
RWTH Aachen University
Media Computing Group
Prof. Dr. Jan Borchers

Post-Desktop User Interfaces
WS 2006/2007

Multimedia Architecture

Ines F�arber (251268)

and

Alexander G. M. Ho�mann (229544)

18.01.2007

Tutor: Thorsten Karrer

Abstract

The area of multimedia applications is a �eld in which cross disciplinary coopera-

tion plays an increasing role. Besides frictionless collaboration and presentation issues

of the di�erent media they also have to satisfy the hard real-time and interaction re-

quests of the end-users. This paper presents some interesting approaches, which are

supposed to solve problems that occure while creating multimedia software.

Contents

1 Introduction to Multimedia 4

2 SAI - Software Architecture for Immersipresence 4

2.1 Case Studies . 6
2.1.1 MuSA.RT . 6

2.2 Conclusion . 6

3 Fran - Functional Reactive Animation 7

3.1 Formal Semantic domains of Fran . 8
3.2 Conclusion . 9

4 Multimedia Information Services Enabling 9

4.1 An Architecture for Multimedia Service Enabling 9
4.2 Multimedia Search and Metadata Management 10
4.3 Case Studies . 11

4.3.1 Peggy . 11
4.3.2 Spot-a-spot . 11

4.4 Conclusion . 11

5 Conclusion 12

References 12

3

1 Introduction to Multimedia

The �rst challenge of this paper is the de�nition of multimedia architecture, for which no
clear containment exists. Multimedia is an integration of multiple of the following digital
media into one big media: text, audio, still images, animation, video and interaction. In
some cases a combination of these media is only regarded as multimedia, if at least one of
these is time-dependent. Figure: [12]

Typical multimedia applications these days are video games, video conferencing systems,
speech recognition systems and animation presentations. Since the architectures presented
in this paper can be used for some of these applications, we will get back later to them.
A multimedia application deals with the creation, manipulation, presentation, storage
or exchange of multimedia-based data. Especially for manipulation and presentation,
interactivity, multi-tasking and parallelism play an important role. To allow the user
an untarnished multimedia experience during interaction these applications have to cope
with hard optimisation constraints such as real-time performance, low latency and precise
synchronisation.

To combine more than one medium a good synchronisation and a good collaborative work
are required; all in
uences have to be well-regulated. An architecture should identify
which processes have in
uence on the calculation at what time. Since every combination
of digital media leads to diverse requirements we present di�erent architectural approaches
to solve typical multimedia application problems. One aspect considered in all presented
architectures is the one of interactivity with the end-user. Furthermore, we provide case
studies to introduce examples of multimedia applications of which the presented architec-
tures form the basis.

2 SAI - Software Architecture for Immersipresence

One Multimedia-Software-Architecture is SAI. Francois de�nes SAI as follows:

SAI (Software Architecture for Immersipresence) is a new software architec-
ture model for designing, analyzing and implementing applications performing
distributed, asynchronous parallel processing of generic data streams. [7]

SAI is a designing tool that gives a general formalism for a multimedia architecture. This
approach tries to analyse new and existing systems easy and gives a construct for system

4

Figure 2.1: Overview of SAI elements [7].

implementation. This architecture combines a high bandwidth with a low latency. It o�ers
a distributed implementation of algorithms and their integration into complex real-time
systems.

The problem about actual complex systems is the integration of, e.g. cross-disciplinary
algorithms. Resource intensive activity causes high latency and unforeseen problems are
hard to locate. SAI makes an easy integration of underlying libraries, native code, or algo-
rithms possible and provides qualities like e�ciency, scalability, extensibility, reusability,
and interoperability.

Data
ow architectures are simple and intuitive, support parallel and distributed process-
ing. The limitation of e�ciency and modelling power, just as problems with shared data
excess cause that data
ow architectures are a non-optimal solution. Blackboards are not
adapted to online and real-time processing. SAI combines all these missing features.

The fundamental principles of SAI are the explicit account of time both in data and
processing models through processing centres (cells) and sources, the distinction between
persistent and volatile data, and the asynchronous parallelism, which supports the prop-
erties of lower delays.

The architectural style of SAI is explained in a graphical way in �gure 2.1.

Cells are represented as squares, sources as circles. Source-cell connections are drawn as
fat lines, while cell-cell connections are drawn as thin arrows crossing over the cells. When
color is available, cells are colored in green (reserved for processing); sources, source-
cell connections, passive pulses are in colored in red (persistent information); streams
and active pulses are colored in blue (volatile information). The graphic-based notation
technique is realized in the SAI application: VisualSAI.

SAI is divided in conceptual and logical levels. The conceptual level includes the set of
cells and sources, the inter-connections, and the description of the di�erent tasks. The
logical level covers passive and active �lters inside the processing centres and the structure
of passive, persistent pulses that enter and leave the sources.

5

2.1 Case Studies

SAI has been used for the design and implementation of various experimental systems.

2.1.1 MuSA.RT

MuSA.RT Music on the Spiral Array. Real-Time [4], is a system for real-time analysis
and interactive visualisation of tonal patterns in music. MIDI input is processed, analysed
and mapped in real-time to the Spiral Array, a 3D model for tonality, revealing tonal
structures such as pitches, chords and keys [7]. The active triad is indicated by a coloured
triangle. Red indicates major, blue minor. The grey dots outside the spiral array are the
actual pressed keys and the green lines visualise the played main melody. The VisualSAI
Conceptual graph of MuSA.RT is given in the following �gure 2.2.

Figure 2.2: Application
ow graph for MuSA.RT [7].

2.2 Conclusion

The goal of SAI is to provide a universal framework for the distributed implementation of
algorithms and their easy integration into complex systems, that provides qualities such
as e�ciency, scalability, extensibility, reusability and interoperability [8].

New are the fundamental principles. The modularity of the style facilitates the division
of code development, testing, and reuse, as well as fast system design and integration,

6

maintenance and evolution. A graph-based notation allows intuitive system representation
at the conceptual and logical levels, while at the same time mapping closely to processes.

The SAI style achieves optimal system latency and throughput, and is a framework for
consistent representation, and e�cient implementation of complex systems.

3 Fran - Functional Reactive Animation

Programming of profoundly interactive multimedia animations including sound, pictures,
video, 2D or 3D graphics has long been a complex task for specialists only, mainly because
a clear di�erentiation between modelling and presentation was missing. Programmers
therefore had to manage the questions "what is an animation" and "how to present it" at
the same time and single-handed.

Animation programmers must explicitly solve the problem of conceptually continuous and
parallel manipulation of parameters in animation presentations through low-level display
libraries running on a sequential computer.

Fran (Functional Reactive Animation [5]) a�ords a declarative (what to do) instead of an
imperative (how to do) kind of programming. The author has complete freedom to de�ne
an interactive animation without caring about details of discrete, sequential presentation,
which are relinquished to the underlying implementation.

Fran is a high level vocabulary and provides a collection of data types and functions,
adapted to programming of animations. Fran is domain-speci�c embedded in the declara-
tive language Haskell. Haskell is best applicable for a declarative approach of programming
modelled animations because of its valuable properties like non-strict semantics, higher-
order functions, strong polymorphic typing, systematic overloading and many more [9].

The key-concepts in Fran are its notions of behaviours and events. Behaviours are time-
varying, reactive values, while events are sets of arbitrarily complex conditions, carrying
possibly rich information [5]. This concept involves a modelling approach established by
four features:

1. Temporal modelling: The core of this modell are behaviours, which are time-dependent
values. These �rst-class values [11] are built up compositionally and the programmer
is able to express concurrency almost naturally and implicitly.

2. Event modelling: Events are �rst-class values as well. Either they refer to hap-
penings in the real world (e.g. left mouse button pressed) or to conditions based
on animation parameters (e.g. collision). Di�erent events can be combined and so
reach an arbitrary degree of complexity. The programmer can factor this complex
logic into semantically rich, modular building blocks.

3. Declarative reactivity: Considerations here focus on behaviours, that are reactions to
events. Semantics of these reactive behaviours are still the same as for non-reactive
ones.

4. Polymorphic media: As the variety of time-varying media �ts into a common frame-
work of behaviours and reactivity many operations provided by Fran are polymorphic

7

and can be applied to all types of time-varying values. However all this media and
their parameters have their own type speci�c operations.

The collection of recursive data types, functions and primitive graphic routines, which
helps realise this concept of modelling, is provided with formal denotational semantics
[5], including a proper treatment of real-time. The semantic domains will be presented in
Chapter 3.1.

The speci�c feature of Fran is its implicit treatment of time. Because events can be
speci�ed as Boolean functions of continuous time and can become true for arbitrarily
brief time periods and instantaneously it is challenging to generally detect them. In Fran
this problem is solved by using a method for event detection based on interval analysis
[10]. Interval analysis concentrates on predicate events, which are events depending on
conditions of behaviour parameters. Sole Sampling of behaviours is not enough, because
behaviours need not to evolve gradually. Instead a conservative interval bound is produced.
Bounds are de�ned by the values that are allocated to the behaviour over a given time-
interval I. Using this interval bound one can determine whether the event takes place or
not.

3.1 Formal Semantic domains of Fran

Behaviours and events are treated as a pair of mutually recursive polymorphic data types
on which one can de�ne operations. The abstract domain of time, called Time is de�ned
as time = R + R. Elements of the second version of R are pre�xed with �, for example

�42 means "at least 42". The bottom element is de�ned as ?Time. Together with the
following ordering on Time this domain is a complete partial order:

x v x; 8x 2 R

�x v y if x � y; 8x; y 2 R

�x v� y if x � y; 8x; y 2 R

Via this chain-like de�nition of time (in particular every sub-chain has a least upper bound)
values of Time include partial elements, so that in some cases we know that time is "at
least" some value, even if we do not know exactly what the �nal value will be. Elements
of Time are most useful for approximating the time in which an event occurs.

The abstract domains of polymorphic behaviours (� - behaviours) and polymorphic events
(� - events) are identi�ed as Behaviour� and Event�. � - behaviours are interpreted as
functions from time to � - values, producing the value of a behaviour b at a time t : at :
Behaviour� ! Time! � .

� - events are interpreted as simply non-strict pairs Time � �, describing the time and
information associated with an occurrence of the event: occ : Event� ! Time� �.

8

3.2 Conclusion

Fran is a system for animation programmers, which allows to concentrate on issues of
modelling, leaving presentation details to the underlying implementation. This one step
towards simpli�cation of the animation programming process is done by the replacement
of imperative techniques with these declarative ones. The current implementation of
Fran runs under Hugs, a Haskell implementation and the authors C. Elliott and P. Hudak
expect marked performance improvement when Fran is running under the Glasgow Haskell
Compiler (GHC).

Possibilities for improvement may be more features for 2D, sound and 3D. Additionally, fu-
ture work lies in improving performance through the use of standard compilation methods
as well as domain-speci�c optimisation techniques.

A related work is TBAG [6] a system that uses a continuous time model and has a syntactic

avour similar to Fran's, however reactivity is handled imperatively. The ideas underlying
Fran also formed the basis of Microsoft's DirectAnimation, a COM-based programming
interface, accessible through conventional programming languages like Java, Visual Basic,
JavaScript, VBScript and C++.

4 Multimedia Information Services Enabling

The paper of "Multimedia Information Services Enabling: An Architectural Approach" [3]
deals with extendable and scaleable multimedia information management systems. The
system should be easily adjusted to new data types and should not lose performance when
it has a growing workload.

4.1 An Architecture for Multimedia Service Enabling

The core functional needs of multimedia retrieval services are supported through the fol-
lowing modules.

The Raw data server module contains the possibility to handle "raw" multimedia
data. To describe the raw material, metadata is used. To handle this kind of data
the metadata module that o�ers querying and modelling functions is used. To present
query results and interact with the user, another module is required; The user interfaces
and presentation module supports di�erent interaction and presentation functions.
The user pro�les and personalisation module which has been added because of the
increasing importance of user pro�ling and personalisation in multimedia applications.
The communication and data transfer module is connected to all other modules.
Any kind of communication is passing through this module. It supports implementation
independent support for transportation needs. Transport functions covered are remote
method invocation, event channels, BLOB transfer, and streaming functionality [3].

9

Figure 4.1: Architecture of the Metadata model [3].

4.2 Multimedia Search and Metadata Management

In the paper [3] are distinguished three levels for describing multimedia data.

� The binary level: Raw data without added interpretation (JPEG, MPEG) (raw data
module)

� The feature level: Described by a set of features, properties of multimedia data.
(color histogram, movement vectors) (metadata module)

� The concept level: Described in terms of semantic concepts (metadata module)

Because the three-level model, there are three kinds of queries. A typical feature query
for example is: "Find all images that have a color histogram close to this one", a typical
conceptual query is: "Find all multimedia objects containing a car" [3]. The metadata
module is the core module in this architecture. In his work they don't want to inspect
one solution of query solving or to analyse one speci�c method. The architecture should
be able to support any type of multimedia queries.

A query request has to pass three layers 4.1. In the query layer the query will be breaked
down into parts according to the way they should be proceed. Then the query is forwarded
to the search engines in the search layer. The search engine is responsible for the actual
mapping of query and metadata. Two models are used: The boolean model (classic, based
on boolean algebra) and the vector model (assigning non binary weights to index terms).
The search engine is directly connected to the data layer that includes the databases. The
feature database (solves queries at the feature level, contains feature level descriptions of
multimedia objects), the concept database (contains conceptual descriptions, domain
speci�c semantics, match queries with metadata in the concept space) and the auxiliary
database (di�erent view of same metadata, rather time consuming, Latent Semantic
Indexing method). The search engine forwards its results of the databases again to the

10

query layer. When all queries are solved, the Result Handler take this into account to give
the results.

4.3 Case Studies

4.3.1 Peggy

Peggy is a so-called Internet movie search
and retrieval service. A user makes a
search request about a list of speci�ed
parameters in the movie database. As
a result he will receive a list of ref-
erences by complying movies. Movie
trailers are stored in the Windows Me-
dia Server (Raw data), metadata is
saved with the help of the MPEG-7
format. Two query languages are sup-
ported as well as two search engines
(PDOM [1] and KWEELT [2]).

4.3.2 Spot-a-spot

The spot-a-spot system is a parking
guide system. A camera �nds free park-
ing lots around a building with the
help of colour histograms and identi-
�es the colour of the cars next to the
slot. A call of the driver who is search-
ing for the closest parking lot next to
the entrance of the building will be re-
sponded with the information. This
system works with a feature database, a conceptual database and a binary search engine.
The result generates a voice message which is then played to the cell phone of the car
driver.

4.4 Conclusion

The basic task of this architecture is the ability to provide extendable and scaleable mul-
timedia information management systems. It is easy to modify and adjustable to the
personal needs. The examples show the main use of this system. The way how the system
ful�lls search requests with the help of raw- and metadata databases and how the request
is controlled is new compared to other solutions.

11

5 Conclusion

For the di�erent combination of digital media and their speci�c requirements and problems
no universal architecture can be found. Since for these architectures various approaches
exist it is even di�cult to give a general overview. We introduced some interesting models
of di�erent multimedia architectures that cover a wide area of multimedia applications.
SAI is a sound/graphical approach, FRAN is animation oriented and MISE handles In-
teractive Multimedia retrieval requests. Every architecture has advantages in the speci�c
area where it is used.

One problem occurring for all architectures is the incompatibility if we exchange one media
against another one. This problem is caused by the di�erent operations that each media
brings along. There is no solution for this problem available and it is questionable if it
ever will be.

References

[1] GMD-IPSI, The GMD-IPSI XQL engine Version 1.0.2.
http://xml.darmstadt.gmd.de/xql/index.html, September 1999.

[2] A. Sahuguet. Querying XML in the New Millennium.
http://db.cis.upenn.edu/Kweelt, September 2000.

[3] Erik Boertjes, Willem Jonker, and Jeroen Wijnands. Multimedia information services
enabling: An architectural approach. In Proceedings of the ACM Multimedia 2001

Workshop on Multimedia Information Retrieval (MIR-01), pages 18{23, New York,
October 5 2001. ACM Press.

[4] Elaine Chew and Alexandre R. J. Francois. MuSA.RT: music on the spiral array.
real-time. In Proceedings of the 11th ACM International Conference on Multimedia

(MM-03), pages 448{449, November 4{6 2003.

[5] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP 97, 1997.

[6] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi. TBAG: A high level
framework for interactive, animated 3D graphics applications. Computer Graphics,
28(Annual Conference Series):421{434, 1994.

[7] A. R.J. Fran�cois. Software architecture for immersipresence. Technical Report IMSC-
03-001, Integrated Media Systems Center, University of Southern California, Decem-
ber 2003.

[8] A. R.J. Fran�cois. Sai: Architecting distributed asynchronous software systems. Tech-
nical Report IMSC-05-003, Integrated Media Systems Center, University of Southern
California, September 2005.

12

[9] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph H. Fasel, Mar��a M. Guzm�an, Kevin Hammond, John Hughes, Thomas Johns-
son, Richard B. Kieburtz, Rishiyur S. Nikhil, Will Partain, and John Peterson. Re-
port on the programming language haskell, a non-strict, purely functional language.
SIGPLAN Notices, 27(5):R1{R164, 1992.

[10] John M. Snyder. Interval analysis for computer graphics. Computer Graphics,
26(2):121{130, 1992.

[11] Wikipedia. First-class object | wikipedia, the free encyclopedia, 2006. [Online;
accessed 24-January-2007].

[12] Wikipedia. Multimedia | wikipedia, the free encyclopedia, 2007. [Online; accessed
18-January-2007].

13

