belong to the function in this line.
The input and output values of the respective function, the
scope, the expected value for the corresponding function
call and again the two buttons to generate test cases are
listed in this popover. The expected value varies depending
on whether there is already a test case for the corresponding
input value, that was marked as correct. Like in the exam-
ple above, if the combination isOdd (5) — ”odd” is marked
as correct, then the expected value would be “odd”.

Sometimes the return value - if there is one - of a function
not only depends on the input value. It may also depend on
an additional context, like variables from the global or the
closure scope. Therefore, an additional column is added, it
contains the context that is needed by the chosen function
call (see Figure . If no context is needed this column
is empty (see Figure 3.2). This needed context will also be
saved in the test cases.

GLOBAL SCOPE:

The global scope refers to variables that are defined glob-
ally. That means they are available everywhere in the
code.

3.2 Test Cases

19

wvar x

var y = 1; 1
function addToX({number){ 0
X = x +y + number; T
return xj
1
Input Scope Qutput
addToX(5); : : o B
addToX(5);] - el it
5 x=T,y=1 13

Expected

Figure 3.3: Screenshot of the “Scope” column that shows the additional context that is needed by

the function in this function call.

CLOSURE SCOPE:

A closure is an anonymous inner function that is defined
in an outer function. This inner function gets access to
the context of the outer function. For example:

function greet (first) {
return function (second) {
return first + second;

}

var helloX
var helloBob

greet ("Hello ') ;
helloX (’Bob’) ;

1
2
3
4
5 }
6
7
8
9

console.log(helloBob) ;

10 // returns ‘‘Hello Bob’’

3.2 Test Cases

The layout of the test case in the “testfile_spec.js” file is
based upon the design that is described on the web page
of the Jasmine Testing Frameworkﬂ A test case consists of
a describe block, an it block and a block where expectations
are formulated. The describe block contains a title for the
actual test suite and a function. This function contains the
it block. This it block again contains a title and a function.
In this last function the expectations are contained. Thus, a
normal Jasmine test suite looks as in Figure

*http:/ /jasmine.github.io /2.0/introduction.html

Definition:
Closure Scope

Jasmine test cases
need a specific kind
of design.

 http://jasmine.github.io/2.0/introduction.html

20

3 Design

Our test cases have
one describe block
per function, this
describe block has
several it blocks per
function and every it
block has only one
expectation.

As parameters the
function gets the
needed context
values, this-variables
and the function
parameters.

describe ('title one’, function|() {
it ("title two’, function|() {
expect (...);
}) g
}) i

Figure 3.4: Design of a normal Jasmine test suite.

A describe block can contain more than one it block, and
an it block can contain more than one expectation. In this
thesis we work with one test suite per function, that means
one describe block per function. This describe block will con-
tain one it block per function call and this it block always
contains just one expectation. In Figure(3.5/such a test suite
is shown. The first title describes which function is tested
with this test suite, the title has the form ‘function:
FUNCTION_NAME’. The second title describes which input
is tested and what result we expect. It is of the form
"checks input INPUT_NAME (INPUT CONTEXT)

toBe EXPECTED_RETURN_VALUE’ or if a return value
is not expected ’checks input INPUT.NAME (INPUT
CONTEXT) not.toBe EXPECTED_RETURN_VALUE’.

Thus, with these two titles it should be clear what a test
does. The expect part is the part that finally executes a test.
It calls the respective function with the given input value
and the maybe needed context. With the matchers foBe or
not.toBe it is going to test whether the output is as expected.

The expect block has also always the same form in this the-
sis. It is build as follows:

expect (
FUNCTION_NAME.call (
{THIS_VALUES},
INPUT_VALUES,
[CONTEXT_VALUES])
) .toBe (EXPECTED_RETURN_VALUE) ;

The THIS_VALUES are the values that appear in the origi-

3.2 Test Cases

21

eval (require(’ fs’) .readFileSync (' currentCode.js’, "utf8’));

describe (’ function: is0dd’, £function () {

it (! checks input 10 () not.toBe odd’, function/() {
expect (isOdd.call ({} ,10,[])) .not.toBe(’odd’");

)i

it (' checks input 5 () toBe odd’, function () {
expect (isOdd.call ({} ,5,[])) .toBe('odd");

1)
)i

Figure 3.5: Design of the test cases in the "testfile_spec”.

nal function with a this. keyword. The INPUT_VALUES are
the parameters that are needed to call the function and the
CONTEXT_VALUES are the values out of the global or the
closure scope that are needed by the function.

These mentioned parts together form a valid test case that
can be tested with Jasmine.

Results of the TestCases

The results of the different test cases are mapped in the
terminal that is needed to execute the server behind the
Brackets extension. Figure shows how the results are
reported. The first line of the test results contains a small
overview of the result. If a test case is true, means the real
output of a function matches the expected output, a green
”ok” appears. If a test case is false a red “fail” appears and
below all the failures are described. The description of the
failed test cases are based on the titles that are given in the
describe and the it block. These titles should help to under-
stand which error occurred in detail. In Figure [3.6|the first
failure description is:

function: addToX checks input 5 (x=1, y=1)
not.toBe 7

Expected 7 not to be 7.

Thus, we can see that the function addToX is checked. The

The results of the
test cases are shown
in the terminal that is
needed to run the
server.

22

3 Design

r
B LiveCoding-node sourceMap generation

Starting server on port 1234
Client connected
Execution process disconnected...

1> function: is0dd checks input 5 (2> toBe odd

2» function: addToX checks input 5 (x=1, y=1)> not.toBe 7

3> function: concat checks input all <w= H)> not.toBe Hallo

Jasmine exited.
testCaszeHandler exited

|_|:||IE|--§.'S--1

Figure 3.6: Terminal screenshot of the Jasmine test results

The first line of the input is the value 5, the scope is x=1, y=1 and the result
results are a short is expected not to be 7. The description in the second line
summery, below are shows that the result of this function is exactly 7 and the
detailed information test case resulted in false. Like this it is easy to identify the

of the failures. wrong function.

23

Chapter 4

Implementation

The whole implementation of the live coding and contin-
uous testing combination is split into two parts: the client
and the server. The client is responsible for the design of the
user interface, that was described in Chapter [3| “/Design/’,
and to bundle all the information that are needed by the
server to create a new test case. The server is responsible
to create a test case, to execute it and to send the received
results back to the client.

4.1 Client

The main tasks of the client are building the user interface
and to bundle all the information that are needed to create
test cases that can be executed with Jasmine. To create a

new test case the developers need the different buttons that
are described in Chapter 3 “Designl”. These buttons are cre-
ated as objects of the following form:

var newButton = {};

newButton.type = "button";
newButton.identifier = FUNCTION_NAME;
newButton.name = TEXT_TO_SHOW_ON_HOVER;
newButton.neededContext = NEEDED_CONTEXT;
newButton.initValue = FUNCTION_PARAMETER;
newButton.returnValue = RETURN_VALUE;

The implementation
is split into a client
and a server part.

The client has to
ensure the user
interface, saves
information for test
cases if a button click
is noticed and sends
them to the server.

24

4 Implementation

The function name is
calculated from the
function start location
and the original
source code.

Closures can not be
tested.

The return value is
calculated from the
Esprima syntax tree.

The context
capturing is also
based on the
Esprima syntax tree.
To find the context
the tree is searched
for identifiers.

The function name is calculated by a separate function that
gets the entire code and the start location of the function
body (that comes from the Esprima parseIEb. A special
case are anonymous functions. They exist in the following
forms:

var doSomething = function () {
//the identifier is "doSomething"

return function (parameter) {
// there will be no testing option

The first kind of anonymous function gets the function
name that is given to the function with the variable initial-
ization. The second kind of anonymous function is a func-
tion that only exist locally in another function. Thus, it is
impossible to call this second kind of anonymous function,
regardless whether it has a function name or not. Hence it
follows that closures can not be tested, because on the one
hand we can not call the return-function from outside and
on the other hand it is impossible to test if a function as re-
turn value is exactly the function that we expected. There-
fore an algorithm would be needed that checks if two func-
tions do exactly the same, although they are build in differ-
ent ways.

Return values and the function parameters are calculated
in the same way, by external functions. These functions get
the code that is parsed by Esprima and return the wanted
values.

The context that is shown in the overview popover (see
Figure 3.3), is calculated during the first interpretation of
the source code after reloading the actual window. The
syntax tree, that is calculated with the Esprima parser is
searched for identifiers. The identifiers that are created
within the respective function, just as the function parame-
ters are subtracted from the former found identifiers. Thus,
the remaining identifiers are the ones that are needed from
the closure or the global scope. To get the respective values
of these identifiers, every function gets the following
hidden line:

'http:/ /esprima.org/

http://esprima.org/

4.1 Client

25

var thisScopeVariables = 1;
try{var scopePARAMETER PARAMETER; }catch (e) {}
try{

Hidden in this case means, this line is added right after
the function head, but this line is not visible for users of
this program. The line is only needed to get the values
of the current scope. The first variable initialization (var
thisScopeVariables = 1)isonly anidentifier to show
where scope variables are saved. The try-catch block is
needed, because it might be that variables are defined as
scope variables, that are not defined. The try-catch block
ensures that the other variables are saved and no error oc-
curs if something is undefined. Therefore, it is possible to
filter the respective scope so that only the needed variables
are left over. This filtering avoids an overhead of informa-
tion that would occur if we save all identifiers that occur.

Every function call has an own button with the respective
information. With a click on this button, a function sends all
the data that is contained in this button object to the server
with the note to create a new test case based on this infor-
mation. At the same time the information is saved locally
in the client to update the user interface. Like this the but-
tons are working without delays. A delay would occur, if
the client has to wait for the test case results from the server
to update the user interface. The local test cases are saved
as multidimensional objects of the following form:

FUNCTION_NAME :
PARAMETER_VALUES:
SCOPE_VALUES:
OUTPUT_VALUES:
MARKED_AS: TEST_RESULT

This object is needed to create all the buttons in the cor-
rect colour and the popover with the detailed information
about the function calls. The colours are set related to the
accord of the test results with the expected value. If these
values agree, the line is coloured in green, if they do not
agree, the line is coloured in red and if there is no expected
value and the function call is not marked as false the line
stays grey. When the server finishes the test case execution
this local test case object is overwritten with the actual test

The values of the
variables that are
needed from the
scope are saved with
a hidden line after
the function head.

A click on the button
creates and saves a
local test case object
based on the
information that are
contained in the
button-object.

The specific form of
the local test case
object in the client
ensures the
colouring of the
result (green if the
test result is as
expected, red if not).

26

4 Implementation

The server is
responsible for
executing the test
case with Jasmine
and sending the
results back to the
client.

Client Server

generate local send to Server [generate test case

test case l for Jasmine

update UI [execute test case}

:} send to Client [receive Jasmine

date UI
update U l result

Figure 4.1: Graph of the interaction between Client and Server.

results from the server and the user interface is updated
again. The last update of the user interface ensures the cor-
rect colouring of the lines in the popover, because it might
be that there is a new expected value. The client server in-
teraction is mapped in Figure

4.2 Server

The server is responsible for creating the test cases, for ex-
ecuting them and for sending the results of the test cases
back to the client. To create a new test case, the develop-
ers click on a specific button in the user interface, the client
collects the needed data and sends them to the server (see
Figure[d.1). The server needs to change the form of this data
so that it can be executed with Jasmine. The specific form,
that is needed for Jasmine, is already described in Chapter
“Design]’. To handle these test cases we created a new file
that is called “testCaseHandler.js”. In this file the data is
changed from object into a Jasmine compatible string, Jas-
mine is started and the results from the jasmine execution
are changed from a jasmine object into an object that has
the same form as the test case object in the client.

To execute the test cases in Jasmine, they are written into a

4.2 Server

27

file named "testfile_spec.js”. This local test case file also en-
sures that the test cases are still available after restarting the
program. After the test cases are written into the file, Jas-
mine is started by the "testCaseHandler.js” and it executes
the test cases on the original program code. Before Jasmine
writes the test results into the terminal, like described in
Chapter [“[Design[’, it sends the test results to the “test-
CaseHandler.js” where the results are written into an object
with the specific form that is needed in the client (described
in the section above). The object is send via a web socket to
the client and there the local test case object is overwritten
with this new object from the server.

To ensure a fast execution of the server, the “testCaseHan-
dlerjs” and the Jasmine framework are running in child
processes of the server. Jasmine is started by “forking”
the “cli.js” inside the jasmine-node package. This package
has to be installed withnpm install jasmine-nodein-
side the server folder. The contend of this package is only
changed to send the test results to the “testCaseHandler.js”
before writing them into the terminal and to change the de-
sign of the test results in the terminal. The changes are lo-
cated in the “reporter.js” and the “cli.js” file.

Jasmine is always executed if a new test case is created or
if the Brackets extension is reloaded. This ensures that the
developers always have the current state of their program,
also if they restart the program. A test case is only deleted
if the function call is marked again as undefined or if the test
case is already marked as true, and it is changed to false,
then the true test cases is deleted and vice versa. Thus, with
the time the developers get a large test suite for the respec-
tive functions, without writing a test case on their own.

Jasmine executes
the test cases, sends
test results to the
server and displays
the test result to the
users.

Jasmine is running in
a child process of the
server.

The test cases are
executed if the users
create new test
cases or if the
program is restarted.

29

Chapter 5

Evaluation

With this combination of live coding and continuous test-
ing we wanted to develop a testing tool for the former im-
plemented live coding Brackets extension. This testing tool
should create test cases automatically, it should work with
the method of continuous testing and it should provide an
user interface that is easy to understand.

The automatic test case creation works without problems.
The users only have to click one button and a test case is
generated and executed automatically. We also added the
possibility to capture the input context, not the output con-
text. Without the input context a test case can be wrong, for
example assume that we have the following part of code:

var x = 1;

function addValueToX (number) {
X = X + number;
return x;

}

addvalueToX (5); //returns 6
addvalueToX (6); //returns 12

The fist call of the function addValueToX would return 6 and
the second call would return 12. If we want to test the sec-
ond call, and we do not respect the global scope (means that
the global variable x is equal to 6 before this call) we would

With this program we
wanted to develop a
tool that creates test
cases automatically.

This automatic test
case creation works
with just one click.

30

5 Evaluation

The output context is
not captured like the
input context,
because it does not
affect the main
functionality of our
program.

A problem occurs if
functions are
renamed, because
the test cases are
not changed.

Test cases are only
deleted if a button is
clicked twice or if a
test case is
overwritten by
another one, test
cases should also be
deleted if users
delete a respective
function.

Beside the
mentioned problems
the program works
as desired.

A user study would
give another
overview of the
functionality of the
program.

receive that this call returns 7 and this is not the expected
value 12. Therefore, this actual version of the Brackets ex-
tension respects the input scope but not the output scope.
An output context would be needed if, for example, a func-
tion changes a global variable without returning it as value.
This change is not noticed in the actual version, but the test
cases are still correct if this context is missing. Thus, it is
not essential for the execution of our program.

An essential problem occurs if users change a function
name. The change does not change the function name in
the test cases. This means if a function gets a new name
the test cases will not work anymore because they need the
function with the former name. It is possible to change the
names manually in the test file but it would be better to en-
sure that the program changes the test cases automatically.

Along with the problem of the renaming of test cases goes
the problem of the deletion of test cases. In this version of
the Brackets extension test cases are deleted if the devel-
opers mark them as undefined or if they are overwritten by
another test case (see [] fmplementation|’). A functional-
ity that should be added to the actual version is, to delete
test cases if the function where the test cases belong to, is
deleted. This should be added to avoid a massive overhead
by executing test cases that are not necessary anymore. This
functionality is also not implemented, because it does not
affect the main functionality of this Brackets extension.

Like mentioned, only the problem of renaming a test case
is a problem that affects the main functionality of the pro-
gram. Beside this, the program works as desired. It creates
test cases automatically, executes them automatically and
displays the results in a readable way to the users.

To get a better overview of how users will work with this
program it would be useful to do a small user study. Dur-
ing this thesis we focused on the functionality of the pro-
gram without evaluating it in a user study. In the following
are ideas how this program could be evaluated in such a
user study.

For receiving a significant result during a study, it will

31

be necessary to work with the former brackets extension
without the testing methods and with the extension that
was build during this thesis. The volunteers that work with
the former Brackets extension may use an external testing
framework to ensure the same conditions for both parts.
Both groups may solve programming tasks, maybe to find
errors in a predefined code or to write new code with the
given frameworks. Then the time can be stopped and hope-
fully the group with this new live coding and continuous
testing framework will solve the exercises quicker than the
participants that work with the former version. To get more
information it might be useful to do audio or video record-
ing of the participants during the test. Like this it will be
easier to see where are still difficulties and what problems
occur.

In a user study it is
important to give the
same conditions.
One group of
participants can work
with the new
program, another
group works only
with the live coding
extension and an
additional testing
tool.

33

Chapter 6

Summary and future
work

6.1 Future work

As mentioned in Chapter [5| fEvaluation|” our program still

has limitations. The deletion of test cases, the renaming
of functions and test cases and the capturing of the output
context are features that still remain.

To fix the output context capturing it would be possible to
add the following line at the end of each function:

var thisScopeVariables = 1;
try{var scopePARAMETER = PARAMETER; }catch(e) {}
try{

Thus, the output context capturing would work similar to
the input capturing. The problem with this solution will be
the question how to test this output scope. The input scope
can be tested by adding the wanted scope with a “call” to
the executing function, but in this way the output scope can
not be tested. To enable the output context capturing a new
method is required.

Another task for the future is to solve the problem that if
function names are changed all defined test cases for this

The program still has
limitations.

The output context
capturing leads to a
problem with the test
cases, because the
output context is not
returned.

34

6 Summary and future work

Another task for the
future is to solve the
renaming problem
(test cases are not
renamed if functions
are.

The problem of the
test case deletion
should also be fixed
in the future.

An additional idea is
to provide the
manual addition of
test cases in a
guided form.

Another idea is to
provide a test case
prioritization.

functions still exist with the old function name. Therefore,
we need an algorithm that compares the old code and the
changed code and finds out if a function name is changed.
With this algorithm it will be possible to change also the
test cases if a function is changed. In our Brackets exten-
sion only the new code is analyzed without relation to the
former code version.

The last problem that was mentioned, is the deletion of the
test cases. This can be solved with a function that gets all
the function names of the existing test cases (that can be
found in the description of the describe block in the test case
file’) and the function names of the new source code (that
can be found with help of the Esprima tree). With this infor-
mation the deleted function can be found and the test cases
can be deleted.

With this improvements the Brackets extension should
work without any problems. Anyway there will be always
functionalities that would improve this Brackets extension.
One idea of improvement is, to enable a possibility to add
test cases manually. This might be a button with “add test
case” where a window appears that ensures the develop-
ers to add test cases that do not occur in their code. Thus,
it would be possible to cover the edge cases, that are not
highly covered in this version, like mentioned in Chapter
“Introduction]” (see Figure [1.2). It will be necessary to
guide the developers while entering a new test case, be-
cause the specific form of a jasmine test case has to be
ensured. Therefore, it is possible to give input boxes for
“function name”, “function parameter” and “expected re-
turn value”, this would ensure a correct test case design.

The last idea is a test case prioritization. In our Brackets ex-
tension all existing test cases are executed, although some
test cases may belong to other JavaScript files. With a lot
of test cases this would lead to an enormous overhead and
it would be better to filter the test cases. Thus, only the
needed test cases for the actual file are executed.

6.2 Summary

35

6.2 Summary

During this thesis we implemented a combination of live
coding and continuous testing for Brackets. This extension
is based on the already existing live coding Brackets exten-
sion developed by Joachim Kurz. The design of our pro-
gram is leaned on the design of the previous version of this
Brackets extension. A few objects are added to ensure a
better overview of the code results, like the output vari-
ables of a function. The most important thing we added
are the buttons to create test cases, because this combina-
tion of live coding and continuous testing creates test cases
automatically after a click to this buttons. The information
for these test cases are collected by the client side of our
program and created and executed by the server side using
the JavaScript testing framework Jasmine. The server sends
the test results back to the client, where they are displayed
to the users. Thus, the users get a detailed overview how
their code work, if the functions return the expected values
or if they contain errors. This method ensures a high test
coverage of the average requests. The edge cases are less
covered. In the future work we want to enable a possibil-
ity to add test cases manually in an easy way. This should
provide a better edge case test coverage.

37

Bibliography

Joel Brandt, William Choi, and Scott R. Klemmer. Rehearse:
Coding interactively while prototyping, 2008.

Joel Brandt, Vignan Pattamatta, William Choi, Ben Hsieh,
and Scott R. Klemmer. Rehearse: Helping programmers
adapt examples by visualizing execution and highlight-
ing related code, 2010.

M. M. Burnett,]. W. Atwood Jr, and Z. T. Welch. Imple-
menting level 4 liveness in declarative visual program-
ming languages. In Proceedings of the IEEE Symposium on
Visual Languages, pages 126—, 1998.

Jeff Johnson. Designing with the Mind in Mind. 2010.

Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan
Borchers. How live coding affects developers’ coding be-
havior. In Visual Languages and Human-Centric Computing
(VL/HCC), 2014 IEEE Symposium on, 2014.

Kivang Muslu, Yuriy Brun, and Alexandra Meliou. Data
debugging with continuous testing. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineer-
ing, pages 631-634. ACM, 2013.

Don Norman. Design of Everyday Things. 2013.

David Saff and Michael D. Ernst. Reducing wasted devel-
opment time via continuous testing. In Proceedings of the
14th International Symposium on Software Reliability Engi-
neering, pages 281-192. IEEE Computer Society, 2003.

David Saff and Michael D. Ernst. Continuous testing in
eclipse. Electron. Notes Theor. Comput. Sci., 107:103-117,
2004.

38 Bibliography

James L. Snell. Ahead-of-time debugging, or programming
not in the dark. In Proceedings of the 8th International Work-
shop on Software Technology and Engineering Practice (STEP
'97) (Including CASE "97), pages 288—. IEEE Computer So-
ciety, 1997.

Steven L. Tanimoto. Viva: A visual language for image pro-
cessing. J. Vis. Lang. Comput., 1:127-139, 1990.

Steven L. Tanimoto. A perspective on the evolution of live
programming. In Live Programming (LIVE), 2013 1st Inter-
national Workshop on, pages 31-34, 2013.

39

Index

Ahead-of-time Debugging,
anonymous function, 24|

AOT, see Ahead-of-time Debugging
average request, 5]

Brackets, [} 27,2930,
client, [6]

computational resources, El
context capturing,

continuous testing, [2H4} [0} [T} [13} [23] [29} B5|

CPU,BH

debugging, 3]
disclosure triangle, [18]

edge case,

Esprima,

Exprima,

Integer, [5]
Jasmine, [6} [T9} 21} 23] [26} [27} 35]

Java,

live coding, [2H4} [9} [23} 29}

Live Programming, see live coding
liveness, [9]

-level 1,9

- level 2,[9]

-level 3,0

-level 4,09

-level 5,9

-level 6,9

Perl, 2]
popover, 1§

Regression error, [

40

Index

scope, 25, [33]

- closure,
- global, [18]

semantic feedback, [9]

server, [6] 23] 25| 26} B5]
test case, [T} B} [T} [17} [19} [23] 2527} 29} 30} B335]

test case prioritization, [12]

test coverage, 5, B4
test suite, [T} 2} [19]

user interface, 24
user study,

visual programming languages, [J]

web socket, [27]

Typeset September 19, 2014

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Motivation
	Live Coding
	Continuous Testing
	Combining Live Coding and Continuous Testing
	Chapter Overview

	Related work
	Design
	User Interface
	Test Cases

	Implementation
	Client
	Server

	Evaluation
	Summary and future work
	Future work
	Summary

	Bibliography
	Index

