Designing for Large Public Displays Seminar Post-Desktop User Interfaces

Tobias Hoffmann, Christian Köhler

19 January 2006

Advisor: Tico Ballagas

RWTH Aachen, Media Computing Group, Prof. Dr. Jan Borchers

Overview

- Introduction
- 2 Existing applications
- Input methods
- 4 Summary

Motivation

- interactive displays are well established in collaborative and group-based activities
- shared resource for variety of community-based activities
- used to easily access personal information

• displays have to be ubiquitous

- displays have to be ubiquitous
- techniques needed to notify and communicate with users

- displays have to be ubiquitous
- techniques needed to notify and communicate with users
- multi-user support

- displays have to be ubiquitous
- techniques needed to notify and communicate with users
- multi-user support
- input techniques

- displays have to be ubiquitous
- techniques needed to notify and communicate with users
- multi-user support
- input techniques
- privacy
 - non-toy interactive use mostly covers private information
 - large displays afford reading

Overview

- Introduction
- 2 Existing applications
 - Posture/Gesture prototype
 - Plasma Poster
 - Dynamo
 - Other systems
- 3 Input methods
- 4 Summary

Posture/Gesture prototype

System description

- public ambient and personal focused display
- implicit interaction with public information
- explicit interaction with personal information
- supporting multiple users

Posture/Gesture prototype

System description

- public ambient and personal focused display
- implicit interaction with public information
- explicit interaction with personal information
- supporting multiple users

Technology involved

- 50" plasma screen
- SMART Technologies touch sensitive overlay
- Vicon motion tracking system

Calm Aesthetics

- Calm Aesthetics
- Comprehension

- Calm Aesthetics
- Comprehension
- Notification

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction
- Immediate Usability

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction
- Immediate Usability
- Shared Use

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction
- Immediate Usability
- Shared Use
- Combining Public and Personal Information

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction
- Immediate Usability
- Shared Use
- Combining Public and Personal Information
- Privacy

- Calm Aesthetics
- Comprehension
- Notification
- Short-Duration Fluid Interaction
- Immediate Usability
- Shared Use
- Combining Public and Personal Information
- Privacy

Example

⇒ Video

Ambient Display Phase

getting overall information quickly

Ambient Display Phase

getting overall information quickly

Implicit Interaction Phase

subtle notification about urgent personal or public information

Ambient Display Phase

getting overall information quickly

Implicit Interaction Phase

subtle notification about urgent personal or public information

Subtle Interaction Phase

- detailed descriptions of notifications
- public information is augmented with personal information

Ambient Display Phase

getting overall information quickly

Implicit Interaction Phase

subtle notification about urgent personal or public information

Subtle Interaction Phase

- detailed descriptions of notifications
- public information is augmented with personal information

Personal Interaction Phase

- direct touch for up-close interaction
- body helps occlude personal information

Plasma Poster

System description

- interactive posterboards
- content sharing within teams, groups, etc.
- complement existing content sharing tools

Plasma Poster

System description

- interactive posterboards
- content sharing within teams, groups, etc.
- complement existing content sharing tools

Technology involved

- plasma display oriented in portrait format
- touch interaction

 peripheral noticing: appealing from distance; content changes regularly

- peripheral noticing: appealing from distance; content changes regularly
- active reading: interaction with content, can be scrolled, paused etc.

- peripheral noticing: appealing from distance; content changes regularly
- active reading: interaction with content, can be scrolled, paused etc.
- navigating and browsing through posted content: providing content overview

- peripheral noticing: appealing from distance; content changes regularly
- active reading: interaction with content, can be scrolled, paused etc.
- navigating and browsing through posted content: providing content overview
- social connections: emphasize social dimension

Dynamo

System description

- public interactive surface
- sharing, exchanging, showing, and interacting with digital media
- support multi-user interaction

Dynamo

System description

- public interactive surface
- sharing, exchanging, showing, and interacting with digital media
- support multi-user interaction

Technology involved

- two 50" plasma screens
- three wireless keyboards and mice as interaction points for multi-user input
- various mobile storage devices like USB pen drives, brought in from the users

• Palettes:

- move information onto the surface
- sources and sinks for media

Palettes:

- move information onto the surface
- sources and sinks for media

Carves:

- define areas for individual or mediated shared use
- creator restricts interaction with carve region

Palettes:

- move information onto the surface
- sources and sinks for media

Carves:

- define areas for individual or mediated shared use
- creator restricts interaction with carve region

Parcels:

- allow asynchronous media sharing
- iconified form to save space

Palettes:

- move information onto the surface
- sources and sinks for media

Carves:

- define areas for individual or mediated shared use
- creator restricts interaction with carve region

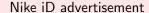
Parcels:

- allow asynchronous media sharing
- iconified form to save space

Notes:

- asynchronous information sharing
- discussions

Other systems



Blueboard

Overview

- Introduction
- 2 Existing applications
- Input methods
 - Traditional methods
 - Posture/Gesture system
 - Audience participation
 - Bring your own device
- 4 Summary

Some problems

• general: not intended for multiple users

Some problems

- general: not intended for multiple users
- Mouse:
 - Where would it be?
 - unsuitable for large areas: e. g. find the cursor, Fitts Law

Some problems

- general: not intended for multiple users
- Mouse:
 - Where would it be?
 - unsuitable for large areas: e. g. find the cursor, Fitts Law
- Keyboard:
 - Where would it be?
 - input focus not so clear with multiple users

Some problems

- general: not intended for multiple users
- Mouse:
 - Where would it be?
 - unsuitable for large areas: e. g. find the cursor, Fitts Law

• Keyboard:

- Where would it be?
- input focus not so clear with multiple users

Touchscreen:

- technical limitation: multiple users
- being very close to the display (not necessarily a problem)
- area out of reach

Posture/Gesture system

Problem addressed

interaction without additional devices

System description

Advantages

- no additional devices needed
- easy to use
- interact with information from distance

Not (yet) solved

prototype needs tracking markers

Problem addressed

collaborative multi-user input

Problem addressed

collaborative multi-user input

System description

three techniques:

Audience Movement Tracking

Problem addressed

collaborative multi-user input

System description

three techniques:

- Audience Movement Tracking
- Beach Ball (shadow) Tracking

Problem addressed

collaborative multi-user input

System description

three techniques:

- Audience Movement Tracking
- Beach Ball (shadow) Tracking
- 3 Laser Pointer Tracking

Advantages

true multi-user input device, with no individual input

- 1 different gestures can be trained and recognized
- ② more precise input possible; single users have full control for short period of time
- 3 e.g. good for polls

general: single user action not intended / possible.

general: single user action not intended / possible.

1. Audience Movement Tracking

- operator-triggered training phase needed
- template based tracking does not adapt well to changing audiences

general: single user action not intended / possible.

1. Audience Movement Tracking

- operator-triggered training phase needed
- template based tracking does not adapt well to changing audiences

2. Shadow Tracking

- explicitly tracked shadow in the example requires high contrast
- other items could fool the system
- only few people active, so only limited number of participants

general: single user action not intended / possible.

1. Audience Movement Tracking

- operator-triggered training phase needed
- template based tracking does not adapt well to changing audiences

2. Shadow Tracking

- explicitly tracked shadow in the example requires high contrast
- other items could fool the system
- only few people active, so only limited number of participants

3. Laser Pointer Tracking

- Laser pointer required
- difficult to distinguish the own point from others

Problems addressed

- Mouse replacement
- additional Keypad-, Joystick-type interaction
- rotary controller
- Text input (esp. PDA)

Problems addressed

- Mouse replacement
- additional Keypad-, Joystick-type interaction
- rotary controller
- Text input (esp. PDA)

System description

- detection by visual codes (Point & Shoot)
- detection with flow technique (Sweep)

Problems addressed

- Mouse replacement
- additional Keypad-, Joystick-type interaction
- rotary controller
- Text input (esp. PDA)

System description

- detection by visual codes (Point & Shoot)
- detection with flow technique (Sweep)

Example

 \Rightarrow Demo

Advantages

uses devices most people carry around

Advantages

uses devices most people carry around

Not (yet) solved

- not everybody has an adequate mobile phone
- getting the Java applet

Overview

- Introduction
- 2 Existing applications
- Input methods
- 4 Summary

Benefits and problems

Benefits

- provide a range of different information
- multiple user support
- encourage social interaction
- access to personal data
- can be used for advertisment

Benefits and problems

Benefits

- provide a range of different information
- multiple user support
- encourage social interaction
- access to personal data
- can be used for advertisment

Problems

- privacy
- new metaphors needed
- active research field

Summary

- Existing applications
 - Posture/Gesture prototyp
 - Plasma Poster
 - Dynamo
- Input methods
 - Posture/Gesture prototyp
 - Audience participation
 - BYOD

Questions?

Further reading

- Information Voyeurism: Social Impact of Physically Large Displays on Information Privacy Microsoft Research research.microsoft.com/users/marycz/chi2003voyeur.pdf
- Dynamo: The introduction of a shared interactive surface into a communal space
- Techniques for Interactive Audience Participation http://www.monzy.org/audience/ICMI-2002-finalpub.pdf
- Posture/Gesture prototyp www.dgp.toronto.edu