Real-time motion and activity recognition Seminar: Post-Desktop User Interfaces

Tim Hemig and Moritz Wittenhagen

November 9, 2006

Tim Hemig and Moritz Wittenhagen () Real-time motion and activity recognition

Contents

Sensors

- Overview
- Sensors

2 Activity Recognition

- Basics
- Training data
- Classifiers
- Studies

3 Motion Recognition

- Pattern recognition
- Comparing motion
- Transferring motion
- Interesting projects

Sensor overview

Camera (lab conditions, absolute position with teamwork)
Acceleration sensor (heading & orientation)
Magnetic sensor (orientation)
Gyroscope - angular rate sensor (orientation)
Electromyogram (EMG) (force, frequency)

Pro & Contra

- Camera: High accuracy but lab conditions and problems with light/markers
- Acceleration: Good heading information but calibration & confusion with too fast movements
- Magnetic: absolute attitude without calibration but sensible to (electro-)magnetic noise
- Gyroscope: Good attitude but no information about position
- Electromyogram: good frequency information but no accurate magnitude

Camera

- High Speed Digital IP-Camera (500 FPS 1280x1024)
- Up to 12m capture area with 6 cameras (stage)
- processing speed is enough for 2 actor realtime-performance (on a current gaming PC)
- cameras already prepare data for interpretation
- very small reflectors

Acceleration

- commercial field not limited to industrial products
- almost all scales available
- +-1.5g up to +-10g with around $rac{600 steps}{1g}$ for miniaturised sensors
- Human peak acceleration: 12g

Magnetic

- HAL-sensor in general, very accurate
- determines absolute orientation related to Earth's Magnetic field
- from 120 micro-Gauss to 6 Gauss (Earth has 250 milli-Gauss)

Electromyogram

- Measures electrical current associated with muscular action. Does not measure movement directly.
- Not influenced by gravity.
- Contact resistance is a significant variable.
- Displacement, velocity and power cannot be obtained.
- Sensitive to remote muscle activity and interference.

Combined sensor types

- Magnetic Angular Rate Acceleration sensor by Bachmann/McGhee
- 3 magnetic sensors
- 3 angular rate
- 3 acceleration sensors
- all sensors are orthogonal arranged
- (size $10.1 \times 5.5 \times 2.5$ cm)

Best choice

- Mostly acceleration data is used
- No movement: measures orientation
- Movement: measures heading and distance $(s = \frac{1}{2}at^2)$
- Most efficient sensor

Motion/Activity Recognition Comparison

Activity Recognition	Motion Recognition
series of movements	only one movement
few sensors needed	lots of sensors
classification	classification, comparison and transfer

3

< 🗇 🕨 🔸

Contents

Sensors

- Overview
- Sensors

2 Activity Recognition

- Basics
- Training data
- Classifiers
- Studies

3 Motion Recognition

- Pattern recognition
- Comparing motion
- Transferring motion
- Interesting projects

What is Activity Recognition?

- Focused on the purpose of a movement and not the movement itself
- Usually done with accelerometer data
- Classification problem
- Purpose: Use the context information to build smart devices

The Approach to Activity Recognition

- Gather data for activity templates
- Irain classifier from the collected data
- Ose the classifiers on "real" data

Training Data

э

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Data source

- Mostly accelerometer data
- Several positioning possibilities
- Example: Sensor placement [Bao, Intille, PERVASIVE '04]
- Wireless data transfer

Collection of Training Data

- Laboratory training data
 - Tell subjects what to do and record the sensor data
 - Easy to get
 - Not necessarily good because subjects may behave different when being aware of what they are doing

Collection of Training Data

- Laboratory training data
 - Tell subjects what to do and record the sensor data
 - Easy to get
 - Not necessarily good because subjects may behave different when being aware of what they are doing
- Naturalistic training data
 - gathered by watching subjects performing their everyday activities
 - subjects are not aware of them being watched
 - very hard to achieve

Collection of Training Data

- Laboratory training data
 - Tell subjects what to do and record the sensor data
 - Easy to get
 - Not necessarily good because subjects may behave different when being aware of what they are doing
- Naturalistic training data
 - gathered by watching subjects performing their everyday activities
 - subjects are not aware of them being watched
 - very hard to achieve
- Semi-naturalistic training data
 - Subjects get a list of activities to perform during the day
 - The collected data is self-described by the person
 - Much closer to naturalistic data then lab-gained data

Classifiers

3

A (10) < A (10) </p>

Some classifiers

Base-level

- Naive Bayes
- k-nearest neighbor
- Decision trees

A (10) < A (10) </p>

-

Decision Trees

20 / 42

Decision Trees

Decision Trees

- ID3 is an algorithm used to train decision trees
- It computes the quality of the questions on a certain node and chooses the best one
- Quality is measured by entropy

$$H(X) = -\sum_{i=1}^{|Z|} p_i \cdot \log_2(p_i)$$

Some classifiers

Base-level

- Naive Bayes
- k-nearest neighbor
- Decision trees
- Meta-level
 - Boosting
 - Bagging
 - Plurality voting
 - Meta Decision Trees (MDTs)

< 67 ▶

Studies

2

イロト イヨト イヨト イヨト

Example Study

- Study by Ling Bao and Stephen Intille
- Activity Recognition from User-Annotated Acceleration Data
- Focus on:
 - Good data acquisition
 - What is the best classifier?

Example Study (Setup)

- 20 different activities were considered
- Data of 20 subjects was used
- The data came from 5 bi-axial accelerometers $(\pm 10 {
 m g})$
- Subjects were responsible for annotating the data themselves (semi-naturalistic)
- Classifiers were trained using two different protocols
 - Train the classifier with data from all subjects but one and test it on the remaining subject's testing data
 - Train the classifier with the subject's data and test it with the subject's own testing data

Example Study (Results)

Activity	Accuracy	Activity	Accuracy
Walking	89.71	Walking carrying items	82.10
Sitting & relaxing	94.78	Working on computer	97.49
Standing still	95.67	Eating or drinking	88.67
Watching TV	77.29	Reading	91.79
Running	87.68	Bicycling	96.29
Stretching	41.42	Strength-training	82.51
Scrubbing	81.09	Vacuuming	96.41
Folding laundry	95.14	Lying down & relaxing	94.96
Brushing teeth	85.27	Climbing stairs	85.61
Riding elevator	43.58	Riding escalator	70.56

- Decision trees were the most accurate classifier (84% accuracy rate)
- Some activities are easily confused with other activities
- The leave-one-out training policy yielded better results
- User-specific training may be required for some activities

Other Studies (Results)

- Real-Time Motion Classification for Wearable Computing Applications [DeVaul, Dunn, MIT '01]
 - You can rely on very short FFT windows for "easy" questions
 - More complicated questions can be answered by classifying the classification results
- Activity Recognition from Accelerometer Data [Ravi, Rutgers '05]
 - For some activities it is enough to use one triaxial accelerometer
 - Plurality voting is the best meta-classifier
- Predicting Human Interruptibility with Sensors [Hudson, Carnegie Mellon '03]
 - Speech detectors are a possibility to determine a person's interruptibility

Possible Future Studies

- How much improvement can be expected using user-specific training data?
- What is the best count and position for sensors?
- Are accelerometers the best data source?

Conclusion

- Activity recognition is a classification problem
- The way of gathering training data is important
- Studies indicate that decision trees are the best "basic" classifiers
- Plurality voting is the best meta classifier
- Classification works fast and well on "easy" questions
- More complex questions might be answered after user-specific training

Contents

Sensors

- Overview
- Sensors

2 Activity Recognition

- Basics
- Training data
- Classifiers
- Studies

3 Motion Recognition

- Pattern recognition
- Comparing motion
- Transferring motion
- Interesting projects

What does motion recognition do?

- Analyse sports movement or synchronous performance
- Transfer motion to an avatar
- User interface for ubiquitous computing

What does motion recognition do?

- Analyse sports movement or synchronous performance
- Transfer motion to an avatar
- User interface for ubiquitous computing
- And a lot more you did not think about yet...

Approach to motion recognition

- Humans can do that with their eyes
- Optical sensors (cameras) would be the translation
- Cameras can track areas of special color or contrast
- Calibrated cameras can recognize exact movement in lab conditions

 \odot

Approach to motion recognition

- Humans can do that with their eyes
- Optical sensors (cameras) would be the translation
- Cameras can track areas of special color or contrast
- Calibrated cameras can recognize exact movement in lab conditions

 \odot

- Under real conditions body centric sensors are necessary
- Sensors for magnetism, acceleration and angular rate

Combining all sensors

- sensor data can be transferred to absolute orientation of body parts
- all orientations on stable values are defining one posture
- dynamic values indicate a motion, a gesture

Tim Hemig and Moritz Wittenhagen ()

Detecting motion

Motion detection by Kwon&Gross (ETHZ)

- Motion chunks are detected by high changes in values
- using Hidden Markov Model (Pattern recognition)

Detecting motion

Motion detection by Kwon&Gross (ETHZ)

- Motion chunks are detected by high changes in values
- using Hidden Markov Model (Pattern recognition)
- Difference between starting value and ending value indicate a characteristic

Detecting motion

Motion detection by Kwon&Gross (ETHZ)

- Motion chunks are detected by high changes in values
- using Hidden Markov Model (Pattern recognition)
- Difference between starting value and ending value indicate a characteristic
- Stochastic process has to be trained

Comparing motion

- Comparing data for delay of similar movement (Aylward & Paradiso -NIME '06, pages 134-139)
- Cross-covariance used on small time windows of the signals $(f \star g)(x) \equiv \int f^*(t)g(x+t) dt$

• Sensor data as signal data for review by expert.

Transferring motion

• Transformation does not need any interpretation, it is just rescaled and processed into an 3D Engine

Transferring motion

- Transformation does not need any interpretation, it is just rescaled and processed into an 3D Engine
- Full body suits with acceleration sensors (VIDEO)

Transferring motion

- Transformation does not need any interpretation, it is just rescaled and processed into an 3D Engine
- Full body suits with acceleration sensors (VIDEO)

• Transferring motion to animated characters

Detecting other Motion

• Not only human motion can be detected

Detecting other Motion

- Not only human motion can be detected
- Interaction with e.g. mobile phones by moving the phone
- User can controll almost all features

• Training Avatar for martial arts

Fig. 1. Test subjects wearing the wired sensor boxes while performing (expert on top, amateur below)

- Training Avatar for martial arts
- The "Moven" motion capture suit by Xsens (Enschede, NL)

Fig. 1. Test subjects wearing the wired sensor boxes while performing (expert on top, amateur below)

- Training Avatar for martial arts
- The "Moven" motion capture suit by Xsens (Enschede, NL)
- "Motion Captor" by Meta Motion

Fig. 1. Test subjects wearing the wired sensor boxes while performing (expert on top, amateur below)

• Mobile phones with motion detecting interface by Samsung (Korea)

Mobile phones with motion detecting interface by Samsung (Korea)
"Sketch Furniture" by Front

Video "FRONT"

3

イロト イヨト イヨト イヨト

Future work in motion recognition

- Accuracy of all sensors can be improved
- In general sensors are small enough, but smaller is better
- More implementation work (Frameworks)

Conclusion

Motion recognition

- consists of transferring, comparing and detecting motion
- generally sensors meet necessary requirements
- is commonly used in commercial applications
- helps to create cool projects