

RWTH Aachen Media Computing Group

Post-Desktop User Interfaces Seminar

Map Navigation for Smartphones

Christian Charles
Iliyana Ivanova

Contents

- Introduction
- Navigation Techniques (panning, zooming, multiple views, focus+context views)
- Interaction Techniques (keypad, motion, touch screen, voice)
- Problems & Solutions
 (desert fog, visualizing off-screen locations, mapping between
 the provided information and the real world)
- Existing Applications
 (features, classification, comparison, demo)
- Questions & Answers

What is a smartphone?

Map navigation for smartphones

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Mobile phone

Smartphone

VS

PDA

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

VS

Date: 12/01/2006

Page: 3/52

What is this all about?

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Problem:

- Large information space
- Tiny display

large virtual workspace

Solutions:

- Multiple designs
- Adaptable user interface elements
- Navigation techniques

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 4/52

Navigation Techniques

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

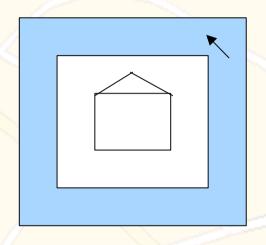
Q & A

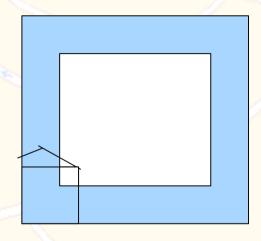
- Panning Techniques
- Zooming Techniques
- Multiple Views
- Focus+Context Views
- Comparison of some Navigation Techniques

Panning - Sliding Window

Introduction

Navigation Techniques


Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Panning by pointing to the edge of the view

- + Whole display area available for content
- + Limited pan speed control
- Requires a pointing device
- Interference with editable content

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

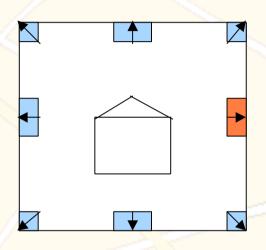
Date: 12/01/2006

Page: 6/52

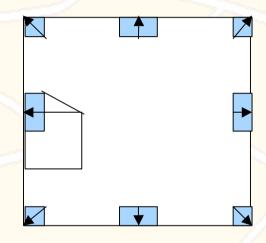
Panning - Arrows

Introduction

Navigation Techniques


Interaction Techniques

Problems & Solutions


Existing Applications

Q & A

Panning by pressing an arrow

Press right arrow

- + No interference with content
- + Intuitive for different interaction techniques
- Shrinks available content display area

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

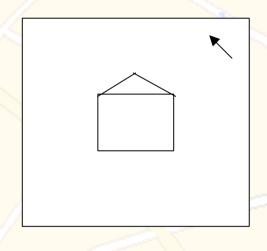
Date: 12/01/2006

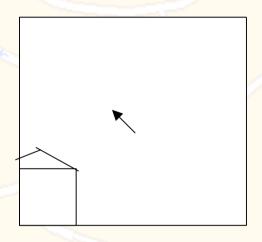
Page: 7/52

Panning - Dragging

Introduction

Navigation Techniques


Interaction Techniques


Problems & Solutions

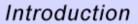
Existing Applications

Q & A

Panning by clicking, holding, moving and releasing the pointer

- + Whole display area available for content
- Requires a pointing device
- Dragging reserved for panning

Christian Charles Iliyana Ivanova


Map Navigation for Smartphones
Post Desktop User Interfaces

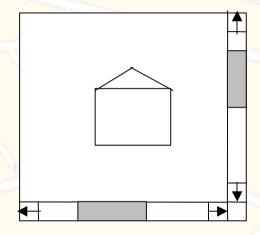
Date: 12/01/2006

Page: 8/52

Panning - Scrollbars

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

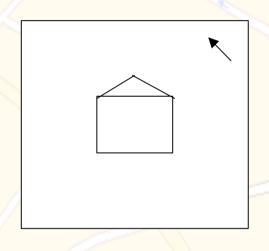
Panning by operating a scrollbar

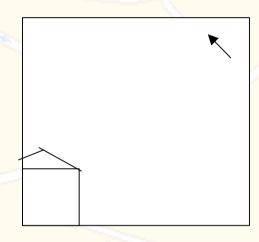
- + Familiar panning technique
- + Pan speed control
- + Indicates position within context
- + Indicates size relation between displayed and complete content
- Requires a pointing device
- Shrinks available content display area

Panning - Select a new centre of view

Introduction

Navigation Techniques


Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

The clicked location becomes the new centre of the view

- + Whole display area available for content
- Requires a pointing device
- Clicking reserved for panning

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

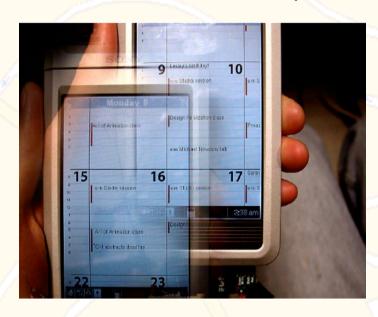
Date: 12/01/2006

Page: 10/52

Panning - Peephole Displays

Introduction

Navigation Techniques


Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

User moves the device to pan the content

- + Whole display area available for content
- Special device features required

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 11/52

Panning - Conclusion

Introd	luction
--------	---------

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

	Sliding Window	Arrows	Dragging	Scroll- bars	Select centre	Peephole
Whole display area available for content	Yes	No	Yes	No	Yes	Yes
Limits interaction possibilities with content	No	No	Yes	No	Yes	No
Requires special device features	PD	No	PD	PD	PD	Motion aware device

Q & A

PD = Pointing Device

Zooming - Screen Segmentation (1)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Screen divided into 9 segments
- Zooms into the selected segment
- Special zoom out key

Zooming - Screen Segmentation (2)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- 2-layer segmentation
- 36 applications visible in world view
- 4 applications visible in zone view

World View

Zone View

Application View

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 14/52

Zooming - Geometric Zoom

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Scale linearly determines the size of objects
- Most common technique on generic zoomable user interfaces

Advantage:

Does not require special knowledge about the displayed content

Disadvantage:

On a low zoom scale objects can not be distinguished

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 15/52

Zooming - Constant Density Zoom

Introduction

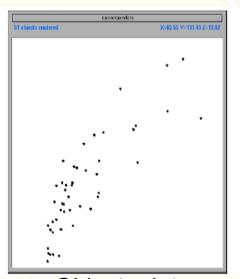
Navigation Techniques

Interaction Techniques

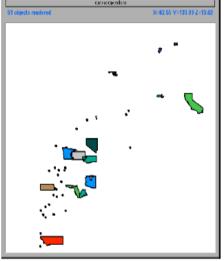
Problems & Solutions

Existing Applications

Q & A


Number of simultaneously visible objects is constant

Technique:


- Hide objects in high object density regions
- Indicate hidden objects by small dots

Geometric zoom

Objects-dots

Constant density zoom

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 16/52

Zooming - Semantic Zoom

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Maps contain numerous objects of different size: counties, cities, villages, streets, landmarks
- Zoomed out view: only large objects are shown, cities, highways connecting cities
- On zoom-in: smaller streets, villages get visible
- Typical zoom technique for maps

Page: 17/52

Zooming - Non linear zooming

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Goal directed zoom
 - Objects have different representations
 - System pans and zooms according to chosen representation
- Combined panning and zooming
 - Extensive panning leads to zooming
- Automatic zoom
 - Clicking on an object centres the view on the object and zooms to an appropriate scale

Zooming - Jump versus Animated Zoom

Introduction

Jump Zoom: instant change of scale

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Animated Zoom: smooth transition from old to new scale
 - Optimal transition time: 1 second
 - Optimal number of scale changes during transition: 8 per second
- Animated Zoom leads to a better understanding of the map's topology, but takes more time to complete the zoom operation

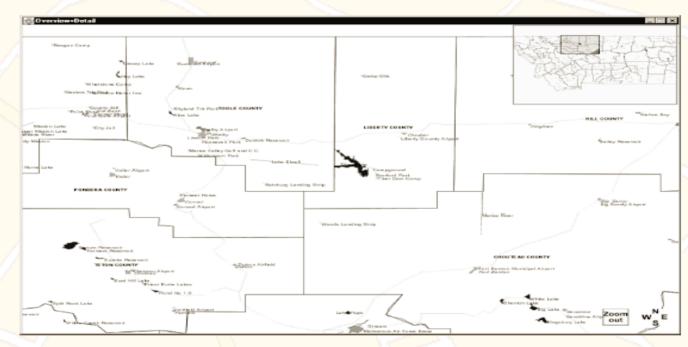
Page: 19/52

Multiple Views - Overview and Detail (1)

Problem: Difficult to keep track of current position within the whole map

Solution: Overview window

Introduction


Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Overview window shows the whole map
- Rectangle indicates the current position and scale within the map
- Overview window can be used to pan and zoom

Christian Charles Iliyana Ivanova

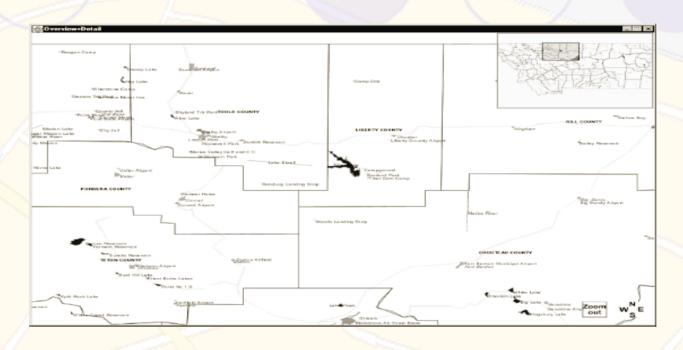
Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 20/52

Multiple Views - Overview and Detail (2)

Introduction


Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Important:

- "tight coupling" between overview and detail window
- Drawback:
 - Display space used by overview window is unavailable for detail window

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

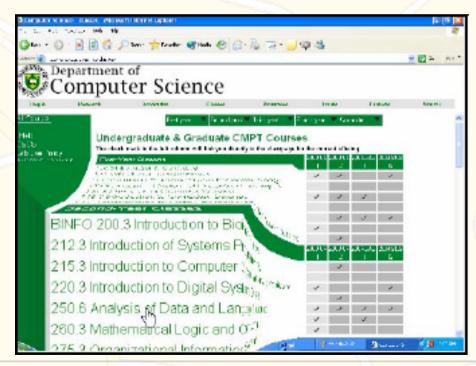
Page: 21/52

Multiple Views - Focus+Context View (1)

Idea: Overview and detail view in the same window

Introduction

Highlighted area is displayed at a raised zoom scale


Navigation Techniques Remaining information is displayed at normal zoom scale

Interaction Techniques • Distortion algorithm calculates the zoom scale interpolation between

Problems & Solutions those two areas

Existing Applications

Q & A

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 22/52

Comparing Focus+Context, Panning, Two-Level Zoom (1)

Introduction

Navigation Techniques

Interaction Techniques

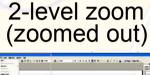
Problems & Solutions

Existing Applications

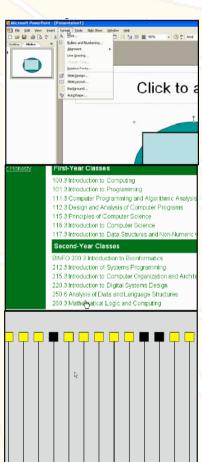
Q & A

Tasks:

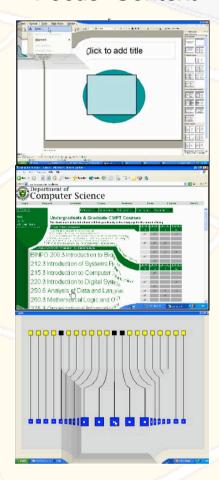
- Edit a PowerPoint presentation
- Navigate to a page on a web site
- Monitor events and respond appropriately

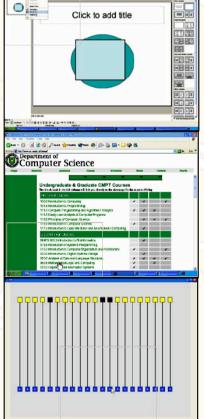

Navigation Systems:

- Panning only system
- Two-Level Zoom system
- Fisheye system



Comparing Focus+Context, Panning, Two-Level Zoom (2)


2-level zoom



Focus+Context

Introduction Navigation Techniques Interaction Techniques Problems & Solutions Existing **Applications** Q & A

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones Post Desktop User Interfaces

Date: 12/01/2006

Page: 24/52

Comparing Focus+Context, Panning, Two-Level Zoom (3)

Results: Mean completion times for the 3 tasks, user preferences

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

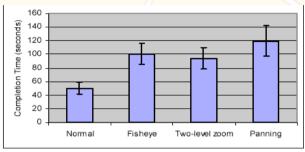


Figure 5. Mean completion times for the presentation editing task. Error bars show standard deviation.

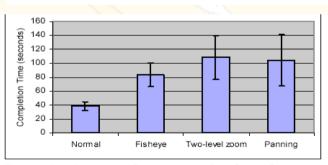


Figure 6. Mean completion times for the web navigation task. Error bars show standard deviation.

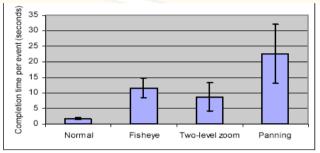
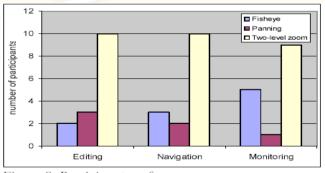



Figure 7. Mean completion times for the monitoring task. Error bars show standard deviation.

Date: 12/01/2006

Page: 25/52

Figure 8. Participant preferences.

Map Navigation: Focus+Context hinders the user to estimate distances

Interaction Techniques

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Interaction with a Keypad
- Interaction with Motion
- Interaction with Gestures on a Touch-Sensitive Display
- Interaction with Voice

Interaction with a Keypad

Introduction

Navigation Techniques

Interaction **Techniques**

Problems & Solutions

Existing **Applications**

Q & A

Types of keypads: single-tap and multi-tap alphanumeric keypads, as well as miniature thumb keyboards

Technique: ZoneZoom

Initial view

press

Sector 6 zoomed-in

support for glance gestures

Interaction with a Keypad on a Large Display

Introduction

Smartphone as a pointing device

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Technique: Point & Shoot

- Absolute cursor positioning by visual codes
- User attention on smartphone screen

- Based on visual codes
- Recognizes simple motion gestures

Date: 12/01/2006

Page: 28/52

Interaction with a Keypad on a Map

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

RFID-based interfaces

- Smartphone with an RFID-reader
- RFID tags for each POI

RFID advantages:

- No line-of-sight required
- Harsh environment withstand

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 29/52

Interaction with Motion (1)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Technique: Peephole Displays [Demo]

- Based on situating information in physical space
- Providing a movable window on that space

- Objects maintain a fixed position w. r. t. outside world → employing spatial memory to model the overall layout of the space
- Continuously controlled scrolling and zooming

Interaction with Motion (2)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Technique: Sweep

- Relative cursor movement by optical flow image processing
- User attention on large display
- Comfortable arm posture

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 31/52

Interaction with Motion (3)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

GPS-based interfaces

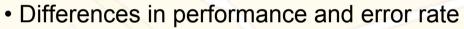
- GPS device keeps track of its current position
- Movement calculation: based on multiple coordinates recorded over time
- Detection of short range movements is not possible, due to GPS resolution (10m)
- + Suited for tracking long range movements, for example while travelling in a car

Interaction with Gestures on a Touch-Sensitive Display

Introduction

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Technique: AppLens

- Gestures for:
 - directional navigation- up, down, left, right
 - widget interaction- activate, cancel
 - · convenience- forward, backward

directional navigation much easier than object interaction gestures

Allows one-handed interaction

Interaction with Voice

Introduction

Voice as input:

Using ASR technology

users; training; speech; noise; vocabulary; context; ASR location

Navigation Techniques

MNS: not widely used

Interaction Techniques Car navigation: Alk Technologies' CoPilot Truck GPS LapTop4 and DeLorme's Street Atlas 2005

Problems & Solutions

Existing Voice as output:

Applications

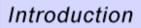
Using TTS systems, such as Microsoft's

Q & A

 $text \rightarrow symbolic \ linguistic \ representation \rightarrow synthesized \ speech \ waveform$

- naturalness and intelligibility of the generated sound
- MNS: widely used; turn-by-turn instructions; choice of preferred voice

Christian Charles Iliyana Ivanova


Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 34/52

Interaction Techniques: Review

Interaction with a Keypad

Interaction with Motion

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Interaction with Gestures on a Touch-Sensitive Display

Interaction with Voice

Problems & Solutions

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

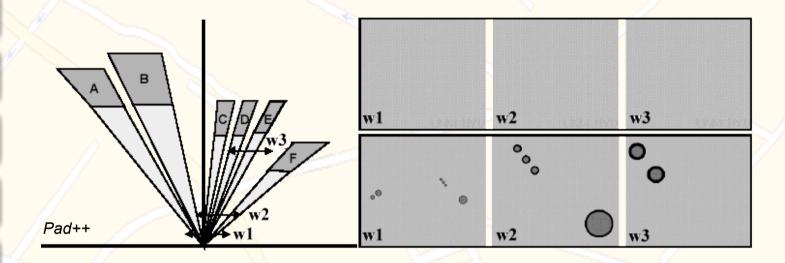
- Desert Fog Problem
- Visualizing Off-Screen Locations
- Mapping between the Provided Information and the Real World

Desert Fog Problem (1)

Introduction

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Desert fog:

- View with no information for navigation
- Zoom in, zoom out or pan what should we do?

Solution:

Providing a multi-scale residue for objects

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

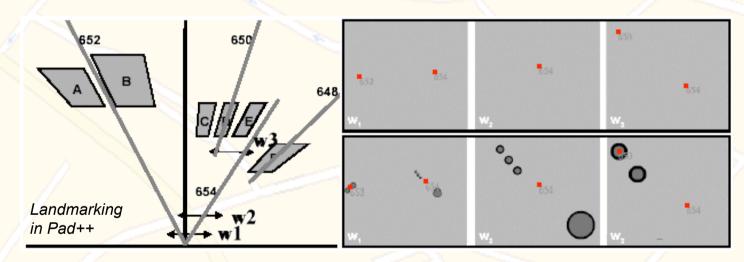
Page: 37/52

Desert Fog Problem (2)

Introduction

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Solution 1:

- Based on cluster analysis
- Hierarchical structure of clusters

Disadvantages:

- Geometrical center is not a good representative of the cluster
- Hierarchical structure, not intended by the author of the space

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 38/52

Desert Fog Problem (3)

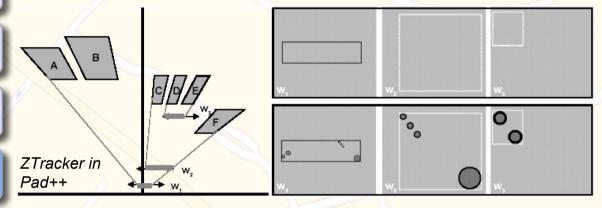
RWTHAACHEN

Solution 2:

Based on "critical zones", interesting vs desert fog views

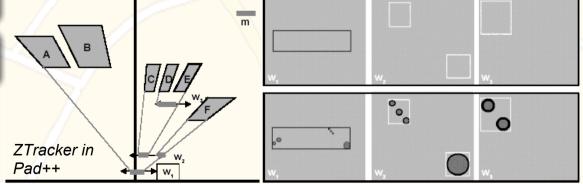
single critical zone algorithm

Introduction


Navigation Techniques

Interaction Techniques

Problems & Solutions


Existing Applications

Q & A

Disadvantage: contains too much desert fog

recursive critical zone algorithm

refining critical zones

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones Post Desktop User Interfaces

Date: 12/01/2006

Page: 39/52

Visualizing Off-Screen Locations (1)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Solution 1: multi-window arrangements, ex. overview+detail

Solution 2: focus-plus-context techniques, ex. fisheye

Solution 3: arrow-based visualization

- Arrows, pointing from the centre of the screen to the off-screen location
- Distance annotation on each arrow
- Need for scale indicator for each scene

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

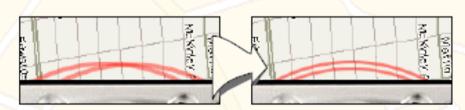
Page: 40/52

Visualizing Off-Screen Locations (2)

Introduction

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Solution 4: arc-based visualization (Technique: Halo)

- Off-screen objects, surrounded with rings
- All needed information encoded in the arc
- Scales to large number of locations

eliminating arc overlapping

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

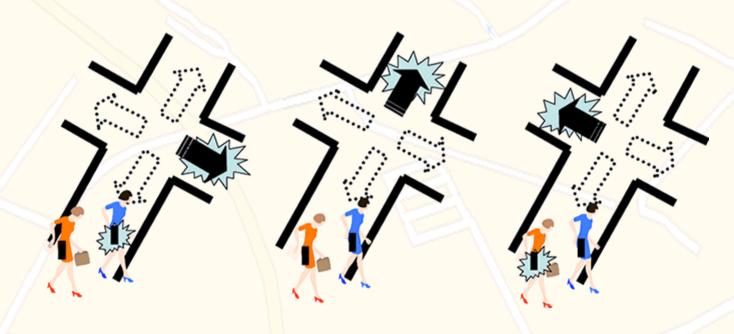
Page: 41/52

Mapping between the Provided Information and the Real World

Introduction

Navigation Techniques

Interaction Techniques


Problems & Solutions

Existing Applications

Q & A

Technique: Rotating Compass

- Synchronized navigation system: public displays and personal devices
- Unobtrusive vibrating alerts
- Two ways for implementation

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

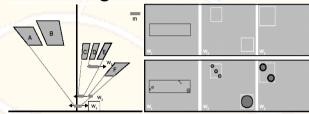
Date: 12/01/2006

Page: 42/52

Problems & Solutions: Review

Introduction

Navigation Techniques


Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

1) Desert Fog

1) Visualizing Off-Screen Locations

1) Mapping between the Provided Information and the Real World

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 43/52

Existing Applications

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Features
- Classification
- Comparison (on-line vs. off-line navigation software)
- Demo

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 44/52

Existing Applications

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Features:

- 2D / 3D maps, voice instructions turn-by-turn
- Route planning by car, by bike, on foot
- Calculating alternatives, avoiding or traveling via certain roads/ motorways/ places of interest, etc.

Classification by:

- Brand- TomTom, Wayfinder Systems, Destinator, ALK Technologies, Route 66, HP, etc.
- OS- Symbian, Windows Mobile, etc.
- Receiver- integrated GPS or separate GPS Bluetooth receiver
- Place of data storage and route calculation- on-board, off-board

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 45/52

Off-board navigation software (1)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Product name	3soft-Navigation	activepilot	T-Navigate	Wayfinder Wayfinder Systems Symbian 900 KB no no	
Producer	3soft-Navigation	Fa. Jentro	T-Mobile		
Operating systems	Symbian	Symbian	Symbian, Win Mobile		
Software size	5 MB	900 KB	3 MB		
Avoiding motorways	yes	yes	no		
Walking / Biking	no	no	no		
Night mode	yes	no	no		
Software price	230 € (incl. GPS device)	Free (GPS device 130 €)	Free (GPS device 130 €)	Free (GPS device 130 €)	
Price per route	Only with subscription	1,49 €	1,99 €	Depends on map mode	
Subscription price	99 € / year	99 € / year		99 € / year	

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 46/52

Off-board navigation software (2)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Product name	3soft- Navigation	activepilot	T-Navigate	Wayfinder Nokia 6600 E-Plus 2 min 2 min	
Test smartphone	Nokia 6670	Siemens M65	MDAcompact		
Test network	E-Plus	Vodafone	T-Mobile		
Route calculation time	1 min	3 min	2 min		
Route recalculation time	1 min	2 min	30 sec		
Menu structure	Good	Satisfactory	Good	Bad	
Destination input	Good	Satisfactory	Good	Bad Good	
Destination guidance	Good	Bad	Bad		
System stability	Very good	Satisfactory	Satisfactory	Very bad	

Date: 12/01/2006

Page: 47/52

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

On-board navigation software (1)

	Product	copilot	Destinator	Navicore	Route 66	Smart2Go	TomTom5
	Producer	Alk Tech, UK	Destinator Europe	Navicore, Finnland	Route66, NL	Gate5, Berlin	TomTom, NL
	Operating system	Windows Mobile	Windows Mobile	Symbian 60	Symbian 60 and up	Symbian 60 and up	Symbian 60
	Memory card	SD-mini, 256 MB	SD-mini, 256 MB	MMC, 256 MB	MMC, 256 MB	MMC, 512 MB	MMC, 256 MB
P	Available maps	Germany, West EU	Germany, West EU	Germany, 7 West EU	Germany, EU	Germany, the Alps	Germany, West EU
	POI	yes	yes	yes	yes	yes	yes
	Avoiding motorways	no	no	no	no	no	yes
	Route planning	yes, over internet	yes	yes	yes	no	yes
4	Walking / Biking	no / no	no / no	no / no	yes / no	yes / no	yes / yes
Ī	Night mode	yes	no	yes	yes	yes	yes
	Software price	199 €	179 €	299 € (incl. GPS)	199 €	299 € (incl.GPS)	299 € (incl.GPS)

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 48/52

On-board navigation software (2)

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Product	copilot	Destinator	Navicore	Route 66	Smart2Go	TomTom5
Test smartphone	T-Mobile- SDA, Motorola MPx220	T-Mobile- SDA, Motorola MPx220	Nokia 6600, Nokia 6670	Nokia 6600	Nokia 6600, Nokia 9300	Nokia 6670
Test network	T-Mobile	E-Plus	T-Mobile, E-Plus	T-Mobile	T-Mobile	E-Plus
Time route calculation	fast	slow	fast	medium	medium	fast
Time route recalculation	< 2 sec	< 2 sec	< 5 sec	< 5 sec	< 5 sec	< 5 sec
Menu structure	satisf.	satisf.	good	good	bad	good
Destination input	bad	satisf.	good	good	satisf.	good
Destination guidance	good	good	very good	satisf.	bad	good
System stability	good	good	very good	satisf.	very bad	very good

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 49/52

Existing Applications: Demo

Used devices:

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Nokia 7610

TomTom 5 GPS Bluetooth device

Route planning: Aachen Ponttor → Aachen Ahornstrasse 56

Demo

Existing Applications: Review

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

- Features
- Classification
- Comparison (on-line vs. off-line navigation software)
- Demo

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 51/52

Questions & Answers

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Thank you for your attention!

Q & A

Christian Charles Iliyana Ivanova

Map Navigation for Smartphones
Post Desktop User Interfaces

Date: 12/01/2006

Page: 52/52

Possible Question 1

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Which smartphones on the market are:

motion gesture – enabled?

Samsung SPH-S4000 and SCH-S400, camera-based phones with motion detection software

voice recognition enabled?

Samsung SCH-A970, SCH-i300 and SPH-V8400

Date: 12/01/2006

Possible Question 2

Introduction

Navigation Techniques

Interaction Techniques

Problems & Solutions

Existing Applications

Q & A

Our choice for on-board navigation software:

TomTom 5 Navigator

Our choice for off-board navigation software:

3soft-Navigation